
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A benchmarking methodology for evaluating software switch performance for NFV / Zhang, Tianzhu; Linguaglossa,
Leonardo; Roberts, James; Iannone, Luigi; Gallo, Massimo; Giaccone, Paolo. - ELETTRONICO. - (2019), pp. 251-253.
(Intervento presentato al convegno IEEE Conference on Network Softwarization (NetSoft) tenutosi a Parigi nel June 28,
2019) [10.1109/NETSOFT.2019.8806695].

Original

A benchmarking methodology for evaluating software switch performance for NFV

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NETSOFT.2019.8806695

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2730203 since: 2019-09-11T10:29:28Z

IEEE

A benchmarking methodology for evaluating
software switch performance for NFV

Tianzhu Zhang∗, Leonardo Linguaglossa∗, James Roberts∗, Luigi Iannone∗, Massimo Gallo†, Paolo Giaccone‡
∗Network and Computer Science Department (INFRES), Telecom ParisTech, France

†Nokia Bell Labs, France
‡Department of Electronics and Telecommunications (DET), Politecnico di Torino, Italy

Abstract—Interest in software networking has grown signifi-
cantly since the introduction of Network Function Virtualization
(NFV). Software switches are used in NFV to steer traffic between
different virtualized network functions and physical Network
Interface Cards (NICs). It is becoming more and more important
to objectively evaluate and compare the performance of the
multiple alternative implementations that have recently been
proposed. A comprehensive performance analysis is still missing
for two main reasons: (i) the amount of time required to configure
and compare all such tools is enormous; (ii) it is very difficult
to define a proper methodology to compare different solutions
in a fair manner. In this paper we propose a methodology
based on four simple yet representative test scenarios used to
evaluate the performance of software switches. We apply this
methodology to measure throughput and latency metrics for 6
state-of-the-art software switches namely, OVS-DPDK, snabb,
BESS, FastClick, VPP and netmap VALE. Our work constitutes
a first step to building a better understanding of design tradeoffs
and identifying performance bottlenecks.

I. CONTEXT

Network Function Virtualization (NFV) is expected to have
a significant impact on the networking infrastructure, consid-
erably reducing CapEx and OpEx by replacing proprietary,
expensive and inflexible hardware middleboxes with virtual-
ized network functions (VNFs) implemented on commodity
servers. Software switches are widely adopted by NFV plat-
forms as the dataplane to steer traffic and deliver services.
For example, E2 [1] and ParaBox [2] use BESS [3] as
their dataplane while ClickOS [4] and HyperNF [5] adopt
netmap’s VALE switch [6]. Other implementations such as
OVS-DPDK [7], snabb [8], and FD.io VPP [9] also aim to de-
liver high performance NFV solutions. It is thus of paramount
importance for network operators and service providers to
understand the performance baselines and to identify the
bottlenecks of software switches.

In agreement with the recent observations by Fang et
al. [10], we believe that evaluating the performance of software
switches is in practice a very difficult task. As noted in [10],
most works consider the evaluation of a single design at a
time [11, 12, 13], or compare just of a small subset of designs
in a narrow test scenario [14, 15, 16].

We have additionally observed that the metrics chosen to
compare designs are not always sufficient to fully determine
which one is “best”. For instance, we reproduced a very
simple scenario with a software switch deployed as a L2

-5

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

T
h
ro

u
g
h

p
u

t
(M

p
p

s)

Latency (µs)

BESS

OVS-D
PDK

VPP

FastC
lic

k

snabb

netm
ap

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

S
td

 d
ev

ia
ti

o
n

Latency (µs)

BESS

OVS-DPDK

VPP

FastClick
snabb

netmap

Fig. 1: Scatter plot of latency/throughput and latency/std.
deviation. The throughput results shown in the left plot are
obtained with bidirectional tests between two 10Gbps NICs
using 64B packets.

forwarder between two NICs, and measured overall through-
put (bidirectional), latency (round-trip time in µs), and the
standard deviation of the latter. We tried to understand if
these metrics are correlated, or otherwise stated: is the design
with the highest throughput also offering the smallest latency?
Fig. 1 reports our findings. In the left plot, we report measured
throughput against the latency. It may be seen that there is
indeed a negative correlation, implying the switch with highest
throughput is also the one providing the minimal latency.
We then plotted the measured latency against the standard
deviation in the measurements: this time no pattern could
be detected, meaning that there is no correlation between the
packet processing rate and performance stability. For instance,
while OVS-DPDK can offer a high processing throughput and
low latency, it does so with a very high variance in the latency
measurements, thus showing that performance can be rather
unstable.

We conclude that it is necessary to provide: (i) a fair
comparison for all the state-of-the-art software switches, since
existing works consider only one or a small subset of them;
(ii) simple yet representative test scenarios that can help us
to develop a better understanding of the performance baseline978-1-5386-9376-6/19/$31.00 c©2019 IEEE

server

DUT
NIC1

(a) physical-to-physical

server

DUT
NIC1 vNF

(b) physical-to-virtual

server

DUT
vNF

(c) virtual-to-virtual

server

DUT
NIC1

vNF

(d) loopback

Fig. 2: Test scenarios proposed in our paper.

and identify the bottleneck. The latter is especially important
given the fact that network functions are deployed in virtual
environments such as virtual machines (VM) and containers.

II. METHODOLOGY

In our work, we consider 6 state-of-the-art soft-
ware switch implementations, namely OVS-DPDK [7],
BESS [3], snabb [8], netmap VALE [6], FastClick [17] and
FD.io VPP [9]. All the selected designs are open-source
projects with high performance on our testbed. In particular,
OVS-DPDK is an OpenFlow (OF) switch performing match-
action instructions on a per-packet basis. It can also forward
packets to a remote OF controller for further processing.
BESS, FastClick, Snabb and FD.io VPP are modular tools.
They are capable of composing complex services and in-
terconnecting VNFs with the network. Netmap’s VALE is
a pure layer-2 switch. Other open-source software switch
implementations are excluded either because of very low
performance (eg., Lagopus [18])1 or high degree of similarity
(eg., ClickNF [19])2.

We assume VNFs can run either inside virtual machines
or containers and we consider throughput and latency (in
terms of round-trip time) as the main performance indicators.
Each switch implementation, the device under test (DUT),
is evaluated with 4 different test scenarios: physical NIC to
physical NIC (p2p), physical NIC to VNF (p2v), VNF to VNF
(v2v) and physical NIC - VNF - physical NIC or loopback (lo),
as illustrated in Fig. 2 The data flows of the 4 scenarios are
explained as follows:
(p2p) physical-to-physical: In this scenario, packets arrive via
a physical NIC, are fetched by the DUT and then forwarded
out via the other NIC. Measurements are performed on both
source and sink of the packet flow, outside the DUT. This
is the most basic test scenario with no VNFs running in the
virtual environment and provides the baseline results for all
software switches.
(p2v) physical-to-virtual: As for the p2p scenario, packets
arrive via a physical NIC and fetched by the software switch
under test. They are then forwarded into a simple VNF, where
measurements are performed. This scenario demonstrates the
typical hop of an NFV data flow and reflects how efficiently
software switches can relay packets from NIC to VNFs.

1According to our benchmarking result, Lagopus cannot achieve more than
2 Mpps even for the most simple scenario.

2ClickNF, just like FastClick, is an extension of the Click Modular Router.
Our benchmarking result shows ClickNF achieves similar throughput and
latency with respect to FastClick.

(v2v) virtual-to-virtual: In the v2v scenario, packets are gen-
erated by a source VNF and injected into the DUT. The DUT
then forwards the packets to a sink VNF for measurement.
This scenario demonstrates a DUT’s efficiency in terms of
traffic forwarding between VNFs.
(lo) loopback: in the loopback scenario, packets arrive via a
physical NIC and are fetched by the DUT, which forwards
them to a VNF. The VNF is a lightweight cross-connect
function that forwards the received packets from one virtual
interface to the DUT via another virtual interface. The DUT
then proceeds to forward the packets to the other NIC. This
is a typical NFV scenario with a single VNF on the service
chain and provides baseline reference for scenarios of multi-
VNF chains.

We believe that these four test scenarios provide a base-
line performance characterisation for the software switches.
The p2p scenario provides the baseline result showing how
efficiently software switches can process packets between
physical NICs. The p2v and v2v scenarios, representing two
typical dissected hops of NFV data flows, allow us to analyse
and identify potential performance bottlenecks. The loopback
scenario provides results for a service chain with a single VNF
and can be used as a basis to predict the performance of multi-
VNF chains.

III. EVALUATION PLATFORM

Experiments are conducted on a commodity server running
Linux 4.8.0-41-generic distribution. The server is equipped
with 2 Intel Xeon E5-2690 v3 @ 2.60GHz CPUs (each with
24 physical cores), using 32k/256k/30720K L1-3 caches, and
2 Intel 82599ES dual-port 10-Gbps NICs. All the VNFs are
hosted by QEMU/KVM virtual machines. We use Moon-
Gen [20] as traffic generator, FlowWatcher-DPDK [21] as
VNF for p2v and v2v scenarios to measure the throughput.
DPDK l2fwd [22] is the VNF used to forward packets in
the loopback scenario. For the packet exchange between VMs
and software switches, we adopt the netmap passthrough [23]
exclusively for the netmap VALE switch, and the vhost-user
protocol [24] for the other considered software switches. Both
enable zero-copy packet delivery through shared memory. For
all the experiments, we use identical settings for the virtual
machines and software switches to ensure a fair comparison.
We pin threads of the software switches to isolated CPU cores
and disable Turbo Boost to reduce performance variance.

 0

 2

 4

 6

 8

 10

 12

 14

 16

BESS FastClick OVS-DPDK snabb VPP netmap

14.88 Mpps

P
ac

k
et

 p
ro

ce
ss

in
g
 r

at
e

[M
p
p
s]

p2p p2v v2v loopback

Fig. 3: preliminary throughput test results for all scenarios.
Note that these results are obtained with unidirectional tests,
thus limited up to 14.88 Mpps for 64B packets.

IV. EXPERIMENTAL RESULTS

In this section, we provide some preliminary results for the
throughput test. Fig. 3 illustrates the unidirectional throughput
for the considered software switches in the scenarios described
in Fig.2. As we observe, no single software switch prevails in
the considered scenarios. For example, BESS outperforms the
others in the p2v case thanks to its efficient implementation
of packet delivery to virtual machines. Snabb prevails in the
v2v scenario because its vhost-user implementation is more
efficient for packet delivery between virtual machines.

ACKNOWLEDGMENTS

This work has been carried out at LINCS (http://www.
lincs.fr) and benefited from support of NewNet@Paris, Cisco’s
Chair “NETWORKS FOR THE FUTURE” at Telecom ParisTech
(https://newnet.telecom-paristech.fr).

REFERENCES

[1] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for NFV applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 2015,
pp. 121–136.

[2] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proceedings of the Symposium on SDN
Research. ACM, 2017, pp. 143–149.

[3] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” 2015.

[4] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), 2014, pp. 459–473.

[5] K. Yasukata, F. Huici, V. Maffione, G. Lettieri, and M. Honda, “Hypernf:
Building a high performance, high utilization and fair nfv platform,” in
Proceedings of the 2017 Symposium on Cloud Computing. ACM, 2017,
pp. 157–169.

[6] L. Rizzo and G. Lettieri, “VALE, a switched Ethernet for virtual
machines,” in International conference on Emerging networking exper-
iments and technologies. ACM, 2012, pp. 61–72.

[7] “Open vSwitch with DPDK,” http://docs.openvswitch.org/en/latest/intro/
install/dpdk/.

[8] M. Paolino, N. Nikolaev, J. Fanguede, and D. Raho, “SnabbSwitch
user space virtual switch benchmark and performance optimization for
NFV,” in 2015 IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN). IEEE, 2015, pp. 86–92.

[9] “VPP - fd.io,” https://wiki.fd.io/view/VPP.

[10] V. Fang, T. Lvai, S. Han, S. Ratnasamy, B. Raghavan, and J. Sherry,
“Evaluating software switches: Hard or hopeless?” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2018-136,
2018.

[11] L. Linguaglossa, D. Rossi, S. Pontarelli, D. Barach, D. Marjon, and
P. Pfister, “High-speed data plane and network functions virtualization
by vectorizing packet processing,” Computer Networks, vol. 149, pp.
187 – 199, 2019.

[12] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
characteristics of virtual switching,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet). IEEE, 2014, pp. 120–
125.

[13] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of Open vSwitch,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2015, pp. 117–130.

[14] Z. Niu, H. Xu, Y. Tian, L. Liu, P. Wang, and Z. Li, “Benchmarking
NFV software dataplanes,” arXiv preprint arXiv:1605.05843, 2016.

[15] G. Lettieri, V. Maffione, and L. Rizzo, “A survey of fast packet
I/O technologies for network function virtualization,” in International
Conference on High Performance Computing. Springer, 2017, pp. 579–
590.

[16] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris, “Characteriz-
ing the performance of concurrent virtualized network functions with
OVS-DPDK, FD.IO VPP and SR-IOV,” in ACM/SPEC International
Conference on Performance Engineering. ACM, 2018, pp. 285–292.

[17] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-
ing,” in 2015 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). IEEE, 2015, pp. 5–16.

[18] “Lagopus switch and router,” http://www.lagopus.org/.
[19] M. Gallo and R. Laufer, “ClickNF: a modular stack for custom network

functions,” in USENIX Annual Technical Conference (ATC)), 2018, pp.
745–757.

[20] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings of
the 2015 Internet Measurement Conference. ACM, 2015, pp. 275–287.

[21] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,
“FlowMon-DPDK: Parsimonious per-flow software monitoring at line
rate,” in TMA Conference, 2018.

[22] “L2 forwarding sample application,” https://doc.dpdk.org/guides-18.08/
sample app ug/l2 forward real virtual.html.

[23] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine
networking using netmap passthrough,” in 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN).
IEEE, 2016, pp. 1–6.

[24] “Features/VirtioVhostUser,” https://github.com/qemu/qemu/blob/master/
docs/interop/vhost-user.txt.

