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Stochastic sequestration dynamics: 
a minimal model with extrinsic 
noise for bimodal distributions and 
competitors correlation
Marco Del Giudice   1,2, Carla Bosia1,2, Silvia Grigolon3 & Stefano Bo   4

Many biological processes are known to be based on molecular sequestration. This kind of dynamics 
involves two types of molecular species, namely targets and sequestrants, that bind to form a complex. 
In the simple framework of mass-action law, key features of these systems appear to be threshold-like 
profiles of the amounts of free molecules as a function of the parameters determining their possible 
maximum abundance. However, biochemical processes are probabilistic and take place in stochastically 
fluctuating environments. How these different sources of noise affect the final outcome of the network 
is not completely characterised yet. In this paper we specifically investigate the effects induced by a 
source of extrinsic noise onto a minimal stochastic model of molecular sequestration. We analytically 
show how bimodal distributions of the targets can appear and characterise them as a result of noise 
filtering mediated by the threshold response. We then address the correlations between target species 
induced by the sequestrant and discuss how extrinsic noise can turn the negative correlation caused 
by competition into a positive one. Finally, we consider the more complex scenario of competitive 
inhibition for enzymatic kinetics and discuss the relevance of our findings with respect to applications.

Sequestration dynamics (also known as titrative dynamics) are ubiquitous in nature. Some of the best studied 
examples concern protein ubiquitination1, growth factors signalling2,3, gene-expression regulation at the tran-
scriptional and post-transcriptional level, such as transcription factors sequestration4–6, the interaction between 
RNA polymerase and its sigma factors in bacteria7, mRNA-miRNA interaction in post-transcriptional gene reg-
ulation8–13 and bacterial persistence14. The general scheme features one (or more) molecular species, the seques-
trant, that bind to another molecular species, the target, to form a complex. In a simple mass-action law scenario, 
the system displays a threshold-like behaviour of the mean abundance of free targets as a function of the param-
eters determining its possible maximum amount (e.g. rate of synthesis for open systems or pool size for closed 
systems) as shown in Fig. 1a and in, e.g, refs6,8,13,15. This threshold-like behaviour follows from the action of the 
sequestrant. Intuitively, one can think about the following extreme scenarios. When the total number of the target 
is lower than the one of the sequestrant most of the target will tend to be bound. However, as the total number of 
targets begins to outnumber the sequestrant, the average of its free molecules starts to increase more markedly, 
often in a linear fashion. In the vicinity of the threshold, the average number of free targets moves from the mostly 
bound, slowly increasing regime, to the unbound, rapidly growing one. Therein, the system is defined to be 
ultrasensitive, meaning that, around the threshold, a small fold change in the amount of total target (input) leads 
to a larger fold change in the amount of free target (output), corresponding to a Hill coefficient larger than one6.

On top of the average behaviour of the systems, one should consider stochastic effects since molecular inter-
actions are known to be probabilistic and to take place in fluctuating environments. While the first source of 
noise, referred to as intrinsic in the following, has been fairly studied in the past, little is known about the effect 
of the second one, which we shall call extrinsic16–18. This kind of noise may be non-specific, i.e. affects in a similar 
way many components of a same network and it is often homogenous on a single-cell level but varies from one 

1Department of Applied Science and Technology, Politecnico di Torino corso Duca degli Abruzzi 24, Turin, IT-
10129, Italy. 2Italian Institute for Genomic Medicine, via Nizza 52, I-10126, Torino, Italy. 3The Francis Crick Institute, 
1, Midland Road, London, NW1 1AT, United Kingdom. 4Nordita, Royal Institute of Technology and Stockholm 
University, Roslagstullsbacken 23, SE-106 91, Stockholm, Sweden. Correspondence and requests for materials 
should be addressed to S.B. (email: stefano.bo@nordita.org)

Received: 18 January 2018

Accepted: 21 June 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-9231-6226
http://orcid.org/0000-0002-2738-867X
mailto:stefano.bo@nordita.org


www.nature.com/scientificreports/

2Scientific REPOrTS |  (2018) 8:10387  | DOI:10.1038/s41598-018-28647-9

to another. Sources of extrinsic fluctuations can be variations in the amount of molecular machineries (e.g. RNA 
polymerase, ribosomes, mitochondria), gradients of temperature or chemicals’ concentrations or, more widely, 
the coupling of the cell to the variability of the external environment. In the present contribution we resort to 
a minimal model of molecular sequestration and study the system in presence of both intrinsic and extrinsic 
noise18,19. This allows us to focus on two features of sequestration dynamics that have received relatively little 
attention in the past: the shape of the target probability distribution and the correlations amongst competing 
targets induced by the presence of the sequestrant. We analytically provide an exact solution to the intrinsic-noise 
case analysing both targets distributions and correlations in the case of one target and two different targets inter-
acting with one single sequestrant. By adding an extrinsic source of noise, we show how the analytical distribu-
tions, previously found to be unimodal, can be reshaped into bimodal in a definite set of parameters. Bimodal 
distributions are often encountered in gene expression and other biomolecular assays data and are of particular 
interest as they may indicate the coexistence of two distinct phenotypes, with the modes of the distribution linked 
to different differentiation states or physiological conditions20,21. Inspired by the numerical results of ref.15, we first 
analyse the role of ultrasensitivity close to the threshold as a possible tool to channel extrinsic fluctuations of the 
parameters of the system into bimodal distributions of free target amount. We find that these bimodal distribu-
tions are originated by stochastic effects only, the underlying deterministic system being indeed always monosta-
ble. Secondly, we show that the action of the sequestrant is not only responsible for the presence of the threshold 
which allows to channel noise, but also plays an important role in systems with multiple targets. Indeed, targets 
result to be effectively correlated by their competing interaction with the same sequestrant and this competition 
induces a negative correlation. Here we show that, if the amount of sequestrant fluctuates due to extrinsic noise, 
the above mentioned correlations can, from negative, become positive.

Figure 1.  (a) 〈T〉 vs TT for ST = 10 and ST = 30. Solid lines are the solution of the master eq. (12) while symbols 
the one of the rate eq. (6). Kd takes the values 0.1, 1.0, 5.0 (curves with lower Kd are below the ones with a higher 
one). (b) Examples of probability distributions from the solution of the master eq. (10). ST = 30, Kd assumes the 
values: 5.0 (purple), 1.0 (cyan) and 0.1 (black). From left to right TT = 10, 30, 40. (c) 〈T〉 vs TT in presence of 
extrinsic noise on ST as obtained from the solution of the master equation and the addition of extrinsic noise. 
For all the curves Kd = 0.1 and 〈ST〉 = 30. The black curve is the pure intrinsic noise case, while the other three 
correspond to a standard deviation of the Gaussian distribution of ST equal to 5 (red), 8 (green) and 13 (yellow). 
(d) Examples of probability distribution of T in presence of extrinsic noise. The appearance of a bimodal 
distribution can be modulated by varying the extrinsic noise level. 〈ST〉 = 30, TT = 40, Kd = 0.1, σST

 assumes the 
values: 5 (red), 8 (green) and 13 (yellow). (e) Plot of the bimodality region (presence of two distinct peaks) for 
different values of Kd as a function of TT and extrinsic noise in units of the coefficient of variations 
(CV S/S TT

σ= 〈 〉). Bimodal distributions are present for parameters inside the areas delimited by the plotted 
lines. A small Kd and a high noise level favour bimodality. 〈ST〉 = 30, Kd assumes the values: 0.1 (green), 0.2 (light 
blue) and 0.4 (blue). The size of the step along TT is ΔTT = 1, while the size of the step for the extrinsic noise 
level is ΔσT = 0.25 (ΔCV = 8⋅10−3). For each point defined by these steps, the distribution P(T) was computed 
analytically and the number of its maxima was evaluated. Note that the step-like features in the plot are due to 
the discreteness of TT.
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Results
Minimal Sequestration Model for noise channelling.  Sequestration defines the presence of a threshold.  
Let us consider a simple model consisting of two species, namely S, the sequestrant, and T, the target. We shall 
view S as a titrating agent that binds T and sequesters it in the complex TS. Here we simply assume a reversible 
dynamics, where the complex can in turn dissociate, releasing the two species in the environment for further 
interaction. This first order reaction network is described by the following equation:

+
−

+T S TS,
(1)k

k

where k+ and k− are respectively the binding and unbinding rates. For simplicity, we shall assume in our model 
the total number of molecules of each species to be conserved, this assumption defining the following conserva-
tion laws:

= + =S S TS const, (2)T

= + = .T T TS const (3)T

In view of these conservation laws, the system has only one free variable, in the following assumed to be T. 
The average behaviour for this model can be studied by considering the associated rate equation for the concen-
tration6. We start by writing the steady state solution of the rate equation for the case of two species that bind and 
unbind, with constant total concentration for each species. The rate equation for the concentration of T is:

ˆ ˆ= − ++ −
d T

dt
k T S k TS[ ] [ ][ ] [ ], (4)

where +̂k  and −k̂  are the reaction rates for the concentrations. In particular k̂ k=− − and k V ksys
ˆ =+ +, with Vsys being 

the typical volume of the system in which reactions occur. By making use of the conservation laws for concentra-
tions that trivially follow from (2) and (3) for constant volumes, the above equation can be easily solved at the 
steady state giving:

ˆ ˆ ˆ= − − + − − +T T S K T S K K T2[ ] [ ] [ ] ([ ] [ ] ) 4 [ ] , (5)T T
d

T T
d d

T
2

where K
d k

k Vsys
≡ −

+

ˆ  is the dissociation constant Kd ≡ k−/k+ rescaled by the volume. This deterministic approxima-
tion can be used to investigate the average behaviour of the number of free target molecules. By rescaling eq. (5) 
by the volume of the system we obtain:

= − − + − − +T T S K T S K K T2 ( ) 4 , (6)T T
d

T T
d d

T
2

which is the steady-state deterministic solution for the amount of free target molecules.
As discussed in6, the titrative interaction induces a threshold-like behaviour on the mean number of free mol-

ecules, upon the variation of their total amount (see Fig. 1a). The model considered here presents this feature with 
minimal ingredients, given by the binding and unbinding reactions between T and S and the conservation laws. 
Indeed, when the system is in the regime in which the total amount of target molecules is smaller than the seques-
trant one, almost all of them are bound in complex and their mean free amount is close to zero. We name this 
region the repressed regime. Conversely, in the regime where the total amount of target molecules is larger than the 
sequestrant one, their mean number increases linearly with TT, since the number of free molecules of the seques-
trant is almost zero. We name this region the unrepressed regime. The position of the threshold is then located close 
to the equimolarity point, i.e. where T ST T . As a direct outcome of this behaviour, the system becomes ultrasen-
sitive in proximity to the threshold. This means that around this point, a small fold-change variation in the total 
number of target molecules can result in a large fold-change of their mean free amount. In this specific framework, 
the steepness of the threshold is determined by the dissociation constant Kd. It follows that a small Kd implies a 
large affinity between the molecules, therefore leading to a sharper threshold. In the limit of infinitely large affinity 
between the sequestrant and the target, the system is continuous at the threshold but displays a discontinuous 
derivative. In this respect, the usage of the term ultrasensitivity depicts a scenario that differs from the ones typical 
of Goldbeter-Koshland, or cooperative Hill models22 which, in the limit of infinite cooperation are discontinuous.

Full Master Equation Solution.  Very often, in biochemical systems, the numbers of individual molecules at play 
is low. Fluctuations around the average behaviour (described by the rate equation) become then relevant and, 
to correctly characterise these systems, it is mandatory to take into account their stochastic nature17. In order to 
do that, we seek the explicit form of the probability distribution of the number of molecules in the system at a 
given time. Recalling that this model has only one independent variable, let us define P(T, t) as the probability of 
observing T free molecules at time t. The dynamics of this probability distribution is Markovian and obeys the 
following chemical master equation23,24:

dP T t
dt

k T S P T t k TS P T t k TS k TS P T t( , ) ( 1)( 1) ( 1, ) ( 1) ( 1, ) [ ] ( , ) (7)= + + + + + − − + .+ − + −
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Using the conservation laws, eqs (2) and (3), the master equation can be written as:

= + − + + +

+ − + −
− − + + − .

+

−

+ −

dP T t
dt

k T S T T P T t

k T T P T t
k T S T T k T T P T t

( , ) ( 1)( 1) ( 1, )

( 1) ( 1, )
[ ( ) ( )] ( , ) (8)

T T

T

T T T

We are mostly interested in the long-time behaviour of the system and we will then focus on the steady-state 
solution = →∞P T P T t( ) lim ( , )t . Since we have a single independent variable and all reactions are reversible, the 
detailed balance condition is satisfied. Then, at the steady state, equilibrium is reached and there are no probabil-
ity flows between the states of the system. An important feature of the system is that the possible range of the 
number of free T depends both on the total number of available target molecules TT and on the total number of 
sequestrant molecules ST. Indeed, the minimum number of free T can either be Tmin = 0 when ST ≥ TT, or 
Tmin = TT − ST when ST < TT. To obtain the steady-state solution P(T) to the master equation, one can recursively 
use the detailed balance condition

k T S T T P T k T T P T( 1)( 1) ( 1) ( ) ( ), (9)T T T+ − + + + = −+ −

which leads to:

=






 − −

P T K T
T S T T

( ) 1 ( ) 1
[ ( )]!

,
(10)

d T T

T T

where the normalisation factor is given by:

∑=






 − −

.
=

K T
T S T T

( ) 1
[ ( )]! (11)T T

T
d T T

T Tmin

T



The shape of this distribution is mostly determined by the magnitude of the dissociation constant Kd and 
depends on whether the system is in the repressed (TT < ST) or unrepressed (TT > ST) regime. For low values of 
Kd the distribution of free targets T is mostly concentrated around the minimum value Tmin, which, as mentioned 
before is 0 in the repressed regime and TT − ST in the unrepressed one. Some examples of this probability distri-
bution for different values of the dissociation constant and TT are reported in Fig. 1b. For the explored parameters 
range, the target distribution was always unimodal. The various moments of the distributions can be obtained 
exactly by taking ensemble averages over the probability distribution P(T) from eq. (10). The mean of T can be 
written in terms of Hypergeometric functions25,26 as:

⟨ ⟩

⟨ ⟩

=
− +

− − + −

− − + −
≤ =

= −
− − −

− + − −
> = −

(12)

T K T
T S

F T T S K
F T T S K

T S T

T T S F S T S K
F S T S K

T S T T S

{
1

(1 , 2 ; )
( , 1 ; )

( 0)

if

( ) ( , ; )
( , 1 ; )

( )

d T

T T

T T T
d

T T T
d T T min

T T
T T T

d

T T T
d T T min T T

1 1

1 1

1 1

1 1

as found in, e.g., ref.27. Its behaviour is plotted in Fig. 1a confirming how the deterministic analysis of eq. (6) (and 
ref.6), which completely neglected fluctuations, gives an accurate description of the average number of free target 
molecules.

Extrinsic noise and bimodal distributions.  In the previous section we focussed on the fluctuations originated by 
the discrete nature of molecules and the intrinsic randomness of their interactions. By introducing fluctuations in 
the total number of sequestrant molecules ST, we here investigate the influence of extrinsic noise on the present 
system. Let us consider different copies of our system with different ST, randomly assigned. This mimics, for 
instance, the scenario in heterogeneous cell populations randomly sampled. For the sake of simplicity we draw the 
amount of ST in each system from a discretised Gaussian P(ST), restricted to positive values, with mean 〈ST〉 and 
standard deviation ST

σ .
The marginal probability distribution of free target molecules T (over the different values of ST), P(T), is now 

affected by the fluctuations in ST and differs from the one given in eq. (10). Nonetheless, it can be expressed by 
making use of the law of total probability28, i.e., via the superposition of the conditional probabilities P(T|ST) 
weighed by P(ST) as follows:

P T P T S P S( ) ( ) ( ),
(13)S

T T
0T

∑= |
=

∞

where the expression of the conditional probability P(T|ST) coincides with the solution of the master equation 
obtained for a given ST (Eq. (10)).

Given this scheme, let us now study the consequences of the presence of the extrinsic noise in the system. A first 
quantity affected by this new source of noise is certainly the average of T. As the level of extrinsic noise is increased, 
the profile as a function of TT becomes smoother with a less pronounced threshold, while the regions farther away 
from the threshold are not heavily affected (see Fig. 1c). Indeed, the effects of the extrinsic noise are stronger in the 
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vicinity of the threshold where the system is ultrasensitive. Therein, for a fixed TT, small changes in the number of 
total sequestrants ST can make the system transit form the repressed to the unrepressed regime, bearing signifi-
cant consequences on the shape of the probability distribution. Indeed, stochastically sampling systems above and 
below the threshold can result in a bimodal distribution. The first peak of such distribution is narrow and located 
close to the origin T = 0. It corresponds to the aggregated contribution of the repressed systems, i.e., the ones that 
picked an ST larger than TT. The second peak is broader and corresponds to the superposition of the unrepressed 
systems, each of them with its own mean. We remark that the underlying deterministic system is not bistable and 
that the observed bimodality is due to the stochastic sampling of the repressed and unrepressed regimes across the 
threshold. This scenario shows how the threshold feature of the system effectively filters the variability introduced 
by the extrinsic noise, concentrating the contributions of all the systems below threshold. At this point, one may 
wonder whether any extrinsic noise would have the same effect on target distributions in any parameter range. The 
answer is no: bimodal distributions are present only close to the threshold and are favoured by steep thresholds 
(small Kd), which allow sampling between the unrepressed and repressed regimes (see Fig. 1d,e). Furthermore, not 
all distributions of extrinsic noise may induce bimodals for the target. To this aim, the extrinsic noise is required 
to have a peaked distribution, sufficiently broad to sample both below and above threshold. This becomes clear by 
examining the Gaussian case with small variances (see Fig. 1e) and the one of uniformly distributed extrinsic noise 
considered in the Supplementary Information online. In the latter case, the threshold behaviour concentrates the 
contribution of the systems below threshold, eventually giving rise to a repressed peak, but no mechanisms could 
induce the appearance of an unrepressed peak (see Fig. S1 in the SI).

In view of these results, the combination of the threshold-like response produced by the titrative interaction 
and a suitable extrinsic noise on the total amount of one of the species can be considered a general mechanism 
to achieve bimodality. This result is also interesting from a pure biological point of view. In biological systems, 
bimodal distributions of gene expression are particularly interesting as they may indicate the presence of two 
distinct physiological states. At the level of a cell population, this effect would therefore show heterogeneity in 
different cell gene expression, as observed in16. How this is normally achieved remains unknown but the mecha-
nism here discussed represents a minimal way to obtain bimodal gene expression distributions in systems based 
on molecular sequestration and subject to extrinsic noise. It is worth noticing that the “static” source of extrin-
sic noise we consider here is a good approximation of the case of a system with a slow dynamically fluctuating 
sequestrant. In this case, the system has time to approximately reach a steady state before the amount of seques-
trant changes considerably15. This timescale separation is thought to be present, for instance, in the mechanism of 
postranscriptional regulation by microRNAs (short non-coding segments of RNA)10. In these systems microRNA 
molecules bind and sequester coding messenger RNAs and inhibit their translation. The complex formation 
between microRNA and mRNA takes place on a scale that is much faster than the one of transcription and deg-
radation of microRNA and mRNA. The total number of sequestrant molecules (and the one of target ones) then 
fluctuates on a slower scale than the sequestration dynamics (note that if one focusses on the complex dynamics 
without explicitly modelling transcription and degradation, the nature of the fluctuations on the number of the 
sequestrant molecules becomes extrinsic).

Sequestration as a tool to couple competing species.  Intrinsic noise.  We consider here a system 
composed of two molecular species (T1 and T2) competing for binding to a third molecule (S). The reaction net-
work that defines the minimal model is described by eqs (14) and (15). Both T1 and T2 can bind to S respectively 
with rate k1

+ and k2
+ to form the complexes TS1  and T S2  which can then dissociate with rates −k 1 and −k 2, as follows:

T S TS,
(14)k

k
1 11

1

+
−

+

T S T S
(15)k

k
2 22

2

+ .
−

+

T1 can be seen to act as a sponge for the common resource S, preventing the binding with the competing 
species T2 and vice versa. Also in this case, we assume the total amount of each species to be constant so that the 
following conservation laws hold:

T T TS const, (16)T1 1 1= + =

= + =T T T S const (17)T2 2 2

and

S S TS T S const (18)T 1 2= + + = .

These conservation laws limit the number of independent variables from 5 to 2. Since there are fewer inde-
pendent variables than the number of conserved chemical species, the range of values that the number of free 
molecules of a given species can take is determined by the total amounts of the other species as well as detailed in 
Table 1. In particular, if the total number of molecules of a species is larger than the one of its titrant, there will 
always be some free molecule of that species (even if all the available titrant molecules are bound to it) so that its 
minimal value is greater than 0. When considering two targets, the range of values of free molecules of one target 
(e.g. T1) is set by the number of free molecules of the sequestrant, which depends on the amount of complex 
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between the second target and the sequestrant (T S2 ). For instance, for a fixed amount of free target T2 the number 
of free molecules of target 1 ranges between max(0, T2T + T1T − ST − T2) and T1T, as schematically shown in 
Fig. 2f. In the stochastic description, choosing T1 and T2 as independent variables, the model is described by eq. 
(19), which is the master equation governing the time evolution of the probability distribution of observing T1 
and T2 free molecules at time t, i.e.:

= + − + + + +

+ + − + + + +

− + + + .

− +

− +

− + − +

dP T T t
dt

TS k P T T T S k P T T

T S k P T T T S k P T T

TSk TSk T Sk T Sk P T T

( , , ) ( 1) ( 1, ) ( 1)( 1) ( 1, )

( 1) ( , 1) ( 1)( 1) ( , 1)

( ) ( , ) (19)

1 2
1

1
1 2 1

1
1 2

2
2

1 2 2
2

1 2

1
1

1
1

2
2

2
2

1 2

Once again, detailed balance holds and therefore it is possible to derive the equilibrium solution. As presented 
in the Methods section, the relations obtained imposing detailed balance, together with the conservation laws, 
can be used to recursively derive the solution of the master equation, eq. (19), which reads:


P T T K K

T
T

T
T

S T T T T
( , ) ( ) ( )

( )( )

[ ( )]!
,

(20)

d T d T
T T

T T T
1 2

1 2

2

1

1

2

2

1 2 1 2

1 2

=
+ + − +

in agreement with the grand canonical distribution for ideal particle mixtures23 with the normalization factor 
given by:

MIN MAX

S max (0, ST − T1T − T2T) ST

T1 max (0, T1T − ST) T1T

T2 max (0, T2T − ST) T2T

Table 1.  Range of allowed values for sequestrant and targets. The table shows the allowed maximum and 
minimum value for each species, only based on their relative total amounts.

Figure 2.  Two targets system. (a) Mean value of T1. (b) Mean value of T2. (c) Pearson correlation between T1 
and T2 as a function of T1T for a fixed value of T2T and different values of K d

1  and K d
2 . The threshold behaviour of 

the means and the correlation drop are steeper for lower values of Kd. ST = 60, T2T = 20. K d
1  and K d

2  are always 
equal and assume the values: 5.0 (purple), 1.0 (cyan) and 0.1 (black). (d) Contour plot of the mean of T1 as a 
function of T1T and T2T. ST = 60, = = .K K 0 1d d

1 2 . (e) Contour plot of the Pearson correlation between T1 and T2 
as a function of T1T and T2T. ST = 60, = = .K K 0 1d d

1 2 . (f) Example of phase space for the case T1T < ST < T2T.
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∑ ∑=
+ + − +

.
= − = + − −

K K
T
T

T
T

S T T T T

( ) ( ) ( )( )

[ ( )]! (21)T T S

T

T T T S T

T
d T d T T T

T T T
2

max(0, ) max(0, )

1 2
1

1

2

2

1 2 1 2T T

T

T T T

T

2 2

2

1 2 1 2

1
1 2



Thresholds and correlations.  As shown in Fig. 2a, the average number of free molecules of target 1, 〈T1〉, displays 
a threshold behaviour when plotted as a function of its total number of molecules T1T. The theoretical threshold 
is again located close to the equimolarity point, i.e. where T T ST T T1 2+  . The average of the other target, 〈T2〉, 
shows instead a smooth sigmoidal profile with changing point in the vicinity of the threshold (Fig. 2b). The pro-
files of both averages are ultrasensitive around the threshold and the strength of the ultrasensitivity is controlled 
by the dissociation constants (see Fig. 2d). Small values of the dissociation constants mean steeper threshold 
responses and higher ultrasensitivity.

The common interaction between the targets and the sequestrant effectively correlates them (see e.g. 
refs10,11,29). When several molecules of a target are bound to the sequestrant, the propensity of binding for mole-
cules of the second target is reduced. Additionally, when the total amount of molecules of the two targets globally 
exceeds the sequestrant, having a high number of one target molecules bound implies having fewer molecules of 
the other target in a complex. From this, it naturally follows that the two targets are negatively correlated via com-
petition. To show this, we quantify such a correlation by means of the Pearson coefficient of the two targets, 
defined, as usual, as the ratio between the covariance and the product of the two standard deviations (σT1

 and T2
σ ) 

as follows:

ρ
σ σ

≡
T Tcov( , ) ,

(22)T T

1 2

1 2

and investigate its dependence on the key parameters in the model. In a later section we will characterise the 
interaction of the two targets by means of mutual information30 (as done in e.g. ref.31 for a similar setup). In view 
of the applications of the present framework to biochemical systems, we focus on the dependence of the correla-
tion on the targets abundances which are simpler to control in biological systems than the targets affinity for the 
sequestrant. Nonetheless, we report in the SI a detailed discussion of the dependence of the correlation on the 
dissociations constants. In Fig. 2c we plot the Pearson coefficient as a function of the total number of one of the 
targets (T1T). We observe that the correlation starts close to zero for low target abundances and decreases close to 
the threshold ⁎ = −T S TT T T1 2 . For low dissociation constants, the Pearson coefficient displays a sigmoidal profile 
(red curve, Fig. 2c) with the drop located in proximity to the threshold. For high targets abundances, the correla-
tion between the two targets saturates to a value close to −1 (the lower bound of the Pearson coefficient) and this 
behaviour is maintained also upon varying both targets abundances (Fig. 2e). The shape of the correlation as a 
function of the total number of one of the targets is affected in a different way by changes of the dissociation con-
stants of the two targets. Keeping T2T fixed, the steepness of the sigmoidal profile as a function of T1T is mainly 
governed by the value of the dissociation constant of target 1, K d

1 , and increases with the decrease of the dissocia-
tion constant. Instead, K d

2 , the dissociation constant of target 2, whose abundance is not changed in the plot, 
affects the minimal value that the correlation asymptotically reaches as T1T becomes large (see Fig. S3 in the SI). 
A lower dissociation constant K d

2  corresponds to a lower value of the minimal correlation (stronger negative 
correlation). However, this smoothens the correlation drop around the threshold and slightly influences its loca-
tion. Figure 2e shows the behaviour of the Pearson coefficient when the abundances of both targets are inde-
pendently changed. No global minimum is found and correlation is stronger (more negative) as the number of 
target molecules increases.

Extrinsic noise.  To investigate the effects of external fluctuations, as done for the case of a single target species, 
we study the behaviour of the two targets system when the number of total sequestrant molecules is allowed to 
fluctuate between different realisations of the system. The probability distribution of ST is again assumed to be 
a discretised Gaussian and the full probability distribution of the system is obtained as a weighed superposition 
by implementing the law of total probability. Having full analytical control on the system, the behaviour of the 
correlation in presence of extrinsic noise can be straightforwardly investigated and precisely quantified.

As a result, we observe that fluctuations in the amount of the sequestrant positively correlate the competing 
targets. This can be understood by considering the fact that the two target species interact with the same pool 
of sequestrant molecules. Then, fluctuations in the amount of the sequestrant ST affect in the same way the two 
target species in each realisation of the extrinsic noise. For instance, if by an extrinsic fluctuation the amount of 
sequestrant is lower than the average, both target species will have a higher chance of being free from the seques-
trant. This effectively induces a positive correlation between the targets, which can counterbalance the negative 
one due to competition and discussed in the previous section. The negative interference of these two opposite 
sources of correlation can result in basically uncorrelated systems. However, these two conflicting sources of 
correlation depend differently on the rates and the abundances. The positive correlation is felt the most in the 
proximity of the threshold. There, most of the sequestrant is bound and neither of the targets have many free 
molecules. Then, a change (say a decrease) in the sequestrant abundance directly reflects in a change (increase) 
in the number of free molecules of both targets. This is no longer the case when there is an excess of one target 
(e.g. large T1T), for which the sequestrant is bound mostly to T1 and a change in the sequestrant affects mostly the 
amount of free T1 and less the amount of free T2. When the sequestrant largely outnumbers the targets, changes in 
its abundance will have little impact on the targets, which will mostly be bound to the sequestrant anyway. From 
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the combination of these effects, correlation takes a non-trivial profile as a function of the abundances and can be 
positive for sizeable regions of the parameters space.

For a more quantitative discussion, we first focus on the correlation profile as a function of the total abundance 
of target 1, T1T, keeping T2T fixed. As shown in Fig. 3b,c, a low level of fluctuations on the number of sequestrant 
molecules opposes the negative correlation induced by competition. When the level of extrinsic noise is increased, 
the positive correlation induced by the sequestrant fluctuations can counterbalance competition, leading to a 
correlation close to zero. A further increase of extrinsic noise eventually induces a positive correlation between 
the targets. Because of the different dependence of the sources of correlation on the system features, the resulting 
profile displays a correlation maximum in the vicinity of the threshold, where the system is more sensitive to 
fluctuations of the sequestrant amount. This can also be observed by analysing the two-dimensional (varying both 
target abundances) profile of correlation shown in Fig. 3a,d. If we focus on slices with a fixed number of T2T we see 
that for larger values of T2T the maximum correlation is reached for lower total amounts of the T1T, for which the 
system is still in the vicinity of the threshold. This is investigated in Fig. 3e where the abundance of target 1, for 
which the maximum correlation is attained ⁎T( )T1 , is plotted as a function of the abundance of the second target 
T2T. When the dissociation constants of the two targets are equal, such position of the maximum decreases line-
arly (with slope −1) with the increase of the abundance of the second target until the overall number of target 
molecules (T1T + T2T) exceeds that of the sequestrant and eventually saturates at low levels. This is more evident 
for systems with a strong affinity for the sequestrant where the threshold is sharp. The overall trend is preserved 
when the two targets have different affinities for the sequestrant but the linear decrease is less pronounced when 
the second target (T2) has a lower affinity with the sequestrant. When the overall number of targets starts exceed-
ing that of the sequestrant, the correlation decreases and the profile of the location of the maximum depends on 
the specific dissociation constants. For systems with higher levels of extrinsic noise, such profiles beyond the 
threshold may be non monotonic, as shown in Fig. S6e in the SI. The value of the maximum of correlation for a 
given amount of the second target: T T T( ) ( , )max T T T2 1 2ρ ρ≡ ⁎  is plotted in Fig. 3f. Such plot can be used to charac-
terise the location and the value of the global maximum of correlation, which is seen when considering the 
two-dimensional perspective (varying both targets abundances) reported in Fig. 3a,d. Indeed, the maximum of 
ρmax(T2T) corresponds to the global maximum. As expected, it is located in proximity of the region of equimolar-
ity between targets and sequestrant (T T ST T T1 2 + ). The maximizing individual target abundances are set by 

Figure 3.  Correlation in presence of extrinsic noise. 〈ST〉 = 60, 4ST
σ =  where not otherwise stated. (a,d) 

Contour plots of the correlation as a function of T1T and T2T for = = .K K 0 1d d
1 2  (a) and = .K 0 1d

1 , K 1 0d
2 = .  

(d). (b) Correlation as a function of T1T for different levels of extrinsic noise. The blue line on the bottom 
corresponds to the pure intrinsic noise case, for the other lines ST

σ  assumes the values: 2, 4, 6, 8, 10, 12. 
= = .K K 0 1d d

1 2 , T2T = 20. (c) Contour plot of the correlation as a function of T1T and of the level of extrinsic 
noise. K K 0 1d d

1 2= = . , T2T = 20. The size of the step along T1T is ΔT1T = 1, while the size of the step for the 
extrinsic noise level is ΔσT = 0.25 (ΔCV = 4⋅10−3). (e) Position (in terms of the value of T1T) of the maximum of 
correlation, for a given T2T, for different values of K d

1  and K d
2 . (f) Value of the maximum of correlation for a 

given T2T, for different values of K d
1  and K d

2 .
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their respective affinity with the sequestrant: the higher the affinity of a target, the higher its abundance at the 
maximum. In other words, as shown in Fig. 3f, when the affinities are equal, =K Kd d

1 2 , the peak is reached for 
 T T S /2T T T1 2  and when <K Kd d

1 2  the peak moves towards higher values of T1T and smaller values of T2T. The 
value of the global maximum is also controlled by the dissociation constants, and takes higher values for lower 
dissociation constants (higher affinities). Qualitatively similar behaviours are recovered by varying the average 
amount of sequestrant ST and the intensity of the noise. We report this in the SI.

Mutual Information.  Having access to the explicit expression of the joint probability allows us to characterise 
the coupling between the competing targets beyond the Pearson coefficient and to study the mutual information 
between the competing targets. In this setting, mutual information I(T1, T2) quantifies the amount of information, 
measured in bits, that could be obtained on one target by measuring the other target. Its definition30 reads:

I T T P T T P T T
P T P T

( , ) ( , ) log ( , )
( ) ( )

,
(23)T T

1 2
,

1 2
1 2

1 21 2

∑=

where P(T1, T2) is the joint probability distribution and P T P T T( ) ( , )T1 1 22
= ∑  the marginal one. Mutual informa-

tion is never negative, which implies that both positive and negative correlations result in positive mutual infor-
mation (there is no distinction between correlated and anti-correlated systems) and, for discrete probabilities, is 
bounded by the logarithm of the number of states accessible to the system. In Fig. 4a we explore the profile of the 
mutual information between the targets upon varying both targets’ abundances and in Fig. 4b upon variation of 
T1T (in analogy with Fig. 2c,e). The mutual information profile starts at zero and begins to increase in the vicinity 
of the threshold. As for the Pearson correlation, when plotted as a function of T1T, the dissociation constant K d

1  
governs the steepness of the profile, while K d

2  mainly controls the maximum value of mutual information that can 
be achieved, (see the SI for additional plots). In Fig. 4d–f we show the effect of extrinsic noise on mutual informa-
tion, in analogy with Fig. 3. The profiles are qualitatively similar to the ones of the Pearson coefficient and offer the 
same insights. However, mutual information captures further non-linear behaviour in the interaction between 
two targets. This becomes more evident if we convert correlation in units of ρ− −log[1 ]1

2
2  where ρ is Pearson 

correlation coefficient, which corresponds to the mutual information that two jointly Gaussian variables of corre-
lation ρ would have. This quantity is plotted as full lines in Fig. 4. For the parameters investigated in the previous 
sections, mutual information takes larger values than the one associated with a Gaussian approximation with the 
measured Pearson coefficient, showing that the co-dependence between the targets goes beyond the correlation 
captured by the Pearson coefficient. There is one notable difference between the Pearson correlation and the 
mutual information, which is seen in the absence of extrinsic noise when one of the target is in large excess (this 
is not noticeable for the parameters explored in the previous sections) and shown in Fig. 4c. Fixing the abundance 
of one target and varying the other one (as done in Fig. 4a) correlation is monotonic and reaches a plateau, 
whereas mutual information displays a maximum when the target starts being in excess. This maximum becomes 
more peaked as the difference in magnitude of the two dissociation constants increases. The plateau in the 
Pearson coefficient for an excess target arises from the combined trends of the covariance and the standard devi-
ations. The covariance, similarly to mutual information, is non monotonic and displays a peak. Its decrease after 
the peak is compensated by the decrease in the standard deviations of the two targets whose marginal distribu-
tions get narrower as the system gets more saturated. This discrepancy between the mutual information and the 
correlation profile can be traced back to the marked non-Gaussianity of the joint target distribution past satura-
tion. In this region the distribution gets strongly peaked, a scenario which has been related to instances of mutual 
information lower than the one predicted by Gaussian approximations (see e.g. ref.32). Finally, it is important to 
note how mutual information (and correlations) are strongly damped by the presence of extrinsic noise as a con-
sequence of the negative interference between the negative correlation due to competition and the positive one 
induced by fluctuations in the sequestrant.

Extrinsic noise effects on competitive inhibition kinetics.  Let us now explore how the key features we 
have identified in the minimal model carry over to more complex settings. To this aim, let us consider the case of 
competitive inhibition in an enzymatic reaction. The system is made of an enzyme that, when free (TF), can bind 
to a substrate (which we assume to be at fixed concentration cs) and form the active enzyme TA from which the 
product is made. The free enzyme can also bind to an inhibitor (S) that prevents it from combining with the sub-
strate and becoming active. In the language of the previous sections, the inhibitor plays the role of the sequestrant 
and the enzyme that of the target. The reaction network that describes this system is defined by

+
−

+
T S TS

(24)F
k

k

+ → +T T TSubstrate Product
(25)F

k

k c

A F
r

f s
⥫⥬

We consider the case in which both substrate and product concentrations are large so that their fluctuations are 
negligible and focus on the stochastic dynamics of the enzyme (target) and the inhibitor (sequestrant). Their total 
amounts are conserved, defining the following conservation laws:

T T T TS const, (26)T F A= + + =
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= + = .S S TS const (27)T

As a consequence of the conservation laws, the number of free stochastic variables for this system is reduced 
to 2. Here, we focus on the active enzyme TA from which the product is formed and the inhibitor-bound enzyme 
TS. For the sake of clarity we consider the case of quasi-equilibrium dynamics in which the product formation 
reaction is much slower than the others. However, the general case can be addressed with minor modifications 
since the master equation’s structure and solution is left basically unchanged (see SI). As in the cases considered 
in the previous sections (and shown in the SI) the steady-state distribution can be analytically derived and the 
effect of fluctuations in the number of the sequestrant (inhibitor) molecules investigated. We again model the 
fluctuations by a discretised Gaussian distribution. For comparison with the minimal case, we plot the average 
behaviour of the active enzyme TA and the inhibited one TS as a function of the total number of enzymes (targets) 
in Fig. 5a. Both quantities present the threshold-like profile typical of molecular sequestration. As for the minimal 
case, extrinsic noise affects the shape of the probability distributions and Fig. 5b shows the occurrence of bimo-
dality for both the inhibited complex (sequestrant -target) and the active enzyme (bound to the substrate). 
However, it is important to note that, due to the presence of an additional chemical reaction, with its inherent 
stochasticity, the probability distributions are smoother with respect to the minimal model. As a consequence, 
stronger affinities (lower dissociation constants) are required to ensure robust bimodal phenotypes, especially for 
the active enzyme (see Fig. 5c,d). In analogy with the minimal model, the distributions can be tuned from being 
bimodal to unimodal and vice versa by modulating the level of extrinsic noise. The effects of the extrinsic noise 
level and of the dissociation constant (Kd = k−/k+) on bimodality are in qualitative agreement with the minimal 
model. Indeed, for both TA and TS, as extrinsic noise is increased, the range of bimodality over the values of TT 
becomes wider. Similarly, a low value of the dissociation constant, i.e. a steeper threshold, favours the presence of 
bimodality (Fig. 5c,d).

Figure 4.  Mutual information (bits) (a–c) pure intrinsic noise case. (d–f) Mutual information in presence of 
extrinsic noise. (a) Contour plot of the mutual information between T1 and T2 as a function of T1T and T2T. The 
parameters are as in Fig. 2e: ST = 60, = = .K K 0 1d d

1 2 . (b) The dashed lines refer to mutual information between 
T1 and T2 as a function of T1T for a fixed value of T2T and different values of K d

1  and K d
2 . The solid lines are the 

Pearson correlation expressed in units of ρ− −log[1 ]1
2

2  as discussed in the text. The values of the parameters 
correspond to the ones of Fig. 2d: ST = 60, T2T = 20. K d

1  and K d
2  are always equal and assume the values: 5.0 

(purple), 1.0 (cyan) and 0.1 (black). (c) Mutual information and correlation past saturation. Again the dashed 
lines refer to mutual information and the solid ones are the Pearson correlation expressed in units of 

ρ− −log[1 ]1
2

2  the values of the parameters are now different, with ST = 30, T2T = 10 and the dissociation 
constants are reported in the inset. (d) Contour plot of the mutual information as a function of T1T and T2T for 

= = .K K 0 1d d
1 2  in presence of extrinsic noise with 〈ST〉 = 60 and σ = 4ST

 (same parameters as Fig. 3a). (e) 
Mutual information and correlation as a function of T1T for different levels of extrinsic noise (see the legend). 
K K 0 1d d

1 2= = . , T2T = 20 (same parameters as Fig. 3b) (f) Contour plot of the mutual information as a function 
of T1T and of the level of extrinsic noise. K K 0 1d d

1 2= = . , T2T = 20.
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Correlations.  In the previous sections we showed that two target species competing for the same sequestrant can 
become positively correlated under the effect of extrinsic noise on the sequestrant. We now analyse the dynamics 
of two species of enzymes (targets) inhibited by the same sequestrant. The corresponding reaction network is 
described by the following reactions:

+
−

+T S TS
(28)F

k

k
1 11

1



+ → +T T TSubstrate Product
(29)F

k

k c

A F1 1 1
r

f s
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2 22
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A F2 2 2
r
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2

2

⥫⥬+ → + .

Figure 5.  Extrinsic noise effects on competitive inhibition kinetics. (a) 〈TA〉 (solid lines) and TS  (dashed lines) 
vs TT for different levels of extrinsic noise. For all the curves Kd = 0.04, cSkf /kr = 1.25 and 〈ST〉 = 30. The black 
curve is the pure intrinsic noise case, while the other three correspond to a standard deviation of the Gaussian 
distribution of ST equal to 5 (red), 8 (green) and 13 (yellow). (b) Examples of probability distribution of TA 
(solid lines) and TS (dashed lines) in presence of extrinsic noise. 〈ST〉 = 30, TT = 40, Kd = 0.04, cSkf /kr = 1.25, σST

 
assumes the values: 5 (red), 8 (green) and 13 (yellow). (c,d) Plots of the bimodality region of the marginal 
distributions of TA (c) and TS (d) for different values of Kd as a function of TT and extrinsic noise. Bimodal 
distributions are present for parameters inside the areas delimited by the plotted lines. 〈ST〉 = 30, cSkf /kr = 1.25, 
Kd assumes the values: 0.02 (light blue), 0.04 (green), 0.08 (blue) and 0.10 (black). The size of the step along TT is 
ΔTT = 1, while the size of the step for the extrinsic noise level is ΔσT = 0.25 (ΔCV = 8⋅10−3). For each point 
defined by these steps, the distribution P(T) was computed analytically and the number of its maxima was 
evaluated. Note that the step-like features in the plot are due to the discreteness of TT.
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Both the unbound targets, T1F and T2F, can be activated (into T1A and T2A) by binding to a substrate with rates 
proportional to the substrate concentration and to their intrinsic activation rates kf

1 and kf
2. For the sake of sim-

plicity, we assume that the substrate is the same for both the enzymes. The active targets T1A and T2A can be deac-
tivated with rates kr

1 and kr
2 respectively. The unbound, inactive targets can be sequestered by the inhibitor 

molecule S into the inactive complexes TS1  and T S2 , the rates of these reactions are +k1  and k2
+. Finally, the complexes 

TS1  and T S2  can dissociate with rates k 1
− and k 2

− respectively. We focus on the correlations that are induced on the 
active enzymes by the competitive interactions with the inhibitor. In the absence of noise, the two enzymes are 
negatively correlated, especially in proximity to the threshold (see Fig. 6a). The activation reaction introduces an 
additional source of stochasticity. As a consequence, the correlations between the active enzymes (T1a and T2a) are 
generally lower than the ones between the sequestered, inactive enzymes (TS1  and T S2 ) and of the ones of the min-
imal model. This additional layer of stochasticity also affects the profile of the Pearson correlation coefficient, 
which now displays a minimum around the threshold instead of the plateau shown for the minimal model (see 
Fig. 2c,e). This can be intuitively understood considering the fact that, in the minimal model, the plateau arose 
because the standard deviation of the targets roughly followed the behaviour of the covariance. The additional 
stochasticity related to the activation dynamics is not affected much by the sequestration dynamics, thus the 
standard deviation keeps growing with the total number of targets not compensating the slow-down of the covar-
iance, giving rise to the minimum.

Let us now turn our attention to the case in which extrinsic noise introduces fluctuations in the number of 
sequestrant molecules. As in the minimal model, such fluctuations can induce positive correlations between the 
active target, especially around the threshold (see Fig. 6b,c). Again, since the interaction with the sequestrant is 
diluted by the presence of an additional stochastic reaction, the correlation tends to be generally lower.

Discussion
Sequestration models are good approximations of many processes in nature, especially in biological systems. 
Although fairly studied, this kind of models still show novel features when their stochasticity is addressed. In 
this contribution we have considered how different sources of noise can affect the properties of a minimal model 
with sequestration dynamics. We started by analysing again the deterministic version of this system, where, as 
expected6, two species with fixed abundances, here called sequestrant and target, mutually inhibiting each other, 
give rise to a threshold response. We then moved to a stochastic version taking into account intrinsic noise due 
to the probabilistic nature of the interactions in the system. Via an exact analytical solution we checked that the 
threshold behaviour is maintained for the average values of the targets in this context as well. We then made use 
of the derived set-up to investigate the effects introduced by an extrinsic source of noise, which may be due to 
fluctuating environments, be they global external surroundings or simply other cell molecular networks interact-
ing with the one under consideration. We have shown that extrinsic fluctuations in the total number of one of the 
inhibitors (the sequestrant), in combination with the threshold profile may result in a bimodal distribution of the 
other one (the target). This means that, close to the threshold, the extrinsic variability is channelled by the non-
linear sequestration mechanism into two main outputs corresponding to a repressed and an unrepressed state. 
This result identifies two minimal ingredients giving rise to bimodal profiles without the need of other regulatory 
links, i.e., (i) titrative (sequestration) interactions and (ii) extrinsic source of noise.

We have then extended the model to the case of two species competitively binding to a third one. Once again, 
taking advantage of the simplicity of the minimal model we have derived the analytical solution of the master 
equations to quantitatively address another key feature of the sequestration dynamics: the correlation induced by 
the competition for binding to the same sequestrant. We have shown that, without extrinsic fluctuations on the 
total abundance of the sequestrant, a significant negative correlation is present when the total amount of targets 
outnumbers the sequestrant. Together with this expected effect of the competition, we have identified non-trivial 

Figure 6.  Correlations for competitive inhibition. (a) Pure intrinsic noise case: contour plot of the Pearson 
correlation between the active enzymes T1A and T2A as a function of the total number of enzymes T1T and T2T. 
ST = 30, K K 0 04d d

1 2= = . , c k k c k k/ / 1 25S f r S f r
1 1 2 2= = . . (b) Extrinsic noise: contour plot of the Pearson correlation 

between T1A and T2A as a function of T1T and T2T. 〈ST〉 = 30, σ = 6ST
, K K 0 04d d

1 2= = . , c k k c k k/ / 1 25S f r S f r
1 1 2 2= = . . 

(c) Correlation between the active enzymes as a function of T1T for different levels of extrinsic noise. The blue line 
on the bottom corresponds to the pure intrinsic noise case, for the other lines ST

σ  assumes the values: 2, 4, 6, 8, 10, 
12. 〈ST〉 = 30, T2T = 20, K K 0 04d d

1 2= = . , c k k c k k/ / 1 25S f r S f r
1 1 2 2= = . .
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trends of the correlation in presence of an extrinsic source of noise. Fluctuations in the total sequestrant amount 
affect in a similar way the free amounts of both targets. As a result, despite the competitive dynamics of the tar-
gets, positive correlations are induced by the extrinsic fluctuations of the common sequestrant.

These findings, obtained in a highly simplified description, have highlighted some key features that are likely 
to occur in more detailed models describing specific biochemical settings. To probe this, we have investigated 
the more complex case of competitive inhibition in enzymatic kinetics. This system features an additional reac-
tion downstream of the sequestration interaction, which, with its stochasticity, partially dilutes the coupling 
between competitors, smoothening the distribution profiles and partially hindering the appearance of bimodality. 
However, we found that, with the due adjustments, extrinsic noise on the inhibitor can induce bimodal distribu-
tions and positive correlations between the enzymes. This suggests that the possible constructive role of extrinsic 
noise we have highlighted in the minimal model may be at play in more complex systems of biological relevance. 
Models of these systems would be more complicated, including different intermediate steps in the reactions of 
mediation between sequestrant and target or using saturation functions for production rates. Nonetheless, when-
ever sequestration dynamics are present, we expect our findings to be of relevance for such complex systems as 
well, where they may serve as guidelines to identify the most relevant parameters affecting correlations and the 
presence of bimodal distributions (as for instance in the cases discussed in refs1–14). A system for which our results 
will be of particular importance is the post-transcriptional regulation achieved by short non-coding RNAs inter-
acting with messenger transcripts in eukaryotic cells10,13,15.

Methods
Solution of the two-targets model.  As presented in the main text, from eqs (14) and (15) with the con-
servation laws (16–18) one can write the master equation that describes the dynamics of the system:
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Making use again of the conservation laws (16–18), the master equation can be written in terms of T1 and S 
only:
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In order to find its steady-state solution, we first notice that detailed balance holds. By using detailed balance, 
the following relations for the steady-state probability are obtained:

− = + + + +− +k T T P T S k T S P T S( ) ( , ) ( 1)( 1) ( 1, 1), (34)T
1

1 1 1
1

1 1

− − + = + + − + − + + .− +k S T S T P T S k S T T S S T P T S( ) ( , ) ( 1)( 1) ( , 1) (35)T T T T T
2

1 1 1
2

1 2 1 1

Dividing eq. (35) by P(T1), we can write a recursive relation for the probability of having S free molecules 
conditioned on the fact that a generic number T1 of molecules are free:

P S T k
k

S T S T
S T T S S T

P S T( 1 )
( 1)( 1)

( )
(36)

T T

T T T
1

2

2
1 1

1 2 1
1+ | =

− − +
+ + − + − +

| .−

+

In this system, as discussed in the main text (and shown for an example in Fig. 2f), the minimal number of free 
molecules of S can either be Smin = 0 if ST ≤ T1T + T2T − T1, or Smin = ST − T1T − T2T + T1 when ST > T1T + T2T − T1. 
Equation (36) can be used to recursively write the expression of P(S|T1) starting from the probability P(Smin|T1):
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Writing P(T1, S) = P(S|T1)P(T1), we can insert eq. (37) in the first relation of detailed balance, eq. (34). 
Defining ⁎≡ +S S Tmin min 1, the obtained relation can be explicited for the marginal probability P(T1 + 1) as 
follows:
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Recursively applying eq. (38), we can write the analytical expression of the marginal probability P(T1):
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where P(Tmin) is the probability of having the minimal number allowed of free T1. Tmin is defined by the total 
amount of S and T1. According to Table 1, the two possible cases can either be T1min = 0 when ST ≥ T1T, which 
means that in principle all the molecules of T1 can be bound to molecules of S, or T1min = T1T − ST when ST < T1T, 
meaning that even if all the molecules of S are bound to molecules of T1, T1min molecules are free. When T1min > 0 
we have that + = − − + − = − ≤S T S T T T S T 0min min T T T T T T1 1 2 1 2

⁎ , then the conditional probability at the 
numerator in eq. (39) is P(0|T1min). Conversely, if T1min = 0, the conditional probability can either be P(0|T1min) or 

⁎P S T( )min min1| , depending on the sign of Smin
⁎ . The probability P(T1, S) can be reconstructed by using the definition 

of joint probability P(T1, S) = P(S|T1)P(T1), which leads to the following expression:
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with +⁎P T S T( , )min min min1 1  given by the normalization of the probability distribution:
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Also for the joint probability if T1min > 0, then S T 0min min1+ ≡⁎ , while when T1min = 0, the value of ⁎Smin is given 
by its definition ≡ − −⁎S S T Tmax( , 0)min T T T1 2 .
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