
14 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Learning and Adapting Robust Features for Satellite Image Segmentation on Heterogeneous Datasets / Ghassemi, Sina;
Fiandrotti, Attilio; Francini, Gianluca; Magli, Enrico. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING. - ISSN 1558-0644. - STAMPA. - 57:9(2019), pp. 6517-6529. [10.1109/TGRS.2019.2906689]

Original

Learning and Adapting Robust Features for Satellite Image Segmentation on Heterogeneous Datasets

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TGRS.2019.2906689

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2730891 since: 2019-09-27T12:22:44Z

IEEE

1

Learning and Adapting Robust Features for
Satellite Image Segmentation on

Heterogeneous Datasets
Sina Ghassemi, Sudent Member, IEEE, Attilio Fiandrotti, Member, IEEE, Gianluca Francini,

and Enrico Magli, Fellow, IEEE

Abstract—This work addresses the problem of training a deep
neural network for satellite image segmentation so that it can be
deployed over images whose statistics differ from those used for
training. For example, in post-disaster damage assessment, the
tight time constraints make it impractical to train a network
from scratch for each image to be segmented. We propose
a convolutional encoder-decoder network able to learn visual
representations of increasing semantic level as its depth increases,
allowing it to generalize over a wider range of satellite images.
Then, we propose two additional methods to improve the network
performance over each specific image to be segmented. First, we
observe that updating the batch normalization layers statistics
over the target image improves the network performance without
human intervention. Second, we show that refining a trained
network over a few samples of the image boosts the network
performance with minimal human intervention. We evaluate
our architecture over three datasets of satellite images, showing
state-of-the-art performance in binary segmentation of previously
unseen images and competitive performance with respect to more
complex techniques in a multiclass segmentation task.

Index Terms—Deep learning, convolutional neural network,
encoder-decoder architecture, satellite image segmentation, do-
main adaptation.

I. INTRODUCTION

SATELLITE image segmentation has received lots of at-
tention lately due to the availability of annotated high

resolution image datasets captured by the last generation of
satellites. The problem of segmenting a satellite image can be
defined as classifying (or labeling) each pixel of the image
according to a number of classes such as buildings, roads,
water and so on (semantic pixel labeling). Recent research
in semantic pixel labeling builds upon and leverages recent
advances [1] in supervised image classification achieved
with Convolutional Neural Networks (CNNs) [2]. CNNs are
artificial feed-forward, acyclic, neural networks typically com-
posed of a feature extraction stage followed by a classification
stage. The feature extraction stage consists of multiple stacked
convolutional layers, where each layer includes multiple learn-
able filters. When CNNs are trained end-to-end via error
gradient backpropagation, the convolutional layers learn to
detect features of increasingly higher semantic level that are
eventually classified by one or more fully connected layers.

This work tackles the challenging case where the segmen-
tation algorithm is to be deployed over images that are not
known at training time. Indeed, most CNN-based schemes
for satellite image segmentation focus on the case where the

network is trained (from scratch) over images similar to those
where the algorithm is to be deployed [3], [4], [5], [6], [7],
[8]. However, if training and test images are captured by
different sensors or at different time intervals or locations, they
exhibit different statistics, an issue known as covariate shift

[9]. In some applications such as emergency mapping, satellite
images must be segmented in a short time in the aftermath of
events such as flood, or earthquake. In similar scenarios, the
tight time constraints prompt for solutions that allow reusing
some algorithm previously trained over different images.

A number of approaches have been devised to address
the domain adaptation problem, where an algorithm trained
over samples with some input distribution (source domain)
is to operate over samples with different distribution (target
domain) [10]. Some approaches rely on selecting a subset
of features which are invariant to the shift in domain [11],
[12]. Other approaches focus on data distributions of target
and source domain and they aim to make these domains
statistically similar to keep the classifier unchanged [13], [14],
[15], [16]. Other methods rely on adaptation of classifier rather
than data distributions across domains [17], [18]. In addition,
inspired by the generative adversarial networks (GAN) [19],
some recent studies have been carried out in order to learn
representations which are invariant to domain shift with the aid
of an additional adversarial term to the total cost function.[20],
[21]. Whereas domain adaptation techniques have been proven
successful in image classification, they have received little
attention for satellite image segmentation, leaving the covariate
shift issue largely open.

In this study, we propose a CNN-based architecture to
address segmentation over heterogeneous datasets which are
affected by covariate shift. In order to minimize the adverse
effect of covariate shift on the segmentation performance, first
we optimize the network architecture for better generalization
ability, then we propose two domain adaptation techniques
to enhance the performance over each image under study.
Regarding the proposed network, we design an architecture
composed of an encoder network and a decoder network. The
encoder is based on a residual architecture [22] that enables
convolutional topologies deep up to hundreds of layers [23],
[24]. As the encoder gets deeper and learns to detect more
features, it can be trained over larger numbers of dissimilar
images to detect features of higher semantic level. As a
result, the learned features are less specific to the training
images and are more likely to be useful to segment images

2

unseen at training time, improving the encoder generalization
ability. Intermediate layers of the encoder and the decoder
are linked with skip connections [25] which allow dealing
with features of different semantic level. The network is
trained over images potentially very different from those to
be segmented at deployment time. Regarding the domain
adaptation, we devise two solutions for adapting the trained
network over each specific image to be segmented when
deployed on the field. First, we show that updating the batch
normalization (BN) layers statistics on the deployment images
is effective towards normalizing the inputs to convolutional
layers. Second, refining the network parameters over small
regions of the images where it is to be deployed improves
segmentation accuracy with little additional manual effort. The
performance of the proposed architecture is experimentally
evaluated over two publicly available and one homegrown
dataset of annotated satellite images. Our experiments show
that as the encoder depth increases (up to 151 layers), the
segmentation accuracy improves. Moreover, a residual encoder
performs and generalizes better with respect to a deeper plain
convolutional encoder. Adaptation experiments also show that
updating the batch normalization statistics offers gains up
to 0.5% and close to 3% in terms of overall segmentation
accuracy and F1-Score. Refining the trained network boosts
the above gains to 1% and 6% respectively when about one-
third of the image to be segmented is hand-annotated. This
work builds upon and extends our preliminary research [26]
in multiple directions. First, we propose a simple yet effective
strategy for adapting a trained network that consists upon re-
fining the batch normalization (BN) statistics over each image
to segment. Second, we extend the experimental validation of
our architecture over two publicly available datasets of satellite
images, comparing our method to state-of-the-art techniques.

The rest of this article is organized as follows. Section
II discusses the recent literature in the field and the major
shortcomings of existing approaches. Sec. III briefly overviews
the background relevant to this work. Sec. IV describes our
proposed architecture, whereas Sec. V describes the related
training procedure. Sec. VI presents two domain adaptation
methods to improve the performance of a trained network
over specific images. Finally, in Sec. VII we experimentally
assess the performance of our proposed architecture over three
distinct datasets of satellite images. Conclusions are drawn in
Sec. VIII.

II. RELATED WORK

Automatic segmentation of hyperspectral satellite images
has been the subject of extensive studies over the past decade.
Mainstream approaches rely on manually designing class-
specific features extractors where the extracted features are
further classified for image segmentation. Morphological index
and Pixel Shape Index (PSI) [27], [28], [29] are among the best
known families of hand-crafted features proposed in the litera-
ture. Concerning feature classification, discriminative learning
[30], [31], [32] aims at discovering the informative subspace
within feature domain to improve the classifier performance.
Concerning feature classification, mainly the support vector

machine [33] is deployed to process the generated features
and perform final decision over pixels of the image.

Fostered by the availability of large annotated images and
leveraging the computational capabilities of modern GPUs, a
number of approaches based on deep convolutional architec-
tures have been proposed recently for image segmentation.

Farabet et al. [34] proposed a multi-scale CNN to address
scene labeling. Their proposed architecture consists of three
convolutional branches each working on a specific scale of
input image generated by a Laplacian pyramid. The output
feature maps of these branches are scaled up to recover the
original size of the input and then concatenated over the
three scales. Finally the segmentation results of convolutional
branches are used by super-pixel algorithm or conditional
random field in order to predict the final segmentation and
to enforce spatial consistency.

Long et al. [35] introduced a fully CNN for image segmen-
tation which takes an input of arbitrary size. Coarse feature
maps from deeper layers are combined with those in early
layers and with finer resolution which contributes to more
precise segmentation.

In the medical imaging domain, Ronneberger et al. [25]
devised an architecture called U-Net composed of a contract-
ing branch consisting of convolutional layers and a symmetric
expanding branch including deconvolution layers. The con-
tracting path processes the input image through convolution
and pooling layers producing coarse feature maps. In the
expanding part, these feature maps are scaled up using decon-
volution operations to match the input size and produce the
score maps over segmentation classes. Skip connections are
used to help the flow of information between these two parts
contributing to precise fine segmentation. Ghiasi et al. [36]
deployed a similar multi-resolution reconstruction architecture
built upon a Laplacian pyramid. The coarse feature maps are
refined through the reconstruction branch by fusing feature
maps with the information of early layers in the network.

Chen et al. [37] introduced Deeplab, a CNN in which
atrous convolution is employed to address image segmentation.
Atrous convolution helps to enlarge the field of view of feature
maps while keeping their resolution the same. Moreover,
atrous spatial pyramid pooling is employed to add multi-scale
content to feature maps. In the end, authors implemented fully
connected conditional random fields to refine CNN outputs and
perform the segmentation.

Pushed by the success scored with natural images segmen-
tation, a number of methods for satellite image segmentation
have been proposed recently.

Authors in [3] addressed semantic labelling over Vaihingen
city using patch-based CNN and also fully convolutional
architecture. To overcome the imbalanced classes, authors
introduce a cross-entropy loss function weighted by median
frequency balancing which results in better performance in
less frequent classes like cars.

In [4] a downsample-then-upsample architecture similar to
[25] is devised utilizing deconvolutional layers in order to
tackle semantic labelling of Vaihingen and Potsdam cities.
Good performance is achieved over the validation set.

3

Fig. 1: Left: Architecture of a residual unit (dashed layers are found only in ResNets with � 50 layers). Right: ResNet-18
topology with subdivision in residual blocks and further in residual units.

A multimodal architecture operating on infrared, red, green
and digital surface model with multi-scale encoders is pro-
posed in [5] which advances the state-of-the-art over Vaihingen
dataset by fusing segmentation results obtained on three scales.

[6] presents an edge-detection network to combine the pre-
diction of class boundaries with the segmentation score maps
to increase the segmentation precision. They evaluated their
approach over Vaihingen and Potsdam datasets and improved
the baseline performance. In [8] hand-crafted features are
fused with features predicted by a CNN architecture, and a
conditional random field inference is employed to make final
predictions.

Authors in [38] propose a transfer learning approach to
address the satellite image classification by refining a pre-
trained CNN over novel dataset. They show that training the
fully connected layers first, then refining the whole network
using different learning rates for different network layers
results in better performance.

Although most of the studies yield sufficiently accurate
segment maps, few of them address the problem of deploying
the trained network over images with different statistics from
those used for training. In this work, we tackle such issue
designing a network that can be trained to generalize over
unseen images and methods to further improve its performance
with respect to each image to be segmented.

III. RESIDUAL NETWORKS

Residual networks (ResNets in the following) [22] are
a class of deep convolutional networks that won the 2015
ImageNet large scale visual recognition contest. ResNets ad-
dress the exploding/vanishing gradients problem [23], [24] in
deep neural networks [39] by introducing skip connections
which ease the backpropagation of the error gradients. The
elementary unit of a ResNet is illustrated in Figure 1 and
consists of two (or three) convolutional layers with 3⇥3 or
1⇥1 filters and Rectified Linear Unit (ReLU) [40] activation
functions. During the forward pass, the skip connection sums
the input of the unit to the output. At training time, the skip
connection allows the error gradients to back-propagate from
the output layer to layers closer to the network input. As
a results, ResNets enable training much deeper architectures
before running into vanishing gradients problems compared
to standard convolutional networks. Multiple residual units
are stacked together to form a residual block, and a standard
ResNet includes five blocks. ResNets lack pooling layers for

feature map spatial subsampling: the filters in the first convo-
lutional layer of each block have a stride of two, effectively
halving the feature maps resolution. Although the size of the
feature maps is constant within each block, the number of
feature maps output by a block depends on the overall ResNet
depth as shown in Table I. Finally, a 7 ⇥ 7 average pooling
layer reduces the dimensionality of the feature maps output
by the last residual block, whereas one single fully connected
layer takes care of the final image classification.

Finally, the figure shows that the inputs to the ReLU
activations are normalized via batch normalization [41], a
strategy addressing the internal covariate shift in multilayer
neural networks. Let us consider the common case where
saturating activations such as sigmoids or hyperbolic tangents
are employed. If the inputs to the activation functions are
not normalized, the activations are more likely to operate
in the nonlinear region, thereby slowing down the training,
whereas exploding gradients will require conservative learning
rates, further slowing down the training. While we postpone
to Sec. VI the details of batch normalization, in a nutshell
it speeds up the training by normalizing the inputs to each
activation function. This normalization is performed accord-
ing to the input statistics learned during training and yields
higher learning rates. ResNets in particular rely on batch
normalization because of their very deep architectures that
demand sustained learning rates to be trained in reasonable
time. In Sec. 3 we will show however that in a covariate shift
scenario as in our case, batch normalization may hinder the
network performance, which is the reason why we propose the
adaptation strategy in Sec. VI-A.

TABLE I: Number of (output feature maps, convolutional
layers) for each encoder (top) and decoder (bottom) block.

Encoder Num. of (feature maps, conv. layers) in encoder block
depth Block 1 Block 2 Block 3 Block 4 Block 5

18 (64, 1) (64, 4) (128, 4) (256, 4) (512, 4)
34 ” (64, 6) (128, 8) (256, 12) (512, 6)
50 ” (256, 9) (512, 12) (1024, 18) (2048, 9)

101 ” ” ” (1024, 69) ”
152 ” ” (512, 24) (1024, 108) ”

Encoder Num. of (feature maps, conv. layers) in decoder block
depth Block 1 Block 2 Block 3 Block 4 Block 5
18,34 (256, 1) (128, 1) (64, 1) (64, 1) (64, 1)
>34 (1024, 1) (512, 1) (256, 1) ” ”

4

Fig. 2: Proposed encoder-decoder convolutional architecture for satellite image segmentation. The architecture of the encoder
blocks and units is detailed in the dashed boxes. The architecture of the decoder blocks is detailed in the dotted boxes. ’C’
stands for the concatenation of feature maps.

IV. PROPOSED ARCHITECTURE

Our proposed architecture is shown in Fig. 2 and is com-
posed of one encoder network paired with a decoder network.
The encoder takes as input the image to be segmented and
generates feature maps of different semantic level with differ-
ent resolution. The decoder takes as input such feature maps
and outputs a segmentation map, where each pixel is labeled
according to one of the possible land usage classes. The rest
of this section details the architecture and the operations of
the encoder and the decoder, whereas the related training
procedures are detailed in the next section.

A. Encoder

The upper part of Fig. 2 illustrates the architecture of the
encoder, which is composed of five residual blocks, as detailed
in the dashed box. We recall that the first convolutional
layer of each block of a ResNet has a stride of two pixels.
Therefore, each block outputs feature maps whose resolution
is halved with respect to the feature maps taken as input. On
the other hand, the number of output feature maps increases
at each block. For example, the first block of the encoder
takes as input a 256 ⇥ 256 ⇥ D image, where D is the
number of spectral or color channels, and outputs 64 feature
maps of resolution 128 ⇥ 128. Table I details the number
of feature maps output by each block and the number of
convolutional layers in the block. As a result, the field of view
of the convolutional filters increases at each block, allowing
them to learn visual representations across different spatial
ranges. Whereas the encoder design pattern follows that of a
ResNet, a number of differences can be noticed with respect
to Fig. 1. First, the pooling layer found in standard ResNets
after the 5-th block is omitted to avoid an unneeded loss of
spatial information. Second, we obtain a fully convolutional
architecture by dropping the fully connected layer found in
standard ResNets. In principle, this allows the network to
efficiently process input images of arbitrary size without the
need for shifting and stitching. Third and most important,
the output of each block is not just provided as input to the
following block, but is also provided as input to a specific
block of the decoder unit. Providing feature maps extracted at
multiple scales helps the decoder to refine its output as detailed
in the following.

Our choice to design the encoder around a residual architec-
ture rather than a plain convolutional one is meant to improve
the network ability to generalize over wider range of images.
Our conjecture is that the deep residual encoder is able to
learn a large number of filters at different semantic levels,
which we hypothesize is helpful towards coping with images
whose statistics differ from training images. In Sec. VII the
connection between residual encoder depth and the network
generalization ability will be verified experimentally.

B. Decoder

The lower part of Fig. 2 illustrates the architecture of the
decoder, which is composed of five deconvolutional blocks

symmetric to the five residual blocks of the encoder. Each
decoder block includes one deconvolutional layer, one batch
normalization [41] layer and ReLU activations, as illustrated
in the dotted box in Fig. 2. Deconvolutional layers (backward

convolution) were originally proposed to address the loss
of mid-level cues [42] caused by pooling operators used in
convolutional networks. Each deconvolutional layer contains
one or more deconvolutional filters, where each filter can be
interpreted as a learnable upsampling function. Deconvolution
works in two steps: first a sparse feature map is generated by
interleaving zeros within the pixels, thereby upsampling the
input feature maps by a specific factor (unpooling). Next, a
dense feature map is generated by applying a convolution filter
to the sparse feature map. Thus, each decoder block reverses
the subsampling operation performed by the first convolutional
layer of each encoder block.

Skip connections contribute to more precise and finer pre-
dictions as the spatial information of early layers in encoder
is used as well. Thus, feature maps output by each decoder
block are concatenated with the feature maps produced by
the corresponding encoder block. Notice that the number of
feature maps coming from previous block and those from skip
connections remains identical. We experimentally verified that
this prevents one group of feature maps from dominating the
other when they are concatenated and provided as input to the
next deconvolutional block.

For the sake of clarity, we exemplify the operations of the
1-st decoder block with reference to a 18-layers encoder. The
1-st decoder block takes as input the 512 8⇥ 8 feature maps

5

generated by the 5-th encoder block. The feature maps are then
scaled up by a factor of two by the 256 deconvolutional layers,
reaching a 16 ⇥ 16 resolution. Such 256 feature maps are
then concatenated with the identically sized 256 feature maps
generated by the 4-th encoder block. The 512 concatenated
16⇥16 feature maps are provided as input to the 2-nd decoder
block, and so forth. The decoder output finally consists of 64
feature maps with the size of 256⇥ 256.

Next, the decoder output is processed by a convolutional
layer with C filters (where C is the number of land classes)
of size 1 ⇥ 1. The output of such layer consists in C feature
maps of size 256⇥256 pixel: the i-th pixel in the k-th feature
map oi,k (k 2 [1, C]) represents the relative confidence that the
i-th pixel in the input image belongs to the k-th class. We are
interested in estimating, for each i-th pixel, a class probability
distribution over the k classes yi,k. For each i-th pixel, the
spatial SoftMax produces a normalized score map for each k-
th class as yi,k = eoi,k/

P
C

k=1 e
oi,j , such that

P
C

k=1 yi,k = 1.
Finally, each i-th pixel is labeled according to the k-th class
that maximizes the pixel score yi: the 256⇥256 map of labels
is referred to as segmentation map in the following.

V. TRAINING METHODOLOGY

In this section we first describe the process to generate
the samples required to train the network described in the
previous section. Next, we define the cost function to minimize
at training time and we detail the related procedures.

A. Generating the Training Samples

Given a dataset of annotated satellite images, the dataset is
first subdivided as follows. The training set refers to images
(or parts thereof) used for training the network. The validation

set refers to images (or parts thereof) used to validate the
training procedures. We recall that training and validation
images are annotated and exhibit similar statistics. Finally,
test set refers to images representative of those over which
the trained network is to be deployed. As such, their statistics
may differ even by a large margin from the statistics of training
and validation images.

Concerning the training images, random transformations are
preliminary performed to prevent the network from overfitting
to the training images. First, each training image is subdivided
into 364 ⇥ 364 tiles. Then, a 256⇥256 sample is randomly
extracted from each tile as follows. With 50% probability, a
256⇥256 patch is cropped at a random position from the tile.
Otherwise, a 256⇥256 patch is cropped from the center of the
image which has undergone a bi-linear rotation with a random
angle ✓ drawn from a uniform distribution in the interval ✓ 2
(0, 2⇡). In addition to crop and rotation, horizontal and vertical
flips each with the probability of 50% are applied over each
tile independently.

Concerning validation images, each image is simply subdi-
vided into 256 ⇥ 256 non overlapping validation samples and
no further random alterations are applied to the sample.

Concerning test images, we extract 512 ⇥ 512 partially
overlapping samples from each test image. Whereas our net-
work design is fully convolutional, and allows in principle

to operate over images of arbitrary size, 512 ⇥ 512 was
the maximum image size allowed by our memory setup.
Concerning overlapping, we found it to be necessary in order
to cope with potential artifacts at the boundaries of the network
output.

B. Cost Function Definition and Training

The network is trained end-to-end in a fully supervised
manner. Let w be the parameters representing the weights and
the biases of the network, let x be the sample provided as
input to the network, let y be the segmentation map predicted
by the network and let t be the expected (target) map (i.e. the
ground truth). In detail, let yi,k and ti,k indicate the predicted
and expected output for the i-th pixel xi and for the k-
th class among C different possible classes. Let ti take the
form of a one-hot vector, i.e. only the element corresponding
to the correct class is equal to one, whereas all the other
C � 1 elements are equal to zero. The network is trained by
minimizing the loss function:

L(w, y, t) = �
H⇥WX

i=1

CX

k=1

ti,k log (yi,k). (1)

Such loss function, known also as spatial cross-entropy, rep-
resents the network inaccuracy in predicting the segmentation
map of sample x across the C classes. Additionally, to
prevent the network from overfitting to the training samples,
a regularization term R(w) is added to the loss function,
obtaining the final cost function

J(w, y, t) = ⌘L(w, y, t) + �R(w) (2)

where R(w) is the squared L2 norm of all the weights in the
network, � is the corresponding regularization factor and ⌘ is
the learning rate, i.e. the size of the parameters update step.

After generating the samples and defining the cost function
in Eq. (2), we proceed training the network via stochastic gra-
dient descent with an additional momentum of 0.9. Concerning
the learning rate adaptation strategy, we chose a base learning
rate of 10�2 that is divided by factor of 10 every 50 epochs.
A factor of 5 ⇥ 10�3 is applied to the regularization term
in Eq. (2). Given the size of the training samples which is
equal to 256 ⇥ 256, we train the network with 4 samples in
each mini-batch which is the maximum allowed by memory
constraint. In our experimental setup, the training ends when
the validation error stops decreasing or after 300 epochs.

Algorithm 1 Training process
Training NN over training set (source domain)

1: for e = 1...ntrain do . training over ntrain epochs
2: ys NN(xs) . forward pass
3: L(w, ys, ts) (ys, ts) . computing loss
4: J(w, ys, ts) = ⌘L(w, ys, ts)+�R(w) . computi. cost
5: rwJ(w, ys, ts) J(w, ys, ts) . backward pass
6: ve = �ve�1 +rwJ(w, ys, ts) . momentum
7: we = we�1 � ve . parameters optimization

6

Source Domain

𝑥𝑠 𝑡𝑠

User

NN

NN has been trained
providing (𝑥𝑠, 𝑡𝑠)

Target Domain

𝑥𝑡 (a) representative areas
 on 𝑥𝑡 are selected by user

(b) 𝑛𝑎 most uncertain
patches are labelled by user

(c) NN is refined
 providing (𝑥𝑡, 𝑡𝑡)

Fig. 3: Proposed active learning method depicted over three
steps. NN stands for the proposed neural network, xs, ts, xt

and tt denote images and target maps over source and target
domains respectively.

The training process is summarized in Algorithm 1, where
the proposed network is denoted by NN , and xs, ys and ts

denote input samples, network outputs and target maps over
the training set (source domain) respectively. rwJ denotes
network parameters gradients with respect to cost function,
� is the momentum used in optimization and ntrain is the
number of training epochs. Notice that in practice, the training
is carried out over mini-batches of samples, however in order
to avoid unnecessary complexity, the mini-batches are not
shown in Algorithm 1.

VI. DOMAIN ADAPTATION STRATEGIES

In this section we propose two domain adaptation strategies
to improve the performance of a trained network when applied
to a specific image to be segmented. The two strategies differ
mainly in the required inputs, the first requiring no human
intervention.

A. Batch Normalization Statistics Refinement

Algorithm 2 Batch Normalization Statistics Refinement
Note: NN is first trained according to Alg. 1

1: for e = 1...nrefine do . refining over nrefine epochs
2: for n = 1...nmb do
3: {un...m+n} NN({xt

n...m+n
}) . forward pass

4: µ�n = 1
m

P
m

i=1 un+i . n-th mini-batch mean
5: �2

�n
= 1

m

P
m

i=1(un+i � µ�n)
2 . n-th mini-b. var.

6: z�n {µ�n [�2
�n
} . n-th mini-batch statistics

7: zn = ↵ zn�1 + (1� ↵) z�n . refining statistics

The first domain adaptation strategy we propose consists
in refining the BN statistics learned during training over
each image to be segmented. As introduced in Sec. III, BN
speeds up the training by normalizing the inputs to each
layer activation function throughout a network. Borrowing the
notation from [41], let the vector u = (u(1), ..., u(d)) represent

the inputs of a layer activation function. The normalized inputs
are computed as:

û(k) =
u(k) � E[u(k)]p

Var[u(k)]
(3)

where E[u(k)] and Var[u(k)] are computed over each mini-
batch of train data. Since the procedure is the same for
every activation function (any k), for brevity in the following
we omit k e.g. replacing u(k) with u. Next, to prevent the
activation functions operating exclusively in their saturated
region, the normalized inputs are shifted and scaled as

v = �û+ � (4)

where � and � are learned independently for each layer.
During training, BN keeps track of computed statistics (i.e.

mean and variance), then such stored statistics are used to
normalize the activations inputs during evaluation. Let z(n�1)

be the statistics tracked at the end of the n� 1-th mini-batch;
at the n-th mini-batch they are updated as

z(n) = ↵z(n�1) + (1� ↵)z�n , (5)

where z�n are the statistics computed during the n-th mini-
batch and ↵ is the momentum.

Under some assumption, the statistics computed at training
time can be used to normalize the activation function inputs
at deployment time. However, when the network is deployed
over data whose statistics do not match those of the training
samples, the statistics computed at training time may be
useless towards normalizing the activation function inputs.
Therefore, we propose an improved BN strategy where after
the network is trained, the computed statistics z are prelim-
inary refined over (a subset of) the image to be segmented.
Algorithm 2 details the proposed BN statistics refinement.
First, the proposed network is required to be trained over
source domain according to Algorithm 1. Next, for every
image on target domain (xt), the trained network is refined
without requiring any annotations. Such refinement is carried
out for nrefine epochs over patches extracted from the image
on target domain. After patches are split into nmb mini-
batches with length m, in each iteration a mini-batch of
patches ({xt

n...m+n
}) is input to the trained network so that

the activation functions inputs can be obtained ({un...m+n})
throughout the network. Next, the mean and variance of the
activations are computed over the mini-batch (µ�n , �2

�n
) in

order to update and refine BN layer statistics according to (5)
where Z�n is the new observed statistics over n-th mini-batch,
and Zn�1 is the previously updated statistics. As a result, after
nrefine epochs, BN layers statistics are refined according to
statistics of patches over the target domain. In our experiments,
we found that the network performance is maximum when the
BN statistics are updated for about 10 epochs (nrefine = 10)
with momentum ↵ = 0.9, independently over each test image.
Further refining the BN statistics has the effect of overfitting
to the image area used for updating the statistics, jeopardizing
the network performance over the rest of the image.

7

We would like to point out that this strategy does not
require additional image labeling over target domain, since
BN statistics refinement is carried out without computing loss
function and without performing back-propagation as shown
in Algorithm 2.

B. Active Learning

The second domain adaptation strategy we propose relies
on active learning [17], [43], [18]. In this strategy, a number
of patches from each image on test set (target domain) are
first hand-selected and annotated by user and then are used
to refine a network previously trained on training images
(source domain). The strategy is divided into three steps and
is illustrated in Fig. 3 and detailed in Algorithm 3.

The first step a) deals with the selection of suitable regions
over the test image. Since a satellite image usually covers a
large geographical area (e.g. a city and the rural surroundings),
land usage classes are not distributed evenly across each
image. For example, over an image, some areas may contain
just buildings, whereas other areas may contain just vegetation.
Furthermore, each land usage class statistics may be affected
by some internal variance (e.g. buildings in some areas of
a city may not look like other buildings in other areas of the
same city). Therefore, during step a) the user manually locates
image areas that are both representative of the different land
use classes and account for at least some of each class internal
variance.

During step b), at first, an uncertainty metric is computed
for each patch which is extracted over representative areas
during the previous step. For example, considering a binary
segmentation problem of building-background, the uncertainty
of the k-th patch is computed as uck =

P
i
1� |yk,i,1�yk,i,2|,

where yk,i,j is the pretrained network score for the j-th class
of the i-th pixle of the k-th patch. Metric uck indicates how
much the network is uncertain about the classification of the
k-th patch. Patches over which the network is more uncertain
about the pixel classes, are in fact more useful for active
learning [10]. Thus, the top-na patches with higher uncertainty
are selected to be hand-annotated by the user, for example
using a graphical tool for image segmentation.

Finally, during step c), the network is refined over the
na patches labelled by the user. The refinement consists in
further optimizing the network parameters over the hand-
labeled patches (xt, tt) according to the training procedure
defined in Sec. V-B. Therefore, the network can be optimized
over a set of informative samples on the test image itself,
finally closing the semantic gap between training and test
samples.

In our experiments, the refinement employs a more conser-
vative learning rate of 10�4 and only for 30 epochs. Due to
the relatively small number of annotated patches, high learning
rates or long trainings may leads to overfitting to the selected
patches, jeopardizing the ability of the refined network to
generalize well over the rest of the test image. Note that
in the first domain adaptation method, only BN statistics are
refined which does not require annotations over the test image,
however in the second approach, network parameters along

Fig. 4: Results over test area 6 in Bloomington city of INRIA
dataset. The RGB input image is on the left. Score maps
(Decoder SoftMax outputs) for the proposed network with 50,
101 and 152 layers follow. As the encoder depth increases,
the quality of the score maps improves.

with BN statistics are both optimized providing labels over
test image.

Algorithm 3 Active Learning
Note: NN is first trained according to Alg. 1
Step(a): Selecting representative areas over xt and extract-
ing patches

1: {xt

1...n} USER(xt)
Step(b): Selecting most uncertain patches

2: {yt1...n} NN({xt

1...n}) . forward pass
3: {uc1...n} {yt1...n} . computing uncertainty
4: {xt

1...na
} sort({uc1...n}) . na uncertain patches

Step(c): Labelling na patches and refining NN
5: {tt} USER({xt

1...na
}) . labelling patches

6: for e = 1...nrefine do . refining over nrefine epochs
7: yt NN(xt) . forward pass
8: L(w, yt, tt) (yt, tt) . computing loss
9: J(w, yt, tt) = ⌘L(w, yt, tt) + �R(w) . computi. cost

10: rwJ(w, yt, tt) J(w, yt, tt) . backward pass
11: ve = �ve�1 +rwJ(w, yt, tt) . momentum
12: we = we�1 � ve . parameters optimization

VII. EXPERIMENTS AND RESULTS

In this section, we evaluate our proposed architecture over
two public and one homegrown datasets of high-resolution
satellite images.
Whenever possible, we compare our results with state-of-the-
art references using the appropriate metrics:

• Precision is defined as the ratio of correctly predicted
pixels to all predicted pixels regarding a segmentation

8

class, Precision = tp

tp+fp
where tp and fp are true

positive and false positive pixels respectively.
• Recall is defined as the ratio of correctly predicted

pixels to all pixels that belongs to a segmentation class,
Recall = tp

tp+fn
where tp , fn are true positive and false

negative pixels respectively.
• F1-score is defined as the harmonic mean of precision

and recall (F1 = 2 · (precision · recall)/(precision +
recall)). F1-score considers both precision and recall,
hence this metric takes both false positives and false neg-
atives into account which makes it an explicit indicator
of the segmentation performance.

• Intersection over Union (IoU) is the ratio of correctly
predicted area to the union of predicted pixels and the
ground truth for each class IoU = tp

tp+fp+fn
.

• Overall accuracy is the fraction of correctly labeled pixels
for all classes, Acc =

Pnc
i=1 tpi

np
where nc and np are the

number of classes and the number of pixels respectively
and tpi denotes true positive for class i.

The experimental setup used for all the experiments below
consists of a 12-cores Intel server with 128 GB of CPU
memory and four NVIDIA GeForce GTX 1080 Ti GPUs with
11 GB of memory each.

The interested readers will find more information about the
implementation in the GitHib repository 1 where all codes
necessary to generate the presented results have been made
publicly available.

A. Buildings dataset

The first dataset we consider for our experiments is com-
posed of nine high resolution images acquired by three differ-
ent Earth observation satellites over nine different urban areas
worldwide. The nominal spatial resolution of the images is
50 centimeters and each image includes 4 bands: red, green,
blue and near infrared. Areas (cities) B1, B2, B3, B4, B5
and B6 have been chosen for training and validation, whereas
areas (cities) B7, B8 and B9 are reserved for testing. That
is, the network is tested over cities that are different from
the cities used for training, which introduces a particularly
challenging covariate shift scenario. Training and validation
samples are generated as described in Section V-A, reserving
70% of areas B1, B2, B3, B4, B5 and B6 for training and the
rest for validation. For each area, the ground truth includes the
two classes of building and background. Thus, the problem
of segmenting such dataset is a binary pixel classification
problem.

1) Generalization Ability: In the first experiment, we evalu-
ate the performance of our proposed architecture as a function
of the encoder depth. Table II (top) shows that performance
increases with the residual encoder depth. The network with
the 34-layers encoder outperforms the 18-layers counterpart by
1.93% and 0.39% respectively. As the inner architecture of the
residual units is identical (see Tab. I), we attribute such gain to
the 16 extra residual layers. The proposed network with 152-
layers encoder outperforms instead the 18-layers counterpart

1https://github.com/sinaghassemi/semanticSegmentation

TABLE II: F1-score and accuracy over the buildings dataset
test areas. Top: The proposed network and U-net with different
encoder depths and Deeplab V3+ with two different backbone,
Bottom: Adapted networks using BN statistics refinement
(Norm), active learning over 10% (AL-10%) and 30% (AL-
30%) of each test area.

Average Oveall
F1-score [%] F1- score Acc.

Method B7 B8 B9 [%] [%]

Prop-18 65.81 71.92 76.07 71.26 94.78
Prop-34 69.26 74.79 75.54 73.19 95.17
Prop-50 72.34 74.08 76.07 74.16 95.23
Prop-101 75.82 78.87 79.47 76.33 95.47
Prop-152 79.27 79.16 83.51 80.65 95.76

U-net-19 [25] 66.31 69.96 73.22 69.83 94.13
U-net-35 [25] 67.47 68.14 75.60 70.40 94.48

DeepLab V3+⇤ [37] 71.88 75.02 78.98 75.29 95.14
DeepLab V3+⇤⇤ [37] 72.15 73.82 70.00 71.99 94.82

Prop-152 (Norm) 83.23 81.06 86.23 83.51 96.10
Prop-152 (AL-10%) 81.98 85.06 86.97 84.67 96.10
Prop-152 (AL-30%) 86.87 85.99 87.80 86.88 96.71

U-net-35 (Norm) 69.12 70.95 75.90 71.99 94.75
U-net-35 (AL-10%) 70.37 71.58 76.17 72.70 94.89
U-net-35 (AL-30%) 73.03 75.12 77.85 75.33 95.11

Deeplab V3+⇤ (Norm) 74.15 79.99 79.11 77.75 95.32
Deeplab V3+⇤ (AL-10%) 75.56 80.80 79.25 78.53 95.39
Deeplab V3+⇤ (AL-30%) 81.57 81.36 83.10 82.01 95.82

Deng et al. [44] 52.33 58.38 58.90 56.53 92.85
⇤ with ResNet101 backbone
⇤⇤ with Xception backbone

by about 9% and 1% respectively. As the number of filters
in each residual unit increases in blocks 2 to 4, we attribute
such gain both to the four-fold increase in number of filters
per layer and to the 134 extra layers. This result is in line
with those of [22], where a ResNet performance in an image
classification task was found to increase with its depth. As
a reference, we implemented an encoder according to the
plain convolutional U-Net architecture [25] with depths of
19 and 35 layers (i.e. the decoder is untouched). The two
resulting networks were trained from scratch according to
the procedure described in [25]. Table II (top) shows that
the 18 and 34 layers residual encoder outperforms the plain
convolutional encoder for similar depths of 19 and 35 layers
by 1.4 % and 2.8 % respectively in terms of average F1-
score. Moreover, the 18 layers residual encoder outperforms
the 35 layers U-Net plain convolutional counterpart on the
average. Similar results were found in [22], where a 18
layers residual network outperformed a plain 34 layers CNN
in an image classification task. Such results suggest that a
shallower residual encoder offers better generalization ability
than a deeper plain convolutional architecture. Our experience
with deep residual networks also suggests they are easier to
train than plain convolutional networks, so we hypothesize
that careful refinement of the U-Net optimization algorithms
parameters may reduce at least in part such gap. We conclude
that a deep residual encoder has better generalization ability
than a shallower residual counterpart (and to some extent of
a deeper plain convolutional encoder). We hypothesize that
such advantage comes from the larger number of filters a

https://github.com/sinaghassemi/semanticSegmentation

9

deep encoder can learn at training time that allows it to learn
visual representations of high semantic level, contributing to
generalization over wider range of satellite images.

In addition to U-Net, we compare with Deeplab V3+ [37],
which achieved state-of-the-art performance over PASCAL
VOC 2012 [45] and Cityscapes [46] datasets. Deeplab V3+
has an encoder-decoder architecture which makes use of
a backbone network in the encoder for extracting feature
maps. Deeplab V3+ with ResNet-101 and Xception backbones
obtained the best performance in [47], therefore, we also
train Deeplab V3+ once with ResNet-101 and another time
with Xception backbone over building dataset. As Table II
(top) shows, Deeplab V3+ with ResNet-101 backbone achieves
better performance compared with Xception backbone. These
results are in line with our previous findings and suggest
that ResNet has better generalization ability. Nevertheless,
our proposed architecture with the same depth (Prop-101)
outperforms Deeplab V3+ with ResNet-101 backbone. We
conjecture such gain is first related to the larger number of
skip connections employed in our architecture which results in
finer segmentation maps, and secondly to the deconvolutional
layers used in our architecture which can be optimized during
training comparing with the bilinear upsampling layers used
in Deeplab V3+ decoder which have fixed filters parameters.

2) Domain Adaptation: In the second experiment, we as-
sess the domain adaptation techniques proposed in Sec. VI.
As a baseline, we refer to the architecture with the 152-
layers encoder that achieved top performance in the previ-
ous experiment. Considering the scheme in Sec. VI-A, we
update the batch normalization statistics over each test image
independently. In detail, we applied the procedure provided
in Algorithm 2 over the trained network of Prop-152 for 10
epochs (nrefine = 10) and momentum of 0.9 (↵ = 0.9).
Table II (bottom) shows that the proposed strategy improves
the network performance by about 3% over the baseline in
terms of average F1-score and without the need for human
input. Considering the scheme in Sec. VI-B, we independently
refine the trained network over 10% (AL-10%) or 30% (AL-
30%) of each test image. Such adaptation is carried out using
the procedure detailed in Algorithm 3 such that 30 epochs
used for refinement (nrefine = 30) with leaning rate of 10�4

(⌘ = 10�4) and weight decay of 10�5 (� = 10�5). The
number of patches (na) used to adapt the network over test
images of B7 , B8 and B9 is 25, 20 and 20 for AL-10%, and
75, 60 and 60 for AL-30% respectively. Table II shows that
the networks refined over 10% and 30% brings F1-score gains
of 4% and 6% respectively over the baseline (about 1% and
3% over batch normalization statistics update).

Moreover, we also apply our proposed adaptation methods
with the same parameters to the 35-layers U-Net (U-Net-35)
and Deeplab V3+ with ResNet-101 backbone. As seen in Table
II (bottom), U-Net-35 average F1-score improves by 1.6%,
2.3% and 4.9%, whereas Deeplab V3 average F1-score in-
creases by 2.4%, 3.2% and 6.7% using BN statistics refinement
(Norm) and active learning (AL-10%, AL-30%) respectively.
These results imply that the proposed adaptation techniques
are not specific to our architecture and other deep learning
schemes can benefit from such adaptations. Nevertheless, since

our proposed architecture exhibits better generalization ability,
it outperforms the other schemes in terms of segmentation
peformance.

Additionally, we have implemented the active transfer learn-
ing network proposed in [44] for hyperspectral images, and
applied it to our 4-bands building dataset. Authors in [44]
addressed the related problem of domain adaptation over
satellite images by proposing a spectral-spatial feature learning
network. The network include three sparse stacked autoen-
coders (SSAE): one operating on extended morphological
attribute profiles (spatial SSAE), another one operating on
spectrum (spectral SSAE) and the last one is used to fuse the
features learned using spatial and spectral SSAEs. SSAEs are
trained first unsupervisedly over training samples, then based
on a query criterion, a set of samples along with the labels
are used to iteratively train the last softmax layer and also
to fine-tune the SSAEs. As Table II shows the results of our
implementation of [44] over building datasets, it can be seen
that our approach outperforms it by great margin. However it
should be noted that the method in [44] is originally proposed
for hypersepctral images which cover very small geographical
areas; conversely, our datasets include vast geographical areas
and contains only 4 spectral bands.

Finally, we compare the complexity of training the proposed
network (152-layers encoder) from scratch with that of adapt-
ing a previously trained network. Training the network from
scratch for 300 epochs required 37 hours in our experimental
setup. Adapting the trained network with the strategy in
Sec. VI-B required 5 minutes, without accounting for the
time required to annotate the area of test image used for
network refinement. Otherwise, updating the batch normal-
ization statistics in Sec. VI-A required about 200 seconds (no
extra annotations required). Concluding, adapting a previously
trained network is significantly less complex than retraining
a network from scratch, offering a remarkable edge in time-
critical applications such as emergency mapping.

B. INRIA Aerial Image Labeling Dataset

The second dataset we consider for our experiments is
the INRIA Aerial Image Labeling Dataset [48]. Such dataset
covers dissimilar urban settlements, ranging from urban areas
(e.g., San Francisco’s financial district) to alpine towns with
a nominal resolution of 0.3 meters. The training set consists
of 180 tiles of 5000 ⇥ 5000 pixels from the cities of Austin,
Chicago, Kitsap County, Western Tyrol and Vienna. The test
set includes the same number of identically sized tiles cov-
ering the cities of Bellingham, Bloomington, Innsbruck, San
Francisco and Eastern Tyrol. As in the previous experiment,
the network is tested over cities different from those used for
training. The training set is annotated labeling each pixel as
building or background; conversely, test images annotations
are retained by the benchmark provider. We subdivide the
annotated images into training and validation sets according
to the benchmark organizer suggestions, i.e. for each city the
first five tiles are reserved for validation and the rest are used
for training. We retrain the network from scratch following
the same procedures used for the previous experiment.

10

TABLE III: F1-score and Accuracy of the proposed architec-
ture over INRIA validation areas as a function of the encoder
depth.

F1-score [%] Average Overall
Enc. Kitsap West F1-score Acc.

Depth Austin Chicago County Tyrol Vienna [%] [%]

18 93.58 88.77 83.41 92.00 91.82 89.91 94.88
34 93.66 88.95 84.93 92.82 92.01 90.47 95.02
50 93.82 89.59 85.23 93.04 91.85 90.70 95.12
101 93.92 89.92 85.27 94.68 92.61 91.28 95.37
152 94.61 89.82 87.36 94.75 93.39 91.98 95.62

TABLE IV: Segmentation performance as IoU and Accuracy
over INRIA test images (numbers provided by the benchmark
organizer).

IoU [%]

B
el

lin
gh

am

B
lo

om
in

gt
on

In
ns

br
uc

k

Sa
n

Fr
an

ci
sc

o

Ea
st

Ty
ro

l

Average Overall
IoU Acc.
[%] [%]

AMLL [49] 67.14 65.43 72.27 75.72 74.67 72.55 95.91
NUS [49] 70.74 66.06 73.17 73.57 76.06 72.45 95.90

ONERA [49] 68.92 68.12 71.87 71.17 74.75 71.02 95.63
Raisa [49] 68.73 60.83 70.07 70.64 74.76 69.57 95.30

INRIA [48] 56.11 50.40 61.03 61.38 62.51 59.31 93.93

Proposed-18 69.70 66.70 72.16 65.85 73.91 68.50 95.40
Proposed-50 68.17 67.97 73.07 66.78 75.42 69.20 95.52

Proposed-152 69.13 70.30 72.51 69.64 75.31 70.76 95.54
Prop-152 (Norm) 69.47 75.17 75.90 72.76 76.89 73.63 96.10

As a first experiment, we evaluate the performance of our
proposed architecture as a function of the encoder depth. Since
for this dataset no ground truth is provided for the test set,
the performance is first evaluated on the validation set using
5 different encoder depths (18, 34, 50, 101, 152). Table III
shows that as the encoder depth increases, the segmentation
quality improves, confirming our previous findings in Table II
with the buildings dataset. While validation and training sets
are drawn from the same cities, we argue that the network
shall be able to learn features relative to multiple cities, thus
the network shall still be able to generalize across different
areas of the same city.

In the second experiment, we investigate how the encoder
depth and the proposed batch normalization statistics refine-
ment affect the network performance over test images. For
this experiment, we used the previously trained networks
with 18, 50 and 152 layers encoders to segment the 5 test
images. Then, only for the 152-layers network, we applied
the adaptation strategy in Section VI-A to segment the 5
test images (due to the lack of the annotations required
for refinement, we could not evaluate the domain adaptation
strategy in Section VI-B). The BN statistics refinement is
carried out following the procedure detailed in Algorithm 2
and for 10 epochs (nepochs = 10) over each image with
momentum of 0.9 (↵ = 0.9). Then, the resulting segmentation
maps were provided to the benchmark organizer that computed
and returned us the relative segmentation accuracy in terms of
Intersection over Union (IoU) as shown in Table IV together
with the top-5 performing references reported in [49].

Consistently with our previous experiments over the build-
ings dataset, the results show that a deeper encoder improves
the network performance over most test images. Namely, the

Fig. 5: In the left column, RGB images from INRIA test set
are provided. Each of these images shows an area in the cities
of Bloomington (top), Innsbruck (middle) and San Francisco
(bottom). The central column shows the segmentation maps
predicted by the proposed network (152 layers encoder). The
right column shows the segmentation maps predicted by the
adapted network using normalization statistics refinement over
each test image.

TABLE V: F1-score and accuracy of the proposed architecture
over Vaihingen validation images as a function of the encoder
depth.

F1-score [%] Overall
Encoder Imp. Low Acc.
Depth Sur. Building Veg. Tree Car Avg. [%]

18 85.96 91.15 72.63 83.99 68.01 80.34 83.83
34 86.01 91.80 73.27 84.30 67.98 80.67 84.15
50 86.70 92.30 74.76 84.86 71.36 81.99 84.99
101 87.24 93.65 74.31 84.71 82.82 84.57 85.56
152 89.17 93.78 77.08 85.54 83.84 85.88 86.77

152-layers encoder network achieves a 2.26 % gain over
the 18-layers encoder network in terms of average IoU and
a 0.14 % gain in overall accuracy. This gain supports our
finding that a deep residual encoder is able to learn visual
representations that are more robust to covariate shifts, results
in better performance over unseen images. Fig. 4 shows how
the output score map over an area of Bloomington city from
test set improves as encoder depth increases.

Finally, BN statistics refinement considerably improves by
2.87% in terms of average IoU over our baseline, outperform-
ing the other references in 4 out of 6 cities and all other
references both in terms of mean IoU and overall accuracy.
Fig. 5 illustrates the improvement due to batch normalization
statistics refinement over three images of INRIA test set.

11

TABLE VI: Confusion matrix (top half) and segmentation
performance (bottom half) for our proposed architecture with
152-layers encoder over the Vaihingen test images (numbers
provided by the benchmark organizer).

[%]
Imp. Low
Sur. Building Veg. Tree Car Clutter

Imp. Sur 90.6 3.6 4.6 0.8 0.3 0.1
Building 2.5 95.6 1.5 0.3 0 0.1
Low Veg. 5.7 1.7 81.2 11.3 0 0.1

Tree 1.1 0.3 9.4 89.2 0 0.0
Car 11.8 7.4 0.8 0.4 79.2 0.4

Clutter 24.7 30.0 4.6 4.0 0.8 36.0

Precision 91.1 93.6 81.8 88.1 87.2 77.2
Recall 90.6 95.6 81.2 89.2 79.2 36.0

F1-score 90.8 94.6 81.5 88.7 83.0 49.1

TABLE VII: Segmentation accuracy over the 17 Vaihingen
dataset test images (numbers provided by the benchmark
organizer).

F1-score [%] Overall
Imp. Low Acc.
Sur. Building Veg. Tree Car [%]

Pa. et al. [50] 89.5 93.2 82.3 88.2 63.3 88.0
Ka. et al. [3] 92.1 95.3 83.9 91.0 83.6 89.2
Au. et al. [5] 91.0 94.5 84.4 89.9 77.8 89.8

GSN [51] 91.8 95.0 83.7 89.7 81.9 90.1
DLR-9 [6] 92.4 95.2 83.9 89.9 81.2 90.3

Proposed-152 90.8 94.6 81.5 88.7 83.0 89.0

C. Vaihingen ISPRS 2D Semantic Labeling Dataset

The third and last dataset we consider for our experiments is
the ISPRS 2D Semantic Labeling Dataset [52], which includes
33 areas extracted from the city of Vaihingen, Germany. Each
area consists of a true orthophoto (TOP) image (near infrared,
red and green bands) and relative Digital Surface Model
(DSM); the ground sampling distance is 9 cm. A total of 16
areas out of 33 are meant for training and validation and are
annotated with ground truth. The remaining 17 areas are meant
for testing and so the related ground truth is not made available
by the benchmark organizer.

While in the two previous datasets training and test images
are captured from different satellites across multiple cities,
with this dataset all images account for the same city as
captured by the same satellite. Therefore, the covariate shift
between training and test sets is small compared with the
other datasets. However, while two previous datasets address a
binary building-background segmentation problem, this dataset
classifies each pixel into six classes: impervious surfaces,
building, low vegetation, tree, car and clutter (background).
Thus, whereas this dataset is less suitable to stress a network
generalization ability, the presence of similar classes such as
low vegetation and trees and the difficulty in distinguishing
small objects such as cars from background clutter makes it
a challenging test for our architecture. Moreover, this dataset
includes DSM which our network is not designed to handle.

The training and validation samples are generated subdi-
viding the 16 annotated areas into validation and training

subsets. Following the approach of [3] and [4], we reserve
areas (11, 15, 28, 30, 34) for validation, whereas the rest is
used for training. Most of the previous studies carried out on
this dataset process the DSM separately and then the results
are fused with those of TOP files in reason of the different
nature of DSM data. However, since our goal is not to devise
a scheme specialized for DSM images, we consider the DSM
data as an additional color band for a total of four input
bands. As for the other datasets, all networks are retrained
from scratch following the same procedure.

As first experiment, we study the effect of the encoder depth
on the network performance over the validation areas as the
ground truth of the test areas is not available to us. Table V
shows that the segmentation quality improves with the encoder
depth, coherently with our previous results (the clutter class
was excluded from the table following the example of the
dataset provider as it is of limited interest). We observe that
beside the low vegetation that can be possibly mistaken with
trees, cars represent the most difficult objects to recognize, we
hypothesize due to the small scale of vehicles.

As a second experiment, we use the 152-layers encoder
network to segment the 17 test areas (Figure 6 shows an ex-
ample of the resulting segment maps). The segmentation maps
were provided to the benchmark organizer who computed
the performance indices against the retained ground truth.
Table VI contains the confusion matrix (top half) and per-
class precision, recall and F1-score averaged over the 11 test
areas (bottom half). The matrix supports our hypothesis that
low vegetation can be easily mistaken with trees and shows
that cars are often mistaken by impervious surfaces, which
are characterized by similar small scale. Yet, our architecture
is capable of correctly identifying buildings with a F1-score
close to 95%.

Table VII compares our proposed architecture with the top-
5 best performing references made available on the bench-
mark organizer website. The DLR-9 [6] scheme achieves
top performance via a network operating on three different
scales. Moreover, two distinct networks are employed, one
for detecting class boundaries and the other one to predict
score maps. Then, the boundaries and segmentation results are
fused to generate the final segment map. Audeber et al. [5]
proposes similar strategy, deploying a multi-scale and multi-
modal architecture to address the pixel-based classification.
Kampffmeyer et al. [3] also devised multi-modal strategy
using patch-based and fully convolutional networks and also
median frequency balancing is implemented on loss function
to overcome the issue of unbalanced classes in dataset. By
comparison, our architecture is considerably less complex
since it relies on a single scale network and is not designed to
deal with DSM data. Despite our architecture being simpler
and meant to improve generalization, still it performs almost
as well as specialized and more complex ones. For this dataset
we do not report any result concerning the adaptation strategies
in Sec. VI since train and test samples are captured from the
same city by the same satellite, thus covariate shift is minimal.

12

Fig. 6: Segmentation results over one test area of the Vaihingen
test set for the 152-layers encoder network.

VIII. CONCLUSIONS

In this work, we designed an encoder-decoder convolu-
tional network for satellite image segmentation deployable
over images different from those used from training. Our
experiments revealed that residual encoders offer better gener-
alization abilities than a plain convolutional counterpart, and
that generalization ability improves with the encoder depth.
We hypothesize that deep residual architectures with a large
number of filters spanning across a wider range of semantic
levels allow the encoder to learn more robust features to co-
variate shift. Our experiments show that refining a previously
trained network significantly improves its performance with
a complexity that is a fraction of that required to train a
network from scratch. Interestingly, nearly 50% of such gain
stems from just updating the batch normalization statistics
alone, without refining the network parameters. Finally, the
proposed architecture outperformed multiple references over
two datasets characterized by large differences between train
and test images.

ACKNOWLEDGMENTS

This work was done at the Joint Open Lab Cognitive
Computing and was supported by a fellowship from TIM.
We would like thank Constantin Sandu, Fabio Giulio Tonolo
and Piero Boccardo from Department of Regional and Urban
Studies and Planning in Politecnico di Torino for providing us
the building dataset.
The Vaihingen data set was provided by the German Soci-
ety for Photogrammetry, Remote Sensing and Geoinforma-
tion (DGPF) [52]: http://www.ifp.uni-stuttgart.de/dgpf/DKEP-
Allg.html.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances in

Neural Information Processing Systems, 2012, pp. 1097–1105.
[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,

“Gradient-based learning applied to document recognition,” Proceedings

of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[3] Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen, “Se-

mantic segmentation of small objects and modeling of uncertainty in
urban remote sensing images using deep convolutional neural networks,”
in Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition Workshops, 2016, pp. 1–9.

[4] Michele Volpi and Devis Tuia, “Dense semantic labeling of sub-
decimeter resolution images with convolutional neural networks,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 55, no. 2, pp.
881–893, 2017.

[5] Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre, “Semantic
segmentation of earth observation data using multimodal and multi-scale
deep networks,” in Asian Conference on Computer Vision. Springer,
2016, pp. 180–196.

[6] Dimitrios Marmanis, Konrad Schindler, Jan Dirk Wegner, Silvano Gal-
liani, Mihai Datcu, and Uwe Stilla, “Classification with an edge: Im-
proving semantic image segmentation with boundary detection,” ISPRS

Journal of Photogrammetry and Remote Sensing, vol. 135, pp. 158–172,
2018.

[7] Xiwen Yao, Junwei Han, Gong Cheng, Xueming Qian, and Lei Guo,
“Semantic annotation of high-resolution satellite images via weakly
supervised learning,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 54, no. 6, pp. 3660–3671, 2016.
[8] Sakrapee Paisitkriangkrai, Jamie Sherrah, Pranam Janney, and Anton

van den Hengel, “Semantic labeling of aerial and satellite imagery,”
IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 9, no. 7, pp. 2868–2881, 2016.
[9] Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer, et al.,

Dataset shift in machine learning, The MIT Press, 2017.
[10] Devis Tuia, Claudio Persello, and Lorenzo Bruzzone, “Domain adapta-

tion for the classification of remote sensing data: An overview of recent
advances,” IEEE Geoscience and Remote Sensing Magazine, vol. 4, no.
2, pp. 41–57, 2016.

[11] Lorenzo Bruzzone and Claudio Persello, “A novel approach to the selec-
tion of spatially invariant features for the classification of hyperspectral
images with improved generalization capability,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 47, no. 9, pp. 3180–3191, 2009.
[12] Claudio Persello and Lorenzo Bruzzone, “Kernel-based domain-

invariant feature selection in hyperspectral images for transfer learning,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 5,
pp. 2615–2626, 2016.

[13] Shilpa Inamdar, Francesca Bovolo, Lorenzo Bruzzone, and Subhasis
Chaudhuri, “Multidimensional probability density function matching
for preprocessing of multitemporal remote sensing images,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 46, no. 4, pp.
1243–1252, 2008.

[14] Allan A Nielsen and Morton J Canty, “Kernel principal component
and maximum autocorrelation factor analyses for change detection,”
in Image and Signal Processing for Remote Sensing XV. International
Society for Optics and Photonics, 2009, vol. 7477, p. 74770T.

[15] Giona Matasci, Michele Volpi, Mikhail Kanevski, Lorenzo Bruzzone,
and Devis Tuia, “Semisupervised transfer component analysis for
domain adaptation in remote sensing image classification,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 53, no. 7, pp.
3550–3564, 2015.

[16] Hsiuhan Lexie Yang and Melba M Crawford, “Spectral and spatial
proximity-based manifold alignment for multitemporal hyperspectral
image classification,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 54, no. 1, pp. 51–64, 2016.
[17] Suju Rajan, Joydeep Ghosh, and Melba M Crawford, “An active learning

approach to hyperspectral data classification,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 46, no. 4, pp. 1231–1242, 2008.
[18] Giona Matasci, Devis Tuia, and Mikhail Kanevski, “Svm-based boosting

of active learning strategies for efficient domain adaptation,” IEEE

Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 5, no. 5, pp. 1335–1343, 2012.
[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Gen-
erative adversarial nets,” in Advances in Neural Information Processing

Systems, 2014, pp. 2672–2680.
[20] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,

Hugo Larochelle, François Laviolette, Mario Marchand, and Victor
Lempitsky, “Domain-adversarial training of neural networks,” The

Journal of Machine Learning Research, vol. 17, no. 1, pp. 2096–2030,
2016.

[21] Ahmed Elshamli, Graham W Taylor, Aaron Berg, and Shawki Areibi,
“Domain adaptation using representation learning for the classification
of remote sensing images,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 10, no. 9, pp. 4198–4209,
2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE

13

conference on Computer Vision and Pattern Recognition, 2016, pp. 770–
778.

[23] Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learning long-
term dependencies with gradient descent is difficult,” IEEE Transactions

on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.
[24] Xavier Glorot and Yoshua Bengio, “Understanding the difficulty of

training deep feedforward neural networks,” in Proceedings of the thir-

teenth international conference on artificial intelligence and statistics,
2010, pp. 249–256.

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,” in International

Conference on Medical Image Computing and Computer Assisted Inter-

vention. Springer, 2015, pp. 234–241.
[26] Sina Ghassemi, Attilio Fiandrotti, Constantin Sandu, Fabio Giulio

Tonolo, Piero Boccardo, Enrico Magli, and Gianluca Francini, “Satellite
image segmentation with deep residual architectures for time-critical
applications,” in 26th European Signal Processing Conference. IEEE,
2018, pp. 1–6.

[27] Jón Atli Benediktsson, Jón Aevar Palmason, and Johannes R Sveinsson,
“Classification of hyperspectral data from urban areas based on extended
morphological profiles,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 43, no. 3, pp. 480–491, 2005.
[28] Xin Huang and Liangpei Zhang, “Morphological building/shadow index

for building extraction from high-resolution imagery over urban areas,”
IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 5, no. 1, pp. 161–172, 2012.
[29] Liangpei Zhang, Xin Huang, Bo Huang, and Pingxiang Li, “A pixel

shape index coupled with spectral information for classification of high
spatial resolution remotely sensed imagery,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 44, no. 10, pp. 2950–2961, 2006.
[30] Xiuping Jia, Bor-Chen Kuo, and Melba M Crawford, “Feature mining

for hyperspectral image classification,” Proceedings of the IEEE, vol.
101, no. 3, pp. 676–697, 2013.

[31] Lefei Zhang, Liangpei Zhang, Dacheng Tao, and Xin Huang, “On
combining multiple features for hyperspectral remote sensing image
classification,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 50, no. 3, pp. 879–893, 2012.

[32] Lefei Zhang, Qian Zhang, Liangpei Zhang, Dacheng Tao, Xin Huang,
and Bo Du, “Ensemble manifold regularized sparse low-rank approxi-
mation for multiview feature embedding,” Pattern Recognition, vol. 48,
no. 10, pp. 3102–3112, 2015.

[33] Farid Melgani and Lorenzo Bruzzone, “Classification of hyperspectral
remote sensing images with support vector machines,” IEEE Transac-

tions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790,
2004.

[34] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun,
“Learning hierarchical features for scene labeling,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1915–
1929, 2013.

[35] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convo-
lutional networks for semantic segmentation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 3431–3440.

[36] Golnaz Ghiasi and Charless C Fowlkes, “Laplacian pyramid reconstruc-
tion and refinement for semantic segmentation,” in European Conference

on Computer Vision. Springer, 2016, pp. 519–534.
[37] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-

phy, and Alan L Yuille, “Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully connected crfs,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
40, no. 4, pp. 834–848, 2018.

[38] Bei Zhao, Bo Huang, and Yanfei Zhong, “Transfer learning with fully
pretrained deep convolution networks for land-use classification,” IEEE

Geoscience and Remote Sensing Letters, vol. 14, no. 9, pp. 1436–1440,
2017.

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich, “Going deeper with convolutions,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 1–9.

[40] Vinod Nair and Geoffrey E Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proceedings of the 27th International

Conference on Machine Learning (ICML-10), 2010, pp. 807–814.
[41] Sergey Ioffe and Christian Szegedy, “Batch normalization: accelerating

deep network training by reducing internal covariate shift,” in Proceed-

ings of the 32nd International Conference on International Conference

on Machine Learning-Volume 37. JMLR. org, 2015, pp. 448–456.

[42] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus,
“Deconvolutional networks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition. IEEE, 2010, pp. 2528–2535.
[43] Goo Jun and Joydeep Ghosh, “An efficient active learning algorithm with

knowledge transfer for hyperspectral data analysis,” in Geoscience and

Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International.
IEEE, 2008, vol. 1, pp. I–52.

[44] Cheng Deng, Yumeng Xue, Xianglong Liu, Chao Li, and Dacheng Tao,
“Active transfer learning network: a unified deep joint spectral-spatial
feature learning model for hyperspectral image classification,” IEEE

Transactions on Geoscience and Remote Sensing, 2018.
[45] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI

Williams, John Winn, and Andrew Zisserman, “The pascal visual object
classes challenge: A retrospective,” International journal of computer

vision, vol. 111, no. 1, pp. 98–136, 2015.
[46] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,

Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele, “The cityscapes dataset for semantic urban scene
understanding,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 3213–3223.
[47] “Encoder-decoder with atrous separable convolution for semantic image

segmentation,” in European Conference on Computer Vision, 2018, pp.
833–851.

[48] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre
Alliez, “Can semantic labeling methods generalize to any city? the inria
aerial image labeling benchmark,” in IEEE International Symposium on

Geoscience and Remote Sensing (IGARSS), 2017.
[49] Bohao Huang, Kangkang Lu, Nicolas Audebert, Andrew Khalel, Yuliya

Tarabalka, Jordan Malof, Alexandre Boulch, Bertrand Le Saux, Leslie
Collins, Kyle Bradbury, et al., “Large-scale semantic classification:
outcome of the first year of inria aerial image labeling benchmark,” in
IEEE International Geoscience and Remote Sensing Symposium, 2018.

[50] Sakrapee Paisitkriangkrai, Jamie Sherrah, Pranam Janney, Van-Den
Hengel, et al., “Effective semantic pixel labelling with convolutional
networks and conditional random fields,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops,
2015, pp. 36–43.

[51] Hongzhen Wang, Ying Wang, Qian Zhang, Shiming Xiang, and Chun-
hong Pan, “Gated convolutional neural network for semantic segmenta-
tion in high-resolution images,” Remote Sensing, vol. 9, no. 5, pp. 446,
2017.

[52] Michael Cramer, “The dgpf-test on digital airborne camera
evaluation–overview and test design,” Photogrammetrie-Fernerkundung-

Geoinformation, vol. 2010, no. 2, pp. 73–82, 2010.

14

Sina Ghassemi received his M.Sc. degree in
Telecommunication Engineering with specialization
in Information Theory and Signal Processing from
Politecnico di Torino, Torino, Italy, in 2016. He
started his PhD program in the area of deep learning
with Politecnico di Torino, in 2016. He is currently
a postdoctoral researcher at the Telecom Italia lab at
Politecnico di Torino. His research interests are in
the field of computer vision, deep learning, remote
sensing and image processing.

Attilio Fiandrotti (M’12) received his M.Sc. and
Ph.D. degrees in Computer Science from Politecnico
di Torino in 2005 and 2010 respectively. Currently,
he is Maı̂tre de Conférences at Télécom Paristech,
Université Paris Saclay, Image Data Signals depart-
ment, Multimedia group. His current research in-
terests include robust cooperative video distribution
and deep learning techniques for immersive video
analysis and compression.

Gianluca Francini received the master’s degree
cum laude in Computer Science from from the
University of Torino, Italy. In 1996, he joined the
Multimedia research group of CSELT (the former
research center of Telecom Italia), working on three-
dimensional video conference systems. He is a se-
nior researcher actively involved in computer vision,
image and video retrieval, 3D reconstruction and
Self Organizing Networks. He is currently leading
the lab opened by Telecom Italia in 2014 at Po-
litecnico di Torino, with the objective of developing

technologies for visual search and deep learning. He is co-inventor of 20
patents in the field of image and video analysis.

Enrico Magli (F’07–S’97–M’01–SM’07) received
the M.Sc. and Ph.D. degrees from Politecnico di
Torino, Torino, Italy, in 1997 and 2001, respectively.
He is currently a Full Professor with Politecnico
di Torino, Torino, Italy. His research interests are
in the field of deep learning, graph signal process-
ing, compressive sensing, image and video coding,
and vision. He is an associate editor of the IEEE
Transactions on Circuits and Systems for Video
technology and the EURASIP Journal on image and
video processing, and has been associate editor for

the IEEE Transactions on Multimedia. He is an IEEE Fellow and has been
an IEEE Distinguished Lecturer for 2015-2016, and a corecipient of the
IEEE Geoscience and Remote Sensing Society 2011 Transactions Prize Paper
Award.

	Introduction
	Related Work
	Residual Networks
	Proposed Architecture
	Encoder
	Decoder

	Training Methodology
	Generating the Training Samples
	Cost Function Definition and Training

	Domain Adaptation Strategies
	Batch Normalization Statistics Refinement
	Active Learning

	Experiments and Results
	Buildings dataset
	Generalization Ability
	Domain Adaptation

	INRIA Aerial Image Labeling Dataset
	Vaihingen ISPRS 2D Semantic Labeling Dataset

	Conclusions
	References
	Biographies
	Sina Ghassemi
	Attilio Fiandrotti
	Gianluca Francini
	Enrico Magli

