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Abstract—Virtual platforms are a powerful support for the development
and early validation of embedded SW. However, complex smart devices
are built by aggregating heterogeneous components provided by diffe-
rent vendors, thus requiring the development of custom ad-hoc virtual
platforms. Even worse, components of the underneath HW platform may
belong to different design domains, that are usually expressed using a
huge variety of different languages. This high degree of heterogeneity
in terms of both design and specification languages must be effectively
managed by the design flow so to help engineers in assembling the final
system.

This paper proposes a meet-in-the-middle approach to create virtual
platforms of heterogeneous systems. The starting point is a set of
heterogeneous models, developed by adopting the designer’s favorite
language and formalism. The methodology envisions the adoption of
existing automatic translation and abstraction tools to automatically in-
tegrate models of components into a single homogeneous system-level
executable description. The approach is supported by an analysis of
the typical design flow, that leads to the definition of design domain/ab-
straction level taxonomies. Such taxonomies are then used to identify
what characteristics would allow efficient system-level simulation, and
the corresponding transformations to be applied to the starting models
to achieve a “holistic” system executable representation.

The benefit of such an approach is particularly evident on any kind
of highly heterogeneous systems, such as smart devices. The propo-
sed methodology has been applied to two case studies with different
degrees of heterogeneity, with the goal exemplifying its adoption on
concrete scenarios and to prove its effectiveness.

1 INTRODUCTION

The field of Electronic Design Automation (EDA) has been
heavily pushed in the last decades by the desire to stay in the
track set by the Moore’s Law. However, while the physical limits
of Silicon are being approached, new trends started to emerge in
computation: smartphones, the Internet of Things and pervasive
computing technologies in general force designers to introduce
sensors, actuators and communication devices within everyday
more and more miniaturized systems: the smart devices. This trend
forced EDA in the More-than-Moore era, where the main problem
is no longer the integration of an increasing number of transistors
in a single chip, but rather the introduction (and integration) of
different, heterogeneous technologies within a single System on a
Chip (SoC) [1].

A mandatory requirement for a device to be considered smart
is self-awareness, i.e., it must be able of monitoring its own state,
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Figure 1: Overview of the proposed approach.

as well as its surrounding environment to properly adapt itself and
to react to state changes [2]. Consequently, modern devices must
be equipped with sensors and actuators to sense and interact with
the physical part of system.

As a result, a variety of heterogeneous design domains are in-
volved in the design process, ranging from digital and analog HW,
to embedded SW, networking, system-level integration, etc. [3].
Each of these domains is handled by designers with specific
expertise and background, by using tools and languages closed
to the designer’s expertise and to the domain of interest. This
heterogeneity leads in fact to a babel of design and specification
languages that must coexist in the same design flow, as exemplified
in Figure 1.

Models heterogeneity becomes a primary issue when trying
to perform overall system simulation, that is on the other hand
necessary to allow the development of applications and of control
SW running on the embedded device. In such a case, the correct-
ness of SW functionality is not the sole concern of designers: it
is also necessary to correctly evaluate the interactions of SW with
the physical components of the system, and to take into account
exact timing, in particular when dealing with real-time constraints.
In general, the more properties have to be guaranteed, the more
concerns must be considered while developing the SW [4].

SW development will thus require an accurate and executable
model of the HW and physical components composing the under-
lying platform, i.e., a Virtual Platform. To ensure effective design
support, the virtual platform must thus provide efficient simulation
of the entire smart device, and it must be both accurate and fast:
two requirements that usually are in contrast with each other.

Accuracy in holistic system simulation can be achieved by
carefully connecting different simulators typical of each domain,
by building a co-simulation environment. Each simulator is in



charge of simulating a different part of the system, and the
holistic view of the system behavior is given by the integration
of simulators. However, integrating different environments is a
time-consuming and error-prone task. The risk of incurring on
integrations errors can only be reduced by using standardized
interfaces [5], and standardized interfaces are not available for
all tools and design domains [6]. Additionally, the overhead due
to interprocess communication drastically slows down simulation.

Simulation speed is usually achieved through abstraction, i.e.,
by reducing the details of each model that must be simulated to the
minimum. However, automatic abstraction is not always available,
and manual abstraction may lead to unwanted accuracy losses.

Objectives and novelty
The main target of this work is to organize into a coherent
and theoretically sound methodology all partial attempts to
integrate heterogenous components of smart device into a
homogeneous virtual platform (the so called holistic model).
The underlying idea is to allow designers to develop each com-
ponent with his/her favourite language and formalism, to take
full advantage of the designer’s expertise. Our methodology aims
at reconciling the resulting heterogeneity in terms of languages,
formalisms and levels of abstraction by building a single monoli-
thic, holistic and homogeneous model of the overall platform, by
targeting a single language and abstraction level, as suggested by
Figure 1. This homogeneous representation of the system under
design can then be the starting point of additional design steps,
since refinement, exploration of alternative configurations, and
validation and verification challenges can now be solved on a
homogeneous description rather than on a babel of abstraction
levels and languages.

To achieve these goals, the methodology builds upon an ana-
lysis of the current design flows, to identify the main languages,
domains and abstraction levels involved. This analysis has been
formalized through the definition of design domains/abstraction
level taxonomies, that allowed to identify the main ingredients for
an efficient system-level simulation.

The taxonomies allow to identify the possible starting points
of the heterogeneous system, in terms of typical abstraction level
and language of the various components. From here, it is possible
to define how the starting heterogeneous descriptions can be
integrated and manipulated to obtain a monolithic executable
model for holistic system simulation, thus building a custom
virtual platform. For the sake of efficiency, we thus aim at building
a homogeneous custom virtual platform: the resulting models are
specified in a single language, i.e., C++.We indeed advocate that
reconciling the heterogeneous descriptions into a single monolithic
and homogeneous model will allow us to drastically increase
simulation speed, as already partially shown in [3].

To reach this result, the methodology relies on a set of transla-
tion, abstraction and integration approaches available at state-of-
the-art. In particular, we adopted a set of approaches we defined
in the recent years, that reconcile the different initial formalisms
into an intermediate format (such as [7]–[11]). However, such
transformations should not be considered the core of this work, as
the methodology is general and it would still hold when adopting
different abstraction/refinement approaches.

This work is organized as follows. Section 2 provides the
necessary background and positioning of the proposed flow w.r.t.
the current state of the art. Section 3 elaborates on the proposed
design domains/abstraction levels taxonomies, to identify the tar-
get configuration of the holistic system. Section 4 presents the

resulting flow, and references some supporting methodologies.
Section 5 exemplifies the proposed approach on two smart system
case studies, and Sections 6 and 7 draw our conclusions.

2 STATE OF THE ART AND BACKGROUND

2.1 Typical smart systems design flows
Heterogeneity is a well-known problem in the literature of em-
bedded and smart systems design. In the past, many approaches
have been proposed, that might be categorized according to the
“direction” of their design flow: top-down and bottom-up [12].

Top-down design starts from a set of high-level requirements
and reaches the final implementation through a sequence of refi-
nement steps, that gradually introduce new details of the system
implementation. Model-based Design (MBD) is nowadays one of
the most accepted top-down approaches [13], [14]. Many different
languages have been proposed to support MBD, e.g., UML [15]
for SW systems, SysML [16] and Architecture Analysis & Design
Language (AADL) [17] for system-level modeling, the specC lan-
guage for the specification of digital SoCs [18], and Modelica [19]
for physical dynamics. However, none of these languages is able
to capture all the aspects of a single heterogeneous system.

Nowadays, a number of complete frameworks for the modeling
and specification of complex dynamical systems are available.
PtolemyII [20] is a framework supporting multiple Models of
Computation (MoCs) to model complex heterogeneous system.
The same concepts are applied also by commercial tools and
frameworks, such as Simulink [21], SystemVue [22], and Lab-
VIEW [23]. However, such frameworks require a combination of
graphical, mathematical, and procedural languages. Furthermore,
the modeling of a complex system usually relies on a plurality of
MoCs, further introducing heterogeneity in the design process.

The main drawback of top-down approaches is the lack of
components reuse [12]. Previously designed and verified Intellec-
tual Properties (IPs) can not be easily integrated, and the designer
is in fact required to re-model also already available components.
This is a major limitation since reuse of IPs is a powerful resource
to enhance time-to-market and reduce design costs [12].

The first attempt to build a top-down design flow contempla-
ting also components reuse has been the methodology associated
with the SpecC specification language [18]. The design is refined
throughout a set of well-defined abstraction levels. Then, at each
level the components library of IPs may be used to build a simula-
tion model. Thus, designers may focus on designing the hardware
platform communication protocols and functionalities. However,
the methodology comes with two drawbacks: components may
not be available at each abstraction level, and the connection
of IPs requires to produce ad-hoc transducers. Furthermore, IPs
involved in a heterogeneous system are usually expressed by a
diverse plethora of design languages.

Bottom-up design flows start from a set of previously designed
and verified components that are aggregated to implement the
required functionality, thus maximizing reuse. Bottom-up appro-
aches heavily suffer the Babel tower of design and specification
languages: components belonging to different design domains are
usually written in different design languages, and, even within
the same domain, each designer usually has her preferences
about modeling languages and tools [3]. In order to obtain a
holistic view of the system, it is thus necessary to build and
employ co-simulation environments, where different simulators
collaborate with each other to emulate the entire system [24].
The main problem of co-simulation lies on the synchronization
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of different tools and languages: communication must often be
implemented manually, thus leading to possible integration errors
[25], and the introduced overhead of inter-process communication
is substantial [26]. Even the current state-of-the-art framework for
co-simulation, the Functional Mock-up Interface (FMI) standard,
does not overcome these limitations. Despite of supporting both
model exchange and co-simulation of dynamic models, FMI does
not support the integration of components modeled with different
models of computation, and the presence of different synchroniza-
tion mechanisms heavily impacts on simulation performance [5],
[6].

Over time, Platform-Based Design (PBD) emerged as the most
prominent solution for combining the advantages of both top-
down and bottom-up approaches, through a “meet-in-the-middle”
approach [4]. The key concept of PBD is the platform, i.e., a
library of basic components that can be assembled to implement
the functionality of the system [27]. Each element of the library
implements a functionality, and it is usually characterized by a set
of performance parameters. It is worth noting that not all elements
in the library are reusable components, rather they can merely
be a specification of the implemented functionality. A platform
instance is a set of components of the library that are actually
instantiated in the system, in order to implement the system
functionality.

The process goes both bottom-up and top-down: the top-
down flow maps an instance of the functionality of the design
into an instance of the platform, while the bottom-up direction
defines a platform by choosing its components and an associated
performance abstraction. When the two flows meet in the middle,
functionality meets the platform, and it is necessary to define a
common semantic domain, to enable formalizing and automating
the mapping of functionality to platform elements to create an
implementation [27]. While the description above gives an abstract
definition of platform, in the industry many different definitions
have been proposed. In this context, the term Virtual Platform
(VP) indicates an executable model for the simulation of an
HW architecture running a SW application. In the last decades,
virtual platforms became a popular tool to develop, test and verify
embedded SW running on an embedded HW architecture [28]. In
this sense, virtual platforms may be considered as an instance of
the concept of platform defined by the PBD.

Of course, the bottom-up phase requires characterizing com-
ponents at higher abstraction levels. In order to support ort-
hogonalization of functionality and architecture, MetroII [29]
supports annotation of extra-functional properties into high-level
executable models, while Metronomy [30] extends it to support
timing annotation. The values to be back-annotated to high-level
models may be estimated in different ways: timing estimation of
software execution on the concrete platform may be performed
by using instruction set simulators [31], exploiting Source Level
or Symbolic simulations [32], or by instrumenting the code at
compile-time software and analyzing its execution [33]. All of
these approaches provide very good estimation. However, the
approach presented in this paper bases its timing on the clocked
execution of digital components, and the evolution of differential
equations in analog and continuous time models preserved by the
used abstraction techniques [7], [9]. Other abstraction techniques
have been proposed in the area of formal verification [34], [35].
However, these approaches are not well suited for holistic valida-
tion of systems, and do not target holistic system simulation.

2.2 Virtual platforms

A virtual platform provides a prototype of a system for simulating
its functionality and evaluating its correctness before going to
production. virtual platforms are a powerful resource when deve-
loping embedded SW: given that the virtual platforms is accurate
enough with respect to the actual HW platform,SW can be run
and tested on a virtual platform before being actually deployed
on the final HW architecture, and simulation allows to gather
information about SW correctness, both concerning functional and
extra-functional properties, such as timing, memory usage and
power consumption [28].

Despite of their potential, virtual platforms are not universally
exploited to master the complexity of the embedded SW deve-
lopment process. Given that building a virtual platform for a new
custom HW architecture requires to invest a huge amount of time
and money [28], virtual platforms are indeed used only whenever
the system being designed relies on a standard, fixed HW platform,
as the major EDA vendors provide virtual platforms of the main
embedded architectures available [36]–[38].

Thus, the state-of-the-art lacks of virtual platforms for custom
architectures of smart devices. The Open Virtual Platform (OVP)
initiative [39] proposes an approach to virtual platforms that tries
to overcome the above limitation. It provides a library of both
proprietary and open-source HW IPs that can be composed to
build a custom virtual platforms. Different approaches have been
proposed in the literature to further customize the models, by
integrating custom peripherals and components in OVP [40]. Ho-
wever, none of the approaches tackles the creation of platforms for
heterogeneous systems, i.e., systems composed by a combination
of digital, analog and mixed-signal components.

In this paper, we present an approach that aims at generating
virtual platforms of heterogeneous smart systems, starting from
the set of heterogeneous descriptions of the system components.
As such, the approach aims at enabling a systematic exploitation
of virtual platforms by mastering the heterogeneity of languages
to create homogeneous custom virtual platforms of heterogeneous
smart systems.

3 TAXONOMIES FOR SMART SYSTEMS DESIGN

The first step to tackle the heterogeneity of smart system design
is to identify the main languages, domains and abstraction levels
involved, as only this knowledge allows to derive the typical de-
sign space and heterogeneity. We choose to formalize this analysis
through the definition of taxonomies, that divide languages and
modeling styles with respect to the domain and the abstraction
level of each class of components.

3.1 Former efforts

Our former works [3], [41] are our first attempt to describe and
formalize the heterogeneity involved in smart systems design
through the definition of taxonomies of languages and tools. The
taxonomy presented in [3] identifies a set of abstraction levels and
design domains typical of smart systems components descriptions.
The taxonomy was used to categorize the tools and languages used
within the SMAC European Project [42] to model heterogeneous
components of smart devices. In [41] we generalized such a
taxonomy by considering the tools generally used for the design of
heterogeneous systems. Then, we applied the same analysis to the
MoCs, thus introducing a novel taxonomy focused on the MoCs
supporting the tools.
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These taxonomies have been useful to identify the typical
starting point for the design of smart devices, that is the abstraction
level at which a component belonging to a certain design domain
is usually initially provided. Then, the taxonomies allowed us to
define the target level of abstraction of each component and of the
overall system for our methodology, with the goal of increasing
the simulation speed for holistic system simulation.

The main effort of the current work consists of a more
sound and general organization of the taxonomies, to abstract
from the actual application scenario to cover the whole design
space of smart systems. Taxonomies have thus been rationalized,
clarified and extended with a new focus on communication and
synchronization, and by adding a new level to the classification
of abstraction levels. This allows to cover all transformations
from the heterogeneity to the holistic level, and to reconcile to
a common framework existing transformations.

3.2 Taxonomy of models of computation
Figure 2 reports the taxonomy of the most widespread MoCs
for smart systems design: rows show the different levels of
abstraction, while columns list the typical design domains. It is
important to note that, when dealing with MoCs, it is necessary to
consider not only the definition of the components (i.e., what is an
actor and how it evolves), but also the concurrency and commu-
nication mechanisms (i.e., how actors act together and exchange
information). As such, the taxonomy has been enriched with a
further dimension (last column of the Table): Synchronization &
Concurrency, that captures the MoCs governing the interaction
between components at a certain abstraction level. From the
bottom to the top we can see:

• Physical level: all the components are described as a set
of physical dynamics. Descriptions of Analog, Micro Elec-
tro Mechanical Systems (MEMS) and Physical components
come naturally. Network and Communication models des-
cribe the properties of the physical communication channel.
Digital HW is described with models capturing electrical,
thermal and power properties of components. At this ab-
straction level, any model of the SW would be meaningless.
All the models at this level rely on differential equations, and
thus rely on the continuous-time MoC, that is also used for
their synchronization.

• Structural level: the system is partitioned in components
belonging to different design domains. Only the Analog,
MEMS and Physical components are still modeled as a set
of physical dynamics through differential equations. Compo-
nents belonging to the Network and Communiation domain
can be described as actors evolving concurrently and reacting
to primitives (i.e., Discrete Events). Digital HW models are
modeled as a set of communicating actors. These models
continue to evolve periodically, executing a set of simula-
tion cycles driven by events, thus following the delta-cycle
concept used by Hardware Description Language (HDL)
simulation kernels. As soon as the composition of the models
reaches a fixed-point, the simulation moves to the next period.
As such, they are usually modeled by using a combination
of the Synchronous-Reactive and the Discrete Event MoCs.
The Structural level allows to model also Embedded SW
as a set of actors carrying on sequential operations and
communicating through messages; thus, Embedded SW can
be modeled as a set of Communicating-Sequential Processes.

• Functional level: at this level all components of the system
may be described by defining their functionality. Physical

parts of the system are still modeled by differential equa-
tions, while each of the other components (i.e., Network
and Communication, Digital HW and Embedded SW) can
be modeled by using any MoC suitable to describe its
functionality. Communication and synchronization are based
on data flowing between system components (i.e., Dataflow)
to reproduce the holistic behavior of the system.

• Transactional level: even if this level is very similar to the
previous one, here the focus moves from functionality to
communication. Components synchronize and communicate
only at certain synchronization points, according to precise
communication protocols: concurrency is thus modeled ac-
cording to the Rendezvous MoC semantics.

• Holistic level: here the system is considered as a “monolithic
object”. At this level, designers are interested in monitoring a
set of well-defined events that may happen in the system: all
components are thus aggregated into a unique homogeneous
model, that represents system behavior as a sequence of
Discrete Events. This abstraction level gives an holistic view
of the system in the sense that it is built by considering all
the parts of the system, as well the interactions between the
parts, to create a unique view of the system.

Figure 2 might seem to suggest an order relation among the
abstraction levels, that in fact does exist. Figure 3 reports the order
relation over the considered abstraction levels, where an arrow
from a level to another states that the level is less abstract than
the other. From the Figure it is evident that the set of abstraction
levels is partially ordered. In fact, no order relation exists between
the Transactional and the Functional levels: they are indeed not
comparable, since the Transactional level focuses on modeling the
communication between system components, while the Functional
level focuses on the sole functionality.

The taxonomy allows us to identify the target abstraction level
for efficient system-level holistic simulation. The target model
must be able to capture all the input/output events of the system
that are relevant for the designer. As such, the entire system
can be seen as a sequence of events that are “of interest” for
the engineers. Consequently, the Holistic level of abstraction is a
perfect candidate for system-level simulation.

3.3 Taxonomy of tools and languages

In the practice, each component is described by using different
languages, tools and formalisms, depending both on the design
domain and the abstraction level. Figure 4 summarizes the most
common choices among designers. Figure 2 and Figure 4 are
related to each other: the tools in each entry of the latter table are
based on the models of computations listed in the corresponding
entry of the former. As for the previous taxonomy, we hereby
discuss the entries from the lowest level of abstraction up to the
most abstract:

• At the Physical level simulation relies mostly on conti-
nuous time simulators. SPICE-based simulators are used
to simulate digital and analog HW components, as well
as communication devices’ circuitry. Finite Element Met-
hods (FEM) and 3D CAD simulation tools are used to
simulate non-electronics physical elements. Extra-functional
feautures, such as thermal behavior, power consumption,
electromagnetic interferences are evaluated by using ad-hoc
simulators.

• At the Structural level, analog, MEMS and physical compo-
nents relies on SPICE-based simulators and Analog-Mixed
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Signals (AMS) extensions of HDLs. Ad-hoc network si-
mulators are used to model and simulate networking and
communication scenarios. Digital HW simulation relies on
classic HDLs (e.g., VHDL and Verilog). Embedded SW can
be executed by using emulators or Instruction Set Simulators.
Figure 4 defines a variation of the Structural level called Ho-
mogeneous Structural level, that exploits SystemC and its ex-
tensions to cover all the design domains. Using different tools
and languages forces to use complex co-simulation interfaces
to achieve holistic system simulation. The homogeneous
structural level allows instead to delegate to the SystemC
simulation kernel the entire system simulation synchroniza-
tion. Another potentially suitable language to implement such
an abstraction level would be Verilog, exploiting its Verilog-
AMS and SystemVerilog extensions. However, Verilog is not
yet equipped with a network extension.

• At the Functional level, the functionality of each design
domain may rely on tools that implement different models of
computation. However, the predominant choice of designers
falls on multi-domain modeling and simulation tools, such
as (but not restricted to) the ones listed in the Functional
abstraction level entry of Figure 4.

• The Transactional level mainly relies on SystemC TLM and
SystemVerilog, supported by their AMS extensions, that are
the most suitable alternatives to create homogeneous models
strongly focusing on communication.

• The Holistic abstraction level aims at providing a as fast
as possible simulation environment, preserving the events of
interest for the designer. As such, in this paper we propose
to implement this abstraction level by producing custom
C/C++ homogeneous virtual platforms, that are event-level
equivalents to the system under design.

This taxonomy allows to correctly identify when simulation
can be used, and when co-simulation is necessary. The taxonomy
shows that the lowest levels of abstraction require to exploit co-
simulation: the different parts are usually modeled by using tools

and languages that are specific for each domain, and it is thus
necessary to connect different simulators for the different design
domains involved. Vice versa, simulation can be used whenever
the abstraction level of the descriptions are raised enough to
allow using “generic” system-level simulation technologies.As
such, more abstract models will provide two positive effects.
On one hand, abstract models allow to simulate fewer details.
Furthermore, abstraction allows to remove the resource consuming
co-simulation interfaces, thus further speeding up the emulation of
system behavior.

The following sections will present how, starting from a set
of components described at the lower levels of abstraction, it
becomes possible to get automatic generation of custom C/C++
homogeneous virtual platforms of the system for efficient holistic
system simulation.

4 PROPOSED TRANSLATION, ABSTRACTION AND
INTEGRATION FLOW

The taxonomies defined in the former section lead to two main
results. On one hand, given a heterogeneous system, it is now
possible to categorize each component in terms of its domain and
its main characteristics, i.e., abstraction level, model of computa-
tion and language. This leads to a clear view of the ingredients
composing the system under design. On the other, the analysis of
the taxonomies highlighted that the target of the flow must be a
holistic simulation of the system: the target virtual platform must
indeed capture all relevant events in a homogeneous view of the
system, so that all components can be implemented in the same
language and that no co-simulation infrastructure is needed. This
guarantees effective and efficient simulation of the overall system.

As a consequence, it is necessary to identify flows that allow
to move across the different layers of the taxonomy, to enhance
the transformation of the system components from their starting
description to the holistic level of abstraction. As anticipated
by Figure 1, the direction is twofold. High level specifications
of the system (top of the Figure) must be concretized, e.g., to
derive information about the structure of the system and the
interconnection of components, or to derive an implementation
of a component from its abstract specification. This direction is
thus a typical top-down flow. The complementary direction is a
bottom-up flow, where the existing components are manipulated
to bring their starting implementation to the holistic level.

The methodology aims at supporting the different specification
languages and tools usually employed in the various design
domains involved in smart devices, such as digital and analog
HW, embedded SW, network, etc.. As such, the methodology shall
support a wide range of languages, ranging from Verilog-AMS
to UML. To reach this result, the methodology relies on a set
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Figure 4: Taxonomy of the main tools used for heterogeneous system design.

of translation, abstraction and integration approaches available at
state-of-the-art. In particular, we adopted a set of approaches we
defined in the recent years, that reconcile the different initial for-
malisms into an intermediate format (such as [7]–[11]). However,
such transformations should not be considered the core of this
work, as the methodology is general and it would still hold when
adopting different abstraction/refinement approaches.

4.1 Bottom-up transformations

In the context of this work, the most crucial direction is bottom-up,
i.e., how to abstract existing component implementations across
the levels of abstraction. For such transformations we rely on state-
of-the-art tools and methodologies, given that defining new ones
is out of the scope of this work. Figure 5 reports some of these
tools, by showing the starting level of abstraction and the target
one. It is interesting to note that no abstraction methodology is
defined between the physical and the structural levels, given that
the roll-back from a physical description to a more abstract one
would be extremely complex. Vice versa, for some steps many
efforts have been concretized into tools, e.g., for digital HW and
analog descriptions [7]–[9], [43].

An interesting feature of such methodologies and tools is when
a number of them share the same intermediate format or model
of computation, despite of working between different levels of
abstraction or for different domains. This allows indeed to apply
transformations before generating the target virtual platform code
and to reconcile the starting heterogeneous descriptions to a single
semantics. This eases integration and improves the target code.
This is the case of all methodologies developed in the recent years
based on the HIFSuite framework (such as [7]–[11]). All transfor-
mations rely indeed on the HIF intermediate format, a XML-based
language that represents a system as a tree of objects, each of them
describing a specific component or functionality in the system
[8]. The HIF language is also provided with a computational
model, namely UNIVERCM, that additionally enhances bottom-
up transformations [44], [45]. UNIVERCM is indeed an automata-
based model of computation, that extends the support for physical
and continuous time behaviors, typical of hybrid automata [46],
with a better characterization of discrete time components and
software. This allows to reconcile heterogeneous descriptions not
only to the same intermediate format, but also to the same model of
computation, thus further easing the generation of a homogeneous
system description.

Note that other transformation flows may be adopted from
the literature: the adoption of a single intermediate format and
model of computation is just one of the possible alternatives, with
advantages in terms of ease of integration.

4.2 Top-down transformations
Top-down transformations can be adopted to extrapolate and refine
information contained in system level descriptions (e.g., IP-XACT
and SysML) or derive an implementation of a component from its
abstract specifications.

In the latter case, the identified target configuration for the
virtual platform can be used to guide the corresponding component
implementation, i.e., to refine the specifications to a C++ imple-
mentation of the component at the holistic level of abstraction
[10]. This allows straightforward integration of the new compo-
nent in the system. Note that the holistic level is the more abstract
level, and thus it naturally is the first step in a top-down design
flow.

The extraction of system-level information is on the other hand
more interesting when the system-level description describes the
organization of the target system, e.g., in IP-XACT or SysML [15],
[16]. Both UML and SysML provide structural diagrams, such as
UML Class diagrams, best suited to represent SW structure, and
SysML Internal Block and Block Definition diagrams, that work
well to describe components interconnection in heterogeneous
systems. Concerning digital HW, the XML-based standard IP-
XACT [47] emerged as a specification languages for HW-SW
platforms, and its extensions allowed to extend support to analog
HW and extra-functional models [48], [49].

Both UML Classes, SysML block definitions and IP-XACT
components declarations represent the main system components,
their interconnections and communication mechanisms, that allow
to build the overall system architecture through connections bet-
ween entities. This information can be used to extrapolate system
organization, and to derive a high-level structure of the system, to
be filled with the actual implementation of each component (obtai-
ned through top-down refinement or via any bottom-up abstraction
flow) [10], [11]. Interestingly, knowing the structure of the system
allows also to detect any missing “glue” between component, i.e.,
any necessary interface, that can then be implemented to ensure
correct communication between components [50].

In our case, we chose to extrapolate and refine information
contained in system-level descriptions with tools that share the
same intermediate format or model of computation, and that in

6



Abstraction 

Levels

Analog, MEMS and 

Physical

Network and 

Communication

Digital

Hardware

Embedded 

Software

Holistic Custom C/C++ Homogeneous Virtual Platforms

Transactional
SystemC AMS

Verilog-AMS

SystemC TLM

SystemVerilog

Functional
Mathworks Simulink, National Instruments LabVIEW,

Keysight SystemVue, Modelica distributions, PtolemyII

Homogeneous

Structural
SystemC AMS SCNSL          SystemC (RTL)

SystemC TLM,

C/C++

Structural
SPICE, VerilogA and VHDL 

AMS using

SPICE-based simulators

NS3, OMNeT++, 

OPNET, SCSNL, etc.

Verilog & VHDL using HDL 

Simulators, e.g., 

Mentor’s Modelsim, 

Cadence Incisive, etc.

QEMU, OVPSim, 

other ISSs

Physical

CoventorWave, MEMS Pro, 

SPICE-based simulators, 

FEM and 

3D CAD simulators

Spectre RF, EMPRO, 

Keysight ADS, 

SPICE-based 

simulators

SPICE-based simulators, 

EMPro, HotSpot, 

Extra-functional simulators

--

[9], [56]

[9], [57], 

[58]

[10], [21], 

[61], [62]

[53], [59],

[60] [7], [43]

[8], [43]

[7]

Figure 5: Summary of the major bottom-up approaches available to move across taxonomy layers. Each arrow reports the reference to
the methodology or tool available to move from its starting to its target level.

particular rely on the HIFSuite framework, as done for the bottom
up tools [10]. This allows indeed to map the constructs of the
input languages to a single intermediate format and semantics,
thus easing integration of the system components and allowing to
generate a monolithic holistic and homogeneous description of the
system.

4.3 Software execution

The holistic virtual platforms produced applying the presented
flow are meant to be used to evaluate the behavior of software
being developed for the system. By integrating a cycle-accurate
model of memories and CPUs integrated in the system, the virtual
platform is able to interpret, and thus to execute, any binary
software being written for the given architecture. The software
can be developed in any language, as long as it can be compiled
into a binary format interpretable by the CPUs. This enables a
wide range of possibilities: e.g., a designer may generate C code
from UML models and then cross-compile the generated C code
for the target architecture, or he/she may write the software using
Assembly and compile it.

After the software has been compiled into a binary executable,
the resulting file content must be analyzed, and the opcodes
must be dumped into a textual file. The virtual platform provides
an initialization routine loading the opcodes into the memory
cells. The designer customizes such routine to accommodate the
characteristics of the specific memories (and CPUs) architecture.
As such, the designer may even express the software by directly
specifying its every single opcode.

Once the initialization routine has been executed, the CPUs
starts to fetch, decode, and execute the opcodes stored in memo-
ries. Thus, the virtual platform emulates the software behavior
along with those of the other system components.

5 METHODOLOGY APPLICATION

In this section we exemplify the proposed flow on two different
case studies. Furthermore, a third case study is released as a
demonstrator for the the commercial version of HIFSuite1.

1. For a concrete demonstrator refer to the official website of HIFSuite:
www.hifsuite.com

RF 
Transceiver

BUS APB

UART

Serial Interface

Accelerometer

MLite-CPU

Network

BUS Interface BUS InterfaceBUS Interface

Memory

BUS Interface

Figure 6: Overview of the S3TC architecture. Colors highlight
the different design domains involved: red for analog components,
grey for networking, yellow for (system-level) communication and
blue for digital HW.

5.1 The SMAC Smart-System Test Case (S3TC)

The proposed flow will be exeplified throughout the next sections
on the S3TC case study, developed for the SMAC European
Project [42].

5.1.1 S3TC specification

The S3TC includes a sensor capturing physical values from the
surrounding physical environment. Data are then processed by a
computational unit, composed of a general purpose CPU and a
RAM. Communication peripherals, both serial and wireless, are
provided to allow the device to communicate with other systems.
As such, the S3TC is able to perform sensing, computation,
communication and actuation, and thus represents a quite typical
and generic example of smart device. Figure 6 shows the main
components of the smart device:

• Computation is performed by MLite-CPU, a CPU imple-
menting the MIPS I architecture. Originally, it is provided
as an open-source VHDL RTL model2.

• The Memory supporting the CPU is a 256 KB RAM. It is
used to store the SW application as well as all data sensed
and computed by the device. It also handles communica-
tion with peripherals through Memory-Mapped Input/Output
techniques. It is modeled as a Verilog IP.

2. https://opencores.org/project,plasma
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• The Universal Asynchronous Receiver/Transmitter (UART)
is a digital HW peripheral performing parallel-to-serial con-
version and vice-versa. It provides the system with a serial
interface. Its starting model is an open-source implementation
available on OpenCores3. It provides both Wishbone and
ARM Peripheral Bus interfaces.

• The Accelerometer is a MEMS component sensing the mo-
tion of the device by measuring the acceleration the system
is subjected to. It implements a two-axis accelerometer and
its original model is a VerilogA implementation provided by
one of the industrial partners of the SMAC European Project.

• Wireless communication is provided by the RF-Transceiver,
a network peripheral used to transmit data over a packet-
based network. The original model is developed as a high-
level specification of a network scenario expressed in Sys-
temC Network Simulation Library (SCNSL) [51].

• All the peripherals are connected through an ARM Peripheral
Bus (APB). Initially, we were provided only with the high-
level specification of the communication protocol [52]. Its
interconnections, together with the interface of each compo-
nent to the bus, are expressed by using IP-XACT. The Bus
functionality has been implemented, by synthesizing its UML
specification into VHDL [10].

With respect to the taxonomies in Figures 2 and 4, all the
components of the S3TC are originally developed at the Struc-
tural level. As such, holistic system emulation initially can be
performed only through co-simulation, as detailed below.

5.1.2 Building the S3TC virtual platform
The different sub-figures of Figure 7 summarize, from bottom to
top, the different steps of the presented design flow when applied
to build an efficient virtual platform for the S3TC. Table 1 reports
the simulation speed achieved at each step.

Initially, (bottom line of Figure 7c) the system components are
expressed in their original languages. Thus, it is necessary to build
a co-simulation environment to emulate the complete behavior.
We build three different co-simulation scenarios at the Structural
abstraction level: a Ptolemy-based simulation environment (i.e.,
Keysight’s SystemVue) is used to connect different simulators,
i.e. scenario (1) in Table 1. Mentor’s Questa Advanced Simulator
environment is used to co-simulate an instance of the Modelsim
HDL simulator, and a SPICE-based simulator (i.e., Mentor’s
ELDO), i.e. scenario (2) in Table 1. The scenario (3) in Table 1
uses both Keysight’s SystemVue and Mentor’s Questa to build
a co-simulation environment. The sub-system composed by the
MIPS CPU and the memory has been converted into a custom
SystemVue block, while the UART is co-simulated by using
Modelsim. Due to co-simulation limitations, the networking is
troublesome and it requires complex ad-hoc interfaces. The three
structural–level scenarios acts as a reference case for our results, as
they have been built by using state-of-the-practice co-simulation
techniques.

Figure 7c shows the transformation steps applied to the dif-
ferent component models to move from the Structural to the
Homogeneous Structural abstraction level. The automatic trans-
lation procedure presented in [9] translates the models of the
accelerometer and its interfaces into an equivalent SystemC AMS
model. The automatic translation tools for HDLs provided by
HIFSuite [8] are exploited translate the digital components of the
platform (i.e., CPU, UART, memory and bus) in SystemC at the

3. https://opencores.org/download,uart16550

Table 1: Execution time needed by the different simulation and
co-simulation scenarios considered for the S3TC case study.

Scenario Simulation
Time (s)

Relative
Speed-up

Total
Speed-up

Co-Simulation

(1)
Structural

278.59 - -(SystemVue-based
coordination)

(2)
Structural

215.47 1.29x 1.29x(Modelsim &
ELDO SPICE)

(3)
Structural

153.23 1.37x 1.82x(SystemVue &
Modelsim)

Simulation

(4)
Homogeneous

97.59 1.61x 2.85xStructural
(SystemC-RTL)

(5) Transactional 44.28 2.20x 6.29x(SystemC TLM & AMS)

(6) Holistic 21.26 2.08x 13.10x(C++)

Register-Transfer Level (RTL). Finally, the top-level of the system,
the SystemC RTL implementation of the interconnections among
system components are automatically generated by applying the
methodology in [50]. After these transformation, all the system
components are expressed in SystemC at the RTL: simulation is
entirely coordinated by the SystemC simulation kernel, and the
device is now modeled at the Homogeneous Structural level (i.e.,
Scenario (4) in Table 1).

Figure 7b reports how to create an executable specification
of the S3TC at the Transactional abstraction level. The auto-
matic protocol abstraction procedure [7] is exploited to raise
the abstraction-level of the digital components models from the
SystemC at the RTL to SystemC Transaction-Level Modeling
(TLM). The modeling strategy defined in [53] as been applied
to (manually) re-describe the network model in SystemC TLM.
It is worth noticing that we might have left the network models
in SystemC Network Simulation Library (SCNSL), that provides
both RTL and TLM SystemC interfaces [51]. The analog com-
ponents have not been manipulated in this step, however ad-hoc
transactors are inserted to let SystemC AMS and SystemC TLM to
communicate, as described in [53]. As a result, the device is now
modeled at the Transactional level (i.e., Scenario (5) in Table 1).

Figure 7a reports the transformation allowing to move the
simulation of the S3TC at the Holistic abstraction level. The
models of the digital HW part of the device are translated in C++
from the equivalent TLM models. This transformation relies on the
code optimizations and manipulations defined in [7]. The analog
components are abstacted by applying the automatic abstraction
methodology we defined in [9]. Finally, the execution relies on
the synchronization and orchestration between the digital and
analog parts provided by an ad-hoc C++ scheduling routine,
automatically generated by applying the methodology in [54].
After these transformations, the S3TC device is monolithically
modeled by a C++ executable specification, allowing to efficiently
emulate the system-level behavior of the device (i.e., Scenario (6)
in Table 1).

5.1.3 Results summary

The data reported in Table 1 refers to the execution of each
scenario to simulate 100 ms of system execution. The time step for
the numerical integration of analog models is 100 ns. Column Re-
lative Speed-up reports the speed-up between consecutive entries.
Column Total Speed-up reports the speed-up of each scenario w.r.t.
scenario (1).

The main outcomes of the experiment are two:
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Figure 7: Three main steps of the methodology applied to the S3TC, contextualized within the tools taxonomy. The references in the
arrows refer to the methodologies applied for each step.

• Co-simulation interfaces impact simulation speed: it is worth
noticing that each co-simulation interface (three in the case of
the first entry of the table, two in the second and only one in the
third), seems to introduce around 60 seconds overhead w.r.t.
the simulation without any co-simulation interface (fourth
scenario). Thus, the impact of interfaces and of conversion
layers between different tools seems highly relevant and de-
pendent on the number of used interfaces and external tools.
Thus, translating to a unique language positively impacts on
simulation time.

• Abstraction provides more speed-up than integration: the max-
imum relative speed-up is achieved when abstraction accompa-
nies translation, i.e., scenario (5). As such, the effort required
to perform automatic abstraction seems more convenient than
the one required by automatic integration.

• The proposed methodology allows to combine both, thus obtai-
ning scenario (6), that merges synchronization and behaviors
within a unique monolithic executable model, preserving only
the events of functional interest for the designer. This provides
the most optimized simulation environment for the system and
thus the best simulation performance, corresponding to the
maximum total speed-up (13x).
This experiment proves the efficiency provided by Holistic

model simulation, and that a methodology to automatically ge-
nerate custom virtual platforms at the holistic abstraction level is
a powerful asset for the design of heterogeneous smart devices.

In all the experiments, digital models are cycle-accurate w.r.t.
the original components. The analog models, either abstracted and
translated, are affected by a negligible numerical error: the worst
Root Mean Square Error (RMSE) in our experiments is 10−6.

5.2 The Internet-of-Things (IoT) case study

The proposed methodology has been applied also to a second
case study having more complex analog and physical devices. The

BUS

M6502 RAM ROM

Network interface

Actuator MEMS

DAC ADC DAC
BUS Interface

BUS Interface

BUS Interface

Network

Figure 8: Structure of the IoT device HW platform. Colors
highlight the different design domains involved: red for analog
components, grey for networking, yellow for (system-level) com-
munication and blue for digital HW.

adopted case study is an HW IoT platform, equipped with a low-
power micro-controller and a quite complex MEMS actuator.

5.2.1 IoT device specification

Figure 8 depicts the structure of the HW platform, a low-power
device intended to be used in IoT applications, composed by the
following components:

• A Mos Technologies 6502 (M6502) micro-controller; it is a 16
bit CPU, providing a RISC instruction set. It executes the SW
stored in memory to control the peripherals. The model of the
CPU is written in Verilog at RTL.

• A 8KB RAM, whose model is expressed using Verilog. The
RAM is connected to the CPU to perform computation, and to
the bus to communicate with the peripherals using a Memory
Mapped Input/Output mechanism.

• A 64KB ROM storing SW and the data necessary for system
evolution. Its description is written in Verilog at RTL.
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Table 2: Characteristics of the considered platforms, and partition
between digital and analog/physical HW components.

S3TC IoT device
Total lines of code 6,658 3,735
Lines of code for digital components 6,585 3,283
Lines of code for analog components 73 452
Digital signal assignments 1,483 982
Linear contribution statements 33 55
Non-linear contribution statements 0 13

Table 3: Execution time needed by the different simulation and
co-simulation scenarios considered for the IoT case study.

Scenario Simulation
Time (s)

Relative
Speed-up

Total
Speed-up

Co-Simulation (1)
Structural

10,156.27 – –(Modelsim &
ELDO SPICE)

Simulation

(2)
Homogeneous

661.78 15.34x 15.34xStructural
(SystemC-RTL)

(3) Holistic 276.62 2.39x 36.71x(C++)

• A custom Bus connects the memory and the CPU to the
peripherals. The bus is specified in VHDL.

• A Network Interface is used to receive commands from the
network. Its model is written in SystemC and interfaced with
SCNSL network model.

• The device is equipped with an Actuator MEMS, connected to
the system through a couple of Digital-to-Analog Converters
(DACs) and one Analog-to-Digital Converter (ADC). The
device, provided by one of the industrial partners of the
SMAC European Project, is described in Verilog-AMS, by
using a mixture of different physical disciplines (i.e., electrical,
rotational, and logic), and modeling styles (e.g., time- and
frequency-domain descriptions). Internally it is composed by
four Operational Amplifiers and a Transimpedance Amplifier
building a feedback loop between the DACs and the ADC to
control the MEMS dynamics. The MEMS presents both linear
and non-linear behaviors.
Table 2 highlights the increased relevance of physical sensing

and actuation w.r.t. to the former experiment. To this extent, it
shows for both the case studies the number of lines of code in
the original models, also partitioned between analog and digital
components; the number of digital signal assignments; the number
of analog contribution statements specified in the analog models,
partitioned between linear and non-linear statement (since the non-
linearities impact more heavily on simulation [55]). The different
focus of the two case studies appears immediately clear, since the
S3TC has little more than 1% of lines dedicated to modeling linear
continuous-time dynamics, while the IoT device model dedicates
the 12% of its lines to specify nonlinear continuous behaviors (as
an effect of a higher number of linear and non-linear contribution
statements).

5.2.2 Building the IoT device virtual platform
The different parts of Figure 9 summarize, from bottom to top,
the different steps of the presented design flow applied to build an
efficient virtual platform for the IoT device. Table 3 reports the
simulation speed achieved by simulating the system at each step.

Initially (bottom line of Figure 9b), the system has been
simulated by building a co-simulation scenario. Each component
is specified in its original description language, and the execution

is managed by Questa Advanced Simulator instantiating both
the Modelsim HDL simulator and a SPICE-based simulator (i.e.,
Mentor’s ELDO), i.e. scenario (1) in Table 3. This environment
provides a structural–level virtual platform of the IoT device that
acts as a reference case for our results.

The arrows in Figure 9b show the transformations performed
to create a homogeneous structural virtual platform for the device.
As for the S3TC, the digital components have been translated
into their SystemC RTL equivalent models exploiting the tools
provided by HIFSuite [8]. The interfaces between the components
have been generated by exploiting [50] as for the previous case
study. The analog part of the device is partially expressed using
Verilog-A (i.e., the actuator) and Verilog-AMS (i.e., the DACs
and ADC). Thus, they are treated separately by applying on both
cases the automatic translation methodology for analog models we
developed in [9], supported by a minor manual refinement of the
ADC and the DACs generated models to deal with discontinuities
in the Verilog-AMS model. After these transformation, all the
system components are expressed in SystemC, at the RTL: the
simulation can be managed by the SystemC simulation kernel to
provide a Homogeneous Structural virtual platform (i.e., Scenario
(2) in Table 3).

Figure 9a shows the manipulations for each component allo-
wing to produce a Holistic abstraction level virtual platform for
the device, i.e., Scenario (3) in Table 3. As for the previous case
study, the digital HW has been abstracted and translated into C++
by exploiting the methodology in [7]; the network model has been
translated (manually) in C++ by following the modeling approach
in [53]; the analog components have been abstracted by exploiting
the automatic abstraction methodology [9]. The produced sub-
models are then managed by an ad-hoc C++ scheduling routine
automatically produced applying the methodology in [54]. The
final result is monolithic executable C++ model emulating device
behavior.

5.2.3 Results summary
Table 3 summarizes the obtained results, and it refers to the
emulation of one second of the execution of the IoT device, by
using the three aforementioned scenarios. It is evident that the
conclusions of the first experiment still hold.

However, this second set of results gives more information
about the scalability of the proposed methodology when the
complexity of the platforms increases. Table 2 highlights the
higher degree of heterogeneity of the IoT device w.r.t. the S3TC.
In the case of the IoT device, the relative speed-up achieved
by performing abstraction is similar to the one achieved in the
S3TC. However, the reconciliation of different design domains
into a homogeneous model, through automatic translation and
integration, provides a relative speed-up that is one order of
magnitude higher for the second case study w.r.t. the S3TC (almost
37x). As such, the total speed-up achieved by building the custom
virtual platform is one order of magnitude better in the more
heterogeneous case.

The results show that custom virtual platforms provide best
performance when dealing with highly heterogeneous devices.
As the trend on systems design is to integrate more and more
heterogeneous components, the proposed methodology is well
tailored to address the future challenges in smart systems design.

In all the experiments, digital models are cycle-accurate w.r.t.
the original components. The analog models, either abstracted and
translated, are affected by a negligible numerical error: the worst
RMSE in the presented experiments is 10−6.
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Figure 9: Three main steps of the methodology applied to the IoT device, contextualized within the tools taxonomy. The references in
the arrows refer to the methodologies applied for each step.

6 DISCUSSION

In this Section we summarize and discuss the main advantages of
the proposed methodology. We will address separately the impact
on either simulation and design of smart devices.

The proposed approach positively impacts simulation:
1) The approach allows to integrate within the emulated systems

any IP, described at any abstraction level, not forcing desig-
ners to either manually translate the models or build com-
plex co-simulation environments. In particular, the approach
allows also to create AMS virtual-platforms accurately repro-
ducing continuous-time system behavior.

2) The methodology allows to avoid co-simulation. The expe-
rimental results, as well as some related work [3], showed
the inefficiency of co-simulation technologies. The disadvan-
tages imposed by co-simulation environments are avoided by
building “monolithic” models that can be simulated by a
single process. Thus, it allows to remove all the interfaces
among different tools, that usually rely on Inter-Process
Communication mechanisms and, consequently, are the main
source of inefficiency.

3) The methodology allows to further optimize the model used
to simulate the system: the automatic abstraction of the alre-
ady integrated system allows to maximize the optimization of
the mixed-signal scheduler orchestrating system simulation.

4) The proposed approach increases the accuracy w.r.t. state-of-
the-art virtual platforms. Instruction Set Simulators (ISSs)
and CPU emulators, commonly used in virtual-platforms,
usually approximate the cycle-accurate behavior of models
to speed-up the simulation. As such, the accuracy of the si-
mulated SW is usually at instruction-level, while we preserve
the accuracy w.r.t. the clock-cycles of the digital HW models.

Improving simulation performance improves also the overall
design flow. Moreover, homogeneous models provide further im-
provements to the design flows for smart devices:

1) Any IP can be integrated within a homogeneous model,
not only digital and discrete-time devices. The methodology
theoretically allows to consider any description for “incorpo-
ration” within the holistic model of the system. That is, sim-
ply mapping its syntax and semantics in the Heterogeneous
Intermediate Format (HIF) representation, any description or
specification language can be managed. As such, a custom

virtual platform can be built for any system, regardless of its
heterogeneity.

2) Inter-process interfaces may become a source of integration
errors. The approach provides a more reliable integration
mechanism by avoiding co-simulation: it relies on the precise
semantics of the intermediate representation, while avoiding
complex interfaces. Thus, it removes a source of potential
integration errors.

3) The holistic model focuses on simulating the behavior of the
system efficiently, and it does not expose unnecessary details.
As such, it allows to perform design space exploration tasks
by focusing only on the high-level system behavior.

4) Custom virtual platforms produced by applying the proposed
approach allow to precisely evaluate the timing of the system.
This is very important when designing SW running on hete-
rogeneous platforms that must respect real-time constraints
in order to correctly interact with its environment.

As a take home message, we can highlight the potentialities
of custom virtual platforms for smart devices: they integrate
heterogeneous models into a homogeneous description, allowing
to simplify the simulation environment and speeding-up the simu-
lation while preserving the accuracy.

7 CONCLUSIONS

In this paper we proposed a meet-in-the-middle approach to create
custom virtual platform of heterogeneous system. The main target
was to tackle the “Babel Tower” of design and modeling languages
for smart devices, while creating efficient custom simulators from
heterogeneous components and specifications. The end-to-end
design flow presented in this paper “connects the dots” drawn
by former works in the latest years. We showed the applicability
of the methodology to two complex smart devices, that show how
a custom virtual platform outperforms state-of-the-art simulators.
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