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A multiplier theorem for sub-Laplacians with drift
on Lie groups

Alessio Martini, Alessandro Ottazzi and Maria Vallarino

Abstract. We prove a general multiplier theorem for symmetric left-
invariant sub-Laplacians with drift on non-compact Lie groups. This con-
siderably improves and extends a result by Hebisch, Mauceri, and Meda.
Applications include groups of polynomial growth and solvable extensions
of stratified groups.

1. Introduction

Let G be a connected Lie group. Let X1, . . . , Xν be left-invariant vector fields on
G that satisfy Hörmander’s condition and % be the Carnot–Carathéodory distance
associated with X1, . . . , Xν . Then, as it is well known, the sub-Laplacian ∆ =
−
∑ν
j=1X

2
j is hypoelliptic and essentially self-adjoint on L2(µ), where µ is the

right Haar measure of G.
Let χ be a nontrivial positive character of G; note that the existence of χ forces

G to be non-compact. Define the vector field

(1.1) X =

ν∑
j=1

dχe(Xj)Xj ,

where e denotes the identity of G. Then the sub-Laplacian with drift ∆X = ∆−X
is essentially self-adjont on L2(µX), where dµX = χdµ, and its L2(µX)-spectrum
is contained in [b2X ,∞), where bX = (

∑
j |dχe(Xj)|2/4)1/2. The above form of

the drift X is not an arbitrary choice: indeed, as shown in [31], any left-invariant
vector field X on G such that ∆ − X is symmetric on L2(µ̃) for some positive
measure µ̃ on G has the form (1.1) for some positive character χ of G.

Such sub-Laplacians with drift have been extensively studied in the literature.
When G is a nonunimodular Lie group with a left-invariant sub-Riemannian struc-
ture, the “intrinsic hypoelliptic Laplacian” considered in [1] is a sub-Laplacian with
drift as defined above; this includes, in particular, the Laplace–Beltrami operator
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associated with any left-invariant Riemannian metric on G. Heat kernel estimates
for sub-Laplacians with drift were studied on various Lie groups in [3, 22, 59]. Lo-
houé and Mustapha [38] studied the Lp boundedness of the Riesz transforms of any
order associated with sub-Laplacians with drift on every amenable Lie group; end-
point estimates for the Riesz transforms of any order associated with the Laplacian
with drift were proved in [36, 37] in the case where G = Rn.

In this paper we are interested in Lp spectral multipliers of ∆X , i.e., the
bounded Borel functions M : [b2X ,∞) → C such that the operator M(∆X), ini-
tially defined on L2(µX), extends to a bounded operator on Lp(µX). Hebisch,
Mauceri and Meda [31] showed that, if G is amenable and p ∈ [1,∞] \ {2}, then
every Lp spectral multiplier of ∆X extends to a bounded holomorphic function on
a parabolic region PX,p in the complex plane depending on p and on the drift X;
namely,

(1.2) PX,p =

{
x+ iy ∈ C : x >

y2

4b2X sin2 φ∗p
+ b2X cos2 φ∗p

}
,

where φ∗p = arcsin |2/p − 1|. In the case where G has polynomial growth and
1 < p <∞, they also found a sufficient condition, stated in [31, Theorem 5.2], for
a holomorphic function M on PX,p to be an Lp spectral multiplier of ∆X . This
condition is more conveniently expressed by means of the change of variable

(1.3) MX(z) = M(b2X + z2),

which defines a holomorphic function MX on the strip ΣW = {x+ iy ∈ C : |y| <
W} of half-width W = |2/p− 1| bX ; with this notation, the sufficient condition in
[31] takes the form

(1.4) max
k∈{0,...,N}

sup
z∈ΣW

(1 + |z|)k|M (k)
X (z)| <∞,

where the number N of derivatives to be controlled depends on the group G and
the sub-Laplacian ∆, but is independent of p.

The main result of this paper improves and complements [31, Theorem 5.2] in
several ways. First of all, we refine the sufficient condition for Lp-boundedness, by
reducing the number N of derivatives and making it dependent on p. For instance,
in the case where G = Rn and ∆ is the standard Laplacian, [31, Theorem 5.2]
requires N > (n+ 4)/2, while our result requires N > |1/p−1/2|(n+ 1). Actually,
in the sharpest formulation of our result, the pointwise differential condition (1.4)
of integer order N is replaced by an Lq condition of fractional order.

Secondly, we obtain an endpoint result in the cases p = 1 and p =∞, in terms of
suitable Hardy and BMO spaces adapted to the measured metric space (G, %, µX).
In this we exploit the general theory of Hardy and BMO spaces of Goldberg type
on measured metric spaces satisfying mild geometric conditions that has recently
been developed by Meda and Volpi [50].

Thirdly, we extend the range of applicability beyond the class of Lie groups of
polynomial growth: namely, our result applies also to distinguished sub-Laplacians
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on some Lie groups of exponential growth, such as the rank-one solvable extensions
of stratified groups considered in [32, 46].

In order to present our multiplier theorem in full generality, we state it as a
conditional result (see Theorem 3.1 and Corollary 3.2 below). In other words,
we prove a spectral multiplier theorem for a sub-Laplacian with drift ∆X on an
arbitrary group G, provided that certain estimates (stated as Assumptions (A),
(B) and (C) in Section 3 below) hold. These assumptions are technical in nature,
however it turns out that they can be verified in many cases, provided that the
sub-Laplacian without drift ∆ has a differentiable Lp(µ) functional calculus and a
multiplier theorem of Mihlin–Hörmander type for ∆ holds.

Next we show how the general multiplier result can be applied in particular
cases. Theorem 4.2 deals with the case where G has polynomial growth (in this
case a multiplier theorem for ∆ was obtained in [2, 21, 23]). Theorem 4.6, instead,
considers the case where ∆ is a distinguished sub-Laplacian on a rank-one solvable
extension of a stratified group (a multiplier theorem for such ∆ was obtained in
[32, 46]). These are but a few examples of applications of the general conditional
result, which could also be used, for instance, to refine the multiplier theorem for
a complete Laplacian with drift on Damek–Ricci spaces obtained in [54] (see also
[58] for the case of the Laplacian without drift).

Note that the parabolic region PX,p defined in (1.2) is tangent to the sector of
angle φ∗p and vertex 0 in the complex plane, and Carbonaro and Dragičević proved
[10] that every generator of a symmetric contraction semigroup has holomorphic
functional calculus on that sector. Therefore our result, when applicable, provides
a more precise spectral multiplier theorem for ∆X .

In the case where ∆X is the Laplace–Beltrami operator associated with a left-
invariant Riemannian metric on G, an Lp spectral multiplier theorem for ∆X

is included in the general result of Taylor [56] (see also [13]) for the Laplace–
Beltrami operator on complete Riemannian manifolds with bounded geometry.
The differential condition on the multiplier in Taylor’s result has the form (1.4),
but the number of derivatives to be controlled is not specified. In addition, that
result only applies to elliptic operators, while the sub-Laplacians considered here
need not be elliptic.

In the particular case where G is a rank-one Riemannian symmetric space of
the non-compact type and ∆X is the corresponding Laplace–Beltrami operator,
our multiplier theorem reduces, up to the endpoint, to a particular instance of
that of Anker [4] for spherical Fourier multipliers (see also [5, 14, 19, 24, 55] for
related results). Indeed, the interpolation machinery that we exploit here to ob-
tain a multiplier theorem with a p-dependent smoothness condition was essentially
developed in [4]. On the other hand, in the proof of the multiplier theorem of
[4], a substantial role is played by spherical analysis and properties of the Abel
transform, which are not available in our general context.

In particular, the “endpoint result” for p = 1 in [4] (from which the result for
1 < p < ∞ follows by interpolation) involves differential conditions of L2 type
on the multiplier, corresponding to the fact that an L2 Plancherel formula for the
spherical transform is available. In our generality (and especially for an arbitrary



4 A. Martini, A. Ottazzi and M. Vallarino

group G of polynomial growth) such a precise identity need not be available, and
one may have to content oneself with rougher “Plancherel estimates” of L∞ type.

For this reason, here we develop a precise Lq Paley–Wiener theory for q ∈ (1,∞)
for holomorphic functions on a strip (see Lemma 2.12 below), which is parallel to
the Plancherel-based L2 theory exploited in [4]; when applied with q arbitrarily
large, this allows us to avoid a “loss of derivatives” and obtain a more precise result
than in [31]. A further improvement derives from a finer analysis of the volume
growth of balls and the observation that, in the case of polynomial growth, the
measure of a sphere grows slower than the measure of a ball (see (2.2) below).

The proof of our endpoint result is based on splitting the convolution kernel of
the operator M(∆X) into a local and a global part. Similarly as in [4, 31], under
a condition of the form (1.4) on the multiplier M , the local part of the kernel is
then shown to satisfy estimates of Calderón–Zygmund type, while the global part
is proved to be integrable. The theory of local Hardy spaces developed in [50] is
perfectly suited to treat kernels of this kind. A challenging problem would be to
investigate weaker versions of (1.4) that do not force the global part of the kernel to
be integrable; in the case of Riemannian symmetric spaces of the non-compact type
and spherical multipliers, results in this direction can be found in [34, 35, 48, 49].

A few words about notation are in order. The letter C and variants such as
Cs denote finite positive constants that may vary from place to place. Given two
expressions A and B, A . B means that there exists a finite positive constant C
such that A ≤ C B. Moreover A ∼ B means A . B and B . A. For two subsets
U and V of a topological space, we write U b V to denote that the closure of U is
compact and contained in V .

2. Preliminaries

2.1. Sub-Laplacians with drift and their geometry

In this section we discuss some geometric properties of the space (G, %, µX) defined
in the Introduction and introduce the Hardy and BMO spaces which are used in
our results.

We briefly recall the definition of the sub-Riemannian structure associated to
a Hörmander system of vector fields. Let X1, . . . , Xν be linearly independent
left-invariant vector fields on G satisfying Hörmander’s condition. The associated
horizontal distribution is the left-invariant subbundle HG of the tangent bundle
TG of G defined by HxG = span{X1|x, . . . , Xν |x} for all x ∈ G. A left-invariant
inner product 〈·, ·〉 on the fibres of HG is defined by requiring that X1|x, . . . , Xν |x
are orthonormal for all x ∈ G; the corresponding norm is denoted by | · |. The
horizontal gradient ∇Hf of a (smooth) function f : G → R is the section of HG
defined by

∇Hf =

ν∑
j=1

(Xjf)Xj ;
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in particular

|∇Hf |2 =

ν∑
j=1

|Xjf |2

at each point of G. A horizontal curve in G is an (absolutely continuous) curve
γ : I → R such that γ′(t) ∈ Hγ(t)G for almost every t ∈ I; its length is defined
by L(γ) =

∫
I
|γ′(t)|dt. The sub-Riemannian (or Carnot–Carathéodory) distance

%(x, y) between two points x, y ∈ G is defined as the infimum of the lengths of all
horizontal curves joining x to y.

We denote by B%(x, r) the closed ball relative to % of centre x ∈ G and radius
r > 0, i.e., B%(x, r) = {y ∈ G : %(y, x) ≤ r}. We also write |x|% = %(x, e) for all
x ∈ G. Let µ be a right Haar measure on G and m be the modular function of G;
then µ` = mµ is a left Haar measure. Define

V%(r) = µ(B%(e, r)) = µ`(B%(e, r))

for all r ∈ (0,∞); the latter equality is due to the fact that

|x−1|% = |x|%

for all x ∈ G. The following statement collects several well-known facts about
left-invariant sub-Riemannian structures.

Proposition 2.1. The sub-Riemannian distance % is finite, left-invariant and
compatible with the topology of G. The metric space (G, %) is a locally compact,
complete length space. Moreover

V%(r) ∼ rd0 for all r ∈ (0, 1]

for some d0 ∈ N, d0 ≥ dimG. Further, if G has exponential growth, then

ear . V%(r) . ebr for all r ∈ [1,∞]

for some a, b ∈ (0,∞); if instead G has polynomial growth, then

(2.1) V%(r) ∼ rd∞ for all r ∈ [1,∞),

where d∞ ∈ N is the degree of polynomial growth of G, and there exists δ ∈ (0, 1]
such that

(2.2) V%(r + 1)− V%(r) . r−δV%(r)

for all r ∈ [1,∞).

Proof. The left-invariance of % is an immediate consequence of the definition and
the left-invariance of X1, . . . , Xν . Finiteness and compatibility with the topology
of G are consequences of the connectedness of G and Hörmander’s condition, by
the Chow–Rashevsky and ball-box theorems [52]. In particular (G, %) is a locally
compact length space (see, e.g., [9, Chapter 2]), which is complete due to left-
invariance (see, e.g., [7, §III.3.3]). The behaviour of V%(r) for small r is also a
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consequence of the ball-box theorem. About the relation of the growth of V%(r)
for large r with the intrinsic growth properties of the Lie group G, we refer to the
discussion in [59, §III.4] and [26] (see also the precise asymptotic of [8, Corollary
1.6] in the case G has polynomial growth). Finally, for the estimate (2.2) we refer
to [16, Lemma 3.3] and [57, Theorem 4]. 2

The choice of the measure µ on G determines the identification of the space of
locally integrable functions L1

loc(µ) on G with a subspace of the space of distribu-
tions D′(G). By the Schwartz kernel theorem, all bounded operators T : C∞c (G)→
D′(G) have an integral kernel Kµ

T ∈ D′(G×G), such that

Tf(x) =

∫
G

Kµ
T (x, y) f(y) dµ(y)

in the sense of distributions. If µ̃ = φµ is another measure on G, with a smooth
positive density φ with respect to µ, then we can also consider the integral kernel
Kµ̃
T of T with respect to µ̃, such that

Tf(x) =

∫
G

Kµ̃
T (x, y) f(y) dµ̃(y),

where the two integral kernels are related by

(2.3) Kµ̃
T (x, y) = Kµ

T (x, y)/φ(y).

Further, if T is left-invariant, then it admits a convolution kernel kT ∈ D′(G), such
that

Tf(x) = f ∗ kT (x) =

∫
G

f(xy−1) kT (y) dµ(y);

in this case the convolution kernel kT is related to the integral kernel Kµ
T by

(2.4) Kµ
T (x, y) = kT (y−1x)m(y).

Let ∆ = −
∑ν
j=1X

2
j be the “sum of squares” sub-Laplacian associated with

the Hörmander system X1, . . . , Xν . The sub-Laplacian ∆ is a left-invariant, non-
negative, essentially self-adjoint operator on L2(µ), and actually

(2.5) ∆ = ∇+
H∇H ,

where ∇+
H is the formal adjoint of the horizontal gradient ∇H with respect to µ.

In particular, a functional calculus for ∆ is defined via the spectral theorem: for
all bounded Borel functions F : R→ C, the operator F (∆) is L2(µ)-bounded and
left-invariant, whence

F (∆)f = f ∗ kF (∆)

for some convolution kernel kF (∆), which in general is only a distribution on G.
However, kF (∆) ∈ L2(µ) when F is bounded and compactly supported, and actu-
ally

(2.6) ‖kF (∆)‖L2(µ) = ‖k‖L2(σ∆)
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for some regular positive Borel measure σ∆ on R, called the Plancherel measure
associated to ∆, whose support is the L2(µ)-spectrum of ∆ (see, e.g., [40, Section
3.2]). Moreover, due to (2.5), the sub-Riemannian distance % is the “control dis-
tance” for the operator ∆, and in particular finite propagation speed holds (see,
e.g., [51] or [20]): for all t ∈ R, supp kcos(t

√
∆) ⊆ B%(e, |t|). As it is well known (cf.

[13] or [21, Lemma 2.1]), via the Fourier inversion formula this implies that

(2.7) supp kF (
√

∆) ⊆ B%(e, r)

for all r ∈ R+ and all even functions F : R → C with supp F̂ ⊆ [−r, r]. Here F̂
denotes the Fourier transform of F , defined by F̂ (ξ) =

∫
R F (x) e−ixξ dx.

Let X be a nonzero left-invariant vector field, and define the “sub-Laplacian
with drift” ∆X = ∆−X. By [31, Proposition 3.1], we know that ∆X is formally
self-adjoint with respect to a positive measure µ̃ on G if and only if there exists a
positive character χ of G such that

∇Hχ|e = X|e,

which we assume from now on. In this case µ̃ is a multiple of the measure µX = χµ
and ∆X is essentially self-adjoint on L2(µX). Moreover

χ1/2∆X(χ−1/2f) = (∆ + b2X)f

for all f ∈ C∞c (G), where bX = |X|/2 [31, eq. (3.6)]. Since L2(µ) 3 f 7→ χ−1/2f ∈
L2(µX) is an isometric isomorphism, this implies a relation between the functional
calculi of ∆X on L2(µX) and of ∆ on L2(µ): for all bounded Borel functions
F : R→ C and f ∈ L2(µ),

χ1/2F (∆X)(χ−1/2f) = F (∆ + b2X)f.

This shows that the L2(µX)-spectrum of ∆X is contained in [b2X ,∞) and

(2.8) kF (∆X) = χ−1/2kF (∆+b2X)

for all bounded Borel functions F : R→ C.
Information on the growth of the character χ in terms of the sub-Riemannian

distance is given by the following result.

Lemma 2.2. For all x ∈ G,

χ(x) ≤ e|X| |x|% .

Moreover, if G has polynomial growth of degree d∞ ≥ 1 and (2.2) holds for some
δ ∈ (0, 1], then ∫

B%(e,r)

χ(x) dµ(x) . rd∞−δe|X|r

for all r ≥ 1.
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Proof. The pointwise estimate on χ is proved in [31, Proposition 5.7(ii)]. As for
the integral estimate, note that, by (2.1) and (2.2),

∫
B%(e,r)

χ(x) dµ(x) ≤
dre∑
j=1

µ(B%(e, j) \B%(e, j − 1)) e|X|j

.
dre∑
j=1

jd∞−δe|X|j . rd∞−δe|X|r

for all r ≥ 1 (in the last inequality the fact that |X| > 0 is used). 2

Moreover, from Proposition 2.1 we immediately deduce some important prop-
erties of the measured metric space (G, %, µX).

Define B = {B%(c, r) : c ∈ G, r > 0} and Bb = {B%(c, r) : c ∈ G, 0 < r ≤ b}
for all b ∈ R+. For a ball B ∈ B, we denote by 2B the ball with the same centre
and twice the radius.

Lemma 2.3. The space (G, %, µX) satisfies the following properties.

(i) Local doubling property: for every b > 0 there exists Db ∈ R+ such that

µX(2B) ≤ Db µX(B) ∀B ∈ Bb.

(ii) Midpoint property: for all x, y ∈ G, there exists z ∈ G such that

%(x, z) = %(z, y) = %(x, y)/2.

Proof. (i). From the behaviour of V%(r), as described in Proposition 2.1, it is clear
that, for every b ∈ R+, there exists Cb ∈ R+ so that

(2.9) V%(2r) ≤ Cb V%(r) ∀r ∈ (0, b].

Note now that, for all B = B%(cB , rB) ∈ B,

µX(B) =

∫
B%(cB ,rB)

χ(x) dµ(x)

=

∫
B%(e,rB)

χ(cBy)m−1(cB) dµ(y)

= χ(cB)m−1(cB)µX
(
B%(e, rB)

)
.

Hence, for all b > 0 and for all B ∈ Bb,

µX(B) ≥ χ(cB)m−1(cB)V%(rB) inf
B%(e,b)

χ,

and
µX(2B) ≤ χ(cB)m−1(cB)V%(2rB) sup

B%(e,2b)

χ.
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Thus, if we set Ab = supB%(e,2b) χ/ infB%(e,b) χ, then, for every B ∈ Bb,

µX(2B)

µX(B)
≤ AbCb,

by (2.9), and part (i) follows.
(ii). This is an immediate consequence of the fact that (G, %) is a complete

locally compact length space (see, e.g., [9, Lemma 2.4.8 and Theorem 2.5.23]). 2

The previous lemma shows that one can apply the theory of Hardy spaces of
Goldberg type developed in [50] to the space (G, %, µX). For the reader’s conve-
nience, we recall here briefly the definition of the atomic Hardy space h1(µX) and
its dual bmo(µX) and a few related results. We refer the reader to [25] for details
on the theory of Goldberg Hardy spaces in the Euclidean setting and to [50] for
the corresponding theory in the context of metric spaces.

Definition 2.4. A standard atom at scale 1 is a function a ∈ L1(µX) supported
in a ball B ∈ B1 such that

(i) ‖a‖L2(µX) ≤ µX(B)−1/2,

(ii)
∫
a dµX = 0.

A global atom at scale 1 is a function a ∈ L1(µX) supported in a ball B of radius
exactly 1 such that ‖a‖L2(µX) ≤ µX(B)−1/2. Standard and global atoms at scale
1 will be referred to as atoms at scale 1. We denote by A(µX) the collection of all
atoms at scale 1.

Definition 2.5. The Hardy space h1(µX) is defined as the space

h1(µX) =

{
f ∈ L1(µX) : f =

∑
k

ckak, ak ∈ A(µX), ck ∈ C,
∑
k

|ck| <∞

}
,

endowed with the usual atomic norm

‖f‖h1(µX) = inf

{∑
k

|ck| : f =
∑
k

ckak

}
.

By [50, Theorem 2] the dual of h1(µX) can be identified with a suitably defined
BMO space bmo(µX).

Definition 2.6. bmo(µX) is the space of all equivalence classes of locally integrable
functions g modulo constants such that

‖g‖bmo(µX) := sup
B∈B1

(
1

µX(B)

∫
B

|g − gB |2 dµX

)1/2

+ sup
x∈G

(
1

µX(B%(x, 1))

∫
B%(x,1)

|g|2 dµX

)1/2

<∞,

where gB = µX(B)−1
∫
B
g dµX .
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By [11, Theorem 8.2] and [12, Proposition 4.5] the following criterion for the
boundedness of integral operators on G holds.

Proposition 2.7. If T is a bounded operator on L2(µX) and its integral kernel
KµX
T is a locally integrable function off the diagonal of G×G such that

(2.10) NX
1 (T ) := sup

B∈B1

sup
y,z∈B

∫
(2B)c

|KµX
T (x, y)−KµX

T (x, z)|dµX(x) <∞

and

(2.11) NX
2 (T ) := sup

y∈G

∫
(B%(y,2))c

|KµX
T (x, y)|dµX(x) <∞,

then T is bounded from h1(µX) to L1(µX), with

‖T‖h1(µX)→L1(µX) ≤ max{NX
1 (T ), NX

2 (T )}+D
1/2
2 ‖T‖L2(µX)→L2(µX),

where D2 is the local doubling constant of Lemma 2.3(i).

Furthermore, by [50, Theorem 5], the following interpolation result holds, where
(V,W )[θ] denotes the lower complex interpolation space of parameter θ ∈ (0, 1)
between the Banach spaces V,W .

Theorem 2.8. Let θ ∈ (0, 1) and set pθ = 2/(2− θ). Then (h1(µX), L2(µX))[θ] =

Lpθ (µX) and (bmo(µX), L2(µX))[θ] = Lp
′
θ (µX).

2.2. Spaces of smooth and holomorphic functions

In order to state and prove our multiplier theorems for the sub-Laplacian with
drift ∆X , we need to introduce certain spaces of functions on R (and domains of
C) that describe the smoothness conditions that we are going to require on the
multiplier. Much of the theory discussed in this section has been developed in [4],
to which we refer for further discussion and details; we remark that [4] treats, more
generally, spaces of functions on Ra for an arbitrary dimension a, so our discussion
here refers to the results in [4] with a = 1.

For q ∈ [1,∞] and σ ∈ R, let Hσ
q denote the Lq Sobolev (or Bessel poten-

tial) space on R of fractional order σ (see, e.g., [6, Definition 6.22]). Let ψ be a
nonnegative function in C∞c (R), supported in [1/4, 4], such that

(2.12)
∑
j∈Z

ψ(2jλ) = 1 ∀λ ∈ (0,∞).

Similarly as in [4, Appendix B], we define a class of weighted Sobolev spaces on R
as follows: for all σ, τ ∈ R, q ∈ (1,∞) and r ∈ [1,∞],

‖F‖Hσ,τ
q,r

=


(∑

k∈N

(
2k(τ+1/q)‖F (2k·)ψ(k)‖Hσ

q

)r)1/r

if r <∞,

supk∈N 2k(τ+1/q)‖F (2k·)ψ(k)‖Hσ
q

if r =∞,
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where ψ(k) =
∑
ε=±1 ψ(ε ·) if k > 0 and ψ(0) =

∑
ε=±1, j∈N ψ(ε 2j ·). It is not

difficult to check that the above definition is essentially independent of the choice
of the cutoff ψ (that is, different choices of ψ give rise to equivalent Hσ,τ

q,r norms)
and is equivalent to the one given in [4, Appendix B]. Moreover, the Hσ,τ

q,r are
Banach spaces [4, Proposition 23(i)] and the following interpolation result holds [4,
Proposition 23(v)], where (·, ·)[θ] and (·, ·)[θ] refer to the lower and upper complex
interpolation methods respectively.

Lemma 2.9. For all θ ∈ (0, 1), q0, q1 ∈ (1,∞), σ0, σ1, τ0, τ1 ∈ R, r0, r1 ∈ [1,∞],

(Hσ0,τ0
q0,r0 ,H

σ1,τ1
q1,r1 )[θ] = H(1−θ)σ0+θσ1,(1−θ)τ0+θτ1

qθ,rθ
if min{r0, r1} <∞,

(Hσ0,τ0
q0,∞ ,H

σ1,τ1
q1,∞)[θ] = H(1−θ)σ0+θσ1,(1−θ)τ0+θτ1

qθ,∞ ,

where 1/qθ = (1− θ)/q0 + θ/q1 and 1/rθ = (1− θ)/r0 + θ/r1.

It is useful to compare the above-defined spaces with other spaces of functions
with integer order of differentiability. For all q ∈ [1,∞), N ∈ N and τ ∈ R, we
define the space WN,τ

q of locally integrable functions F : R → C with locally
integrable distributional derivatives up to order N such that

‖F‖WN,τ
q

:= max
k∈{0,...,N}

(∫
R
|(1 + |λ|)k+τ F (k)(λ)|q dλ

)1/q

<∞.

Similarly, for all N ∈ N and τ ∈ R, we define the space CN,τ of N times continu-
ously differentiable functions F : R→ C such that

‖F‖CN,τ := max
k∈{0,...,N}

sup
λ∈R
|(1 + |λ|)k+τF (k)(λ)| <∞.

Note that the condition ‖F‖CN,0 <∞ can be thought of a nonhomogeneous point-
wise Mihlin–Hörmander condition of order N on the function F : R → C. Simi-
larly, the condition ‖F‖

H
σ,−1/q
q,∞

<∞ can be thought of as a nonohomogeneous Lq

Mihlin–Hörmander condition of order σ.

Lemma 2.10. Let q0, q1, q ∈ (1,∞), σ0, σ1, σ, τ0, τ1, τ, s ∈ R, r0, r1, r ∈ [1,∞],
N ∈ N. Then the following continuous embeddings hold.

(i) Hσ0,τ
q,r ⊆ Hσ1,τ

q,r if σ0 ≥ σ1;

(ii) Hσ,τ0
q,r0 ⊆ Hσ,τ1

q,r1 if either τ0 > τ1, or both τ0 = τ1 and r0 ≤ r1;

(iii) Hσ,τ
q0,r ⊆ H

σ,τ−(1/q1−1/q0)
q1,r if q0 ≥ q1;

(iv) Hσ,τ
q0,r ⊆ H

σ−(1/q0−1/q1),τ+(1/q0−1/q1)
q1,r if q0 ≤ q1;

(v) Hσ,τ
q,r ⊆ CN,τ+1/q if σ > N + 1/q;

(vi) CN,0 ·Hσ,τ
q,r ⊆ Hσ,τ

q,r if N > σ;

(vii) CN,0 ⊆ H
σ,−1/q
q,∞ if N > σ;
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(viii) W0,s
1 ∗Hσ,τ

q,r ⊆ Hσ,τ
q,r if s > |σ|+ |τ |;

(ix) WN,τ
q = HN,τ

q,q .

Proof. These embeddings are stated, in a slightly different form, in [4, Proposition
23(iii,vii,x,xii)]. We note in particular that part (vii) follows from part (vi) by

observing that constant functions belong to H
σ,−1/q
q,∞ . 2

We now switch to the discussion of spaces of holomorphic functions on domains
of C. As usual, for all open subsets Ω ⊆ C, we denote by H∞(Ω) the space of all
bounded holomorphic functions on Ω.

For all W ∈ (0,∞) and N ∈ N we denote by ΣW the complex strip defined by
ΣW = {x + iy ∈ C : |y| < W} and by H∞(ΣW ;N) the space of even bounded
holomorphic functions F on the strip ΣW , continuous on the closure of ΣW with
all their derivatives up to order N , such that

‖F‖H∞(ΣW ;N) := max
j∈{0,...,N}

sup
z∈ΣW

(1 + |z|)j |F (j)(z)| <∞ .

Similarly as in [4, Section 3], for all q ∈ (1,∞), r ∈ [1,∞], σ ∈ (1/q,∞), τ ∈ R,
we denote by H σ,τ,W

q,r the space of all even continuous functions F : ΣW → C
that are holomorphic in ΣW , have at most polynomial growth, and are such that
F (· ± iW ) ∈ Hσ,τ

q,r . In the case W = 0, we define H σ,τ,0
q,r as the space of even

functions belonging to Hσ,τ
q,r . For all W ∈ [0,∞), the space H σ,τ,W

q,r is a Banach
space [4, Lemma 9] with the norm

‖F‖H σ,τ,W
q,r

= ‖F (·+ iW )‖Hσ,τ
q,r

= ‖F (· − iW )‖Hσ,τ
q,r

(the latter equality being due to parity), and actually, due to the three-lines theo-
rem (see [4, proof of Lemma 9(i)]),

(2.13) ‖F‖H σ,τ,W
q,r

∼ sup
t∈[−W,W ]

‖F (·+ it)‖Hσ,τ
q,r
.

The spaces H∞(ΣW ;N) and H σ,τ,W
q,r can be thought of as the holomorphic coun-

terparts of the spaces CN,0 and Hσ,τ
q,r , and the embeddings of Lemma 2.10 imply

corresponding embeddings of spaces of holomorphic functions. Moreover the fol-
lowing interpolation result holds [4, Lemma 10].

Lemma 2.11. For all θ ∈ (0, 1), q0, q1 ∈ (1,∞), σ0 ∈ (1/q0,∞), σ1 ∈ (1/q1,∞),
τ0, τ1 ∈ R, W0,W1 ∈ [0,∞),

(2.14) (H σ0,τ0,W0
q0,q0 ,H σ1,τ1,W1

q1,q1 )[θ] = H (1−θ)σ0+θσ1,(1−θ)τ0+θτ1,(1−θ)W0+θW1
qθ,qθ

,

where 1/qθ = (1− θ)/q0 + θ/q1.

Recall that, for every integrable function F : R→ C, we denote by F̂ its Fourier
transform, given by F̂ (ξ) =

∫
R F (x) e−iξx dx. If F is a holomorphic function on

a domain containing R, then F̂ denotes the Fourier transform of F |R. As it is
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well-known, if F̂ is compactly supported, then F uniquely extends to an entire
function, that we still denote by F .

Let ω : R → R be an even smooth cutoff function supported in [−1, 1], equal
to 1 in [−1/4, 1/4] and such that

(2.15)
∑
h∈Z

ω(t− h) = 1 ∀t ∈ R .

For all h ∈ N, h ≥ 2, define ωh : R→ R by

(2.16) ωh(t) = ω(t− h+ 1) + ω(t+ h− 1).

Note that suppωh ⊂ [h − 2, h] ∪ [−h,−h + 2]. The following estimates of Paley–
Wiener type should be compared with [31, Lemma 5.4] and [4, eq. (26)].

Lemma 2.12. Let q ∈ (1,∞), σ, b ∈ [0,∞) and W ∈ (0,∞).

(i) For all R ∈ (0,∞), if F ∈H σ,b−σ,W
q,q , and R+

0 ∩ supp F̂ ⊆ [R,∞), then

‖(1 + | · |)bF‖Lq(R) ≤ Cσ,b,W R−σe−WR‖F‖H σ,b−σ,W
q,q

.

(ii) If F ∈H σ,b−σ,W
q,q , then, for all h ∈ N, h ≥ 3,

‖(1 + | · |)bFh‖Lq(R) ≤ Cσ,b,W h−σe−Wh‖F‖H σ,b−σ,W
q,q

,

where Fh is defined by F̂h = ωhF̂ .

Proof. By interpolation, it is enough to consider the case where σ, b ∈ N. By an
approximation argument, exploiting [4, Proposition 23(xi)], we may further assume
that supp F̂ is compact, so F extends to an entire function.

We need two preliminary inequalities. The first is that, for all G : R→ C with
supp Ĝ b R \ (−R,R) and all k ∈ N,

(2.17) ‖G‖Lq(R) ≤ Cq,k R−k‖G(k)‖Lq(R);

this is an easy consequence of the Mihlin–Hörmander Fourier multiplier theorem
on R (cf. [6, Lemma 6.2.1]). The second is that, for all G : R→ C with supp Ĝ b
R \ (−R,R) and W ∈ (0,∞),

(2.18) ‖G‖Lq(R) ≤ Cq e−WR(‖G(·+ iW )‖Lq(R) + ‖G(· − iW )‖Lq(R));

indeed, if one decomposes G = G− + G+ so that supp Ĝ− ⊆ (−∞,−R] and
supp Ĝ+ ⊆ [R,∞), then one can easily write

G− = e−WRG−(·+ iW ) ∗ (eiR·PW ),

G+ = e−WRG+(· − iW ) ∗ (e−iR·PW ),

where PW is the Poisson kernel (i.e., P̂W (ξ) = e−W |ξ|), and moreover

G− = G ∗ (Rα(−R·)), G+ = G ∗ (Rα(R·)),
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where α is chosen so that α̂ ∈ C∞(R), supp α̂ ⊆ (0,∞) and α̂|[1,∞) ≡ 1; so, by
Young’s inequality,

‖G±‖Lq(R) ≤ e−WR‖G±(· ∓ iW )‖Lq(R)‖PW ‖L1(R)

≤ e−WR‖G(· ∓ iW )‖q‖PW ‖Lq(R)‖α‖Cvq(R);

since ‖PW ‖L1(R) = 1, and moreover ‖α‖Cvq(R) < ∞ by the Mihlin–Hörmander
theorem, we conclude that

‖G‖Lq(R) ≤ ‖G−‖Lq(R) + ‖G+‖Lq(R)

≤ Cq e−WR(‖G(·+ iW )‖Lq(R) + ‖G(· − iW )‖Lq(R))

(cf. [17, proof of Theorem 4.10]).
Note now that, if F : R → C is even and R+

0 ∩ supp F̂ b [R,∞), then, for all
j, k ∈ N, the functions Fj,k(x) = ∂kx(xjF (x)) are either even or odd and satisfy

the same Fourier support condition R+
0 ∩ supp F̂j,k b [R,∞); hence, by (2.17) and

(2.18),

‖(1 + | · |)bF‖Lq(R) ∼ max
j∈{0,...,b}

‖Fj,0‖Lq(R)

. R−σ max
j∈{0,...,b}

‖Fj,σ‖Lq(R)

. R−σe−WR max
j∈{0,...,b}

‖Fj,σ(·+ iW )‖Lq(R).

Therefore, by Leibniz’ rule,

‖(1 + | · |)bF‖Lq(R) . R−σe−WR max
j∈{0,...,b}

‖Dσ[(·+ iW )jF (·+ iW )]‖Lq(R)

≤ R−σe−WR max
j∈{0,...,b}
k∈{0,...,σ}
σ≤j+k

‖(·+ iW )j−σ+kF (k)(·+ iW )‖Lq(R)

. R−σe−WR max
k∈{0,...,σ}

‖(1 + | · |)b−σ+kF (k)(·+ iW )‖Lq(R)

∼ R−σe−WR‖F (·+ iW )‖Hσ,b−σ
q,q

,

which proves part (i) (in the last step Lemma 2.10(ix) was used).
As for part (ii), it is sufficient to apply part (i) to Fh in place of F and R = h−2,

and observe that, by Lemma 2.10(viii), ‖Fh(·+ iW )‖Hσ,b−σ
q,q

. ‖F (·+ iW )‖Hσ,b−σ
q,q

with an implicit constant independent of h. 2

3. A conditional multiplier theorem for sub-Laplacians with
drift

Let ∆X = ∆ −X be a sub-Laplacian with drift as described in Section 2.1, with
X|e = ∇Hχ|e for some nontrivial positive character χ on G.
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Here we prove a multiplier theorem for the sub-Laplacian with drift ∆X . The
result is conditional, in the sense that it is proved under certain assumptions, that
are essentially related to the existence of a differentiable Lp-functional calculus for
the sub-Laplacian without drift ∆. In Section 4 we will show how these assump-
tions can be verified in a number of cases.

For notational simplicity, it is convenient to express our result in terms of the
operators

D =
√

∆, DX =
√

∆X − b2X .

Note that the passage from ∆X to DX corresponds to the change of variable (1.3).

Assumptions. There exist ℘ ∈ [2,∞) and σ ∈ (1/℘,∞), such that the following
inequalities hold for all even functions F : R→ C with supp F̂ ⊆ [−2, 2].

(A) supy∈B%(e,1)

∫
|x|%≥2|y|% |kF (D)(xy)− kF (D)(x)|dµ(x) ≤ C‖F‖

H
σ,−1/℘
℘,∞

.

(B) sup0<r≤1 r
∫
|x|%≥r |kF (D)(x)|dµ(x) ≤ C‖F‖

H
σ,−1/℘
℘,∞

.

In addition, there exist ς,κ ∈ [0,∞) and W ∈ (0,∞) such that, for all h ∈
N ∩ [3,∞) and all even functions F : R→ C, if R+

0 ∩ supp F̂ ⊆ [h− 2, h], then

(C) ‖χ1/2kF (D)‖L1(µ) ≤ CeWhhς‖(1 + | · |)κ F‖L℘(R).

Under the above assumptions, we are able to prove the following spectral mul-
tiplier theorem for ∆X .

Theorem 3.1. Suppose that Assumptions (A), (B), (C) hold for some ℘ ∈ [2,∞),
σ ∈ (1/℘,∞), ς,κ ∈ [0,∞), W ∈ (0,∞). Let p ∈ [1,∞] \ {2}, and let q ∈ [℘,∞)

be defined by 1/q = |2/p − 1|/℘. Suppose that M ∈ H
s,−1/q,|2/p−1|W
q,∞ for some

s ∈ R satisfying

(3.1) s > 2 |1/p− 1/2| max{σ, ς + 1,κ + 1/℘}.

(i) If p = 1, then M(DX) extends to a bounded operator from h1(µX) to L1(µX).

(ii) If p = ∞, then M(DX) extends to a bounded operator from L∞(µX) to
bmo(µX).

(iii) If p ∈ (1,∞), then M(DX) extends to a bounded operator on Lp(µX).

The above result is stated in terms of an Lq Sobolev condition of fractional
order on the multiplier, where q is the exponent obtained by interpolation between
℘ and ∞, corresponding to the choice of p between 1 and 2 (or ∞ and 2); in
particular, for the endpoint results p = 1,∞ the condition has the same L℘ type
that appears in the Assumptions. For the sake of clarity, we also state the result in
a simplified form, involving a pointwise condition of integer order on the multiplier.

Corollary 3.2. Suppose that Assumptions (A), (B), (C) hold for some ℘ ∈ [2,∞),
σ ∈ (1/℘,∞), ς,κ ∈ [0,∞), W ∈ (0,∞). Let p ∈ [1,∞] \ {2}, and set Wp =
2|1/p− 1/2|W . Suppose that M ∈ H∞(ΣWp ;N) for some N ∈ N satisfying

N > 2 |1/p− 1/2| max{σ, ς + 1,κ + 1/℘}.

Then the conclusions (i), (ii), (iii) of Theorem 3.1 hold.
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Proof. If we choose s ∈ R so that

N > s > 2 |1/p− 1/2| max{σ, ς + 1,κ + 1/℘},

then the result follows immediately from Theorem 3.1, together with the fact that

‖M‖
H

s,−1/q,Wp
q,∞

. ‖M‖H∞(ΣWp ;N)

(see Lemma 2.10(vii)). 2

Before entering the proof of Theorem 3.1, some remarks on the above results
and assumptions are in order.

Remark 3.3. The above results are stated in terms of the functional calculus
of DX . In order to relate them more directly to the functional calculus of ∆X ,
the change of variable (1.3) can be used. Indeed, if M is a bounded holomorphic
function on a domain containing [b2X ,∞), then (1.3) defines an even bounded
holomorphic function MX whose domain contains R and

MX(DX) = M(∆X).

For every p ∈ [1,∞] \ {2}, let PX,p be the parabolic region defined by (1.2). Let
the number WX,p be defined by

(3.2) WX,p = |1/p− 1/2| |X|.

Then, for all M ∈ H∞(PX,p), the function MX defined by (1.3) lies in H∞(ΣWX,p
).

Hence Theorem 3.1 and Corollary 3.2, applied with W = bX , show that functions
M ∈ H∞(PX,p) satisfying suitable differential conditions are Lp spectral multipli-
ers of ∆X when 1 < p <∞, with a corresponding Hardy or BMO endpoint result
when p ∈ {1,∞}.
Remark 3.4. Assumption (A) can be thought of as a version of the Hörmander
condition for Calderón–Zygmund singular integral operators, applied to the opera-
tor F (D). A stronger version of the assumption is the following gradient estimate,
resembling Assumption (B):

(A′) sup0<r≤1 r
∫
|x|%≥r |∇HkF (D)(x)|dµ(x) ≤ C‖F‖

H
σ,−1/℘
℘,∞

.

Proving that F (D) is a Calderón–Zygmund operator whenever F satisfies a suitable
scale-invariant smoothness condition is a usual strategy in the proof of a multi-
plier theorem of Mihlin–Hörmander type for ∆. It is to be noticed, however, that
Assumption (A) is a somewhat weaker requirement, in that the norm of F in the
right-hand side corresponds to a nonhomogeneous Mihlin–Hörmander condition
on the multiplier. Moreover, due to the support condition supp F̂ ⊆ [−2, 2] and
finite propagation speed, the integrals in Assumptions (A) and (B) are actually re-
stricted to a fixed bounded neighbourhood of the identity. Note also that, through
a decomposition into dyadic annuli, Assumption (B) follows from the stronger
estimate

(B′) sup0<r≤1

∫
r≤|x|%<2r

|kF (D)(x)|dµ(x) ≤ C‖F‖
H
σ,−1/℘
℘,∞
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and uniform control of the integral over dyadic annuli is another common estimate
for Calderón–Zygmund kernels (here it is just required for small dyadic annuli).

Remark 3.5. In view of Lemma 2.2 and finite propagation speed (2.7), Assump-
tion (C) with W = |X|/2 follows from

(C′) ‖kF (D)‖L1(µ) ≤ Chς‖(1 + | · |)κ F‖L℘(R).

By replacing (C) with (C′), one would obtain a set of assumptions that depend
only on the operator ∆ and not on the drift X. Moreover, in the case G has
polynomial growth of degree d∞, Assumption (C′) with ς = d∞ follows by finite
propagation speed (2.7) and the Cauchy–Schwarz inequality from the following
estimate, involving the Plancherel measure σ∆ defined in (2.6):

(C′′) ‖F (
√
·)‖L2(σ∆) ≤ C‖(1 + | · |)κ F‖L℘(R).

As we will see in Section 4, such a relation between Assumption (C) and Plancherel-
type estimates holds also in some groups of exponential growth (where the role of
the dimension at infinity d∞ in determining the value of ς may be played by some
“pseudo-dimension”). On the other hand, obtaining Assumption (C) via Lemma
2.2 and the Cauchy–Schwarz inequality from (C′) or (C′′) need not yield the lowest
possible values of ς and κ (which in turn determine the order of the smoothness
condition (3.1) in the multiplier theorem), whence our preference for Assumption
(C) over the alternative formulations.

Remark 3.6. In contexts such as groups of polynomial growth, one may encounter
Plancherel-type estimates of the form (C′′), where the L℘ norm in the right-hand
side is replaced by an L∞ norm, that is,

(C′′′) ‖kF (
√
·)‖L2(σ∆) ≤ C‖(1 + | · |)κ F‖L∞(R)

(see, e.g., the discussion in [23, Section 3]). Under the support condition R+
0 ∩

supp F̂ ⊆ [h − 2, h], however, (C′′′) implies (C′′); indeed, if the even function
α ∈ C∞c (R) is chosen so that α|[−1,1] ≡ 1, and αh(t) = α(t− h+ 1) +α(t+ h− 1),
then

‖(1 + | · |)κ F‖L∞(R) ≤ ‖(1 + | · |)κ α̌h‖L℘′ (R)‖(1 + | · |)κ F‖L℘(R)

. ‖α‖Hκ
℘′
‖(1 + | · |)κ F‖L℘(R)

by Young’s inequality and translation-invariance of Hκ
℘′ , where α̌h denotes the

inverse Fourier transform of αh. Conversely, by the Cauchy–Schwarz inequality,

‖(1 + | · |)κ F‖L℘(R) ≤ Cκ,κ′‖(1 + | · |)κ
′
F‖L∞(R)

whenever κ′ > κ + 1/℘. In view of this, stating Assumption (C) in terms of an
L℘ norm on the right-hand side, instead of an L∞-norm, does not seem to cause
a loss of generality: namely, instead of working with ℘ = ∞ directly, it is enough
to consider ℘ <∞ arbitrarily large. Similar considerations allow one to treat the
case where the L℘ Sobolev norms in the right-hand side of Assumptions (A) and
(B) are replaced with suitable L∞ Sobolev norms (cf. (4.1) below).
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The rest of the section is devoted to the proof of Theorem 3.1. Note that,
by duality, it is enough to consider the case p < 2. The first step is proving the
endpoint result for p = 1, which is contained in Proposition 3.7(iii) below.

Let ω and ωh be defined as in (2.15)-(2.16) and define η : R→ R by η̂ = ω+ω2.

Proposition 3.7. Suppose that Assumptions (A), (B), (C) hold for some ℘ ∈
[2,∞), σ ∈ (1/℘,∞), ς,κ ∈ [0,∞), W ∈ (0,∞). Let M : R → C be an even
bounded Borel function and decompose it as M = M` +Mg, where M` = η ∗M .

(i) If M ∈ H
σ,−1/℘
℘,∞ , then M`(DX) extends to a bounded operator from h1(µX)

to L1(µX) and

‖M`(DX)‖h1(µX)→L1(µX) ≤ C‖M‖Hσ,−1/℘
℘,∞

.

(ii) If M ∈ H s,κ−s,W
℘,℘ for some s > ς + 1, then Mg(DX) extends to a bounded

operator on L1(µX) and

‖Mg(DX)‖L1(µX)→L1(µX) ≤ Cs‖M‖H s,κ−s,W
℘,℘

.

(iii) If M ∈H
s,−1/℘,W
℘,∞ for some s satisfying

s ≥ σ, s > ς + 1, s > κ + 1/℘,

then M(DX) extends to a bounded operator from h1(µX) to L1(µX) and

‖M(DX)‖h1(µX)→L1(µX) ≤ Cs‖M‖H s,−1/℘,W
℘,∞

.

Proof. By writing M = MR + iMI , where MR(z) = (M(z) +M(z̄))/2, and noting

that MR and MI belong to any of the spaces H
σ,−1/℘
℘,∞ ,H s,κ−s,W

℘,℘ ,H
s,−1/℘,W
℘,∞

whenever M does, we see that we may assume that M(z) = M(z̄), so in particular
the operators M(DX),M`(DX),Mg(DX) are self-adjoint on L2(µX).

(i). We are going to show that M`(DX) satisfies the conditions of Proposition

2.7. Note first that, since M ∈ H
σ,−1/℘
℘,∞ and σ > 1/℘,

(3.3) ‖M`‖∞ . ‖M`‖Hσ,−1/℘
℘,∞

. ‖M‖
H
σ,−1/℘
℘,∞

<∞,

by parts (v) and (viii) of Lemma 2.10. In particular M`(DX) is bounded on L2(µX)
and

‖M`(DX)‖L2(µX)→L2(µX) . ‖M‖Hσ,−1/℘
℘,∞

.

Set ` = kM`(D) and `X = kM`(DX), and note that

(3.4) `X = χ−1/2`

by (2.8). Since M̂` = η̂M̂ and η̂ is supported in [−2, 2], by finite propagation speed
(2.7) we conclude that ` and `X are supported in B%(e, 2).
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By (2.3) and (2.4) and self-adjointness of M`(DX), it is not difficult to check
that the integral kernel LX = KµX

M`(DX) with respect to µX of the operator M`(DX)

satisfies

(3.5) LX(x, y) = LX(y, x) = `X(x−1y)m(x)χ−1(x).

Moreover, since ` and `X are supported in B%(e, 2), the integral kernel LX is
supported in {(x, y) ∈ G×G : %(x, y) ≤ 2}. Thus

sup
y∈G

∫
(B%(y,2))c

|LX(x, y)|dµX(x) = 0,

and therefore the condition (2.11) is trivially satisfied, i.e., NX
2 (M`(DX)) = 0.

Let B = B%(cB , rB), rB ≤ 1. Note that, by (3.5),

sup
y,z∈B

∫
(2B)c

|LX(x, y)− LX(x, z)|dµX(x)

≤ 2 sup
y∈B

∫
(2B)c

|LX(x, y)− LX(x, cB)|dµX(x)

= 2 sup
y∈B

∫
(2B)c

|`X(x−1y)− `X(x−1cB)|m(x) dµ(x)

= 2 sup
y∈B%(e,rB)

∫
(B%(e,2rB))c

|`X(xy)− `X(x)|dµ(x)

and moreover, for all y ∈ B%(e, rB), by (3.4), the triangle inequality and the
support conditions we deduce that∫

(B%(e,2rB))c
|`X(xy)− `X(x)|dµ(x)

≤ sup
B%(e,3)

χ−1/2

∫
(B%(e,2rB))c

|`(xy)− `(x)|dµ(x)

+ sup
B%(e,2)

χ−1/2

∫
(B%(e,2rB))c

|χ−1/2(y)− 1||`(x)|dµ(x)

≤ sup
B%(e,3)

χ−1/2

∫
(B%(e,2rB))c

|`(xy)− `(x)|dµ(x)

+ sup
B%(e,2)

χ−1/2 sup
B%(e,1)

|∇Hχ−1/2| rB
∫

(B%(e,2rB))c
|`(x)|dµ(x).

By (3.3) and Assumptions (A) and (B), we conclude that

sup
y,z∈B

∫
(2B)c

|LX(x, y)− LX(x, z)|dµX(x) . ‖M‖
H
σ,−1/℘
℘,∞

<∞.

It follows that the condition (2.10) is satisfied, with NX
1 (M`(DX)) . ‖M‖

H
σ,−1/℘
℘,∞

.
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By Proposition 2.7, we conclude that the operator M`(DX) is bounded from
h1(µX) to L1(µX), with operator norm bounded by a multiple of ‖M‖

H
σ,−1/℘
℘,∞

.

(ii) By (2.15) and (2.16) we can decompose Mg =
∑
h≥3 Ph, where P̂h = ωh M̂ .

By Assumption (C) and Lemma 2.12,

‖χ1/2kPh(D)‖L1(µ) ≤ eWh hς ‖(1 + | · |)κ Ph‖L℘(R) . hς−s ‖M‖H s,κ−s,W
℘,℘

.

Since s > ς + 1, by summing over h we deduce that

‖kMg(DX)‖L1(µX) = ‖χ1/2kMg(D)‖L1(µ)

≤
∑
h≥3

‖χ1/2kPh(D)‖L1(µ) . ‖M‖H s,κ−s,W
℘,℘

,

where the first equality is due to (2.8). Since M ∈ H s,κ−s,W
℘,℘ , this proves that

Mg(DX) is bounded on L1(µX), with operator norm bounded by a multiple of
‖M‖H s,κ−s,W

℘,℘
.

(iii). Since s ≥ σ,

‖M‖
H
σ,−1/℘
℘,∞

. ‖M‖
H
s,−1/℘
℘,∞

. ‖M‖
H

s,−1/℘,W
℘,∞

by (2.13). Moreover, since −1/℘ > κ − s, by Lemma 2.10(ii)

‖M‖H s,κ−s,W
℘,℘

. ‖M‖
H

s,−1/℘,W
℘,∞

.

Since M = M`+Mg, part (iii) follows by combining parts (i) and (ii), and observing
that boundedness on L1(µX) implies boundedness from h1(µX) to L1(µX). 2

Via interpolation we can now derive Theorem 3.1 in the remaining case p ∈
(1, 2); the result is contained in Proposition 3.8(iii).

Proposition 3.8. Suppose that Assumptions (A), (B), (C) hold for some ℘ ∈
[2,∞), σ ∈ (1/℘,∞), ς,κ ∈ [0,∞), W ∈ (0,∞). Let q ∈ (℘,∞). Let M : R → C
be an even bounded Borel function and decompose it as M = M` + Mg, where
M` = η ∗M .

(i) If M ∈ H
s,−1/q
q,∞ for some s > σ℘/q, then M`(DX) extends to a bounded

operator on Lp(µX) for all p satisfying |1/p− 1/2| ≤ ℘/(2q) and

‖M`(DX)‖Lp(µX)→Lp(µX) ≤ Cs,q‖M‖Hs,−1/q
q,∞

.

(ii) If M ∈H
s,τ−s,W℘/q
q,q for some s > (ς + 1)℘/q and τ > κ℘/q, then Mg(DX)

extends to a bounded operator on Lp(µX) for all p satisfying |1/p − 1/2| ≤
℘/(2q) and

‖Mg(DX)‖Lp(µX)→Lp(µX) ≤ Cs,τ,q‖M‖H s,τ−s,W℘/q
q,q

.
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(iii) If M ∈H
s,−1/q,W℘/q
q,∞ for some s satisfying

s > (℘/q) max{σ, ς + 1,κ + 1/℘},

then M(DX) extends to a bounded operator on Lp(µX) for all p satisfying
|1/p− 1/2| ≤ ℘/(2q) and

‖M(DX)‖Lp(µX)→Lp(µX) ≤ Cs,q‖M‖H s,−1/q,W℘/q
q,∞

.

Proof. Note that, by duality and interpolation, it is enough to prove the above
boundedness results in the case 1/p = 1/2 + ℘/(2q).

(i). Take any q0 ∈ (q,∞) and s0 ∈ (1/q0,∞). Then

‖M`‖∞ . ‖M‖∞ . ‖M‖
H
s0,−1/q0
q0,∞

by Young’s inequality and Lemma 2.10(v), and therefore

‖M`(DX)‖L2(µX)→L2(µX) . ‖M‖Hs0,−1/q0
q0,∞

.

On the other hand, if s1 = σ and q1 = ℘, then, by Proposition 3.7(i),

‖M`(DX)‖h1(µX)→L1(µX) . ‖M‖Hs1,−1/q1
q1,∞

.

Therefore, by interpolation (see [6, Theorem 4.4.2], Lemma 2.9 and Theorem 2.8),

‖M`(DX)‖Lpθ (µX)→Lpθ (µX) . ‖M‖Hsθ,−1/qθ
qθ,∞

for all θ ∈ (0, 1), where sθ = (1 − θ)s0 + θs1 and 1/qθ = (1 − θ)/q0 + θ/q1,
1/pθ = (1− θ)/2 + θ/1 = 1/2 + θ/2.

If we take θ = ℘/q, then pθ = p and therefore it is enough to choose q0 and

s0 so that the continuous embedding H
s,−1/q
q,∞ ⊆ H

sθ,−1/qθ
qθ,∞ holds. Note, on the

other hand, that 1/qθ > θ/q1 = 1/q, that is, q > qθ; therefore, by parts (i)
and (iii) of Lemma 2.10, the required embedding holds whenever s ≥ sθ. Since
sθ = (1− ℘/q)s0 + σ℘/q, and s > σ℘/q by assumption, the inequality s ≥ sθ can
be simply achieved by choosing q0 ∈ (q,∞) sufficiently large and s0 ∈ (1/q0,∞)
sufficiently small.

(ii). Take any q0 ∈ (q,∞) and s0 ∈ (1/q0,∞). Then

‖Mg‖∞ . ‖M‖∞ . ‖M‖
H
s0,−1/q0
q0,∞

. ‖M‖
H

s0,−1/q0,0
q0,q0

by Young’s inequality and Lemma 2.10(v). Therefore

‖Mg(DX)‖L2(µX)→L2(µX) . ‖M‖H s0,−1/q0,0
q0,q0

.

On the other hand, if s1 > ς − 1 and q1 = ℘, then, by Proposition 3.7(ii),

‖Mg(DX)‖L1(µX)→L1(µX) . ‖M‖H s1,κ−s1,W
q1,q1

.
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Therefore, by interpolation (see [6, Theorem 4.4.1] and Lemma 2.11),

‖Mg(DX)‖Lpθ (µX)→Lpθ (µX) . ‖M‖H sθ,τθ,Wθ
qθ,qθ

for all θ ∈ (0, 1), where sθ = (1 − θ)s0 + θs1, τθ = −(1 − θ)/q0 + θ(κ − s1) and
1/qθ = (1− θ)/q0 + θ/q1, 1/pθ = (1− θ)/2 + θ/1 = 1/2 + θ/2.

If we take θ = ℘/q, then pθ = p and Wθ = W℘/q, and therefore it is enough to
choose q0 and s0 so that the continuous embedding Hs,τ−s

q,q ⊆ Hsθ,τθ
qθ,qθ

holds. Note,
on the other hand, that 1/qθ > θ/q1 = 1/q, that is, q > qθ; therefore, by parts (i),
(ii) and (iii) of Lemma 2.10, the required embedding holds whenever s ≥ sθ and
τ − s > τθ− 1/q+ 1/qθ. Since τθ− 1/q+ 1/qθ = ℘/q(κ− s1) and we have assumed
τ > κ℘/q and s > (ς + 1)℘/q, the inequality τ − s > τθ − 1/q + 1/qθ can be
rewritten as τ > κ℘/q+ (s− s1℘/q) and is achieved by choosing s1 ∈ (ς + 1, sq/℘)
so that s − s1℘/q is sufficiently small. Therefore, since sθ = (1 − θ)s0 + s1℘/q
and s > s1℘/q, the inequality s ≥ sθ is simply achieved by choosing q0 ∈ (q,∞)
sufficiently large and s0 ∈ (1/q0,∞) sufficiently small.

(iii). Note that
‖M‖

H
s,−1/q
q,∞

. ‖M‖
H

s,−1/q,W℘/q
q,∞

by (2.13). Moreover, since s > κ℘/q + 1/q, we can choose τ > κ℘/q so that
s > τ + 1/q, whence −1/q > τ − s and therefore, by Lemma 2.10(ii),

‖M‖
H

s,τ−s,W℘/q
q,q

. ‖M‖
H

s,−1/q,W℘/q
q,∞

.

Since M = M` +Mg, part (iii) follows by combining (i) and (ii). 2

4. Applications

Here we show how our general conditional results, namely Theorem 3.1 and Corol-
lary 3.2, can be applied to refine the multiplier theorem of [31] for sub-Laplacians
with drift on Lie groups of polynomial growth. Moreover we present an application
to distinguished sub-Laplacians with drift on certain groups of exponential growth,
whose no-drift counterpart was discussed in [46].

4.1. Lie groups of polynomial growth

Suppose that G is a non-compact Lie group of polynomial growth. Let d0, d∞ ∈
N \ {0} and δ ∈ (0, 1] be as in Proposition 2.1. Set d = max{d0, d∞}.

Let ψ be defined as in (2.12). For all s ≥ 0 we define

‖F‖L∞s,sloc
= sup

t>0
‖F (t·)ψ‖Hs

∞
.

Finiteness of ‖F‖L∞s,sloc
can be thought of as a homogeneous L∞ Mihlin–Hörmander

condition, which can be compared with the Lq inhomogeneous conditions intro-
duced in Section 2.2 by observing that, by Sobolev’s embedding (see, e.g., [6,
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Theorems 6.2.4 and 6.5.1] and [41, Lemma 4.8]),

(4.1) ‖F‖L∞s,sloc
. ‖F‖

H
σ,−1/q
q,∞

whenever q ∈ (1,∞) and σ > s+ 1/q.
It is well-known [2, 21, 23, 29] that a multiplier theorem of Mihlin–Hörmander

type holds for the sub-Laplacian without drift ∆, entailing the weak-type estimate

(4.2) ‖F (∆)‖L1(µ)→L1,∞(µ) . ‖F‖L∞s,sloc

for all s > d/2. From its proof the following estimates can be derived.

Lemma 4.1. Let F : R → C be a function such that ‖F‖L∞s,sloc
< ∞ for some

s > d/2. Then the following inequalities hold:

(i) supy∈G
∫
|x|%≥2|y|% |kF (∆)(xy)− kF (∆)(x)|dµ(x) ≤ Cs‖F‖L∞s,sloc

;

(ii) supr>0

∫
r≤|x|%<2r

|kF (∆)(x)|dµ(x) ≤ Cs‖F‖L∞s,sloc
;

In addition, if r ∈ (0,∞), F : R → C is even and F̂ ⊆ [−r, r], then, for all
γ > d0/2,

(iii) ‖χ1/2kF (D)‖L1(µ) ≤ Cγ(1 + r)(d∞−δ)/2ebXr supt≥0 |(1 + t)γ F (t)|.

Proof. By replacing F with F , exploiting the unimodularity of G and the fact that
kF (∆)(x) = kF (∆)(x−1), the estimate in part (i) can be equivalently rewritten as

sup
y∈G

∫
|x|%≥2|y|%

|kF (∆)(y
−1x)− kF (∆)(x)|dµ(x) ≤ Cs‖F‖L∞s,sloc

,

which is proved in [2, eq. (13)].
Let us now prove part (ii). Note that, by Proposition 2.1,

(4.3) V%(λr) ≤ C(1 + λ)dV%(r)

for all λ, r ∈ R+. Moreover, by [59, Theorem VIII.2.4], ∆ satisfies Gaussian-type
heat kernel bounds of the form

|kexp(−t∆)| ≤ C V%(t1/2)−1 exp(−b|x|2%/t)

for some C, b ∈ R+ and all t ∈ R+. Hence we can apply [42, Theorem 6.1] to the
operator ∆.

Define now
Fj(λ) = F (2jλ)ψ(λ) ∀j ∈ Z ∀λ ∈ R+

and set F̃J =
∑
j<J Fj(2

−j ·) for all J ∈ Z. Then, for all J ∈ Z,

F (∆) = F̃J(∆) +
∑
j∈Z
j≥J

Fj(2
−j∆) ,
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in the sense of strong convergence of operators on L2(µ).
Choose ε ∈ R+ so that s > d/2 + ε. Fix r ∈ R+, and let J ∈ Z be minimal so

that 2J/2r > 1.
Note that suppFj ⊆ [2j−2, 2j+2]. By [42, Theorem 6.1(ii)], for all j ∈ Z such

that j ≥ J ,∫
r≤|x|%<2r

|kFj(2−j∆)(x)|dµ(x) ≤ (1 + 21+j/2r)−ε‖(1 + 21+j/2| · |%)εkFj(2−j∆)‖1

≤ Cs(1 + 21+j/2r)−ε‖Fj‖Hs
∞

≤ Cs(2j/2r)−ε‖F‖L∞s,sloc
.

On the other hand, supp F̃J ⊆ [0, 2J+2]. Hence, by Hölder’s inequality and [42,
Theorem 6.1(i)],∫

r≤|x|%<2r

|kF̃J (∆)(x)|dµ(x) ≤ V%(2r)1/2‖kF̃J (∆)‖2

≤ CV%(2r)1/2V%(2
−1−J/2)−1/2‖F̃J‖∞

≤ C‖F‖∞;

in the last step the fact that 2−J/2 ∼ r and the doubling condition (4.3) were used.
Therefore, by summing the previous estimates,∫

r≤|x|<2r

|kF (∆)(x)|dµ(x)

≤
∫
r≤|x|<2r

|kF̃J (∆)(x)|dµ(x) +
∑
j∈Z
j≥J

∫
r≤|x|<2r

|kFj(2−j∆)(x)|dµ(x)

≤ Cs

‖F‖∞ + ‖F‖L∞s,sloc

∑
j∈Z

2j/2r>1

(2j/2r)−ε


≤ Cs‖F‖L∞s,sloc

and part (ii) follows.
As for part (iii), note that, if supp F̂ ⊆ [−r, r], then, by finite propagation speed,

supp kF (D) ⊆ B%(e, r) and therefore, by Lemma 2.2 and the Cauchy–Schwarz in-
equality,

‖χ1/2kF (D)‖L1(µ) . (1 + r)(d∞−δ)/2ebXr‖kF (D)‖L2(µ).

On the other hand, for all γ > d0/2,

‖kF (D)‖L2(µ) = ‖F (D)‖L2(µ)→L∞(µ)

≤ ‖(1 + ∆)γ/2 F (D)‖L2(µ)→L2(µ)

× ‖(1 + ∆)−γ/2‖L2(µ)→L∞(µ)
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and, by spectral theory,

‖(1 + ∆)γ/2 F (D)‖L2(µ)→L2(µ) . sup
t≥0
|(1 + t)γ F (t)|.

Since ‖(1 + ∆)−γ/2‖L2(µ)→L∞(µ) < ∞ (see, e.g., [31, proof of Lemma 5.6]), part
(iii) follows. 2

The previous lemma, together with (4.1) and Remarks 3.4 and 3.6, shows that
Assumptions (A), (B), (C) are satisfied for W = bX , ℘ ∈ [2,∞), ς = (d∞ − δ)/2,
κ > d0/2, σ > max{d0, d∞}/2. Hence in this case from Corollary 3.2 we obtain
the following multiplier theorem, whose part (i) refines [31, Theorem 5.2].

Theorem 4.2. Suppose that G is a non-compact Lie group of polynomial growth,
and let d0, d∞ ∈ N\{0} and δ ∈ (0, 1] be as in Proposition 2.1. Let p ∈ [1,∞]\{2}.
Let WX,p be defined as in (3.2). Suppose that M ∈ H∞(ΣWX,p

; s) for some s ∈ N,

(4.4) s > |1/p− 1/2|max{d0, d∞ − δ + 2}.

Then the following hold:

(i) if p ∈ (1,∞), then M(DX) extends to a bounded operator on Lp(µX);

(ii) if p = 1, then M(DX) extends to a bounded operator from h1(µX) to L1(µX);

(iii) if p = ∞, then M(DX) extends to a bounded operator from L∞(µX) to
bmo(µX).

Note that in [31, Theorem 5.2] the condition s > max{d0 + 4, d∞ + 2}/2 is
required instead of (4.4).

Suppose now that G is a stratified group and ∆ is a homogeneous sub-Laplacian
thereon. In this case d = d0 = d∞ is the homogeneous dimension of G, and
moreover δ = 1 (since V%(r) = V%(1) rd), so the condition (4.4) becomes

s > |1/p− 1/2|(d+ 1).

This condition (or rather its endpoint version for p = 1) should be compared
with the condition s > d/2 in the multiplier theorem (4.2) for the sub-Laplacian
without drift ∆. Note that, in the case of stratified groups, a sharper result for
∆ is available [15, 47], where the L∞ Sobolev norm in (4.2) is replaced by an L2

Sobolev norm. Moreover, for many classes of stratified groups (especially 2-step
groups), the condition s > d/2 is not optimal and in a number of cases it can be
pushed down to s > (dimG)/2, where dimG is the topological dimension of G
[28, 43, 44, 45, 53]. It is conceivable that similar techniques could be adapted to
sharpen the estimates in Lemma 4.1 and refine the result for the sub-Laplacian
with drift ∆X on those classes of groups.
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4.2. Solvable extensions of stratified groups

In this subsection we prove a multiplier theorem for the sub-Laplacian with drift
∆X when G is a solvable extension of a stratified Lie group constructed as follows
(we refer to [46] for more details on the construction).

Let N be a stratified group. In other words, N is a simply connected Lie group,
whose Lie algebra n is endowed with a derivation D such that the eigenspace of D
corresponding to the eigenvalue 1 generates n as a Lie algebra. The eigenvalues of
D are positive integers 1, . . . , S and n is the direct sum of the eigenspaces of D,
which are called layers: the jth layer corresponds to the eigenvalue j. Moreover
n is S-step nilpotent, where S is the maximum eigenvalue. The exponential map
expN : n → N is a diffeomorphism and provides global coordinates for N . Any
chosen Lebesgue measure on n is then a left and right Haar measure on N .

The formula δt = exp((log t)D) defines a family of automorphic dilations (δt)t>0

on N . For all measurable sets E ⊂ N and t > 0, |δtE| = tQ|E|, where Q = trD
is the homogeneous dimension of N . Note that Q ≥ dimN , where dimN is the
topological dimension of N , and in fact Q = dimN if and only if S = 1, i.e., if and
only if N is abelian. Note moreover that, if Q = 1, then N ∼= R.

Let A = R, considered as an abelian Lie group. Again we identify A with its
Lie algebra a. Then A acts on N by dilations, that is, we have a homomorphism
A 3 u 7→ δeu ∈ Aut(N) and we can define the corresponding semidirect product
G = N oA, with operation

(z, u) · (z′, u′) = (z · euDz′, u+ u′) .

The group G is a solvable Lie group. The right Haar measure µ on G is given by

dµ(z, u) = dz du

[33, §(15.29)] and the modular function m is given by m(z, u) = e−Qu. In particular
G is not unimodular and has exponential volume growth [26, Lemme I.3].

Consider a system X̆1, . . . , X̆ν of left-invariant vector fields on N that form a
basis of the first layer of the Lie algebra of N . Let X̆0 = ∂u be the canonical basis
of a. The vector fields X̆0 on A and X̆1, . . . , X̆ν on N can be lifted to left-invariant
vector fields on G given by

X0|(z,u) = X̆0|z = ∂u, Xj |(z,u) = euX̆j |z for j = 1, . . . , ν.

The system X0, . . . , Xν generates the Lie algebra g of G and determines a sub-
Riemannian structure and a left-invariant sub-Laplacian ∆ = −

∑ν
j=0X

2
j on G. A

formula for the sub-Riemannian distance % is available in this case [46, Proposition
2.7] and the corresponding local dimension d0 (see Proposition 2.1) equals Q+ 1.

Recall from the discussion in Section 2.1 that symmetric sub-Laplacians with
drift on G correspond to positive characters.

Lemma 4.3. All nontrivial positive characters of G are of the form

(4.5) χα(z, u) = eαu, ∀(z, u) ∈ G,

for some α ∈ R \ {0}.
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Proof. Let χ be a positive character of G. Then its differential χ′ : g → R is a
homomorphism of Lie algebras and therefore χ′ vanishes on [g, g]. On the other
hand, as explained in [46, §2.1], g can be identified with the semidirect product
n o a, and [g, g] = {(z, 0) : z ∈ n}. Hence χ′(z, u) = αu for some α ∈ R, and
consequently χ(z, u) = eαu. 2

Given α ∈ R \ {0}, we consider the vector field X = αX0. It is easy to check
that X|e = ∇Hχα|e, where χα is given by (4.5). We shall prove a multiplier
theorem for ∆X = ∆−X.

Let ψ be defined as in (2.12). For all s ≥ 0 we define

‖F‖L2
s,sloc

= sup
t>0
‖F (t·)ψ‖Hs

2
.

Finiteness of ‖F‖L2
s,sloc

can be thought of as a homogeneous Mihlin–Hörmander

condition, which can be compared with the inhomogeneous conditions introduced
in Section 2.2 by observing that

(4.6) ‖F‖L2
s,sloc

. ‖F‖
H
s,−1/2
2,∞

whenever s > 1/2 (see, e.g., [41, Lemma 4.8]).
In [46] a multiplier theorem of Mihlin–Hörmander type for the sub-Laplacian

without drift ∆ was proved, entailing the weak-type estimate

(4.7) ‖F (∆)‖L1(µ)→L1,∞(µ) . ‖F‖L2
s,sloc

for s > max{3/2, (Q+1)/2}. From its proof a number of estimates can be derived,
that can be used to verify the assumptions of the conditional multiplier theorem
of Section 3. It should be noted that [46] only discusses the case Q ≥ 2 explicitly,
but a few small adjustments allow one to consider the case Q = 1 as well.

For all λ ∈ R+ and a, b ∈ R, let λ[a,b] denote λa if λ ≤ 1 and λb if λ ≥ 1.

Lemma 4.4. For all even bounded Borel functions F : R→ C,

(4.8) ‖kF (D)‖2L2(µ) ∼
∫ ∞

0

|F (λ)|2 λ[3,Q+1] dλ

λ
.

Moreover, if suppF ⊆ [−2, 2] then, for all ε ∈ R+
0 , t ∈ R+ and y ∈ B%(e, 1),∫

|x|%≤4

|kF (tD)(x)|(1 + t−1|x|%)ε dµ(x) ≤ Cs,ε‖F‖Hs
2
,(4.9) ∫

|x|%≤4

|∇HkF (tD)(x)|(1 + t−1|x|%)ε dµ(x) ≤ Cs,ε t−1‖F‖Hs
2
,(4.10) ∫

|x|%≤3

|kF (tD)(xy)− kF (tD)(x)|dµ(x) ≤ Cs t−1 |y|% ‖F‖Hs
2

(4.11)

whenever t ≤ 1 and s > (Q+ 1)/2 + ε, or t ≥ 1 and s > 0.
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Proof. The Plancherel estimate (4.8) is just a rephrasing of [46, Corollary 4.6], in
a form that is valid in the case Q = 1 too (cf. [27, Introduction, Theorem 4.2]).

To prove (4.9), note first that from finite propagation speed (2.7), the Cauchy–
Schwarz inequality and the fact that Q+ 1 is the local dimension associated to the
sub-Riemannian structure, one immediately obtains that, for all r ∈ R+ and all
even f : R→ C with supp f̂ ⊆ [−r, r],

(4.12)

∫
|x|%≤4

|kf(D)(x)|dµ(x) . min{r(Q+1)/2, 1} ‖kf(D)‖L2(µ).

Take now an even F : R → C with suppF ⊆ [−2, 2], and decompose F (t·) =∑∞
`=0 f`,t as in [46, Lemma 5.2]. Similarly as in the proof of [46, Proposition 5.3],

but using (4.12) in place of [46, Proposition 5.1], one then obtains that, for all
ε ∈ R+

0 ,∫
|x|%≤4

|kf`,t(D)(x)| (1 + t−1|x|%)ε dµ(x)

. (1 + t−1 min{2`t, 1})ε min{(2`t)(Q+1)/2, 1}‖kf`,t(D)
‖L2(µ)

. (1 + t−1 min{2`t, 1})ε min{(2`t)(Q+1)/2, 1} 2−s` (t−1)[3/2,(Q+1)/2] ‖F‖Hs
2
.

Hence, if t ≥ 1, then∫
|x|%≤4

|kF (tD)(x)| (1 + t−1|x|%)ε dµ(x) . (1 + t−1)ε t−3/2 ‖F‖Hs
2

∞∑
`=0

2−s` . ‖F‖Hs
2

whenever s > 0. If instead t ≤ 1, then∫
|x|%≤4

|kF (tD)(x)| (1 + t−1|x|%)ε dµ(x)

. ‖F‖Hs
2

t−(Q+1)/2−ε
∑

` : 2`≥t−1

2−s` +
∑

` : 2`<t−1

2(ε+(Q+1)/2−s)`

 . ‖F‖Hs
2

whenever s > (Q+ 1)/2 + ε.
As for (4.10), observe that the following analogue of (4.12) holds for all r ∈ R+

and all even f : R→ C with supp f̂ ⊆ [−r, r]:

(4.13)

∫
|x|%≤4

|∇Hkf(D)(x)|dµ(x) . min{r(Q+1)/2, 1} ‖|∇Hkf(D)|‖L2(µ);

moreover, by (4.8), for all even F : R→ C,

(4.14) ‖|∇HkF (D)|‖2L2(µ) = ‖DkF (D)‖2L2(µ) ∼
∫ ∞

0

|F (λ)|2 λ[5,Q+3] dλ

λ
.

By repeating the above argument for (4.9), but using (4.13) and (4.14) in place of
(4.12) and (4.8), one easily obtains (4.10).

Finally, (4.11) is an immediate consequence of (4.10) in the case ε = 0 (cf. [46,
Lemma 5.4] and the proof of [59, Lemma VIII.1.1]). 2
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Lemma 4.5. Let F : R → C be even and such that supp F̂ ⊆ [−2, 2], and let
s > Q+1

2 . Then the following inequalities hold:

(i) supy∈B%(e,1)

∫
|x|%≥2|y|% |kF (D)(xy)− kF (D)(x)|dµ(x) ≤ Cs‖F‖L2

s,sloc
;

(ii) sup0<r≤1

∫
r≤|x|%<2r

|kF (D)(x)|dµ(x) ≤ Cs‖F‖L2
s,sloc

.

In addition, for all r ∈ (0,∞) and all even F : R → C such that F̂ ⊆ [−r, r], the
estimate

(iii) ‖χ1/2
α kF (D)‖1 ≤ Cα(1 + r)ς er|α|/2(

∫∞
0
|F (λ)|2λ[3,Q+1] dλ

λ )1/2

holds with ς = 1, and actually one can take ς = 1/2 when α = −Q/2, and ς = 0
when α < −Q/2.

Proof. We first prove parts (i) and (ii). Let ψ be defined as in (2.12). Choose
ε ∈ (0, 1) such that s > Q+1

2 + ε. Arguing as in the proof of [46, Theorem 1.1]
define

Fj(λ) = F (2jλ)ψ(λ) ∀j ∈ Z ∀λ ∈ R+.

Then
F (D) =

∑
j∈Z

Fj(2
−jD) ,

in the sense of strong convergence of operators on L2(µ).
Let kj = kFj(2−jD). Hence, from (4.9) and (4.11) it follows that, for all j ∈ Z

and y ∈ B%(e, 1),

(4.15)

∫
|x|%≤4

|kj(x)| (1 + 2j |x|%)ε dµ(x) . ‖F‖L2
s,sloc

,

and

(4.16)

∫
|x|%≤3

|kj(xy)− kj(x)|dµ(x) . 2j |y|%‖F‖L2
s,sloc

.

Take any y ∈ B%(e, 1) and choose J as the smallest integer such that 2J |y|% > 1.
Then, by (4.15),∑

j>J

∫
3≥|x|%≥2|y|%

|kj(xy)− kj(x)|dµ(x) ≤ 2
∑
j>J

∫
4≥|x|%≥|y|%

|kj(x)|dµ(x)

.
∑
j>J

(
1 + 2j |y|%

)−ε‖F‖L2
s,sloc

. ‖F‖L2
s,sloc

.

(4.17)

Moreover, by (4.16),∑
j≤J

∫
3≥|x|%≥2|y|%

|kj(xy)− kj(x)|dµ(x) .
∑
j≤J

2j |y|% ‖F‖L2
s0,s∞,sloc

. 2J |y|% ‖F‖L2
s,sloc

. ‖F‖L2
s,sloc

.

(4.18)
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Note also that supp kF (D) ⊆ B%(e, 2) by finite propagation speed (2.7) and the

condition supp F̂ ⊆ [−2, 2], so the integral in the left-hand side of (i) is actually
restricted to |x|% ≤ 3. Hence the estimate (i) follows by (4.17) and (4.18).

We now prove (ii). Fix r ∈ (0, 1]. If we choose J as the smallest integer such
that 2Jr > 1, then (4.15) implies that

(4.19)
∑
j≥J

∫
r≤|x|%<2r

|kj(x)|dµ(x) . r−ε
∑
j≥J

2−εj‖F‖L2
s,sloc

. ‖F‖L2
s,sloc

.

Take now j < J . Then, by the Cauchy–Schwarz inequality, [46, eq. (2.11)] and the
Plancherel estimate (4.8),∫

r≤|x|%<2r

|kj(x)|dµ(x) . r(Q+1)/2‖kj‖2

. r(Q+1)/2(2j)[3/2,(Q+1)/2]‖Fj‖2

. (r2j)δ ‖Fj‖Hs
2
,

where δ = min{3/2, (Q+ 1)/2} > 0. Therefore

(4.20)
∑
j<J

∫
r≤|x|%<2r

|kj(x)|dµ(x) .
∑
j≤J

(r2j)δ‖F‖L2
s,sloc

. ‖F‖L2
s,sloc

.

The estimate (ii) follows from (4.19) and (4.20).
As for part (iii), we follow the proof of [46, Proposition 5.1]: if w : G→ R+

0 is
the weight defined there, then, by finite propagation speed and Hölder’s inequality,

‖χ1/2
α kF (D)‖1 ≤

(∫
B%(e,r)

(1 + w)−1χα dµ

)1/2 (
‖kF (D)‖2 + ‖w1/2kF (D)‖2

)
.

The second factor is estimated as in [46, proof of Proposition 5.1]:

‖kF (D)‖2 + ‖w1/2kF (D)‖2 . (1 + r)1/2‖kF (D)‖2.

As for the first factor, following the proof of [46, eq. (2.13)],∫
B%(e,r)

(1 + w)−1χα dµ ∼
∫ r

−r
eαu

∫ eu(cosh r−coshu)

0

sQ/2−1

1 + sQ/2
dsdu

. (1 + r)

∫ r

0

e|α|u du . (1 + r) e|α|r.

Hence, by combining the two estimates,

‖χ1/2
α kF (D)‖1 . (1 + r) er|α|/2‖kF (D)‖2,

and part (iii) with ς = 1 follows by (4.8).
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In order to improve the estimate in the case α ≤ −Q/2, we apply Hölder’s
inequality to obtain

‖χ1/2
α kF (D)‖1 ≤

(∫
B%(e,r)

χα dµ

)1/2

‖kF (D)‖2,

and observe that, since α ≤ −Q/2,∫
B%(e,r)

χα dµ ∼
∫ r

−r
eαu

∫ eu(cosh r−coshu)

0

sQ/2−1 dsdu

∼
∫ r

−r
e(α+Q/2)u(cosh r − coshu)Q/2 du

. erQ/2
∫ r

0

e−(α+Q/2)u du ∼

{
e|α|r if α < −Q/2,

re|α|r if α = −Q/2.

Hence the improved estimate (iii) follows, as before, by [46, Corollary 4.6]. 2

The previous lemma, together with (4.6) and Remark 3.4, shows that Assump-
tions (A), (B), (C) are satisfied for W = bX = |α|/2, ℘ = 2, σ > (Q + 1)/2,
κ = Q/2, and ς = 1 (and in fact one can take ς = 1/2 if α = −Q/2 and ς = 0 for
α < −Q/2). Hence from Corollary 3.2 we deduce the following multiplier theorem.

Theorem 4.6. Suppose that the group G = N o A and the sub-Laplacian ∆ =
−
∑ν
j=0X

2
j are constructed as above, and let Q be the homogeneous dimension of

N . Let p ∈ [1,∞] \ {2}, α ∈ R \ {0}, χ = χα and X = αX0. Let WX,p be defined
as in (3.2). Suppose that M ∈ H∞(ΣWX,p

; s) for some s ∈ N,

(4.21) s > |1/p− 1/2|max{Q+ 1, 3 + sgn(α+Q/2)}.

Then the following hold.

(i) If p ∈ (1,∞), then M(DX) extends to a bounded operator on Lp(µX).

(ii) If p = 1, then M(DX) extends to a bounded operator from h1(µX) to L1(µX).

(iii) If p = ∞, then M(DX) extends to a bounded operator from L∞(µX) to
bmo(µX).

Actually, by Theorem 3.1, the pointwise condition M ∈ H∞(ΣWX,p
; s) in The-

orem 4.6 can be replaced by the weaker Lq-type condition M ∈ H
s,−1/q,WX,p
q,∞ ,

where 1/q = |1/2 − 1/p|, and in that case the order of smoothness s need not be
an integer.

Note that in many cases (e.g., when Q > 2 or α < −Q/2) the condition (4.21)
simply reduces to

s > |1/p− 1/2| (Q+ 1).

This includes the case where α = −Q: in this case, χα = m, so µX is a left Haar
measure on G and ∆X is the “intrinsic hypoelliptic Laplacian” on G [1]. If more-
over N is abelian, then G and ∆X can be identified with a rank-one Riemannian
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symmetric space and its Laplace–Beltrami operator, and Q + 1 is the topologi-
cal dimension of G. Hence, in this particular case, Theorem 4.6(i) reduces to [4,
Theorem 1].
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