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Abstract: We studied theoretically coherent phenomena in the multimode dynamics of single

section semiconductor ring lasers with quantum dots (QDs) active region. In the unidirectional

ring configuration our simulations show the occurrence of self-mode-locking in the system

leading to ultra-short pulses (sub-picoseconds) with a terahertz repetition rate. As confirmed

by the linear stability analysis (LSA) of the traveling wave (TW) solutions this phenomenon is

triggered by an analogous of the Risken-Nummedal-Graham-Haken (RNGH) instability affecting

the multimode dynamics of two-level lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Semiconductor lasers operating in self-pulsing (SP) regime can be a simple alternative to passive

and active mode-locked devices for the generation of high-repetition rate optical pulses [1–3]. In

the frequency domain the SP regime corresponds to an Optical Frequency Comb (OFC), i.e a

light emission characterised by equally spaced optical lines with low phase noise and low mode

partition noise [4, 5]. These quite simple self-locked sources have attracted an impressive interest

for applications in spectroscopy and in the rapidly growing field of high-capacity DWDM optical

interconnection where the OFC laser diode feeds the silicon photonics optical modulators to
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realize a compact and low cost transmitter [5–10].

As conventional Quantum Well (QW) based semiconductor lasers, more innovative active

devices based on low dimensional materials as QDs and Quantum Dashes (QDashes) have now

reached a quite high degree of technological development.

Experimental evidences of SP in single section Fabry-Perot (FP) lasers based on QDashes [11]

and QDs [12] active materials have been reported. In the case of FP configuration we have recently

demonstrated [13] that the carrier grating induced by the standing wave pattern (not washed out

by diffusion) can explain the broad multi-wavelength optical spectra typically observed in QD

lasers, whereas FWM allows the self-locking of the modes when the laser output power is high

enough. Self-pulsing is predicted only in presence of saturable losses [14]. When SP occurs, the

pulse repetition rate depends on the FP longitudinal cavity mode separation and for typical FP

laser length it stays in the tens of gigahertz range.

The question remains on what happens if the standing wave pattern is not present, as for

example in a ring laser configuration specifically designed to force only the clockwise (or counter

clockwise) mode propagation. In this case, as shown by some recent works on Quantum Cascade

Lasers (QCLs) that share with QD laser similar dynamical features [15–17], multi-wavelength

emission and self-pulsation are triggered by a RNGH instability of the single mode TW. The

RNGH instability consists in the parametric amplification of the cavity modes resonant with the

frequency of the Rabi oscillations [18, 19].

The Rabi oscillations represent one of the most prominent effects of the coherent radiation-

matter interaction regime in a two-level laser and give oscillations of the population inversion (and

macroscopic medium polarization) at the Rabi frequency (νR), that is linearly proportional to the

electric field strength and to the dipole moment, when (νR) is of the same order of the dephasing

rate of the lasing transition. As happen for unipolar laser such as QCLs, where lasing action

involves intersubband transitions, in high quality and narrow inhomogeneous broadening QD and

QDash lasers the interband transitions between discrete levels are associated with quite narrow

and symmetric gain linewidth (long dephasing time and low α-factor). This properties make this

class of emitters similar to two-level lasers and thus it allows for the observation of coherent

effects like Rabi oscillations. Rabi flopping in pulse propagation have been indeed measured in

QCLs laser [20] and in QD semiconductor optical amplifiers at room temperature [21,22] for

a reasonable electric field strength. Hence, as already found in QCLs [17], we expect that also

in QD and QDash unidirectional lasers the destabilization of the single model TW emission

is caused by the RNGH instability [18, 19]. The latter can be considered the epitome of the

self-mode-locking and SP in a two-level laser and, as anticipated above, occurs when longitudinal

cavity modes that are resonant with the Rabi frequency get enough parametric gain to move above

threshold. This means that Rabi frequency must be comparable (or close to a small multiple) of

the cavity FSR, such that there exist one cavity longitudinal mode close to the Rabi frequency.

From this follows that the predicted minimal laser length for the observation of the RNGH

instability depends on the Rabi frequency at the instability threshold which in a two-level laser

is proportional to the square root of the carriers relaxation rate [18]. Thus, while in solid state

two-level lasers the minimal length corresponds to a very long cavity of tens of meters, in case of

short carriers relaxation rates as in QCLs, QD and QDash lasers, it scales down to experimentally

accessible values of hundreds of microns.

In [16] for example it is shown the Rabi frequency of QCLs is of the order of hundreds of

gigahertz or few terahertz thanks to the the carriers relaxation time of ≃ 1 ps. Short cavity QCLs

of few millimeters and the long emission wavelength of ≃ 10 µm thus easily give a cavity FSR

of the order of the Rabi frequency. In QD lasers, the carriers relaxation rate is also ≃ 1 ps or

less, therefore we expect values of Rabi frequency similar to the QCL case. However, QD lasers

of comparable length, emitting at shorter wavelengths of ≃ 1 µm, have typical cavity FSR of

the order of tens of gigahertz. This means that only one mode out of several modes can be
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resonant with the Rabi frequency and probably it explains why in the FP cavity configuration,

where we have shown that the carrier grating due to standing wave pattern is the main cause of

destabilization of the single mode solution [13] by excitation of a band of adjacent longitudinal

modes,Sato In more conventional bipolar semiconductor lasers based on QW active medium the

Rabi oscillations and then consequently the RNGH instability are usually hindered due to the

quite broad and asymmetric resonance (short dephasing time and high α-factor) and, to the best

of our knowledge, not a single observation of these phenomena have been reported so far.

The aim of this paper is showing that a unidirectional QD ring laser (where standing wave

patter carrier grating is eliminated) with low inhomogeneous broadening of the QD material gain

is the ideal laser configuration for observing the RNGH instability and self-pulsing.

We note that semiconductor ring lasers and passive resonators are nowadays key elements for

the realization of photonic integrated circuits [23] and in particular QD ring lasers integrated in a

silicon photonic technology platform have been recently demonstrated in [24]. Unidirectional

propagation can be easily guaranteed by a specific design (see for example [25, 26]).

We study in this paper the dynamical behaviour of an unidirectional QD ring laser of hundreds

of microns length where multimode emission leads to SP as a result of a RNGH instability of the

single mode TW solutions. We show that this phenomenon in unidirectional ring QD lasers is

reliable on a wide range of bias currents and device lengths. As demonstrated in Section 3 as

a consequence of the RNGH instability the SP repetition rate is in the hundred of gigahertz or

few terahertz range, even if the ring cavity FSR is tens of gigahertz as in the standard FP laser

configuration.

In order to simulate the multi-mode dynamics of the QD ring laser by properly taking into

account coherent radiation-matter interaction we extended the Time Domain Travelling Wave

(TDTW) model described in [28,29] to include the temporal evolution of the medium polarization.

The resulting TDTW model appear to be formally very close to the one previously used to study

the pulse formation and multi-mode dynamics in two-level or in semiconductor bidirectional ring

lasers [30, 31] although we will mostly concentrate here on unidirectional emission regime and

on QDs gain material with inhomogeneous broadening.

We calculated the TW solutions of the system and we studied their stability against spatio-

temporal perturbations with a standard Linear Stability Analysis (LSA) technique. As expected,

the results of LSA show that the TW instability is associated with the amplification of the Rabi

frequency in the QD active material that behaves as ensemble of artificial two-level atoms, thus

having a RNGH character. Our numerical simulations show that the system spontaneously evolves

towards a multimode solutions that corresponds to ultra-short pulses (hundreds of femtoseconds)

at terahertz repetition rate, close to νR.

The numerical simulations also reveal that an increase of the degree of inhomogeneous

broadening, that also represents an additional incoherent effect in the multi-mode competition,

may reduce both the intervals of the bias current where SP is observed and the threshold of the

RNGH instability in agreement with the results in [18, 32].

We finally observe that SP and the consequent OFC with terahertz or sub-terahertz optical line

spacing can be desirable for a number of applications among which we mention the photonic

generation of terahertz or sub-terahertz signals by illuminating a fast photodetector with the SP

optical signal. This simple ring source could be therefore a valid alternative to the mixing of

comb lines used nowadays to generate the terahertz signal [33–35].

To compare unidirectional and bidirectional configuration, we report the results obtained in a

more standard bidirectional ring laser where we observed a much lower threshold current for the

multimode emission; in the bidirectional case the multimode emission is in fact associated with

Spatial Hole Burning (SHB) due to the standing wave pattern in the carriers density that cannot

be washed out by diffusion in low dimensional active media such as QDs and QDashes [13].

Coherent dynamics leading to self-frequency comb generation is found for sizeable intervals of
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Fig. 1. (a) Sketch of the unidirectional ring configuration. (b) Schematic of the electron

dynamics in an exemplary quantum dot sub-group i (left). Effective gain lineshape cor-

responding to inhomogeneous gain broadening of ≃ 4 THz (≃ 16 meV) and ≃ 10 THz (≃
40 meV). The the FWHM of the homogeneous gain linewidth is 2Γ ≃ 2.4 THz (≃ 10 meV)

corresponding to a dipole dephasing time of 130 fs (right). The zero frequency in the x-axis

corresponds to ω0/(2π).

the bias current, but it does not correspond to the emission of optical pulses. We find that while in

the unidirectional case the optical lines of the comb have terahertz frequency spacing comparable

with Rabi resonance, in the bidirectional case the spacing is the FSR of the ring cavity.

The paper is organised as follows: in Section 2, we describe the TDTW model used for

simulating the multimode dynamics of the ring cavity single section QD laser. In Section 3, we

present and discuss the results of the LSA of the TW solutions and in Section 4 those obtained by

the numerical simulations for unidirectional and bidirectional InAs/GaAs QD laser. We draw our

conclusions in Section 5.

2. Multi-populations time domain travelling wave model

We consider a single section Quantum-Dots-in-a-Well (DWELL) InAs/GaAs ring laser emitting

from the ground state (GS) around 1258 nm [29]. The length of the laser cavity (L) is a few

hundreds of microns. The laser structure with the coordinate system is sketched in Fig.1(a),

whereas the QDs states, electron dynamics and gain line shapes for different inhomogeneous

broadening are shown in Fig. 1(b).

We sketch in Fig. 1 the electron dynamics as taken in our model. The main material and device

parameters are summarised in Table 2. The coherent interaction between QDs inhomogeneous

broadened gain medium and the intracavity electric field is described trough a set of coupled

traveling wave equations for the slowly varying envelop of the fundamental TE electric field



E(z, t) and of the slowly varying envelop of the microscopic polarizations pi(z, t), coupled with

the evolution equations for the electron occupation probabilities of ground state ρi in each dot

group and in the wetting layer (WL) ρWL [29].

∂E(z, t)
∂t

= γp

(

−∂E

∂z
−
αwgL

2
E − C

N
∑

i=−N
Ḡipi + S±

sp

)

(1)

∂pi(z, t)
∂t

= ( jδi/Γ − 1)pi − D(2ρi − 1)E (2)

∂ρi(z, t)
∂t

= −ρiγe(1 − ρWL) + FρWLγC(1 − ρi)

− γspρ
2
i − γGS

nr ρi + H Re (E∗pi) (3)

∂ρWL(z, t)
∂t

= Λτd − γWL
nr ρWL +

N
∑

i=−N

[

−ḠiρWLγC(1 − ρi) +
Ḡi

F
ρiγe(1 − ρWL)

]

. (4)

In the convenient adimensional formulation provided by Eqs. (1)-(4) we scaled time to the

fastest time scale in the system represented by the dipole dephasing time τd and the longitudinal

coordinate to the cavity length L. The complex dynamical variables are linked to the corresponding

physical quantities by the relations:

E −→ E

√

η

Γxy

dGS

~Γ
, p0,i GS −→ j p0,i GS

√

η

Γxy

NDd2
GS

ǫ0~ΓhQD

where dGS is the dipole matrix element associated with the optical transition from ground level,

η is the effective refractive index, Γxy is the transverse optical confinement factor in the total QD

active region, Γ = 1/τd , hQD is the QDs layer thickness, ND is the number of QDs per unit area.

The adimensional parameters C, D, F, H have the following expressions:

C =
ω0LΓxyµ

2cη
, D =

d2
GS

ND

ǫ0~ΓhQD

, F =
DWL

µND

,H =
τspΓ

2ω0Γxy~ǫ0hQD

ηωi GSd2
GS

ND

where ω0 is our reference angular frequency coincident with the cold cavity mode closest to

the GS gain peak, µ is the degeneracy of the ground state, ωi GS is the transition frequency

of the i group so that δi = ωi GS − ω0, DWL is the number of WL level per unit area per

QDs layer and τsp is the spontaneous electrons decay time from the GS state. Moreover in

the previous equations αwg represents the wave guide losses, γp = τdvg/L is the normalized

photon decay rate, γe,C = τd/τe,C are the normalized escape and capture rates, γsp = τd/τsp,

γ
WL,GS
nr = τd/τWL,GS

nr represent the normalized nonradiative decay rates and λ is the carriers

injection probability per unit time. Finally Ḡi is the probability that a QD belong to the sub-group

i and it follows a Gaussian distribution. Finally the noise source term due to spontaneous

emission has the expression [28]: S±
sp = eiφsp dGS

~Γ

√

βspND Ḡi µ ηL

cǫ0τsp

∑N
i=−N

(

~ωi GS ρ
2
i

)

where βsp

represents the spontaneous emission factor accounting for the coupling between the spontaneously

emitted radiation and the fundamental transversal guided mode. φsp is a random phase with

uniform distribution in the range 0-2π. We chose for βsp typical values between 10−2 and 10−3.

In the unidirectional ring configuration the field envelope satisfies the boundary condition:

E(0, t) =
√

1 − k2E(L, t),

where k is the output coupling coefficient between the ring and the coupled waveguide (see

Fig. 1(a)). In this work we adopt periodic boundary conditions (k = 0) to be in the same
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Table 1. Main materials and device parameters used in the TDTW model.

Symbol Description Values

Material parameters

η Effective refractive index 3.34

µ Confined states degeneracy 2

1/Γ Dipole dephasing time 130 fs

dGS Dipole matrix element for GS 0.6 eV nm

τC Electron capture times 1 ps

τe Electron escape times 1.5 ps

τWL
nr Electron non-radiative decay times 1 ns

τGS
nr Electron non-radiative decay times few ns

τsp Electron spontaneous emission time 2 ns

Device parameters

w Ridge width 5 µm

nL Number of QD layers 15

ND QD surface density 2.7 × 1010 cm−2

DWL Wetting layer electron levels surface density 2.1 × 1011 cm−2

hQD QD layer thickness 5 nm

αwg Intrinsic waveguide losses 4 cm−1

k Coupling coefficient 0

L Device length 200 µm

Γxy Transverse optical confinement factor 12 %

case considered in [18, 19] for the derivation of the RNGH instability. However the described

phenomena, and in particular the existence of self-pulsing in the system, remain valid even for

more realistic value of k as far as the photon life time remains much bigger than the dipole

dephasing time (good cavity limit) [18].

Considering our normalisation and the physical constants, the output power, expressed in

milliwatts, can be obtained by multiplying |E(z, t)|2 by a factor of about 35. Finally, for sake of

simplicity, we limit ourselves to the case where emission only occurs from the ground state [29].

3. Risken-Nummedal-Graham-Haken instability

To study the character of the TW instability we performed as reported in this section a semi-

analytical linear stability analysis. This analysis requires first the calculation of the TW solutions,

i.e. the single frequency solutions of Eqs. (1)-(4) (as detailed in paragraph 3.1) and then the

evaluation of the stability against spatio-temporal perturbations of this solutions by calculating

the perturbations parametric gain (as detailed in paragraph 3.2).

3.1. TW solutions

We looked for the single frequency solution of Eqs. (1)-(4) detuned in general by a quantity δω

from the gain peak ω0 in the form

E = Ee j(δω/Γ t−δk Lz), pi = pie
j(δω/Γ t−δk Lz)

ρi = ρi, ρWL = ρWL

where we set δk = δω/vg and we introduced the group velocity vg = c/η. This led to:

pi =

[

D(2ρi − 1)E
]

jδi/Γ − 1 − jδω/Γ (5)

ρWL =

Λτd +
1
F

∑N
i=−N Ḡiρiγe

γWL
nr +

∑N
i=−N ḠiγC(1 − ρi) + 1

F

∑N
i=−N Ḡiρiγe

(6)
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0 = E

(

αwgL

2
+ C D

N
∑

i=−N
Ḡi

(2ρi,−1)
jδi/Γ − 1 − jδω/Γ

)

(7)

0 = −ρiγe(1 − ρWL) + FρWLγC(1 − ρi) − γspρi2

+ H DRe

(

|E |2(2ρi − 1)
jδi/Γ − 1 − jδω/Γ

)

, (8)

while in presence of inhomogeneously broadened gain and therefore multiple populations the

TW solution can be found only by numerically solving the implicit nonlinear equations (5)-(8),

in case of perfect homogeneous medium (i.e. only one population considered, i = 1) the TW

equations (5)-(8) have an analytical solution.

3.2. Linear stability analysis of the TW solutions

The LSA of Eqs. (1)-(4) around the TW solutions is carried out in detail in Appendix A. The

parametric gain, i.e. the maximum of the real part of the perturbation eigenvalue λ at a frequency

νz = ωz/2π = kz vg/2π relative to the TW frequency treated as continuous variable, is plotted

for example in Fig. 2. The cold cavity modes are those indicated by the dashed lines. We observe

that the TW is unstable for I≥ 55 mA where a positive parametric gain favour the exponential

growing of the modes with k∓3 = ∓3 × 2π /L. For lower currents in fact the parametric gain for

all the cold cavity modes is negative.

Fig. 2. Results of the LSA of the TW solutions for different bias currents. Plot of the parametric

gain for each value of the frequency νz = ωz/2π = kz vg/2π treated as continuous variable.

Dashed lines indicate the frequencies corresponding to the first values of kz compatible with

the periodic boundary conditions. We consider 3 QDs populations resonant with the lasing

light associated with central angular frequencies 0 , 1.0 THz and −1.0 THz that lead to a

FWHM of the effective inhomogeneous broaden gain linewidth of ≃ 4 THz (≃ 16 meV) (see

Fig. 1). The other parameters are those used in [29]. The symbols indicate the position of the

Rabi frequencies estimated using Eq. (9) closest to the parametric gain peak.

As shown in Fig. 2 we verified that the instability starts by developing Rabi sidebands around

the TW lasing frequency and it can be seen as an amplification of the Rabi oscillations, in

this sense it can be interpreted as a RNGH instability affecting the TW solutions in multimode

two-level atoms [18]. In agreement with the results in [18] we found that the RNGH instability

threshold is around 10 times the lasing threshold that in our case is ≃ 5 mA.

The calculation of the Rabi frequency νR = ωR/2π, associated to periodic exchange of energy

between light and matter of the system, is reported in the following paragraph and is based on
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Fig. 3. Bifurcation diagram of the TW solutions: the maxima and minima in the output power

time traces are reported against the bias current as control parameter. Red lines correspond

to the TW solutions calculated using Eqs. (5)-(8).

the very well justified hypothesis that the QDs active medium is analogous to an ensemble of

artificial two-level atoms.

Using the standard method described for example in [18] we calculate the Rabi frequencies

associated with the each group of QDs of the multi-population ensemble:

νR,i =
(

γspH D 2|E |2 + ((δi − δω)/Γ)2
)0.5

/2π. (9)

The large value of the νR, that turns out to be of the order of the inverse of the coherence time

(1/Γ) may also explain the recent experimental observations of Rabi oscillations effect in intense

pulse propagation in QDs based SOA at room temperature [21, 22].

4. Results of dynamical simulations

We integrate the TDTW model equations using a finite difference algorithm as described

in [13, 29].

For the parameters in Table 2 we obtained the bifurcation diagram in Fig. 3 where the maxima

and minima in the output power time traces are reported versus the bias current as control

parameter. Red lines correspond to the TW solutions calculated using Eqs. (5)-(8). As predicted

by the linear stability analysis, for I ≥ 55 mA the TW solution becomes unstable. In particular the

multimode competition gives rise to regular power oscillations. The number of excited modes and

the pulse contrast both increase with bias current. In Fig. 4 we report for example the temporal

evolution of the output power, the optical spectrum and RF spectrum for I = 75 mA. In this case

the first unstable mode has a distance of approximately 3 times the cavity FSR (≃ 440 GHz) with

respect to the TW emission frequency as shown in Fig. 4 (d) and, in perfect agreement with the

results of the LSA in Fig. 2, it corresponds to the first lasing mode with a positive parametric

gain. The side mode suppression ratio (SMSR) defined here as the ratio between the maximum

RF peak power to that of the highest adjacent longitudinal modes is ≃ 60 dB. Moreover, because

of the amplitude character of RNGH instability [18], the phases of the first excited longitudinal

modes are locked with equal phase difference between adjacent modes. Once the first side modes

are activated, a cascaded Four Wave Mixing (FWM) mechanism comes into play in fixing the
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Fig. 4. Temporal evolution of the output power (a,b), optical spectrum (c) and RF spectrum

(d) obtained for a value of bias current of 75 mA. In panel (b) we report a space-time

representation of the pulse dynamics for 75 mA. A long time trace is divided in intervals

corresponding to the cold cavity round trip time τ = Lη/c (indicated in panel (a)). These

segments are then stacked on top of each other so that the horizontal axis is equivalent to

space inside the cavity while the vertical dimension describes the evolution in units of round

trips. The lowest frequency dashed line in panel (d) corresponds to the ring resonator FSR

(equal to ≃ 440 GHz), while the other two dashed lines are integer multiple of it. The other

parameters are those used in Fig. 2.

frequency and the phase of the parametrically generated modes, thus yielding to the emission

of ultra-short pulses at terahertz emission rate (see Fig. 4(a)). In the useful spatio-temporal

representation in Fig. 4(b) three pulses are associated with a single cold cavity round trip time

τ = Lη/c. As expected by the results of the LSA and shown for example in Fig. 5, the increase of

the bias current allows us to partially tune the pulse repetition rate by changing the parametric

gain peak position, or equivalently, the Rabi frequency of the system. In order to demonstrate

the robustness of the SP phenomenon against ring length and current variation we run a set of

systematic simulations. Our results might be conveniently summarised in Fig. 6 as a function of
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Fig. 5. Temporal evolution of the output power (a,b), optical spectrum (c) and RF spectrum

(d) obtained for a value of bias current of 95 mA. Dashed lines in panel (d) denote the first

cold cavity modes. The other parameters are those used in Fig. 4.

the cavity length L and the bias current I. In Fig. 6(a) we map the frequency of the RF peak (that

turns to be always close to the Rabi frequency νR). In Fig. 6(b), in order to evaluate the spectral

purity of the pulsed terahertz signal, we report the ratio between the power of the RF peak and

the RF power of the competing adjacent RF lines corresponding to the ring modes not triggered

by the RNGH instability. We define this ratio in the RF spectrum as SMSR (see Fig. 4(d)). It

is possible to identify at least four different dynamical behaviour. In the great part of region A

we have no pulsing with only one lasing line and CW power (TW stable). In the region denoted

by the letter B the QD ring laser shows SP at a frequency in the terahertz range close to Rabi

resonance, in the region denoted by the letter C phase-locking still induces regular oscillations

although the emergence of side modes introduces pulse over-modulation, and finally in the region

denoted by the letter D the multimode dynamics leads to irregular oscillations.

The impact of the inhomogeneous gain broadening on the observed RNGH instability is

quantified in Fig. 6(c) and Fig. 6(d). In particular our simulations show that an increase of the

inhomogeneous broadening in the model has a fundamental role in both lowering the threshold

current of the RNGH instability (that in case of homogeneously broadened medium is around 10
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(a) (b)

(c) (d)

Fig. 6. Colour map representation of the frequency corresponding to the absolute maximum

in the RF spectrum (ν , 0), always close to νR , and the ratio between its amplitude and that

of the highest side mode as a function of the cavity length L and the bias current I (a,b) or as

a function of the degree of inhomogeneous broadening (number of populations) that ranges

from a FWHM of ≃5.5 THz (≃22 meV) to a FWHM of ≃10.5 THz (≃42 meV) and the bias

current I for a fixed cavity length L = 200 µm (c,d). The other parameters are those used in

Fig. 4.

times the lasing threshold), and expanding the band of unstable cavity modes for a given bias

current. These results can be explained by the fact that inhomogeneous broadening increases the

material gain of longitudinal modes non resonant with the Rabi frequency and they are in good

agreement with those reported in [18, 32] for a two-level laser. This increment of unstable modes

not necessarily indicates a broadening of region B (i.e. SP regime) since it also introduces a

degree of incoherence in the system letting different lasing cavity modes to interact with different

populations and than it might also lead to an expansion of the regions C and D of unstable pulses

(see Fig. 6(c) and Fig. 6(d)). As an example we plot in Fig. 7 the results obtained by considering

11 populations whose central emission frequencies are separated by 1 THz and that correspond

to a FWHM of the effective inhomogeneous broaden gain linewidth of ≃ 10 THz (≃ 40 meV)

(see Fig.1), while keeping the other parameters as those in Fig. 4. In this case we observe an

irregular temporal evolution of the output power, all the modes at the cavity FSR are turn above

threshold. Examining the temporal evolution of the power and of the differential phase ∆φ of all

the optical lines we report a much higher differential phase and amplitude noise (see Fig. 8).
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Fig. 7. Temporal evolution of the output power (a,b), optical spectrum (c) and RF spectrum

(d) obtained for a value of bias current of 75 mA. We consider 11 QDs populations whose

central emission frequencies are again separated by a 1 THz. The other parameters are those

used in Fig. 4.

4.1. Bidirectional ring

We finally observe that in the bidirectional configuration, the standing wave pattern due to the

interference between forward and backward fields generates a grating in the carrier density that

cannot be washed out by diffusion. Equations for the first Fourier components of the spatial

grating are added following the procedure described in [13]. Spatial Hole Burning takes place,

letting the TW instability threshold decrease from several times the lasing threshold down to a

few percents above the lasing threshold. This emerges for example from inspection of Fig. 9

where, focusing on the simple case of a single QD population (homogeneous gain broadening),

we report the linear stability analysis of the TW solutions for a bidirectional configuration (panel

a) and a unidirectional one (panel b). The latter has been carried on via a calculations analogous

to that described in [16,17] in the case of a QCLs. In the unidirectional configuration only the

mode at 0 THz has positive parametric gain (see Fig. 9(a)); all the others are suppressed and only

by increasing current the two relative maxima at ≃ ± 1.2 THz will experience positive parametric

gain and they will allow the lasing of the modes closer to these two maxima. Instead, in the

bidirectional ring configuration all the cavity modes in the frequency range of few terahertz

experience a positive parametric gain (see Fig. 9(a)) which is turned-on by the SHB effect. The

TW resonant with the gain peak is unstable very close to the lasing threshold and by increasing

the bias current we generally observe an alternation between regimes of irregular oscillations

and a regular dynamical behavior as recently reported in [13]. Coherent dynamics leading to

self-generation of OFCs with lasing lines spaced of the ring FSR is found for sizeable intervals

of the bias current. It does not correspond to the emission of optical pulses (since the phase
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(a)

(c)

(b)

(d)

Fig. 8. Average values of the modal power and of the differential phase. The errors bars

denote the standard deviation of their temporal fluctuations in the case of 3 (a), (c) and 11

populations (b), (d). The other parameters are those used in Fig. 4.

Fig. 9. Results of the LSA of the TW solutions for I = 60 mA for a bidirectional ring

configuration (a) and an unidirectional one (b). Plot of the parametric gain for each value of

the frequency νz = ωz/2π = kz vg/2π treated as continuous variable. The other parameters

are those used in Fig. 4.

difference between adjacent modes is not equal), although is normally associated to the emission

of a broader and flatter optical spectrum. Although it was out of the scope of the present work

we observe that we did not find phenomena of spontaneous unidirectional operation as those
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studied in [36], probably because of a smaller diffusion characteristic of the QD active medium

considered here.

5. Conclusions

We studied self-mode-locking and in particular self-pulsing in single section ring QD lasers.

In unidirectional emission regime ultra-short pulses at terahertz repetition rate are triggered by

RNGH multi-wavelengths instability of the TW solutions that consists in the amplification of the

Rabi frequency of the system. The latter has been calculated in the very well verified hypothesis

that radiation coherently interacts with QDs material as with an ensemble of artificial two level

atoms. In bidirectional cavities, SHB makes the TW instability threshold occurring for much

lower bias current, but only self-generation of OFCs is reported. Our results let envisage very

timely applications such as the high-data rate optical information encoding and transmission or

the generation of terahertz or sub-terahertz signals via combination of photonics and electronics.

6. Appendix A

We study the stability of the TW emission respect to spatio-temporal perturbations looking for

solutions of Eqs. (1)-(4) in the form:

E = (E + δE)e j(δω/Γ t−δk Lz) pi = (pi + δpi)e j(δω/Γ t−δk Lz)

ρWL(z, t) = ρWL + δρWL ρi(z, t) = ρi + δρi
This gives the following set of linear equations for the perturbations:

∂δE

∂t
+ γp

∂δE

∂z
= γp

(

−
αwgL

2
δE − C

N
∑

i=−N
Ḡiδpi

)

(10)

∂δpi(z, t)
∂t

= ( jδi/Γ − 1 − jδω/Γ)δpi − D(2δρi)E − D(2ρi − 1)δE (11)

∂δρi(z, t)
∂t

= −δρiγe(1 − ρWL) + ρiδρWLγe − FδρiρWLγC

+ F(1 − ρi)δρWLγC − 2ρiδρi + H Re (δE∗pi + E∗δpi) (12)

∂δρWL(z, t)
∂t

= −δρWLγ
WL
nr +

N
∑

i=−N

[

−ḠiδρWLγC(1 − ρi)

+ ḠiρWLγCδρi +
Ḡi

F
δρiγe(1 − ρWL) −

Ḡi

F
ρiγeδρWL

]

. (13)

Projecting on the spatial Fourier basis the perturbations we derive for each perturbation wave

vector kn a set of ODE for the temporal evolution of the corresponding Fourier component. The

maximum of the real parts of the eigenvalues λ of the associated Jacobian matrix (Lyapunov

exponents), representing the parametric gain of the considered mode, thus give a direct information

about the TW stability.
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