
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Flexible on-line reconfiguration of multi-core neuromorphic platforms / Barchi, Francesco; Urgese, Gianvito; Siino,
Alessandro; Di Cataldo, Santa; Macii, Enrico; Acquaviva, Andrea. - In: IEEE TRANSACTIONS ON EMERGING TOPICS
IN COMPUTING. - ISSN 2168-6750. - ELETTRONICO. - (2019). [10.1109/TETC.2019.2908079]

Original

Flexible on-line reconfiguration of multi-core neuromorphic platforms

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TETC.2019.2908079

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2730005 since: 2020-02-22T01:19:01Z

IEEE

1

Flexible on-line reconfiguration of multi-core
neuromorphic platforms

Francesco Barchi, Student Member, IEEE, Gianvito Urgese Member, IEEE , Alessandro Siino,
Santa Di Cataldo, Enrico Macii, Fellow Member, IEEE and Andrea Acquaviva, Member, IEEE

Abstract—Neuromorphic architectures are emerging not only for real-time simulation of brain-scale biological neural networks but also
to support innovative brain-inspired computational paradigms. In both domains there is an increasing demand for flexibility in terms of
network configuration and runtime redesign of network parameters and simulated neurons models. Due to the intrinsically high
parallelism of these architectures and complexity of the interconnect, broadcasting updates to the cores is time consuming. Hence,
static solutions where the network is reloaded from an external host instead of being reconfigured are highly inefficient. To address
these requirements, we designed an Application Command Protocol (ACP). The proposed protocol provides a mechanism to remotely
trigger the execution of high-level op-codes by the cores and manage their application memory, and supports a more flexible
computational model and memory management. We worked on SpiNNaker, a multi-core globally-asynchronous locally-synchronous
platform running Spiking Neural Networks (SNNs) simulations. We demonstrated ACP in two SNN applications: i) SNN configuration,
where simulation data are efficiently generated through ACP in the memory of computing nodes and ii) SNN reconfiguration, where
ACP is used to change SNN network parameters at runtime and to easily switch from learning to test phase in a SNN classification
application.

F

1 INTRODUCTION

N EUROMORPHIC PLATFORMS represent an intensive re-
search area because of their capability of efficiently

simulating biologically-plausible neural networks. Neuro-
morphic platforms are highly parallel architectures with a
dense interconnect which allows to efficiently communicate
signals (i.e. spikes) between computing nodes, to mimic
brain neural connections.

Their use in computational neuroscience aims at study-
ing biological interactions underlying brain functions
through the simulation of neural networks using physical
neuron models [1], [2], [3], [4].

Spiking neural networks (SNNs) or third generation neural
networks [5] are commonly adopted in this context because
they exploit Ordinary Differential Equations describing the
behaviour of neurons. In the presence of a stimulus, each
neuron communicates with other neurons through electric
pulses (spikes). A spike generated by a neuron travels to
other neurons and increases or decreases their potentials
according to connection weights (synapses).

Because of their effectiveness in executing tasks in which
the human brain is typically much more efficient com-
pared to more traditional computation models, neuromor-
phic platforms are attracting ever-growing interest as hard-
ware support for innovative brain-inspired computational
paradigms [6]. Because of their inherent capability of us-
ing the temporal dimension (i.e. the time interval between
spikes) to encode information, SNNs are successfully ap-
plied to various domains where temporal dynamics are
relevant, such as speech and image processing, data-stream

• All authors are with the Department of Control and Computer Engineer-
ing - DAUIN, Politecnico di Torino, Torino 10129, Italy
E-mail: gianvito.urgese@polito.it

• This research has been founded by Human Brain Project.

Manuscript received MONTH dd, yyyy; revised MONTH dd, yyyy.

classification, and autonomous robotics [5], [7], [8].
A wealth of research is dedicated to improving vari-

ous aspects of neuromorphic platforms, such as processing
time, power consumption and flexibility of the computa-
tion model. In this paper we focus on the latter, trying to
overcome the limitations impacting both brain simulation
efficiency as well as their usage as accelerators.

In both domains (SNN simulation and SNN applica-
tions), these platforms have to be loaded with data to config-
ure the network. Typically these platforms are connected to
an external host computer where configuration information
is generated. A host-to-platform communication channel is
used to convey this data to an input port of the platform.
From here, data should be broadcasted to the computing
nodes simulating the neuron models. Due to the high degree
of parallelism and the complexity of the interconnect, this
communication is in general time consuming and needs to
be efficiently managed.

This aspect becomes critical not only during initial net-
work configuration time but also when several simula-
tions have to be performed to explore network parame-
ters in brain simulations, where configuration data must
be reloaded. Moreover, in SNN applications it may be
needed to update neuron models. For instance, the host
must trigger a switch from a “learning” neuron model
used during network training to a “test” neuron model
during a classification task execution. This would require a
communication protocol supporting a host-controlled run-
time network update. In general, these platforms would
benefit from a mechanism supporting remotely triggered
self-reconfiguration, to reduce the cost of communication
from the external host and to better exploit their inherent
parallelism. Also, implementing a host control of cores
execution flow, their usage as accelerators would be more
effective and flexible.

2

In this paper, we describe the Application Command Pro-
tocol (ACP) that we designed for this purpose. We imple-
mented it on a general-purpose many-core neuromorphic
platform called SpiNNaker [4] (Figure 1). ACP works at the
application level and extends the state-of-the-art software
for this platform increasing its flexibility and efficiency of
reconfiguration. In particular, it allows the transmission and
interpretation of high-level op-codes defined by the users
and embedded in the distributed applications (i.e. Remote
Procedure Calls - RPCs). Indeed, cores can thus execute com-
mands transmitted by the host. The protocol supports both
host-to-platform and core-to-core communication. Through
this mechanism, the protocol also implements the possibility
to manage the cores memory (i.e. triggering read/write
operations) by abstracting physical memory addresses using
virtual IDs (defined as Memory Entities). As a result, cores
can communicate, trigger operations and synchronise their
execution.

We demonstrate the effectiveness of the proposed proto-
col in two applications. One is the interactive data loading,
where we use ACP to generate SNN configuration data
interactively on-board, meaning that host packets trans-
mission and configuration data generation phases can be
overlapped. This reduces memory requirements and better
exploits the platform parallelism.

The second application is the SNN application reconfig-
uration. Here ACP allows the host to change the synapse
delay during SNN simulation or to update the neuron
model from learning to test in an SNN classification task.

Besides these examples, more generally ACP enables the
embedding of alternative computational flows in the appli-
cations running on the board allowing the host to control
their behaviour at runtime through RPCs and manage their
memory using Memory Entities. Exploiting these features,
ACP also provides core-to-core communication and syn-
chronisation support.

The rest of the paper is organised as follows. Section 2
provides an overview of the neuromorphic platform used
in this work, with a description of the SW/HW architecture.
Section 3 introduces the main concepts of the ACP protocol,

Figure 1: The SpiNNaker Board: A building block of a
SpiNNaker machine, containing 48 chips for a total of 864
ARM processors.

while Section 4 describes ACP design and implementa-
tion features in details. Section 5 presents ACP protocol
performance tests and results obtained when applying the
protocol in the two SNN applications case studies. Section 6
draws conclusion and highlights future developments.

2 BACKGROUND

SpiNNaker is an application-specific massively parallel ar-
chitecture designed in 2006 by Furber et al. [4] for simulating
a large scale SNNs in real-time. Platform configuration
requires several software modules for converting the SNNs
simulations, designed by neuroscientists, into executable
and configuration files to set-up the board [9], [10].

The SpiNNaker HW architecture is made of general pur-
pose ARM cores. These processors are flexible and capable
of aiding in the rapid evolution of neuroscience research.

The main features of the SpiNNaker platform are re-
ported in the following subsections. Further details about
the SpiNNaker architecture can be found in [4], [11]. Sup-
porting tools are described in [12] while Rast et al. [13], [14]
describe spinnaker communication protocols and systems.
In [15] is described the profiling methodology adopted to
highlight some of the bottlenecks of the SpiNNaker com-
munication system. Whereas in [16], [17] authors introduce
a new partitioning and placement algorithm developed to
place the neurons to be simulated on the SpiNNaker board
evaluating the impact of these techniques on the reliability
of the simulations.

2.1 An overview on the SpiNNaker Machine
A SpiNNaker Machine is a massively-parallel architecture
(1 036 800 SpiNNaker Cores) designed to simulate in real-
time Spiking Neural Networks (SNNs). The simulation be-
gins in the host computer, where SNNs are described in
software using PyNN [18], a simulator-independent Python
library. The PyNN description of the SNN is elaborated in
the host using a set of Python packages able to translate
the SNN into configuration files to be sent to the SpiN-
Naker board [16], [19], [20]. Then, in the standard config-
uration flow, the generated files with detailed description

Figure 2: SpiNNaker Architecture: The schematics of a
SpiNNaker Chip with processors, router and shared mem-
ory.

3

of memory regions are transmitted to every single core of
the SpiNNaker Board involved in the simulation. After this
configuration phase, the simulation can start. During the
execution of SNN simulations on the SpiNNaker Machine,
spikes are represented as packets and transmitted through
the network using the routers of the SpiNNaker chips [21]. A
minimal operating system kernel (called SARK) and a set of
light libraries are used by the cores to support the execution
of the code and to manage the in/out packet transmission.

The primary element of the SpiNNaker Machine is the
SpiNNaker Chip that represents a single node of the system
[13]. This node, shown in Figure 2, is a SoC comprising 18
SpiNNaker Cores, 32 kB of System SRAM, 128 MB of DDR-
SDRAM and a custom router. Each SpiNNaker Core is an
ARMv5TE processor (ARM968@200 MHz) equipped with
two Tightly Coupled Memories: 32 kB for Instructions and
64 kB for Data.

At the board start-up, each node selects a SpiN-
Naker Core to be used as Monitor Processor (MP) for man-
aging the entire node. All the other 17 cores are available for
the execution of user-defined applications written in C [10].
This last class of cores are called Application Processors (APs).

The SpiNNaker Chips are welded on a SpiNNaker Board
(SpiNN-5), a Printed Circuit Board that hosts 48 nodes
connected in a hexagonal mesh. This network structure
allows each chip to communicate with its six neighbours by
using custom routers placed on each node, implementing an
onboard communication system [22].

The off-board communication between the Host Com-
puter and the SpiNNaker Board is supported using a
100 Mbit Ethernet interface connected to a single SpiN-
Naker Chip (Root Node). The Root Node that receives UDP
packets from the Host is in charge of forwarding the payload
of UDPs within the network of nodes.

2.2 Communication system

The SpiNNaker Machine has a multilayer communication
system which uses the On-board routers, designed to sup-
port four types of packet, for implementing different com-
munication protocols useful for low-level communication,
kernel setting-up, host-to-board communication and (as we
will see in 3 Section) to support the communication of
parallel applications.

2.2.1 On-board communications

The custom router has a central role in the management of
communications between nodes. The Router can transmit
four types of packet, everyone not larger than 72 bits:

• The Point to Point (P2P) packet format is used by
SpiNNaker Chips to transmit packets between two
specific routers of the system (40 bits of header and
32 bits of payload). Only Monitor Processors can
handle this type of packet.

• The Multicast (MC) format is used by Application
Processors to transmit packets to many cores across
the simulation. It is widely used in neural simula-
tions to spread spikes to multiple destinations.

• The Nearest Neighbour (NN) packets are used at low-
level for implementing a keep-alive mechanism to

check for broken links. This type of packet can reach
only the six neighbouring chips.

• The Fixed Route (FR) packet can be used by all the
cores to exchange data with the Ethernet controller.

During the SNN simulations, the application processors use
the multicast packets directly for transmitting the generated
spike events to the target APs. On top that, a higher level
protocol (Spinnaker Datagram Protocol, SDP) implemented in
software is available for the transmission of larger payloads
between cores. SDP is currently based on P2P communica-
tion.

2.2.2 Off-board communications

The communications with the Host Computer are made
possible through the Ethernet interface connected to the
Root Node, that redirects all the received Spinnaker Datagram
Protocol (SDP) packets (encapsulated in UDP/IP) to its Mon-
itor Processors [23] (Root Processor). The Root Processor,
indeed, acts as a middleware between the SDP protocol and
the network of nodes. Once the Root Processor retrieves
an SDP packet, it splits the packet into 32-bit fragments
and sends each fragment to the destination core through
P2P packets. A mechanism of acknowledgements (ACK)
between the Monitor Processor (MP) of the sender and
the receiver MP makes the transmission of SDP packets
reliable. When all the fragments of the whole SDP packet
are received, the receiver MP copies the reconstructed SDP
packet into a portion of System RAM (Message Box) and
triggers an interrupt to the target core. Then, the target core
can react to the interrupt and read the SDP from Message
Box.

2.2.3 Kernel communications

The most used protocol for interacting with the OS kernel
running on cores is the Spinnaker Command Protocol (SCP),
which is a format encapsulated in the data field of the
SDP packet [24]. The header comprises 16 Bytes, and the
supported payload is up to 256 Bytes. SCP is used for low-
level interactions with SpiNNaker systems such as simula-
tion configuration, program loading, and debugging. Kernel
software running on every active core accepts the com-
mands and use them to perform low-level functions such
as getting kernel version running on the SpiNNaker Cores,
reading/writing the memory locations, and triggering the
execution of programs. The SCP provides four low-level
instructions for accessing chip resources and extracting de-
bugging information, such as the working state of the APs
or the number of packets processed by the Router. Further-
more, SCP provides signals for controlling the application
execution state and for modifying the AP memory at low-
level.

The implementation of this protocol is embedded in the
kernel (SARK) that must be kept as light as possible because
of the limited memory resources and small computational
power of the cores. Working at the kernel level and missing
a direct interface to applications, SCP cannot be used to
support the features discussed in this work, for which we
need an application-level protocol such as ACP.

4

Figure 3: ACP framework and transmission flow. In box 1, the ACP framework interactions. In box 2, the Monitor Processor
workflow for managing the incoming packets. In box 3, the Application Processor workflow performed to interpret the
incoming commands.

3 THE APPLICATION COMMAND PROTOCOL

In this section we define the Application Command Protocol
(ACP), a high-level command protocol and memory man-
agement system that can be used to reconfigure memory
data structures of the application software running on SpiN-
Naker.

The first section of Figure 3 (Figure 3.1) depicts a simpli-
fied representation of the software stack. More specifically,
the current version of the stack without ACP is shown on
the left, and our proposed solution leveraging APC on the
right. Interfaces are also highlighted in the figure.

As can be gathered from the upper left section of the
figure, there is no direct interface between SCP and ap-
plications. Hence, using SCP to interact with applications
requires passing through significant modifications of the
kernel. On the other hand, in our proposed solution ACP
provides direct communication with the application. This
significantly reduces the development efforts and improves
the usability and flexibility of the software stack. Based on
this design, we could implement the new RPC and memory
management functionalities (based on Memory Entities)
provided by ACP.

We implemented ACP as an application library that can
be used by the applications.

To support the communication between processors in
distributed applications, we defined the ACP packet format.
The header of an ACP packet consists of 4 Bytes containing
the Packet ID and the Command ID. The following bytes are
used for the header of the command (from 4 to 12 Bytes)
depending on which command ID is in the packet. Likewise,
the format of the Command Payload depends on the type of
command, it has a maximum limit of 264 Bytes length.

An ACP message can be transmitted over the board
using two communication channels. The ACP over SDP uses
the SDP protocol implemented in the native SpiNNaker soft-
ware stack. The Monitor Processor of the sender chip breaks
the SDP packet into P2P packets and sends them to the
Monitor Processor of the receiving chip. The ACP over MC
uses the multicast (MC) channel. The sender Application
Processor breaks each ACP packet into a set of MC packets,
each one is a 32 bits fragment, and transmits them using
the SpiNNaker native multicast transmission protocol. In
a recent work [25], we have used the MC channel for

implementing minimal support of an MPI implementation
and a synchronisation system for the SpiNNaker platform.

4 ACP WORKFLOW

In Figures 3.2, 3.3 we show the workflow designed to
manage the ACP. The Monitor Processor mediates the
ACP over SDP implementation using point to point connec-
tions. Whereas the ACP over MC implementation is directly
managed by the Application Processors and allows for
multicast1 and broadcast2 transmissions.

The ACP is implemented in two libraries, Spynnaker-
ACP and SpinACP. The SpynnakerACP is implemented as
a Python package and is organised as a collection of classes
and utility methods used in the host computer to create,
send and receive commands to SpiNNaker chips through
the Ethernet connection. The library provides a framework
to define the functions to be implemented when a SpiN-
Naker core receives a command. The framework is cus-
tomisable, as users with particular needs can extend the
default set of commands for supporting new functions that
will help the design of flexible applications.

The SpinACP is built on top of SARK and uses the
event-driven programming model provided by the Spin1
library. This module provides three main functionalities:
i) At network level, it implements the two systems for
sending command packets over the network (ACP over SDP
and ACP over MC). ii) It provides a customizable framework
for supporting command management (Remote Procedure
Call). iii) It implements an abstraction level of the memory
blocks through the definition of Memory Entities.

4.1 Network Management
ACP allows two or more APs to communicate with each
other. It also puts in communication an AP with the host giv-
ing the possibility to an AP to start a communication even if
not explicitly interrogated by the host. Another innovation
is the possibility of connecting and synchronising many
APs with each other, using an integrated system that we
have already exploited in MPI to synchronise the executed
application globally.

1. One processor sends a message to a subset of processors.
2. One processor sends a message to all the others processors.

5

As discussed, ACP makes use of two types of packets
(ACP over SDP and ACP over MC) to support the commu-
nication of a distributed application. When an applica-
tion processor (APa) needs to send an ACP packet using
the ACP over SDP channel to another application processor
(APb), a sequence of events occur:

1) The APa writes the SDP inside the shared memory.
2) The APa sends an interrupt to its monitor processor

(MPa) to inform him of the presence of a pending
packet.

3) The MPa manages the request and fragments the
packet into 32 bit chunks.

4) The MPa sends the fragments to the monitor proces-
sor of the destination chip (MPb) through the P2P
channel.

5) The MPb receives the P2P packets and rebuilds the
SDP packet. When the SDP packet has been recon-
structed, the MPb saves it in the shared memory.

6) The MPb sends an interrupt to the destination APb

to inform him of the presence of a pending packet.
7) The APb retrieves the SDP message from the shared

memory.

The ACP implementation intercepts the incoming SDP
and checks the port field contained in its header. The port
field is a 3-bit field and behaves as the TCP or UDP port. If
the port field is set to 0b111, the SDP payload is identified
and passed to the ACP packet interpreter.

The ACP packet interpreter reads the command ID field
and checks whether the command can be executed (i.e. its
execution function is registered). If this is the case, command
header and payload are passed to the next phase that is
performed by the function associated with the command.

When an application processor needs to send an
ACP over SDP to the host computer, the flow is similar, the
only difference being that the MPb is the Root Processor.
The Root Processor envelopes the SDP inside a UDP/IP
and then forwards it to the host computer, where the ACP
runtime library is ready to intercept it. When the commands
are generated off-board, e.g. by the host computer, they are
transmitted to the Root Processor using UDP/IP. The Root
Processor extracts the SDP packet and forwards it using the
mechanism described above.

When an ACP command is sent to many destinations, it
can be managed with ACP over MC. This mechanism, which
is our specific design, does not make use of the Monitor
Processors. Instead, the fragmentation and re-composition
of the ACP into the MC packets is performed directly by the
Application Processors by using a low-level protocol based
on multicast packets [25].

With these two mechanisms, the ACP commands can
be employed to change at run-time the execution flow
and the data structures of the applications running on the
APs. This feature can be exploited to trigger alternative
execution flows, based on signals that are not predictable at
configuration time.

4.2 Command Management

The command management ACP functionality (RPC) can
be recreated in the SCP by modifying the SARK kernel

in order to support new commands3. However, extending
the available commands requires extensive kernel modifi-
cations, with additional efforts devoted to maintaining the
kernel light, stable, and safe.

Instead, ACP only requires to create and record new
call-back in the command call-back list, allowing the user
to easily define custom commands. More specifically, the
user registers the function implementing the command in-
terpreter as a callback function on the ACP library. This
function is associated with an identifier, Command ID, and
stored in a hash-table. This solution provides much better
flexibility than a static vector.

When the ACP packet (Figure 3.3) is processed, the fol-
lowing steps are involved:

1) The ACP header is read, and the Command ID is
extracted.

2) The ACP library searches the hash table for the
callback function coupled with the Command ID.

3) If the callback does not exist the command is ig-
nored, otherwise the function pointer is extracted.

4) The selected callback reads the command header
section and executes the command.

5) If required, the selected callback reads the command
payload section.

6) If the command requires a reply, an ACP packet is
created and appended to the outcome packet queue.

4.3 Memory entities

The ACP implementation also provides a set of built-in
commands useful to manage Memory Entities. A memory
entity is a block of bytes with a configurable size4, that
may be physically allocated in the DTCM or the SDRAM.
A memory entity has an identifier, Variable ID, and it
is internally described by an Abstract Data Type (ADT).
Memory entity descriptors are collected (like the commands
callbacks) inside a hash-table.

The life of a Memory Entity starts with its declaration
specifying its Variable ID and its size. Furthermore, it is
possible to associate an action, callback, to be executed when
a memory entity is accessed. A memory entity callback can
be registered within three different decorators. The action
decorator defines which action triggers the callback: read,
write or delete. The temporal decorator defines when the
callback has to be triggered: before or after the command ex-
ecution. The provenance decorator defines where the callback
has to be triggered: if the command comes from the same
processor (local command) or another processor (remote
command).

This memory management system virtualises the mem-
ory block and allows much higher flexibility in memory
access because it does not require access to the AP memory
image saved in the Host Computer. In the current version,
the ACP protocol does not provide a native retransmission
system to prevent the loss of packets. However, users can

3. Currently each Application Processor can execute four SCP com-
mands: Get Kernel Version, Memory Read, Memory Write and Appli-
cation Run.

4. The maximum size is 256 Byte, like the maximum payload carried
by an ACP packet

6

register a global callback, after the ACP header interpreta-
tion, to handle an unexpected Packet ID and to implement
a system capable of recovering eventually lost packets.

5 ACP CASE STUDIES

In order to demonstrate the advantages of the proposed
solution, we exploited ACP to enhance existing applications
in the development environment for SpiNNaker (Figure 4).
Within such applications, we assessed the added value
provided by ACP in terms of additional features compared
to the existing support (i.e. SCP).

The first application taken into consideration is the
program used to configure the cores before a simulation.
We have introduced ACP in the configurator in order to
overcome some limitations imposed by the current SCP-
based system. The configurator consists of an interpreter of
commands executed on each processor of the architecture,
that needs a set of op-codes preloaded in memory. In the
current system, the entire op-code sequence is introduced
into memory using SCP. With ACP, a configurator is now
capable of receiving op-codes at runtime, with a two-fold
advantage: i) a reduced use of memory (it is not necessary
to store an entire list of op-codes but only a portion) and
ii) the parallelisation of the procedure (while sending op-
codes to processor B, processor A starts to process its set of
op-codes). This application has also been used to profile the
performance of the framework.

The second application taken into account is the neu-
ronal model used in SNN simulations. More specifically,
we introduced ACP in the implementation of the neuronal
model, in order to allow the reconfiguration of some op-
erating parameters of the synapses during the simulation.
This was exploited within two different applications: an
SNN classifier, and an SNN simulation where we tune the
synapse delay parameter.

The classifier SNN is made of two phases, learning and
testing. The current SCP-based pipeline requires running a
complete simulation in both phases, due to the necessity of
using two different neural models, one for the learning and
the other for the testing. The introduction of ACP avoids
this overhead, allowing a re-configuration of the neuron’s
behaviour that makes it usable in both phases.

The SNN simulation consists of a linear sequence of neu-
rons that stimulate each other. Within this application, we
evaluated the possibility of either tuning SNN parameters
or introducing complex behaviours to the simulation in real-
time. More specifically, we introduced ACP in the neural
model to allow the modification of the delay of the synapses
during the simulation.

5.1 ACP for Interactive Data Loading

The benchmark application described in this section is a
program used to configure SNN simulations. Our modified
configurator runs on the host computer and sends com-
mands to the SpiNNaker Board.

When a simulation runs, one of the very first steps
involving the nodes of the board is the data specification (DS)
phase. DS is one of the most critical phases concerning the
time of execution as well as resources management. This

Figure 4: Two application improved by the usage of ACP.
On the left, we used ACP for implementing a parallel
transmission system of op-codes that configure the many
processors of the board. On the right, we used ACP for
triggering two different synaptic behaviours of a neuron
model during an SNN simulation.

phase aims to fill the memory of Application Processors
(APs) with the configuration data needed for running a
simulation. Two implementations of the DS phase were
discussed in previous work by Siino et al. [26]. In the
following, we briefly summarise the main features.

Each NMI is equipped with its data specification generator
(DS-G). The DS-G produces a sequence of commands (op-
codes) that together make up the data specification program
(DS-P). The DS-P is executed by a virtual machine called
data specification executor (DS-E) which, processing each op-
code, configures the memory of the application processor.

The DS-E can be performed on the host computer (DS-E
on-host) or directly on SpiNNaker Board (DS-E on-board).

The DS-E on-host version produces a memory image
for each AP. All data are sent to the SpiNNaker Board and
written in the memory of each involved core. As the full
memory image is transmitted in a serial way core-by-core,
this implementation does not fully exploit the intrinsic high-
parallelism and low-power consumption of the SpiNNaker
system. The computational effort of DS-G and DS-E phases
remains on the host side.

A DS-E on-board version is also available and can be ex-
ecuted by SpiNNaker application processors and deployed
into each core involved in the simulation. To use this ver-
sion, the host must first transfer DS-P to the cores. Then, the
on-board DS-E will generate the data structures directly on
the SpiNNaker memory.

While this implementation avoids the need to transfer
core application memory images from the host, still it re-
quires to upload the full DS-P to the core memories. With
ACP, we overcome this limitation, and we provide two
advantages: i) The DS-P can be executed on-the-fly through
RPCs sent by the host (Interactive DS-E On-board), without
requiring its complete transfer, thus saving memory; ii)
It allows to exploit platform parallelism, as configuration
commands are spread to the cores that can generate their
data structures in parallel (Interleaved Transmission).

7

5.1.1 Interactive DS-E On-board
The interactive DS-E on-board makes use of the ACP for the
transmission of the data specification program. We use this
application to evaluate the performance and the reliability
of the ACP implementation counting the number of packets
lost as a function of the Packet Delivery Delay Time (tpdd), that
is the time elapsed between the transmission of two packets.
This delay between packets avoids overloading the monitor
processors involved in the transmission, thus improving the
reliability of host-to-board data transmission.

We used as testcase the configuration of a biologically
inspired SNN designed by Potjans et al. [27] and implement-
ing the four layers constituting the human brain Cortical
Microcircuit (CM). We scaled-down the number of neurons
and synapses to 10% of the original network (CM10) to
satisfy time and resources constraints for fitting the SNN
simulation in a single SpiNN-5. The SpiNNaker software
maps the CM10 SNN on 240 cores distributed among 15
chips of a single SpiNNaker Board.

The Figure 5 reports the per-processor distribution of
memory requirements of this application when SCP is used
to load the whole data specification programs. As it can
be easily gathered from the plot, the distribution of DS-
P size is very heterogeneous, and a significant amount
of the overall data transmission have very large memory
requirements (>1 MB). On the other hand, using ACP for
the same application, we obtained data transmission always
happening in chunks of small fixed size (1 kB). Hence, ACP
reduces the memory footprint by 90% at least. This has a
positive impact on the memory access time, as it allows to
leverage the fast DTCM memory (64 kB upper-bound). On
top of that using the ACP the overall CM10 configuration
time is reduced from 213 to 190 seconds.

The ACP packets encapsulate the DS op-codes inside
an ACP over SDP packet and are transmitted using two
techniques: Serial and Interleaved. In the Serial transmission
we consecutively send all packets directed to a processor
before changing the destination. Whereas, in the Interleaved
transmission we change the destination for each packet so
that we never send two consecutive packets to the same
chip. We run both Serial and Interleaved transmission 20
times, one per each tpdd value, in a 50 µs to 500 µs range
using a 50 µs step.

During these runs, we counted how many APs com-
pleted the configuration and how many packets were lost.
The loss of a packet is confirmed by the processor when the
application receives a packet with an unexpected sequence
number. On the Monitor Processor side, we counted the
occurrences of Software Error (SWE). An SWE is the error
triggered when the Root Processor fails to send an SDP to a
target Monitor Processor. When too many SWEs occur, the
Root Processor enters in the Runtime Error (RTE) status and
it stops, making the SpiNNaker Board unreachable by the
host. During our evaluation of the results, we considered
the (RTE) a critical failure for the test. Conversely, we con-
sidered successful those tests terminated with SWE counter
equal to zero.

The test environment consists of a host computer,
equipped with an Intel Core i5-4670 @ 3.40GHz, 4 GB DDR3-
RAM and running GNU/Linux Debian 8 (Jessie) distribu-
tion, a Gigabit Ethernet Switch and a SpiNN-5.

160

0 0 2

40
32

6
0

20

40

60

80

100

120

140

160

180

0-206 207-412 413-618 619-824 825-1030 1031-1236 1237-1442

N
um

be
r

of
 P

ro
ce

ss
or

s

Memory in kB

Memory required for CM10% DS-P

Figure 5: DS-P Memory Footprint. Per-processor memory
usage of Data Specification Program leveraging SCP.

5.1.2 Serial transmission
In the first set of tests, we implemented a serial trans-
mission for stressing the Application Processors and the
destination Monitor Processor detecting the minimum tpdd
that guarantees a reliable transmission without any loss of
packets. ACP over SDP packets are transmitted sequentially
from the Root Node to the Application Processor until the
configuration packages are consumed.

Table 1.SERIAL summarises the results of these stress
tests. The table refers to all 20 simulations for each tpdd
chosen. We detected critical failure conditions (RTE > 0)
when tpdd is in the range of 50-250 µs. In the case of tpdd time
equal to 50 µs, it was not possible to obtain any data because
all the twenty simulations failed. This critical failure is due
to a chain of events starting with the saturation of the shared
message box between MP and AP that creates a deadlock
condition overloading the MP in charge of dispatching the
ACP packets. Considering tpdd values above 250 µs the
system can configure the 99.999% of the APs (reliability class
of 9s equal to 5). From the results, we obtained a tpdd of
300 µs to avoiding the saturation of buffers in Application
Processors.

5.1.3 Interleaved transmission
We designed this benchmark to find the minimum threshold
of tpdd time that guarantees the correct transmission of all
configuration packets from the Root Processor.

In this scenario we avoided the overloading of the target
MP, stressing only the Root Processor. The host computer
forwards configuration packets so that two consecutive
packets are never sent to the same chip. For example, if
we want to configure the AP-1 of the Chip-0-0, the AP-2 of
the Chip-0-1 and the AP-3 of the Chip-1-0 respectively, the
procedure works as follows:

1) ACP over SDP Packet-1-1 is sent to the MP of the
Chip-0-0 and forwarded to the AP-1.

2) After a waiting time equal to tpdd, the Packet-2-1 is
sent from the Root Processor to the MP of the Chip-
0-1 and forwarded to the AP-2.

3) The Packet-3-1 reaches the MP of the Chip-1-0 and
is forwarded to the AP-3.

4) The Packet-1-2 is sent to the MP of the Chip-0-0 for
the AP-1.

8

SERIAL INTERLEAVED

tpdd [µs] Configuration Packets Root Processor APs

Missed / Total Class of 9s SWE RTE FINISH WAIT

50 ** ** ** 100% ** **

100 20 661 / 9 561 640 2 39 186 0% 63.9% 36.1%

150 1 570 / 9 561 640 3 28 273 0% 91.2% 8.8%

200 122 / 7 171 230 4 91 25% 96.7% 3.3%

250 71 / 9 083 558 5 96 5% 98.8% 1.2%

300 22 / 9 561 640 5 0 0% 99.5% 0.5%

350 13 / 9 561 640 5 0 0% 99.7% 0.3%

400 15 / 9 561 640 5 0 0% 99.6% 0.4%

450 9 / 9 561 640 6 0 0% 99.7% 0.3%

500 17 / 9 561 640 5 0 0% 99.6% 0.4%

tpdd [µs] Configuration Packets Root Processor APs

Missed / Total Class of 9s SWE RTE FINISH WAIT

50 136 089 / 956 164 0 131 070 90% 43.0% 57.0%

100 6 447 / 9 561 640 3 6 100 0% 57.1% 42.9%

150 314 / 9 561 640 4 179 0% 93.4% 6.6%

200 121 / 9 083 558 4 29 5% 97.3% 2.7%

250 19 / 9 561 640 5 1 0% 99.6% 0.4%

300 12 / 9 561 640 5 0 0% 99.7% 0.3%

350 26 / 9 561 640 5 0 0% 99.4% 0.6%

400 26 / 9 561 640 5 0 0% 99.4% 0.6%

450 9 / 9 561 640 6 0 0% 99.8% 0.2%

500 11 / 9 561 640 5 0 0% 99.8% 0.2%

Table 1: Test results. At variation of tpdd these tables describe: i) The number of ACP packets lost and the relative class of
9s (number of 9s in 1−missed/total). ii) The status of Root Monitor Processors in terms of Software error and Runtime
exceptions. iii) The status of Application processors in term of percentage of them that receive all own packets.

This mechanism of interleaved transmission continues
until the configuration is complete. In the final phase of the
transmission, if the cores to be configured lie in a single
chip the packet delivering delay is increased using a safety
threshold of 1 ms, in order to avoid saturation of the target
MP involved in the configuration of the last cores. Using
this technique, we prevent the burst transmission of packets
to the same SpiNNaker Chip, giving to the MP and to the
APs a sufficient amount of time to reconstruct and process
ACP packets.

The use of interleaved sending of configuration packets
made it possible to analyse the limits of the Root Processor
previously masked by the errors generated by the MPs of
the target chips.

In Table 1.INTERLEAVED we reported the results of this
test. We identified the critical failure condition (for all the 20
repetitions) that occurred when we imposed a delay time
tpdd of 50 µs and a single critical event for tpdd equal to
200 µs. In the tpdd range of 100 µs to 250 µs we detected
several SWEs that indicate the lower bound imposed by the
limits of the hardware component involved in the delivering
process of packets inside the SpiNNaker Board. We identify
the cause of this issue to a limitation of the Root Processor
used to fragment the SDP packets into P2P packets. The
system can configure the 99.999% of APs with a reliability
class of 9s equal to 5 using values of tpdd higher than 200 µs.

5.1.4 Profiling

The plots in Figure 6 show the occurrence of SWE when
the tpdd is increasing. We note a higher number of SWE
when ACP over SDP packets are transmitted with the Serial
method, thus validating our hypothesis that the interleaved
transmission is a valid solution to the issues related to
HW and time limits of target chips having to reconstruct
and interpret incoming ACP packets. In the interleaved
transmission the Root Node is responsible for the generation
of SWEs.

We consider as successful transmissions those without
errors. A transmission of this type can be detected for
tpdd ≥ 250 µs for interleaved and tpdd ≥ 300 µs for
serial loading. We highlighted, in the chart of Figure 6,
the presence of RTE using outliers points. This condition

happens at 200 µs for the Interleaved transmission and at
250 µs for the Serial transmission.

The missing packets counted at the target have a trend
similar to SWE (see Figure 6). The number of missing pack-
ets reduce to a value near to 1.0E-06 for tpdd ≥ 250 µs in
the Interleaved transmission and for tpdd ≥ 300 µs in the
Serial transmission. Even in this situation, we can observe
the same crash events represented as single points in the
figure.

In summary, we identify an ideal delay time of 300 µs
for the Serial transmission and of 250 µs for the Interleaved
transmission.

In Figure 7 we can identify four tpdd operating zones:
i) Green area: no problems encountered, all packets are
correctly transmitted; ii) Yellow area: only Interleaved trans-
mission can terminate without error; iii) Red area: detected
some issues, acceptable only when using Interleaved load-
ing; iv) Below 150 µs (grey area) the system is unstable. The
bandwidth profile shows the throughput for each operat-
ing zone: For yellow and green operating zones we reach
values between 6 and 8 Mbit per second. Whereas, the red
operating zone allows a bandwidth between 8 and 13 Mbit
per second.

5.2 ACP for SNN Applications Reconfiguration
In this section, we describe a test designed to highlight
the capability of the ACP when used for reconfiguring the
application parameters at runtime during the simulation.
For this test, we selected two different networks, where the
neuron model was modified to support the features defined
in the ACP.

The first network is a bio-inspired SNN for multivariate
classification designed by Schmuker et al. [28]. This SNN
is inspired by the chemical sense of insects evolved to
encode and classify odorants in the natural environment.
Schmuker et al. [28], based on these insights, developed
a computational method to encode, process, and classify
handwritten numbers.

The second network is an SNN composed of a chain of
neurons that stimulate each other (Synfire Chain) [29]. The
speed of propagation of neuronal stimuli (spikes) depends
on the synaptic delay of the individual synapses that con-
nect them.

9

Figure 6: Software Errors and percentage of missed packets for serial and interleaved transmission. The plot on the left
shows SWE at increasing values of tpdd (µs). The lone points are values inserted to take RTE into account (the y-axis is in
logarithmic scale, all values are incremented by 1 to avoid zeros). The plot on the right shows the number of missed packets
at increasing values of tpdd (µs). The lone points are values inserted to take RTE into account (the y-axis is in logarithmic
scale and represents a percentage).

Figure 7: Operating Region. This plot depicts trend of
communication bandwidth when tpdd (µs) is increasing.
The different operating zones are represented with different
colours. Red points represent values of four different bound-
aries. A is the last recommended value with the interleaved
sender: 13 Mbit/s. C is the last recommended value with the
serial sender: 7.5 Mbit/s. D is a secure value that works for
all senders: 6.5 Mbit/s. In B we get an unusual amount of
RTE.

5.2.1 SNN Classifier

The SNN-Classifier has three functional layers. In the first
layer, the original stimulus space is sampled by Virtual
Receptors (VRs) which respond proportionally to the data
input proximity, thus encoding the stimulus using cone-
shaped radial basis functions with large overlapping re-
ceptive fields. The centroids of the basis functions (the VR

points) were placed using the neural gas algorithm [30], a
self-organising process to map the feature space described
by a picture data set. In the second layer, the lateral inhi-
bition decorrelated the signals from the VRs. Signals from
Virtual Receptors (in the form of firing rates) reach the
Receptor Neurons (RNs) modelled as Integrate and Fire (IF)
neurons.

Each population of RNs excites a population of Projection
Neurons (PNs), which in turn send their spikes to one popu-
lation of Local Inhibitory neurons (LINs). Each LIN population
sends inhibitory projections to all other PN populations in
the second layer, exerting lateral inhibition, reducing the
correlation between VR channels and scattering the repre-
sentation of the multi-dimensional pattern. Signal decorre-
lation during the second layer significantly increases the
classification accuracy. Finally, in the third layer, olfactory
scent perception is modelled by a machine learning classifier
able to classify the input data linearly.

The synapses with plasticity model are situated between
the second and the third layer and are connected with a set
of neurons that have the functionality of trainers since their
signal selectively stimulates the synapses associated with
the class to learn at a given instant.

The execution of the SNN classifier is divided into two
execution phases: the training phase and the testing phase.
During the training phase, the network is built with plastic
synapses, and the trainer neurons are configured to emit
a spike so that the submitted sample (the samples are
presented for 200 ms) is coupled with the desired class.
With this implementation, in the absence of the trainer neu-
rons spikes, the plastic synapses deviate from the learned
weights, causing the incorrect behaviour of the network.
Hence, it is not possible to perform the test phase in the
same simulation of the training.

Another network configuration is required to solve this
issue. At the end of the Training phase, all the learned

10

Figure 8: Classifier Workflows. Two different workflows to perform training and testing phases with the SNN classifier.
Without the ACP the network uses the workflow to the top, the training and testing phases are two different simulations.
With the ACP usage, the network uses the workflow to the bottom, the training and testing phases are in the same
simulations.

weights are downloaded from the board and used to rebuild
the classifier using static synapses neuron. By re-running
this new network, it is possible to evaluate the classification
performance of the network.

We show the workflow on the top of Figure 8, where all
the operations to simulate an SNN classifier, require about
72 s. This time is the overall period required to perform
two generation phases (20 s each), two board configuration
phases (10 s each), two simulation phases (1 s each), a down-
load phase for recovering trained synapses weights (5s), and
a download phase for collecting classification results (5s).

We implemented the ACP inside the neuron application
to improve the overall simulation time. The application
uses an ad-hoc command to change the synaptic plasticity
behaviour. On the host side, an application (the Sender)
making use of the SpynnakerACP library, is in charge of
sending all processors the command for disabling the learn-
ing capabilities of plastic synapses. The Sender is executed
when the simulation is ready to be run on the board.

In this way, it is possible to perform both Training and
Testing phases with a single simulation and the usage of
the ACP Sender application configured to inhibit the plastic
synapses after 2 s from the start of the simulation. By doing
so, both the phases of the classifier are performed in just
about 38 s (2.2 s of simulation). We added 200 ms between
learning and testing phases to give time to the ACP Sender
to propagate packets to all the cores. This workflow is
depicted in Figure 8.

ACP Sender transmits with a Packet Delivery Delay
time, tpdd, set to 200 µs, allowing a safe transmission of the
switching packet to all 864 cores of a SpiNNaker Board in
about 170 ms. During the tests, we stressed the system run-
ning 12 instances of classification network at the same time.
As a result, we correctly sent all the ACPoverSDP packets
to all 864 cores involved in the simulation. The router
overload resulted in some missed MC packets, representing
the spikes during the simulation, but this did not impact
on the performance of the network and the classification
results.

The significant advantage provided by the ACP embed-
ded in the classifier SNN is the possibility to run both
training and test phases without reconfiguring the board.

5.2.2 SNN Synfire Chain
The second application based on SNN is the Synfire Chain.
The network is composed of a long sequence of neurons

Figure 9: ACP reconfiguration of neuronal parameters.
Above: the test configuration and the benchmark network
used. Below: the graph of the spikes emitted by the neurons
(blue), mean network activity (red). The series of spikes
changes slope after receiving the synaptic delays reconfig-
uration commands at 10 ms, 1 ms and 7 ms.

linked together by a single synapse. Currently, the simula-
tion once configured and started does not allow to modify
any parameter. Unless making usage of synapse models
whose weights vary autonomously, the only way to modify
the parameters of the neuronal model such as weight and
synaptic delay is to know the position in RAM of the data
regions related to each neuron and through SCP commands
directly modify the content of the memory.

We used the memory entities provided by the ACP
framework to manage a set of parameters as modifiers of
the actual model parameters, without modifying the whole
configuration plan of the neural application. By doing so, we
were able to modify the delay of the synapses in real-time,
during the simulation of the synfire chain. Figure 9 depicts
a scheme of SNN, the ACP components involved and the
timeline of an SNN simulation. The user can dynamically
change the corresponding parameters (e.g. synapse delay)
using the ACP runtime library to send commands to the
SpiNNaker cores to modify the memory content exploiting
Memory Entities support.

Figure 9 shows the trend of the network spike series
(blue lines) and the average synaptic activity of the whole
network (red line). Circles are used to highlight the points at
which the commands are triggered to modify the memory

11

entities, which affects the synaptic delay between the neu-
rons. The slope of the spike series increases with a minimum
delay (1 ms) and decreases when the synaptic delay is set to
a higher level (10 and 7 ms).

This case study demonstrates that ACP framework, by
allowing runtime reconfigurations, can be used for effective
host-controlled SNN parameters exploration.

6 CONCLUSIONS

We designed the Application Command Protocol, a new
method to be adopted at the application level for spreading
commands and manage the memory of the SpiNNaker
neuromorphic platform. ACP allows the users to include
in their distributed applications the subset of commands to
carry out only the needed activities, hence saving memory
for the code. On top of that, ACP allows the exchange of
commands between application processors without involv-
ing the respective monitor processors using the multicast
channel, thus optimising the communication flow. It pro-
vides a useful abstraction level of the memory which users
can easily access through a virtual id to all the variables of
the applications running on one application processors (AP)
from any other AP of the system.

We modify two SpiNNaker applications in order to use
the ACP. We inserted two different ACP implementation:
one inside the application used during the Configuration
of SpiNNaker board, and another one embedded into a
neuron model used during the SNN Simulation phase. The
ACP implementation in the first application uses a heavy
interpreter and enables a flexible and optimised set-up of
the board during the configuration phase. Conversely, the
ACP implementation in the second application is lighter and
can be easily embedded into the neuron model applications,
allowing the user to change some parameters a run-time
during the simulation phase.

In the first application, we demonstrated the advantages
introduced by ACP interpreter in the run-time feeding of
configuration applications. More specifically, we analysed
the behaviour of the Monitor Processor of the node attached
to the Ethernet interface, that is in charge of managing the
communication with the external sources. Handling the con-
figuration phase at the application level with ACP allows
the configuration to be performed by all kinds of external
sources. The use of this new method is straightforward and
can speed-up host-to-boards data transmission during the
configuration of SpiNNaker platforms.

In the second application, we demonstrated the run-time
flexibility introduced by the ACP interpreter embedded in
the neuron model application, implementing two different
real simulation scenarios: i) a two-phases SNN-Classifier
designed for discriminating the handwritten number and ii)
a chain of neurons with run-time re-configuration parame-
ters. Our results show that ACP allows to switch between
training and testing phase in half of the time needed by
the former workflow and to change model parameters (e.g.
synapse delay) during the simulation.

Both the implemented applications were demonstrated
to be flexible, scalable and expandable.

In the end, we believe that this work opens the way
to more flexible use of many-core neuromorphic platforms

as brain simulators and as support for new computational
brain-inspired paradigms. The same concepts leveraged by
ACP can be exported to different types of platforms (e.g.
Intel Loihi), addressing a much broader group of problems.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from European Union Horizon 2020 Programme
[H2020/2014-20] under grant agreement no.720270 [HBP-
SGA1]. We also thank the APT Group of Manchester Uni-
versity for providing us the SpiNNaker Board, and in par-
ticular S.Furber, A.Rowley, A.Stokes and D.Lester for their
constructive suggestions.

REFERENCES

[1] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar
memory with 45pj per spike in 45nm,” in 2011 IEEE Custom
Integrated Circuits Conference (CICC), Sept 2011, pp. 1–4.

[2] K. Meier, “A mixed-signal universal neuromorphic comput-
ing system,” in 2015 IEEE International Electron Devices Meeting
(IEDM), Dec 2015, pp. 4.6.1–4.6.4.

[3] G. Indiveri, E. Chicca, and R. Douglas, “A vlsi array of low-
power spiking neurons and bistable synapses with spike-timing
dependent plasticity,” IEEE transactions on neural networks, vol. 17,
no. 1, pp. 211–221, 2006.

[4] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple,
and A. Brown, “Overview of the spinnaker system architecture,”
Computers, IEEE Transactions on, vol. 62, no. 12, pp. 2454–2467, Dec
2013.

[5] W. Maass, “Networks of spiking neurons: the third generation of
neural network models,” Neural networks, vol. 10, no. 9, pp. 1659–
1671, 1997.

[6] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38,
no. 1, pp. 82–99, 2018.

[7] H. Paugam-Moisy and S. Bohte, “Computing with spiking neuron
networks,” in Handbook of natural computing. Springer, 2012, pp.
335–376.

[8] C.-K. Lin, A. Wild, G. N. Chinya, Y. Cao, M. Davies, D. M. Lavery,
and H. Wang, “Programming spiking neural networks on intel’s
loihi,” Computer, vol. 51, no. 3, pp. 52–61, 2018.

[9] O. Rhodes, P. A. Bogdan, C. Brenninkmeijer, S. Davidson, D. Fel-
lows, A. Gait, D. R. Lester, M. Mikaitis, L. A. Plana, A. G.
Rowley et al., “spynnaker: A software package for running pynn
simulations on spinnaker,” Frontiers in neuroscience, vol. 12, 2018.

[10] X. Jin, M. Lujan, L. Plana, S. Davies, S. Temple, and S. Furber,
“Modeling spiking neural networks on spinnaker,” Computing in
Science Engineering, vol. 12, no. 5, pp. 91–97, Sept 2010.

[11] A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and
S. Furber, “Scalable event-driven native parallel processing: The
spinnaker neuromimetic system,” in Proceedings of the 7th ACM
International Conference on Computing Frontiers, ser. CF ’10. New
York, NY, USA: ACM, 2010, pp. 21–30. [Online]. Available:
http://doi.acm.org/10.1145/1787275.1787279

[12] A. D. Brown, J. S. R. Steve B. Furber, L. A. P. Jim D. Garside, Kier
J. Dugan, and S. Temple, “Spinnaker programming model,” IEEE
Transactions on Computers, vol. 64, no. 6, pp. 1769–1782, June 2015.

[13] A. Rast, F. Galluppi, S. Davies, L. A. Plana, T. Sharp, and S. Furber,
“An event-driven model for the spinnaker virtual synaptic chan-
nel,” in Neural Networks (IJCNN), The 2011 International Joint Con-
ference on, July 2011, pp. 1967–1974.

[14] A. D. Rast, J. Partzsch, C. Mayr, J. Schemmel, S. Hartmann,
L. A. Plana, S. Temple, D. R. Lester, R. Schuffny, and S. Furber,
“A location-independent direct link neuromorphic interface,” in
Neural Networks (IJCNN), The 2013 International Joint Conference on.
IEEE, 2013, pp. 1–8.

[15] G. Urgese, F. Barchi, and E. Macii, “Top-down profiling of appli-
cation specific many-core neuromorphic platforms,” in IEEE 9th
International Symposium on Embedded Multicore/Many-core Systems-
on-Chip (MCSoC-15) (IEEE MCSoC-15), Turin, Italy, sep 2015.

12

[16] G. Urgese, F. Barchi, E. Macii, and A. Acquaviva, “Optimizing
network traffic for spiking neural network simulations on densely
interconnected many-core neuromorphic platforms,” IEEE Trans-
actions on Emerging Topics in Computing, vol. pp, no. 99, 2016.

[17] F. Barchi, G. Urgese, E. Macii, and A. Acquaviva, “Impact
of graph partitioning on snn placement for a multi-core
neuromorphic architecture: Work-in-progress,” in Proceedings
of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, ser. CASES ’18. Piscataway,
NJ, USA: IEEE Press, 2018, pp. 4:1–4:2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3283552.3283556

[18] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “Pynn: a common interface
for neuronal network simulators,” Frontiers in neuroinformatics,
vol. 2, 2008.

[19] T. U. o. Manchester, “Pacman,” 2015. [Online]. Available:
https://github.com/SpiNNakerManchester/PACMAN

[20] F. Barchi, G. Urgese, A. Acquaviva, and E. Macii, “Directed graph
placement for snn simulation into a multi-core gals architecture,”
in Very Large Scale Integration (VLSI-SoC), 2018 IFIP/IEEE Interna-
tional Conference on. IEEE, 2018, p. 4.

[21] J. Navaridas, M. Luján, L. A. Plana, S. Temple, and S. B. Furber,
“Spinnaker: Enhanced multicast routing,” Parallel Computing,
vol. 45, pp. 49–66, 2015.

[22] G. Liu, P. Camilleri, S. Furber, and J. Garside, “Network traffic
exploration on a many-core computing platform: Spinnaker real-
time traffic visualiser,” in Ph.D. Research in Microelectronics and
Electronics (PRIME), 2015 11th Conference on, June 2015, pp. 228–
231.

[23] S. Temple, “Appnote 4 - spinnaker datagram protocol (sdp) spec-
ification,” 2011, available at https://spinnaker.cs.manchester.ac.
uk/.

[24] ——, “Appnote 5 - spinnaker command protocol (scp) specifica-
tion,” 2011, available at https://spinnaker.cs.manchester.ac.uk/.

[25] F. Barchi, G. Urgese, E. Macii, and A. Acquaviva, “An efficient
mpi implementation for multi-core neuromorphic platforms,” in
Proceedings of the 1st IEEE conference on New Generation of Circuits
and Systems Conference. IEEE, 2017, p. 4.

[26] A. Siino, F. Barchi, S. Davies, G. Urgese, and A. Acquaviva,
“Data and commands communication protocol for neuromorphic
platform configuration,” in 2016 IEEE 10th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), Sept
2016, pp. 23–30.

[27] T. C. Potjans and M. Diesmann, “The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking
network model,” Cerebral Cortex, vol. 24, no. 3, pp. 785–806, 2014.

[28] M. Schmuker, T. Pfeil, and M. P. Nawrot, “A neuromorphic net-
work for generic multivariate data classification,” Proceedings of the
National Academy of Sciences, vol. 111, no. 6, pp. 2081–2086, 2014.

[29] M. Abeles, “Synfire chains,” Scholarpedia, vol. 4, no. 7, p. 1441,
2009, revision #150018.

[30] T. Martinetz, K. Schulten et al., A” neural-gas” network learns
topologies, 1991.

Francesco Barchi is PhD Student at the Dept.
of Control and Computer Engineering of Politec-
nico di Torino. He received his M.Sc. degree in
Computer Engineering at Politecnico di Torino.
He has experience in multidisciplinary task with
a collaboration with GAMUT s.r.l for the devel-
opment of a MASW analysis software. He de-
signed, during his M.Sc. thesis, an optimized
technique for partitioning and placement of SNN
in the SpiNNaker neuromorphic platform. His re-
search interests focus on optimization problems

and software develop for bioinformatics algorithms: MD, SNN and se-
quence alignment on heterogeneous platform, from GPU to multi-core
architectures.

Gianvito Urgese is Postdoc at the Dept. of Con-
trol and Computer Engineering of Politecnico di
Torino. He received his M.Sc. degree (summa
cum laude) in Electrical Engineering at Politec-
nico di Torino. He designed, during his M.Sc. the-
sis, an optimized HW accelerator for sequence
alignment, implemented in VHDL on a systolic
array architecture. He was, in 2011, research
trainee at Teseo S.p.A. involved in the design
of a system for structural health monitoring in
composite materials. In 2008 he collaborate with

the INRIM institute for a project concerning the redefinition of Boltzmann
constant. His research interests focus on: (i) Research and design of
optimized task-specific bioinformatics algorithms; (ii) Development of
tools for the study of non coding biological sequences (miRNA, siRNA
and lncRNA); (iii) Design of heterogeneous SW/HW architectures to ac-
celerate bioinformatics algorithms, including parallel implementation on
FPGA and GPU; (iv) Design of partitioning and placement algorithms to
map Spiking Neural Networks in the SpiNNaker neuromorphic platform.

Alessandro Siino is a Computeer Engineer, he
received his M.Sc. degree in Computer Engi-
neering at Politecnico di Torino. He designed and
implemented, during his M.Sc. thesis, a new pro-
tocol for SpiNNaker architecture configuration,
in that period he was Visiting Academic at The
University of Manchester where had the opportu-
nity to acquire deep knowledge of brain inspired
architectures and SoC configuration. His inter-
ests focus on embedded system, software de-
velopment and in the field of enterprise systems

integration.

Santa Di Cataldo received her Biomedical En-
gineering degree (summa cum laude) from Po-
litecnico di Torino, Italy, in 2006. In 2007 she
joined the Department of Control and Computer
Engineering (DAUIN) in Politecnico di Torino as
a Research Assistant. She holds a Ph.D. in Sys-
tems and Computer Engineering from the same
university since April 2011. She is currently As-
sistant Professor. Her main research interests
are biomedical image processing and data min-
ing, including techniques for pattern recognition,

image segmentation, quantification and classification of image features
for medical and biological applications. She has experience in

the design and development of image analysis tools in several
imaging modalities, including B- mode Ultrasound, high-resolution mi-
croscopy and Magnetic Resonance Imaging.

Enrico Macii is a Full Professor of Computer
Engineering at Politecnico di Torino. From 1991
to 1997 he was also an Adjunct Faculty at the
University of Colorado at Boulder. He holds a
PhD degree in Computer Engineering from Po-
litecnico di Torino (1995). Since 2007, he is the
Vice Rector for Research and Technology Trans-
fer at Politecnico di Torino, and since 2012 also
the Rector’s Delegate for International Affairs.
He was the National FP7 ICT Delegate from
2011 until 2013, and one of the Italian Mem-

bers of the Public Authorities Board of the ENIAC and ARTEMIS Joint
Undertakings from 2009 until 2013. His research interests are in the
design of electronic digital circuits and systems, with particular emphasis
on lowpower consumption aspects. In the field above he has authored
around 450 scientific publications.

13

Andrea Acquaviva is Associate Professor at
Politecnico di Torino, Italy. He received the Ph.D.
degree in electrical engineering from the Uni-
versity of Bologna, Italy, in 2003. In 2003, he
became an Assistant Professor with the Com-
puter Science Department, University of Urbino,
Italy. From 2005 to 2007, he was a Visiting Re-
searcher with the Ecole Polytechnique Federale
de Lausanne, Switzerland. In 2006, he joined the
Department of Computer Science, University of
Verona, Italy. He has been with the Department

of Computer Engineering and Automation, Politecnico di Torino. His
research interests focus mainly on parallel computing for distributed em-
bedded systems such as multi-core and sensor networks and simulation
and analysis of biological systems using parallel architectures. In the
fields above, he has authored over 140 scientific publications.

