
25 February 2021

POLITECNICO DI TORINO
Repository ISTITUZIONALE

How to use the Sun–Earth Lagrange points for fundamental physics and navigation / Tartaglia, A.; Lorenzini, E. C.;
Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.. - In: GENERAL RELATIVITY AND GRAVITATION. - ISSN 0001-
7701. - STAMPA. - 50:9(2018).

Original

How to use the Sun–Earth Lagrange points for fundamental physics and navigation

Publisher:

Published
DOI:10.1007/s10714-017-2332-6

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2729511 since: 2019-05-28T15:02:23Z

Springer New York LLC



Noname manuscript No.
(will be inserted by the editor)

How to use the Sun-Earth Lagrange points for
fundamental physics and navigation

A. Tartaglia · E.C. Lorenzini ·
D. Lucchesi · G. Pucacco ·
M.L. Ruggiero · P. Valko

Received: date / Accepted: date

Abstract We illustrate the proposal, nicknamed LAGRANGE, to use space-
craft, located at the Sun-Earth Lagrange points, as a physical reference frame.
Performing time of flight measurements of electromagnetic signals traveling
on closed paths between the points, we show that it would be possible: a) to
refine gravitational time delay knowledge due both to the Sun and the Earth;
b) to detect the gravito-magnetic frame dragging of the Sun, so deducing in-
formation about the interior of the star; c) to check the possible existence of a
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galactic gravitomagnetic field, which would imply a revision of the properties
of a dark matter halo; d) to set up a relativistic positioning and navigation
system at the scale of the inner solar system. The paper presents estimated
values for the relevant quantities and discusses the feasibility of the project
analyzing the behavior of the space devices close to the Lagrange points.

Keywords gravitation · reference systems · Sun rotation · galactic halo

1 Introduction

We propose here to use the Lagrangian (L) points of the Sun-Earth system
as a physical framework for a number of measurements related to General
Relativity (GR) and possible deviations thereof. The same set of L points
could furthermore be the basis for a relativistic navigation and positioning
system at least at the scale of the inner Solar System.

As it is well known the Lagrangian points of a gravitationally bound two-
body system are a feature of Newtonian gravity. Unlike General Relativity
(GR) Newton’s gravity admits analytic solutions for the two-body problem;
furthermore, looking for the positions, on the joint orbital plane, where the
attraction of both bodies on a negligible mass test particle counterbalances
exactly the centrifugal force, one finds five points where such a condition is
fulfilled, with an orbital angular velocity coinciding with that of the two main
bodies around their common center of mass. The traditional labelling of the
five points is L1, L2, L3, L4, L5 and the geometry of the system is as sketched
in Fig. 1.

Fig. 1 Schematic view of the Lagrangian points of a two body system.

Three points (L1, L2, L3) are saddle points of the effective potential; in
other words, the equilibrium there is unstable, however in the case of the
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Sun/Earth pair the instability is very mild. The remaining two points (L4 and
L5) are real local minima so the equilibrium there is stable, though corre-
sponding to a shallow potential well. When coming to a relativistic approach,
even though we may guess that the situation is marginally or even negligibly
different from the Newtonian case, the existence of Lagrangian points is a pri-
ori not guaranteed so that the problem needs a careful discussion. Hopefully
the final conclusion is indeed that libration points (Lagrange points) still exist
also in a relativistic 2 plus 1 body configuration, at least in a range of masses
including the Sun/Earth pair, even though no closed solution is available for
the position of such points [1].

The advantage of the set of the Lagrangian points is that they form a con-
figuration rigidly rotating together with the Earth. This property has already
been exploited many times for space missions, such as WMAP [2], the Her-
schel space observatory [3], Planck [4] (all concluded) and now Gaia [5], in L2;
the Deep Space Climate Observatory [6], the Solar and Heliospheric Obser-
vatory (SOHO)[7] and LISA Pathfinder [8], in L1. The list is not exhaustive
and many more missions are planned directed again to L1 or L2. It is also
worth mentioning that proposals have been issued to exploit, for fundamental
physics, the Lagrangian points of the pair Earth-Moon [9].

The stability of the positions with respect to one another and to the Earth
makes the Lagrangian points appropriate to work as basis for a physical ref-
erence frame at the scale of the inner solar system. Furthermore, considering
the size of the polygon having the L’s as vertices, we may remark that the
time of flight of electromagnetic signals going from one point to another is in
the order of some 10 minutes or more; such long time may act as a multiplier
for the tiny asymmetries originated by angular momentum effects predicted
by GR.

The present paper will discuss the possibilities listed above, highlighting
the advantages for fundamental physics experiments and for the positioning
and guidance of spacecraft out of the terrestrial environment.

In particular, we shall nickname LAGRANGE the proposal of exploiting
time of flight measurements along a closed path having L points as vertices, in
order to take advantage of the asymmetric propagation produced by the angu-
lar momentum of the Sun in the case of two counter-rotating electromagnetic
signals. The use of one and the same loop will avoid delays due to different
geometric paths for the two beams; the cancellation of the purely geomet-
ric component of the time of flight will let the above mentioned asymmetry
emerge.

In Section 2 we discuss the GR time delay due both to the Sun and to
the Earth; then in Subsection 2.1, we specialize the analysis to the case where
emitter, central body and receiver are aligned (indeed a special case for LA-
GRANGE). In the calculation, the contribution of the quadrupole of the cen-
tral body will be included. In Section 3 the analysis will concern the more
general configuration with a closed contour encompassing a wide area and the
purpose will be the measurement of the solar gravitomagnetic effect with an
accuracy better than 1%. Section 4 evaluates the possibilities to retrieve infor-
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mation about a galactic gravito-magnetic field, if it is there. Section 5 presents
a Relativistic Positioning System (RPS) based on a set of emitters of electro-
magnetic signals located at the mentioned L-points. Since the feasibility of our
proposals crucially depends on the possibility of keeping the position of each
spacecraft with respect to the corresponding L and its time dependence under
control, we shall discuss the issue in Section 6. A short conclusion closes the
paper.

2 Gravitational time delay

A gravitational field produces a time delay and a deflection (deviation) on the
propagation of electromagnetic waves. Presently, we are interested only to de-
scribe the effects of the delays in time propagation, because the effects of the
deflection on the time propagation are negligible with respect to the leading
contributions. The main effect depends on the mass of the central body and
is fully explained in terms of the metric developed by Schwarzschild in 1916
[10]. Therefore, these delays are related to the gravitoelectric field of GR [11].
The first successful measurements having the Sun as a source were obtained
by Shapiro and collaborators by means of radar-echoes from Earth to the
planets Mercury and Venus [12]. Successively, Anderson and collaborators [13]
repeated the measurement of the delay in the round trip time from the two
spacecraft Mariner 6 and 7 orbiting the Sun. Finally, Shapiro [14] and Reasen-
berg [15] obtained the most accurate results with this technique by means of
a transponder placed on the surface of Mars by the NASA mission Viking.
The agreement between the measured delay and its general relativity predic-
tion was around 0.1%. This kind of measurements are quite important because
they allow to constrain the PPN parameter γ, which measures the space curva-
ture per unit of mass. Currently, the best measurement of γ has been obtained
by the radar tracking of the CASSINI spacecraft during a superior conjunc-
tion with the Sun along its cruise to Saturn [16]. Bertotti and collaborators
obtained γ − 1 ' 2 × 10−5. The advantage of the latter measurement relies
on the Doppler tracking (not exploited before) and the multi-frequency link
(both X-band and Ka-band) that allow for the plasma compensation of the
solar corona. This delay, which is now known as the Shapiro time delay, rep-
resents the first GR correction to the time propagation of an electromagnetic
signal between an emitter and a receiver with respect to the time of propaga-
tion that is needed in the flat spacetime of Minkowski.

LAGRANGE, with its multi-spacecraft configuration, would allow the mea-
surement of the time delay in the propagation of the electromagnetic signals in
several different geometrical configurations. In the same time, it would extend
the measurement of the delay not only to the effect previously mentioned,
the so-called Shapiro time-delay, but also to the delay produced by the grav-
itomagnetic field [11] of the Sun and/or to that of the Earth. For instance,
referring to previous Fig. 1, we can consider the propagation of light and the
corresponding delay between the two equilateral Lagrangian points L4 and L5.
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In this case, the impact parameter b, the point of closest approach to the Sun,
is equal to 0.5 AU, i.e. comparable with the other distances, avoiding the prob-
lem connected with the plasma of the solar corona, as well as the additional
delay produced by the quadrupole moment of the Sun. Another very inter-
esting geometrical configuration is the one represented by the two collinear
points L1 and L2. The propagation of signals between these two points would
allow, for the first time, a direct measurement (in the field of the Earth) of
the overall delay on their propagation, as produced by the combined action of
the mass and angular momentum of the Earth plus the additional delay due
to its oblateness. Some of the corresponding measurements with LAGRANGE
would allow to improve the current limits in gravitational physics by exploiting
the present know-how and accuracy in time of flight measurements and with
the present state of art in atomic clocks precision and accuracy. Conversely,
other effects, in order to emerge from the noise, need an improvement in the
current technology of time measurements. The LAGRANGE measurements
would be based on the application of null geodesics around a spinning body
in the weak field and slow motion limit (WFSM) of GR. In terms of metric,
the Kerr metric will be the reference [17], or, to say better, its weak field limit
[18], with a non-diagonal component g0φ proportional to the intrinsic angular
momentum (spin) J of the central body.

2.1 Time delays for a configuration where emitter and receiver are aligned
with the delaying object

We consider a quasi-Cartesian coordinate system at the post-Newtonian level
with origin in the central (deflecting and delaying) body. We consider the
propagation in the z = 0 plane (coincident with the plane of the ecliptic)
and assume that the angular momentum J of the body is along the z-axis
and that this axis is also the symmetry axis of the body (i.e. we assume
cylindrical, or axial, symmetry). In particular, we assumed a standard isotropic
PN approximation [19] where the receiver (or observer) has to be considered
positioned along the positive y-axis. Under the above approximations, the line
element can be written as:

ds2 = c2dτ2 ' g00c2dt2 + gxxdx
2 + gyydy

2 + gzzdz
2 (1)

+2g0xdxdt+ 2g0ydydt,

where1

g00 ' −
(

1 + 2
U

c2

)
(2)

gij '
(

1− 2
U

c2

)
δij (3)

1 Here g00 represents the time-time component of the metric, while the other terms provide
spatial and mixed contributions.
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g0x ' 2
GJ

c2r3
(−y) (4)

g0y ' 2
GJ

c2r3
(x) . (5)

In the above expressions, c represents the speed of light, τ the (invariant)
proper time, G the Newtonian gravitational constant, J the angular momen-
tum of the central body, r the distance in the reference plane, δij the Kronecker
symbol and, finally, U represents the gravitational potential2

U ' −GM
r

(
1− J2

(
R

r

)2 3
(
z
r

)2 − 1

2

)
, (6)

where M , R and J2 are, respectively, the mass, radius and quadrupole moment
of the body.

This configuration is particularly interesting when the delays in the prop-
agation of the electromagnetic signal are analysed in order to take care also
of the effect in the time propagation produced by the quadrupole moment
of the central object, besides the contributions from the gravitoelectric and
gravitomagnetic fields of GR.

In the case of the propagation of electromagnetic waves we need to impose
the condition of null geodesics with the further condition that we restrict to
the propagation in the reference plane z = 0 with x = b constant and b � y.
Therefore, Eq. (1) reduces to:

0 ' g00c2dt2 + gyydy
2 + 2g0ydydt. (7)

We can now solve for the coordinate time element dt from Eq. (7) and integrate
the final expression from the emitter position at y = −y1 up to the receiver (or
observer) position at y = +y2 (y1 and y2 are positive quantities and we further
assume that y2 ' y1). For the propagation time ∆tprop we finally obtain:

∆tprop '
y2 + y1

c
+

2GM

c3
ln

(
4y1y2
b2

)
± 4GJ

c4b
+

2GM

c3

(
R

b

)2

J2 + . . . , (8)

where smaller contributions to the time delay have been neglected.
The first term in Eq. (8) accounts for the time propagation in the flat

spacetime of Special Relativity. The second term represents the contribution
from the gravitoelectric field of GR in the weak field approximation: it is the
Shapiro time delay. The third contribution arises from the gravitomagnetic
field in the same approximation. The ± sign accounts for the chirality of this
contribution: it is positive for a propagation of the signals in the same sense of
rotation of the central mass, it is negative in the case of the opposite sense for
the propagation. Finally, the last term represents the contribution that arises
from the oblateness of the central body.

2 We considered only the main contribution, that arises from the first even zonal harmonic,
with respect to the deviation from the spherical symmetry in the mass distribution of the
Earth.
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The solution provided in Eq. (8) implies that emitter, central body and
receiver have the same x and z coordinates (with x = b, z = 0) and differ only
for the y coordinate (which is negative for the emitter, null for the central
body and positive for the receiver).

The result obtained in Eq. (8) can be considered as a particular case of
two results obtained in previous works [20,21]. In fact, our result coincides
with that obtained in [20] when that work is restricted to the lensing effect
which can be obtained for light propagating in their symmetry plane (coinci-
dent with our reference plane) with the transformations γ = 0 and β = π/2 in
their expressions and with the further condition α = 0 or α = π in their final
expressions for the delays due to the angular momentum and the quadrupole
coefficient (see in particular their section 2).3 Conversely our first three terms
in Eq. (8) coincide with equations (55), (56) and (57) of [21] with the trans-
formation y1 → −y1 for their y1 and the approximation y2 � b and y1 � b
for their coordinates.

By applying the measurements based on the propagation time determined
with Eq. (8) to the configuration L1–Earth–L2, it will be possible (at least
in principle) to obtain a measurement of the Earth’s quadrupole coefficient
in a way independent from the usual space geodesy techniques based on the
inter-satellite tracking — by means of the two twin GRACE satellites [22] —
and from the precise orbit determination (POD) of laser-ranged satellites in
orbit at a relatively high altitude, as in the case of the two LAGEOS [23].
Considering that the distance between the two Lagrangian points L1 and L2

is y1 + y2 ' 3 × 109 m, and assuming an impact parameter b of the order of
the Earth’s radius R⊕ ' 6.4× 106 m, for the propagation time of Eq. (8) we
obtain:

∆tprop ' (10s) +
(
3.6× 10−10s

)
+
(
±3× 10−17s

)
+
(
3.2× 10−14s

)
+ . . . , (9)

where the contribution of each term has been highlighted. If we consider a
round trip travel for the propagation time, the smaller contribution of the
gravitomagnetic field cancels out when we consider the propagation on the
same side of the Earth, and the quadrupole effect can be extracted after mod-
elling the Shapiro delay and the larger effect of the propagation time in the
flat spacetime of Minkowski.

The knowledge of the oblateness of the Earth is particularly important
because of its long-term variations in relation to the Earth’s internal structure
and its mass distribution. In fact, phenomena like the melting of glaciers and
ice sheets as well as mass changes in the oceans and in the atmosphere are
responsible for variations in the rate of the global mass redistribution with
a consequent time dependency in the quadrupole coefficient characterized by
annual and interannual variations [23].

3 Here γ (not to be confused with the PPN parameter commonly designated by the same
symbol) and β represent two of the Euler angles that define the orientation of their symmetry
plane with respect to the lens plane, while α represents the angular position of a generic
light ray over the lens plane.
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This kind of measurement can be initiated by Earth, the delaying body,
with all the advantages of an Earth based Laboratory equipped with the best
time-measuring apparatus to perform the experiment. In particular, optical
clocks and lattice clocks based on Sr-atoms have reached outstanding frac-
tional frequency instabilities down at a level of about 2 × 10−16/

√
T or less,

with T the integration time [24,25].
For instance, with an integration time of about 104 s it is possible to

reach a precision in the measurement of the quadrupole coefficient of about
δJ2/J2 ' 3 × 10−8, comparable with the current best determinations from
Earth (with calibrated errors) using the LAGEOS’ data, and even better with
longer integration times. Considering that the time of flight between L1 and
L2 is of the order of 10 s, longer integration times imply of course a number
of bounces back and forth between the end points of the trajectory.

3 Solar Lense-Thirring drag

The Lense-Thirring effect (LT) or inertial frame dragging by a moving massive
body is a feeble effect of GR, first considered by Thirring [26] and Lense
and Thirring [27] in 1918, while studying the influence of rotating masses (in
particular a rotating hollow massive spherical shell) on a test particle. LT may
also be considered as a manifestation of gravito-magnetism i.e. of that typical
component of the GR gravitational interaction resembling the magnetic field
of moving charges.

So far, LT has been verified experimentally in a limited number of cases.
A careful analysis of the orbits of the LAGEOS and LAGEOS 2 satellites,
monitored by laser ranging, evidenced the LT drag of the nodes of the orbits
with a 10% accuracy [28][29].The Gravity Probe B experiment measured the
precession induced by the gravitomagnetic field of the Earth on four orbit-
ing gyroscopes, with a 19% accuracy [30]. The ongoing LARES experiment
(combined with the previous data from the two LAGEOS) has attained a
preliminary 5% accuracy [31]. With a different technology, the GINGER ex-
periment is under study and preliminary test of the technology. It is based on
the use of an array of ring lasers to be located underground at the National
Gran Sasso Laboratories in Italy [32,33,34]. Ring lasers are extremely sensi-
tive rotation measuring devices. Their operating principle is a GR evolution of
the old Sagnac effect [35]; what is measured in practice are frequency and am-
plitude of a beat between two stationary counter-propagating light beams in
the ring. Rotations, either of kinematical origin or due to the chirality of the
gravitational field (gravitomagnetic component), produce a right/left asym-
metry of the propagation along the ring. The aim of GINGER is to verify the
terrestrial LT within 1% or better.

The use of the Sun-Earth Lagrangian frame would allow a measurement of
the solar gravitomagnetic field (solar LT), exploiting the Sagnac approach but
resorting to time of flight measurements rather than to interference phenomena
or beat tones. For our purpose we may start from the external line element of
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a steadily rotating body in a reference frame where the main mass is at rest
and the axes do not rotate with respect to the distant stars (to the quasars).
As in the previous section, weak field conditions are assumed, but now, for
convenience, we use polar coordinates in space. It is:

ds2 = (1− 2
m

r
)c2dt20 −

dr2

(1− 2mr )
− r2dθ2 − r2(sinθ)2dφ20

+4
j

r
sin2θcdt0dφ0 (10)

The quadrupole moment of the main body has been neglected. If M is the
mass of the source, it is m = GM/c2 with the dimension of a length. Similarly,
if J is the modulus of the angular momentum of the source, it is j = GJ/c3

with the dimension of a squared length. The index 0 labels the coordinates
specific of the non-rotating, asymptotically flat reference frame. In the case of
the Sun m� = 1475 m and j� = 4.7144× 106 m2.

It is convenient to use coordinates apt for a terrestrial (or co-orbiting with
the Earth) observer. In practice we need to combine a rotation of the axes at
a rate Ω corresponding to the orbital motion of the Earth, together with a
boost at the tangential speed of the Earth on its orbit V [36]. What holds for
the Earth, holds for the Lagrangian points too. Since we are considering free
fall the orbital rotation rate is Keplerian, so that:

Ω = c

√
m

a3
; V = Ωa = c

√
m

a
(11)

Here a is the radius of the orbit of the Earth (∼ 1.5 × 1011 m), m�/a ∼
10−8, and j�/a

2 ∼ 10−16.
We may now restrict our attention to the orbital plane, so that it is θ = π/2.

In the new reference frame and with the new coordinates (see the Appendix
for the details) the line element is

ds2 '
[
1 +

m

a

(
1 +

m

a

)(
1− 2

a

r

)]
cdt2

−
(

1 + 2
m

r
+ 4

m2

r2

)
dr2

−
[
1− am

r2
− m2

r2

(
1− 2

a

r

)]
r2dφ2 (12)

+2

[
2
j

ra
−
√
m

a
−
(

1− 2
a

r

)(m
a

)3/2]
acdtdφ

The approximation has been kept to the lowest order in j and with reference
to the numerical values holding for the Sun. For short we write:

g0φ = c

[
2
j

ra
−
√
m

a
−
(

1− 2
a

r

)(m
a

)3/2]
a (13)
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The frame is non-inertial and comoving with the laboratory; the origin
remains in the center of the Sun.4

In order to find out the time of flight of an electromagnetic signal along a
given path, we may extract the time element from Eq. (12) remembering that
it is ds = 0. In terms of a generic stationary axially symmetric space-time and
referring to general coordinates, we find:

cdt =
−g0idxi ±

√
(g0idxi)2 − g00gijdxidxj

g00
(14)

In order to insure an evolution towards increasing real times, the + sign
must be chosen. Then we see that the term containing the square root in the
right hand side of Eq. (14) does not change sign when reversing the sense
of motion along a given path, whereas the first term in the numerator does.
Since we are interested in the asymmetries in the propagation we consider the
difference between the right- and left-handed time of flight along the same ele-
mentary section of the path; in this way the square root cancels and the other
term doubles. Finally we integrate along the whole closed space trajectory and
express the result in terms of the proper time of the observer. The total time
of flight asymmetry turns out to be [37]:

cδτ = −2
√
g00

∮
g0i
g00

dxi (15)

3.1 Application to a Lagrangian polygon

Casting into Eq. (15) the information extracted from Eq. (12) and preserving
the solar weak field approximation, we get:

cδτ ' −2

{
1 +

m

2a

(
1− 2

a

r

)[
1 +

m

2a

(
3

2
+
a

r

)]}
×∮ (

2
j

r2

)
rdφ (16)

' −4

∮
j

r
dφ

Suppose now that the closed path is a polygon, whose edges are light
rays. Of course the corresponding null trajectories will be affected by the
gravitational lensing due to the mass of the Sun. However we know that the
angular deviation due to the lensing effect is proportional to m�, so that its
influence in the calculation of (16) is negligible. In practice we may assume

4 It should actually be in the barycenter of the Sun-Earth pair, but the difference should
be discussed among the perturbations of the spherically symmetric system.
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the space trajectories of electromagnetic signals to be straight; the typical
equation is simple:

b

r
= cos (φ− Φ) (17)

The closest distance from the straight line to the center of the system is b and
the azimuth of the closest point is Φ.

Suppose for example that a signal, propagating in the ecliptic plane, goes
from position A, with coordinates rA and φA to the arrival point B with
coordinates rB and φB . We easily work out the contribution of this stretch to
the integral (16):

cδτAB ' 4
j

b
(sin (φB − Φ)− sin (φA − Φ)) (18)

Let us apply the above result to a triangular loop having L4, L2 and L5 at
the corners. The coordinates in the plane of the ecliptic, measuring the angles
from the Sun-Earth line, are:

L4 : r4 = a, φ4 = π/3

L2 : r2 = a+ a2, φ2 = 0

L5 : r5 = a, φ5 = −π/3

It is a2 ∼ 1.5×109 m, so that a2/a ∼ 10−2. The minimum distance between
the L4 − L2 (or L5 − L2) line and the center of the system is

b24 = b25 = (a+ a2) cos (
π

6
+

√
3

2

a2
a

) (19)

Numerically: b24 = b25 ∼ 1.3 × 1011 m. The angular coordinate of the

minimum distance point, on one side or the other, is Φ24 = −Φ25 ' π
6 +

√
3
2
a2
a .

Coming to the L4 − L5 line, it is

b45 = a cos
π

6
' 7.5× 1010 m (20)

and Φ45 = 0.
Summing up, and considering the full triangle, we have:

δτ245 = 2δτ52 + δτ45

' 8
j
√

3 sin
√
3
2
a2
a

c(a+ a2) cos (π6 +
√
3
2
a2
a )
− 8

j√
3ca

(21)

Eq. (21) may be approximated to first order in a2/a i.e. at the % level:

δτ ' 8
√

3
ja2
ca2
− 8

j√
3ca

(22)
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Finally, casting numbers in, we obtain (in seconds):

δτ245 ' 4.30× 10−13 (23)

The total expected time of flight asymmetry is well within the range of
measurability, at least in terrestrial laboratory conditions. The challenge is to
measure it in space.

3.2 Retrievable information on the interior of the Sun

Besides making use of Sun’s angular momentum as a source of a LT field
for a basic science experiment, i.e. for another precise test of GR, there are
other, some even truly practical, reasons for such observations. It is widely
believed that the observed differential rotation of the Sun triggers a near-
surface layer of rotational shear, known as tachocline, where large-scale dipole
magnetic fields are generated by dynamo action, ultimately leading to the 11-
year solar cycle of sunspots [38]. Crucial to the possible role of the tachocline
in the dynamo are its location and depth. While Sun’s photosphere can be
directly observed and also neutrinos provide some direct information about
processes in the core of our star, the tachocline is not directly observable.
Until now, all available information about this boundary layer between the
radiative interior and the differentially rotating outer convective zone, have
been collected via helioseismology observations, mainly using the Solar and
Heliospheric Orbiter (SOHO) and the Solar Dynamics Observatory (SDO)
probes [39,40]. The estimated location of the shear layer at Sun’s equator is
(0.693± 0.002)R�, i.e. beneath the convection zone base, and with a width of
0.04R�. Using Sun’s density profile based on the Standard Solar Model [41,
42], the tachocline itself should contribute at the level ∼ 0.5% to the total
angular momentum of the Sun, i.e. to the source of the LT field. Although
such precision of the solar LT field determination lies at the very edge of the
expected LAGRANGE project sensitivity, a periodic low frequency temporal
variation of the LT field strength would open another window for Sun interior
studies.

4 Relevance of the measurement of a possible galactic
gravitomagnetic field

When addressing the effects of rotating massive bodies (Sun) on a local space-
time geometry in our planetary system, it is rational to consider also possible
analogous effects originating from larger structures dynamics, i.e. from our
Galaxy or even more. The main reason is that fields associated with metric
tensor components (g0i or g0φ as used in Eq.s (1) and (10)) might mimic the
effects typically associated to the presence of dark matter (DM), i.e. additional
centripetal or centrifugal acceleration (ac ∝ vBLT ) and gravitational lensing
(effective refraction index n ∝ 1−ALT ). The gravito-magnetic field potential
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(ALT ) and field strength (BLT ), rather than metric tensor components, are
used for clearer analogy only. The best studied and quantified DM problem
is related to the dynamic stability of dwarf and spiral galaxies. In the case of
the Milky Way (MW) the distribution of the accounted for luminous mass in
stars (∼ 5× 1010M�), nonluminous interstellar gas and dust (∼ 5× 109M�),
central black hole (∼ 4× 106M�)5 and central bulge (∼ 4.5× 109M�) is not
compatible with the observed nearly flat rotation curves [v(r) = const] of stars
and gas in the disk [43]. The same property of rotation curves for spiral galaxies
has been confirmed for star-free, edge regions, via radio emission observations
of neutral hydrogen [44]. For the MW, the mutual gravitational attraction of
stars, central black hole and interstellar dust provide a significant part (nearly
all) of the required centripetal force at small distances (up to 5 kpc) from the
center, while flat rotation curves at larger distances (above 10 kpc) undeniably
point towards some other source of centripetal force [45].

The typical approach to address this problem is to postulate the presence
of a large galactic halo, extending beyond 30 kpc, consisting of massive non-
luminous particles with isothermal spherical distribution. In such models, the
stabilizing effect of DM is being contemplated through a static gravitational
field (i.e. the g00 component of the metric tensor) due to the mass of the in-
visible halo. Depending on the peculiar DM model, the total mass of the MW
may be entirely dominated by the dark halo and could reach values ranging
from ∼ 5.2× 1011M� [46] up to ∼ 1.5× 1012M� [47].

Using a naive but straightforward example, a LT field of ∼ 8.9 × 10−16

s−1 strength, would suffice to provide all necessary centripetal acceleration to
account for the motion of the Sun around the MW center with a tangential
velocity 220 km/s at 8 kpc radius. According to a realistic MW mass distri-
bution model [45,48], an additional force component is needed, to account for
30 km/s of the total vLSR = 220 km/s orbital velocity.6 A local value of the
LT field BLT ∼ 2.2× 10−16 s−1 would account for this additional centripetal
force. Similar values could be deduced for the M31 galaxy [49] in which the
rotational velocity term associated with the DM scenario provides a linearly
growing contribution to the rotation curve with a slope of 1.2 × 10−16 s−1.
This result could also be interpreted as the influence of a homogenous LT
field, perpendicular to the plane of the disk of the galaxy, with an identical
intensity of BLT ∼ 1.2 × 10−16 s−1. The hypothesized LT field strengths are
weaker than the current experimental possibilities [30,29] but well within the
LAGRANGE project scope. On the contrary, the galactic LT field strengths,
calculated from known baryonic mass-velocity data, are typically much weaker:
only ∼ 2.6×10−22 s−1 for the MW at the Sun distance from the center. Taking
into account that none of the recent experiments have been able to detect the
physical nature of DM (see overview in [50]) and a clear observational evidence
of a strong correlation between galactic baryonic content and plateau veloc-

5 In the center of our galaxy, there is an extremely dense compact object (Sagittarius A*)
most probably consisting of a black hole.

6 LSR stands for Local Standard of Rest.
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ity of the rotation curves (vp), expressed through the Tully-Fisher relation
(MB ∝ v4p) [51] for more than 100 rotationally supported galaxies of different
masses and morphologies [52], constitutes a justified reason to consider alter-
natives to standard DM scenarios and assess the possible presence of local LT
fields with strength in the 10−16 ÷ 10−20 s−1 range.

Overwhelming share of non-baryonic energy-mass density, in coincidence
with observed clustering of visible matter over a larger volume in the observ-
able universe, suggests that other potential sources of LT fields, with strengths
within the interval of interest, are viable. In that respect, even a residual pri-
mordial LT field, originating from the initial singularity and the subsequent
fast evolution processes (inflation era) cannot be excluded. Presumed primor-
dial LT fields would imprint on the CMB spectrum in a similar way as DM
and would influence large scale structures evolution into characteristic fila-
ments with congregated clusters of galaxies and large voids in between [53].
Similar filaments and voids structures and other relevant analogies are com-
monly observed in solid state systems [54]. Filaments of vortex lines of quan-
tum vortices in superfluid helium or magnetic flux bundles in superconducting
materials are the best examples. Although such simple analogies cannot guar-
antee they would have something in common with large scale structures in the
universe, the existence of forces inside and among such filaments, originating
from the interaction with the bulk of the medium (space-time voids), looks
a lot like DM and dark energy (DE) effects. Therefore local LT field search
(measurement) might open another window into the DM and DE problem.

5 Relativistic positioning

The solution adopted for global positioning on Earth or in its vicinity is mainly
based on the GPS method and on the GPS, GLONASS, Galileo and other
present or future satellites dedicated constellations. Without entering into a
discussion of the strengths and weaknesses of that approach, it is easily agreed
that it cannot be extended beyond the near terrestrial environment or, at
least, that the application to space navigation is an opportunity to reconsider
the whole method, especially regarding the way to account for the effects of
special and general relativity.

An intrinsically relativistic positioning system (RPS) has been proposed
and is described in [55,56]. It is based on the local timing of at least four re-
mote independent sources of electromagnetic pulses; the essence of the method
is graphically presented in Fig. 2. Successive pulses (but they could also be peri-
odic equal phase hypersurfaces) cover space-time by a regular four-dimensional
lattice. The world-line of an observer intersects the walls of successive cells of
the lattice; the proper time interval measured by the observer between con-
secutive crossings provides the basic information. Counting the pulses (after
identifying the various sources) and applying a simple linear algorithm it is
possible to calculate the coordinates (including time) of the receiver in the
fiducial reference frame [56].
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Fig. 2 Bidimensional example of the positioning method outlined in the text. The χ’s
are the null wavevectors of the signals coming from the two (four in the full space-time)
independent sources. The $’s label the null wavefronts of the pulses. The wiggling line is
the worldline of the receiver. The dots show some of the intersection points (reception of
a signal). The relevant quantity is the length (i.e. proper time span) between successive
reception events.

The dimensionless coordinates along the light cone of a source are expressed
as the sum of an integer part na (the subscript a labels the sources) and
of a fractional part Xa. The integer is obtained just counting the successive
arrivals of the pulses; the fractional part is given by a simple linear algorithm
applied to sequences of arrival times in the proper reference of the observer
[56]. Projecting the na+Xa light cone coordinates onto the axes of the fiducial
reference frame finally produces the practical coordinates we are interested in.

Of course the sources may be orbiting satellites, but in that case you have to
know with the best possible accuracy, the position of each satellite (i.e. its real
orbit) while time passes. The situation would be far simpler if the position
of the emitter were fixed in the fiducial reference frame. This possibility is
implemented in nature if the signals come, for instance, from pulsars: their
positions in the sky are indeed fixed or slowly moving at a well known rate;
furthermore pulsars are also very good clocks, even better, in the long term,
than our atomic clocks. An exercise application of the RPS, using pulsars, is
presented in [57].

The inconvenience of pulsars is that their pulses are extremely weak so
that large antennas are needed and special techniques must be implemented
in order to identify and extract the signal from an overwhelming noise. Such
troubles can be removed placing artificial ”pulsars” in points that keep rigidly
their positions in an appropriate reference system. That is indeed the case of
the Lagrangian points. L1, L2, L4 and L5, equipped with emitters of regular
pulses would form a very interesting basis for a physical reference frame co-
orbiting with the Earth. L3 has not been considered because it is located in
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the opposite side of the Sun with respect to the Earth, so being invisible from
our planet. An important feature of the system is that the distances between
the reference points range between 1.5 million km approximately (from L1 or
L2 to the Earth) to 150 million km (from the Earth to L4 or L5). Such large
values dramatically reduce the effect of the geometric dilution which renders
GPS (and the other terrestrial positioning systems) useless when extended
away from our planet. Of course all Lagrangian points lie in a plane and that
is usually the case also for most space missions, but the size of the base and
using four L points reduces the problem of geometric dilution within distances
of a few AU, excepting limited ”wakes” along the lines containing a couple of
emitters.

The spacecraft carrying the emitter devices could in general not coincide
with the corresponding Lagrange point, but would rather orbit around the
point on stable (L4 and L5) or on halo or weakly unstable Lissajous orbits
(L1 and L2). The final accuracy of the positioning would depend mainly on
the accuracy with which the instantaneous position on the orbit is known; we
are discussing this issue in the next section.

The other limiting factor for the final result is the quality of the clock used
by the receiver: in principle a clock fit for a 10−10s accuracy attains also a
centimeter accuracy in determining a travelled distance.

6 Orbital dynamics around the L points

The transmitting/transponding spacecraft of LAGRANGE will be placed in
orbits around the collinear and triangular Lagrangian points. The motion
around the Lagrangian points of a small body is described by the classical
solution of the Restricted Three Body Problem (RTBP) [58]. The assumptions
that underline the RTBP are that the orbiting body has a negligible mass with
respect to the two primaries, in our case Earth and Sun, and the primaries
follow circular orbits. We further restrict our preliminary assessments to the
planar case of the RTBP.

It is well known that motion around a collinear point is always (weakly)
unstable while the stability of motion about the triangular points depends
on the mass ratio of the two primaries. In the case of the Sun-Earth system
(and any other combination of mass ratios in the solar system) the motion
is stable. LAGRANGE will require spacecraft placed in orbit around L1, L2,
L4 and L5. The planar motion in the proximity of the Sun-Earth L4 and L5

(where a linear approximation holds) follow orbits that have two frequency
components: a faster motion with a 1-year period and a much slower one with
a 156-year period.

The planar motion around a collinear point is characterized by a couple of
complex-conjugate eigenvalues associated with a ”stable” manifold and a cou-
ple of positive real roots associated with an unstable manifold that produces a
divergent motion of the spacecraft. Initial conditions can be chosen in such a
way as to excite only the complex conjugate eigenvalues in order to minimize
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Fig. 3 Velocity components along the synodic axes of a 10-km wide orbit around L1. Very
similar figures are obtained for an orbit with the same amplitude at L2.

the instability that however will eventually be excited by non-gravitational
perturbations or earlier on by imperfect initial conditions. For the Sun-Earth
system, the period of the ”weakly-unstable” planar orbit is half a year. Includ-
ing also the out-of-plane component one gets a second but very close period.
The different frequencies give rise to orbits that describe quasi-periodic Lis-
sajous figures or, for sufficiently large amplitude, inclined ”halo” orbits. Fig.
3 shows the velocity components of a 10-km wide orbit in the stable manifold
of L1. Due to the small amplitude, an orbit with the same amplitude around
L2 has very similar velocity values.

Also for the motion around a triangular point, initial conditions can be
chosen so as to excite one eigen-frequency, e.g., the fast one (see Fig. 4 showing
the velocity components of a 10-km wide orbit at L4). In the case of the Sun-
Earth system and within the linear approximation, the resulting in-plane and
out-of-plane frequencies are practically equal (i.e., with a period of one year)
thereby producing a quasi-periodic orbit.

The orbital motion around the Lagrange points will cause a change of the
length of the radio-wave path that will overlap with the change associated
with the chirality typical of the Lense-Thirring effect. The question is how
to discern one from the other. The flight time of the radio-waves to cover the
L2−L4−L5−L2 circuit is about 2000 s. During that time the position change of
a realistically-sized orbit around a Lagrangian point is greater than the change
of the radio-wave circuit path associated with the Lense-Thirring effect. If the
motion around the Lagrangian points were to be purely periodic and with a
period that is a fraction of the total duration of the signal data taking (i.e.,
in order to cover a number of orbital cycles), then this Keplerian-type motion
could be resolved from the measured data by frequency analysis. The question
that remains to be addressed is how to remove the quasi-periodic, gravity-
related components associated with the motion of the spacecraft around the
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Fig. 4 Velocity components along the synodic axes for a 10-km-wide orbit around L4.

Lagrangian points from the signal, in other words, how to distinguish the
(gravity-related) relativistic signal from the non-relativistic secular drift.

Both motions on the stable manifold of the collinear points and around
the triangular points can be reconstructed with good accuracy by properly
taking into account non-linear effects [59,60,61]. Analytic series expansions
are obtained in the case of the spatial circular RTBP so to include also out-
of-plane motion. Semi-analytical solutions can be further implemented when
including more general features like the eccentricity of the primaries [62]. In
both approaches, the quality of the prediction of the time evolution of small
amplitude orbits is determined by the order N of the perturbation expansions.
The relative error is given by the Nth power of a perturbative parameter
proportional to the amplitude.

One avenue worth exploring for removing the ”Keplerian drift” may also
hinge on the different behaviors of the relativistic and non-relativistic secular
or quasi-secular terms: the Lense-Thirring term grows steadily with time while
the Keplerian drift manifests itself as a growth of the orbital amplitude about
the Lagrangian points, e.g., either the secular drift of the orbit around L1 and
L2 (the orbit slowly spiraling out) or in the case of a triangular point a residual
component of the low-frequency term for the orbit around L4 and L5.

In addition to the above points, one should also consider the tracking ac-
curacy in order to separate the relativistic secular signature from the classical
effects on the orbit of a spacecraft over the measurement time. The higher pos-
sible accuracy is obtained by integrating the Doppler measurements over short
arcs. The figure of merit of Doppler measurements in the time domain is well
described by means of the Allan deviation σy [63]. For instance, considering an
Allan deviation of about 3×10−15 (with a reasonable integration time of about
1000 s), already reached in the case of the tracking of the CASSINI spacecraft
[64], the accuracy in the range-rate measurements is about c× σy ∼ 9× 10−4

mm/s, that corresponds to an error in the position of a spacecraft of about 1.8
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mm on the ∼ 2000 s time span of a single measurement. This error is about
18 times larger than the precision required on the knowledge of the length
of the radiowave circuit (i.e., on the relative position of the satellites) to be
compatible with a differential time measurement of 4.3 × 10−13 s. However,
by considering n of such short arcs, while both the Lense-Thirring effect to
be measured and the knowledge of the relative position between the satellites
grow by the same factor n, the overall orbit determination accuracy remains
at the 1.8 mm level, making the measurement possible over a time span of
about 7.5 days. By improving the Allan deviation by a factor of three, i.e.
σy ∼ 1 × 10−15, which is possible by current technology, the measurement of
the Lense-Thirring effect can be obtained on an overall time span less than 1
day.

7 Conclusion

We have illustrated the proposal of using the system of the Lagrange points
of the Sun-Earth system for various experiments and applications. The pos-
sibility to measure relativistic time delays both from the Sun and from the
Earth has been discussed and the worked out numerical values show that the
measurements would be within the range of possibilities offered by current
technologies; the experiment would also lend the opportunity to determine
the size of the contribution of the quadrupole moment, J2, both of the Sun
and of the Earth.

Another proposal we have put forth is the measurement of the inertial
frame dragging (Lense-Thirring effect) caused by the angular momentum of the
Sun. The technique to be exploited is molded on the Sagnac effect, determining
the time of flight asymmetry along a closed path whose edges are the L points,
travelled in opposite directions by electromagnetic signals. We have seen that
using, for instance, L2, L4 and L5, the time of flight difference would be
in the order of a few 10−13 s, again within the feasibility range of existing
technologies. The direct detection of the LT effect of the Sun, besides adding
a measurement of a gravito-magnetic phenomenon per se to the experiments
made in circumterrestrial, or planned in terrestrial, environments, would give
the possibility to extract interesting information on the interior of the Sun. We
have also discussed the relevance of a possible detection of a galactic gravito-
magnetic field; its presence could be evidenced by the envisioned L-points
configuration at the scale of an AU. A special interest of a possible galactic LT
effect is connected with the dark matter halo of the Milky Way, its consistency
and, possibly, angular momentum.

Passing to a practical application of the L-points set, we have presented
and commented a relativistic positioning system at the scale of the full orbit
of the Earth. Once more the configuration of the system, its stability in time
and its being tied to the orbital motion of the Earth, lend the opportunity of
building a positioning and navigation system that could profitably be used by
all future space missions, at least in the inner solar system.
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Of course all the above is possible provided one can know the actual po-
sition of each spacecraft with respect to its L-point and keep track of it in
time. We have also discussed this fundamental issue and we have seen that a
measurement strategy based on continuous data acquisition during few days
runs would permit to extract the information on the time of flight asymmetry
with the required accuracy.

Once LAGRANGE would have been deployed, there would then indeed be
many more opportunities it could offer for fundamental physics, depending on
the equipment one would be able to put on board the spacecraft. It is just the
case to mention the possibility to detect gravitational waves (GW). The size
of the experimental setup would indeed be adequate. An option would be to
exploit signals exchanged between the L-points adopting a zero-area Sagnac
interferometer [65]. Furthermore, considering again the size and adopting this
time a wide area configuration of the light paths (as the triangle L2−L4−L5),
we should also remember that GW’s do carry angular momentum also. The
response of the system would strongly depend on the relative orientation,
but in principle a GW impinging orthogonally on the ecliptic plane, should
superpose a transient asymmetry of the times of flight on the continuous signal
due to the solar (and galactic) LT-drag.

Summing up, the idea of using a set of the Lagrangian points of the Sun-
Earth system (from two, to four at a time) and measuring the flight times of
electromagnetic signals exchanged between spacecraft located in the L-points,
turns out to be in the range of existing technologies and is appealing. It would
be very fruitful for fundamental physics experiments related to tests of GR
and possible deviations from it, giving also information concerning the Sun,
the Earth and the Milky Way. To pass from proposal to reality an undoubt-
edly huge effort is required to set up the missions needed to carry and locate
the spacecraft at the L-points (which could be done progressively, performing
different experiments gradually while the stations are launched); to properly
equip them; then to control the system and perform the measurements. We
think it could be rewarding to try.
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