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Abstract 

The aim of my thesis work is the application and validation of an electromyographic biofeedback 

(EMG-BF) system in post-stroke rehabilitation setting. The absolute number of strokes is expected to 

dramatically increase in coming years, thus suggesting a need for strategies to improve post-stroke 

assistance and rehabilitation. The electromyogram (EMG) signal has shown good perspectives in the 

analysis of movements and motor impairment and the introduction of closed loop rehabilitation 

strategies revealed an increase of patient self-consciousness and motivation. Results are promising 

but a lack in the optimization of the devices for the application in the clinical context has been 

revealed. The device and the related software employed in the present research have been 

specifically conceived with this purpose. The device has been optimized during a clinical pilot study 

and then, a complete clinical trial has been started to investigate the characteristics of post stroke 

patients eligible for a rehabilitation therapy with the device, and the short-term clinical effect of the 

therapy on the recovery of the hand functionality. A statistical analysis has been performed on the 

dataset collected for 3 months. The data analysis included both clinical data and data collected from 

patients with the device during the execution of the experimental protocol. The preliminary results of 

the data analysis have confirmed the suitability of the system for its intended use and highlighted that 

the patient ability of controlling the EMG-BF based device is related to the degree of impairment with 

minimum p-value<0.001, depending on the patient clinical picture and on the exercise performed. 

Moreover, according preliminary results observed on four patients that received a 15 hours therapy 

for 3 weeks, the improvement of the parameters related to the hand and fingers motor function, 

suggests the efficacy of the therapy. Finally, aspects related to the analysis of continuous motions of 

the wrist performed during the therapy have been investigated and the relevance of the temporal 

information in the interpretation of this type of movements has been revealed (p<<0.01).  
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Summary 
The motor control of voluntary movements is a complex mechanism that primarily involves the areas 

of the primary motor cortex with function of planning and initiation of the movement. The control 

signal is then integrated with somatosensory and visual feedback and reaches muscles fiber through 

the axons that exit the spinal cord and progressively traverse smaller branches of peripheral nerves. 

These circuits are the base of an independent and high-quality life for human beings and can be 

damaged as a result of neuromuscular injuries or diseases, such as stroke. The absolute number of 

strokes is expected to dramatically increase in coming years, therefore the restoration of limb 

functions is becoming a goal that needs enhanced and optimized strategies. In this scenario, 

technology solutions have good perspectives since they allow the decrease of the time a therapist 

needs to consume with each single patient and can guarantee high quality therapy also after the 

discharge of the patient from the hospital. Moreover, the introduction of new parameters to evaluate 

and monitor the degree of motor impairment is advisable. It is well known that the electromyogram 

(EMG) signal contains a large amount of information related to limb movements and functionality, so 

it can be usefully applied for this purpose. The present research is devoted to the application of an 

electromyographic biofeedback (EMG-BF) system in the post-stroke rehabilitation context. The device 

and the related Graphical User Interface (GUI) have been specifically conceived and optimized, 

following development criteria requested from new emerging needs of the clinical context. Moreover, 

a study about the analysis of the EMG signal of continuous movements performed during hand and 

wrist rehabilitation protocols has been performed with the aim of identifying the relevance of the 

temporal information in the interpretation of the movements. 

The first chapter summarizes muscle physiology concepts and provides an overview of motor control 

mechanisms from the initialization of voluntary actions to muscle contraction. Moreover, the basic 

concepts of the recording and processing of the surface EMG are shown.  

The second chapter presents the effects of stroke and the role of technology applications in 

rehabilitation therapies. Moreover, the use of EMG biofeedback in hemiplegic patients is analyzed. 

The third chapter presents the main concepts about medical devices and clinical trials performed on 

patients in order to assess security and efficacy.  

The fourth chapter presents the hypothesis and the aims of the thesis. 
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The fifth chapter is focused on the criteria that the EMG-BF system employed in the present thesis 

aims to meet and describes the definition process of the clinical trial that has been planned to 

validate the device. The chapter also presents quantitative results of the analysis performed on the 

dataset collected during the clinical trial, available at the time of writing. 

The sixth chapter presents the study focused on continuous movements of the hand and wrist 

that has been performed in order to optimize the analysis of motor patterns during rehabilitation 

activities. 

Finally, in the seventh chapter, the conclusions of the thesis are described.      



 

 

1 Muscle physiology 

The present chapter summarizes muscle physiology concepts which are relevant to understand the 

generation of the electromyographic signal. Moreover, an overview of motor control mechanisms has 

been presented from the initialization of voluntary actions by the cortical premotor areas to muscle 

contraction. Finally, the basic concepts regarding the recording and processing of the surface EMG 

have been shown. 

1.1 Structure and organization of muscle 

The structural unit of the skeletal muscle is the muscle fiber (muscles cell), with a range in thickness 

from approximately 10 to 100 μm and in length from 1 to 30 cm [1]. Sets of myofilaments (myofibrils) 

that compose fibers are surrounded by an excitable cell membrane of about 7.5 nm of thickness 

which is known as sarcolemma. The fluid enclosed within the fiber by the sarcolemma is named 

sarcoplasm, it contains fuel sources, organelles, enzymes and an extensive system functionally linked 

to the sarcolemma surface which contribute to the conduction of signals from the nervous system 

(sarcoplasmatic reticulum, lateral sacs and traverse (T) tubules) [2]. 

Myofibrils consist of longitudinally repeated cylindrical units, called sarcomeres. The sarcomere is the 

basic contractile unit of muscle, it contains proteins organized in a regular matrix of thick and thin 

filaments bounded by Z discs [3]. Thin filament (approximately 5 nm diameter) is mainly constituted 

by polymerized actin monomers arranged as a helix, thick filament (approximately 15 nm diameter) is 

constituted by myosin: a long, two chains, helical structure that terminates in two large globular 

heads. 

The sarcolemma is innervated by the motor neurons, whose axons exit the spinal cord and traverse 

progressively smaller branches of peripheral nerves until they enter fibers they control. A motor 

neuron can innervate from 100 to 1000 fibers and each muscle fiber is normally innervated by only 

one motor neuron in only one place (end-plate), usually near its midpoint [3]. The ensemble of the 

motor neuron and muscle fibers it innervates is called a motor unit. The activation of the muscle fiber 

by the motor neuron occurs when the axon terminal end of one neuron, in response to an electrical 

impulse, release the neurotransmitter acetylcholine (ACh), which travels towards the receptors on the 
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end-plate of muscle membrane: the nicotinic type of ACh receptor [2]. Activation of the ACh receptors 

results in the depolarization of the end-plate (end-plate potential), the end-plate potential is 

converted in a potential, which propagates along the muscle fiber with a mechanism that will be 

described in the following paragraph. 

The most widely held theory of muscle contraction is the “sliding filament hypothesis”, developed by 

A.F. Huxley and colleagues in the 1950s [4]. According to this theory, the relative movement of the 

actin and myosin filaments past one another causes the active shortening of the sarcomere, and 

hence of the muscle. When the muscle fiber is activated, changes in the transmembrane charge 

determine the passive diffusion of Ca2+ among the myofilaments. The result is a conformational 

change in the thin filament that exposes actin-binding sites, allowing the myosin heads to attach and 

form cross bridges between the thick and thin filaments. Each globular myosin head contains an 

ATPase that converts the chemical energy of the adenosine triphosphate (ATP) into mechanical 

energy that pulls the thick and thin filaments into greater overlap, shortening the muscle fiber. After 

the sliding motion of about 0.06 μm, the stress in the cross bridge is completely relieved and it can 

detach, then the head can attach to another binding site [3]. 

1.2 Action potential 

Electrical potentials are generated from the electrochemical activity of cells from the nervous and the 

muscular tissue. These cells have a resting membrane potential of 70/90 mV, which is negative inside 

the cell with respect to the extracellular environment [5]. This potential difference results from two 

factors: the unequal distribution of ions over the membrane, in particular the positively charged 

Sodium (Na+) and Potassium (K+) ions and the negatively charged amino acids and proteins and the 

selective permeability of the cell membrane to just K+ [3]. 

The unequal distribution of positively charged ions on either side of the cell membrane depends on 

the activity of a membrane protein called Sodium-Potassium pumps working against the 

concentration gradients of ions flowing through the membrane. These proteins keep the Na+ ion 

concentration in the cell low (about 10 times lower than that outside the cell) and the K+ ion 

concentration high (about 20 times higher than that outside the cell) [6]. The cell membrane also 

contains ion channels highly permeable to K+ but less permeable to Na+, when the cell is at rest they 

are opened and K+ ions tend to leak out down their chemical concentration gradient. As a result, the 
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outside of the membrane accumulates a positive charge (excess of K+) and the inside a negative 

charge (excess of anions) [3].  

Conditions change when the membrane is depolarized over a threshold and an action potential is 

generated: if the membrane potential reaches -40 mV, the membrane permeability to Na+ increases 

due to rapid opening of voltage-gated Na+ channels. Voltage-gated ion channels have the remarkable 

properties of opening, closing and inactivation (soon after opening they close spontaneously) in 

response to changes in the membrane potential, moreover they are highly specific for ions that will 

permeate and those that will not [7]. The net influx of positive charge (Na+ influx exceeds the K+ 

efflux) causes further depolarization. As the depolarization increases, more voltage-gated Na+ 

channels get opened resulting in a greater influx of Na+, which accelerates the depolarization even 

further. The membrane potential reaches the saturation value of 30-40 mV, in the meanwhile two 

processes contribute to limit and finally divert the depolarization. First, the process of inactivation 

closes Na+ channels; second, the opening of the voltage-gated K+ channels gradually increases the 

efflux of K+. Ion fluxes continue across the membrane toward the cell repolarization. K+ channels are 

slightly display so a period of hyperpolarization occurs while the K+ channels are open. Eventually all 

voltage-gated K+ and Na+ channels close. The only open channels are the non-voltage-gated K+ 

channels that generate the inside-negative potential characteristic of the resting state; as a result, the 

membrane potential returns to its resting value  [8]. 

1.3 Motor System Control  

The human motor system controls force, posture and movements of the body, according to a variety 

of internal and external demands and constraints [9]. The motor system comprises three main levels 

of control: the spinal cord, the descending system of the brain stems and the motor areas of the 

cerebral cortex. The interactions among these three levels are extensive and no action involves 

exclusively one level [10]. The most intensively studied areas of the cerebral motor cortex are the 

premotor area (PMA), the supplementary motor area (SMA), and the primary motor cortex (MI), 

which appear to have different roles in movement [11]. Voluntary actions are initiated and controlled 

by the cortical premotor areas and by the supplementary motor area. The brain stem integrates 

information provided by the vestibular apparatus, the sensory receptors in the neck region and the 

input from the cerebral cortex and the cerebellum. Moreover, it has four motor centers that send 
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efferent fibers to the spinal cord and give rise to dedicated pathways which are under the control of 

the sensorimotor cortex and the cerebellum [2].  

The largest part of the cerebral cortex consists of the neocortex, which is of the outer shell of each 

cerebral hemisphere and is involved in higher-order brain functions such as sensory perception, 

cognition, generation of motor commands, spatial reasoning and language. The specific inputs and 

outputs vary across the neocortex and involve the processing of visual, auditory, somatosensory and 

motor information. The motor cortex sends outputs to the basal ganglia, the cerebellum, the brain 

stem and the spinal cord. 

The primary motor cortex has a somatotopic organization which has been widely investigated and 

mapped. In the early 20th century, Sherrington and colleagues [12] collaborated to the meticulous 

mapping of the cerebral cortex in nonhuman primates using electrical stimuli and observing the 

related peripheral motor response. Experiments revealed a histologically unique area, with the lowest 

stimulation threshold for evoking a contralateral limb response, in front of the central sulcus which 

has been variously called precentral gyrus, Brodmann’s area 4, Rizzolatti’s F1 and primary motor 

cortex (M1). These results was the foundation for similar motor mapping experiments on humans 

performed by Wilder Penfield during neurosurgical procedures [13]. In the 1940s and 50s, Penfield 

and his team developed the iconic motor homunculus (Figure 1), a distorted representation of the 

human body within the brain. From left to right, his visualization showed toes and feet extending to 

the body’s trunk, then a very large hand equipped with a particularly prominent thumb, followed by 

the head, face and a dangling tongue beneath it all. More recent studies have improved this 

understanding of somatotopic arrangement using techniques such as functional magnetic resonance 

imaging [14] [15][16], but the Penfield model has been widely reproduced. 

https://en.wikipedia.org/wiki/Sense
https://en.wikipedia.org/wiki/Motor_cortex
https://en.wikipedia.org/wiki/Spatial_visualization_ability
https://en.wikipedia.org/wiki/Language
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Figure 1. "Penfield motor homunculus" by "Carl Fredrik" is licensed by CC BY 3.0. The areas specializing in 

different parts of the body are arranged in approximately top-to-bottom order. The amount of cortex devoted 
to any given body region is not proportional to that body region's surface area or volume, but rather to how 
rich and complex the motor connection system is. 

The spinal cord transmits nerve signals from the motor cortex to the body, and from the afferent 

fibers of the sensory neurons to the sensory cortex. The projections from the primary motor cortex to 

the spinal cord are mainly constituted by the corticospinal tract. The link between the corticospinal 

tract and the alpha (α) - motoneurons that innervate muscle fibers provides direct cortical control of 

muscle activity. 

Many studies have demonstrated that the recruitment strategy of the motoneurons from the central 

nervous system is sized-based. This “size principle” of Henneman et al. [17] was based on results from 

cat motoneurons and is supported by strong evidence that in muscle contraction there is a specific 

sequence of recruitment in order of increasing motoneuron and motor unit (MU) size. The factors 

that influence the motor unit recruitment and firing frequency (rate coding) are primarily the level of 

force and the speed of contraction.  

The premotor cortex and the supplementary cortex also project to the spinal cord as parallel outputs 

often referred as central command or motor command. A copy of this outgoing command (the 

corollary discharge), is returned to the cortical centers and compared with incoming sensory 

https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Motor_cortex
https://en.wikipedia.org/wiki/Afferent_nerve_fiber
https://en.wikipedia.org/wiki/Afferent_nerve_fiber
https://en.wikipedia.org/wiki/Sensory_neuron
https://en.wikipedia.org/wiki/Sensory_cortex


Muscle physiology 
 

6 
 

information to determine differences between the intended and the actual performance of a 

movement.  

The corticospinal tract is also constituted by the axons of the primary somatosensory cortex (S1) and 

other parietal lobe areas (roughly 24%). The function of S1 is processing the afferent information 

received from mechanoreceptors in the skin, muscle and joints and giving rise to a sense of touch, 

position and movement. S1 is also responsible for detecting the presence and magnitude of a sensory 

stimulus but also localization on the body surface. The control of voluntary movements by the motor 

system is graphically resumed in the following scheme.  

 
Figure 2. a. The sensory cortex provides information about the position of the body in the environment; b. 

Basal ganglia receive information from several different regions of the cerebral cortex, process information and 
return it to the motor cortex via the thalamus; c. Regulation of the sequence and duration of the elementary 
movements of all body segments are elaborated by the cerebellum to obtain smooth movements; d. The axons 
of the neurons of the motor cortex descend all the way into the spinal cord, where they make the final relay of 
information to the motor neurons. These neurons are connected directly to the muscles and cause them to 
contract; e. The basal ganglia–brainstem system contributes to automatic control of movements and 
adjustment of postural muscle tone during locomotion, occurs in conjunction with voluntary control processes; 
f. Sensory receptors continuously provide feedback to the system to refine the movement. 

1.4 Electromyographic signal recording and processing 

A single action potential in a motor neuron activates hundreds of muscle fibers in synchrony, the 

resulting currents generate an electrical signal that is readily detectable outside the muscle itself. 

Furthermore, many motor neurons generate an asynchronous barrage of overlapping action 

potentials arising in each muscle unit when more than minimal force is required. The result is a 
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complex pattern of electrical potentials (typically on the order of 100 μV in amplitude) that can be 

recorded as an electromyogram [3].  

A physiological and mathematical model related to the EMG detection has been created: signals 

generated by the motor system reach the α-motoneuron through the spinal cord, firing pattern can 

be described by a train of impulses (Dirac Delta functions). As a rule, neural spikes do not occur 

regularly, in particular each specific spike train is a realization of a random process [18]. Each motor 

unit innervated by the motor neuron axon generates a motor unit action potential train (MUAPT, s(t)) 

which is the convolution of the motor unit impulse response (motor unit action potential - MUAP) and 

the Delta function train [19], [20]. This relation is mathematically described by the following equation: 

 
   

𝑠(𝑡) = ∑ ∑ ℎ𝑖(𝑡)𝛿(𝑡 −  𝑡𝑖𝑗)

−∞

𝑗=+∞

𝑀

𝑖=1

 (1) 

   
 

where hi is the temporal waveform of the MUAP of the i-th motor unit, tij the timing of the i-th motor 

neuron action potential, and δ(t) is the unit impulse function. 

MUAP waveform is a function of the geometrical properties of the motor unit, muscle tissue, and 

location of the recording site with respect to the active motor units [21]. The superimposition of 

generated MUAPT defines mp (t, F). The notation underline that in this model, the sum of MUAP 

trains is considered to be only a function of time (t) and force (F) [22], [23]. At the recording site, an 

electrical noise (n(t)) is introduced by the environment and by the recording system. Moreover, the 

signal is affected by the filtering properties of the recording electrode (r(t)) [21]. The observed EMG 

signal can be represented as: 

 

m(t, F) = [mp (t, F)  + (n(t))]  ⊗ (r(t)) (2) 
 

The electrical noise n(t) which affects EMG signals, can be categorized into the 4 types: the inherent 

noise in electronics equipment, electromagnetic radiation to which our bodies are exposed and which 

may have an amplitude that is one to three orders of magnitude greater than the EMG signal, motion 

artifact caused by the electrode interface and the electrode cable and the inherent instability of the 

EMG affected by the firing rate of the motor units (0 to 20 Hz) [24].  
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1.4.1 Data collection 

The EMG signal can be detected using electrodes inside of a muscle (intramuscular EMG) or on the 

skin surface over the muscle (surface EMG) [2]. Only the aspects related to surface EMG (sEMG) will 

be deepened since this thesis deals with this type of EMG signals.  

sEMG is more practical in clinical, research and commercial fields than the needle electrode 

techniques but some measures are required to guarantee high-quality signals, due to the larger 

distance between the recording site and the signal source and to the signal attenuation and distortion 

introduced by the underlying tissue. In fact, the skin-electrode interface can be considered a 

boundary between two media: a multilayer, nonhomogeneous, and anisotropic conductive media 

(skin, subcutaneous tissue, and muscle) that contains the sources of the electrical field, and an 

isotropic media (the electrode itself) [25]. The electrode–skin interface is very complex with highly 

non-linear behavior, with a capacitive impedance whose R and C components are current and 

frequency dependent. Moreover, it incorporates a DC generator accounting for the half cell potential 

of the metal-electrolyte interface [20]. Figure 3 shows the correspondence between the skin-

electrode (wet electrodes) interface layers and a simplified but effective electrical model which has 

been proposed in 1978 by Neuman [26]. 

 
Figure 3. Electrical model of electrode-skin interface [26]. 

Two types of electrodes are commonly used: wet electrodes which use a conductive gel to improve 

chemical and electrical properties of the interface between the skin and the metallic part of the 

electrode, and dry electrodes: in direct contact with skin. Wet electrodes are conventionally realized 

in silver/silver chloride (Ag/AgCl), they have lower skin-electrode impedance and lower susceptibility 
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to motion artifact with respect to dry electrodes, however they have some disadvantages: allergic 

reactions to electrolyte gel may occur and in case of long-term monitoring, the electrolyte gel may dry 

out, leading to a significant decrease in signal quality [27]. Dry electrodes are designed to operate 

without the electrolyte. From a practical point of view, they are preferable but enabling high quality 

and low-noise recording of bioelectrical events with small amplitudes requires surface optimization 

from a chemical, electrical and mechanical point of view. Different materials has been tested, from 

noble metal [9] to micro-fabricated silicon structures and ceramic [28], and several methods have 

been applied to obtain the lower and most resistive impedance in the EMG frequency range [29], 

[30]. 

Electrodes can be used in a monopolar configuration or in differential configurations. The monopolar 

configuration (with an additional reference electrode, placed on an electrically inactive area) is mainly 

applied in the research field, because it contains the entire information available from the detected 

signal nevertheless, the high sensitivity to common mode signals prevents its application when 

recording condition are not strictly monitored. The differential configurations exploit electrodes in 

pairs and one additional electrode to compute the difference between the two electrodes respect to 

the reference. Allowing a better signal-to-noise ratio, cross-talk reduction and an increase in spatial 

selectivity, it is the most widely used configuration [9]. Surface electrodes can be also combined in 

mono- and bi-dimensional arrays (also referred as arrays or matrixes), providing multichannel 

information for advanced EMG applications and research purposes [31]–[33].  

1.4.2 Filtering and amplification  

EMG signals detected by electrodes require voltage and current amplification to change low voltage 

signals into optimized signals suitable for digital conversion and additional processing. Front-end 

amplifiers need some important characteristics related to the specific circuit configuration adopted. 

High common mode rejection ratio (CMRR) is required to maximize the suppression of correlated 

signals common to both recording sites in bipolar electrodes arrangement (signals from power 

sources, electromagnetic devices, more distant muscles) [30]. The CMRR is defined as CMRR = 

20Log10 (Ad/Ac), where Ad and Ac are, respectively, the amplifier’s differential and common mode 

gains. The best CMRR that can be achieved with commonly used technology is about 105 to 106 (100–

120 dB), which is considered sufficient to limit the equivalent input voltage to a value negligible with 

respect to EMG [34], [35]. In order to avoid attenuation and distortion of the detected signal, the 
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input impedance of the amplifier must be at least two orders of magnitude greater than the largest 

expected electrode–skin impedance of  1 MΩ however, values just higher than 100MΩ are usually 

considered acceptable [9]. One drawback with high input impedance is the increasing of power line 

and radiofrequency noise and movement artifacts introduced in the lead wires by means of capacitive 

coupling. A solution to reduce this effect is to place the amplifier as close as possible to or directly on 

the detection surfaces of the electrode [36], [37]. Another advantage of this configuration is the 

reduction of the output impedance of the amplifier can be made on the order of 10 Ω. 

Even with the aforementioned considerations, the EMG signal will be affected by some noise: the 

signal to noise ratio can be further increased by suitable filtering. Movement artifacts and instability 

of the skin-electrode interface determine slow variations with harmonics in the frequency range of 0 

to 20 Hz, a high-pass filter is therefore designed with a cut-off frequency in the 25 to 30 Hz range. If 

the recording application concerns the firing rates of the active motor units, whose frequency range is 

between 20 and 30 Hz, the cut-off frequency may be lower (15-20 Hz). Other low frequency 

unwanted fluctuations, may be attenuated but not removed (i.e. artifacts due to sliding of the 

innervation zone below the electrodes, fluctuations in the electrode impedance, half-cell potentials) 

[9]. The 50 or 60 Hz interference has been often managed with notch filters, this practice is not 

recommended in some applications since it considerably changes the signal waveform, moreover it 

removes power from EMG in a high-power density frequency band [38]. Digital adaptive noise 

cancellation filters may be used to remove power line interference avoiding unwanted attenuation 

and distortion [39], [40]. Low-pass filters with a cut-off frequency near 450–500 Hz and a roll-off slope 

of 40 dB/decade are included in the system to avoid signal aliasing without removing harmonic of 

interest from the sEMG signal [9].  

1.4.3 Sampling and conversion 

As the Nyquist theorem requires, sEMG signals are sampled at least 1 kHz. The following analog to 

digital (A/D) conversion transforms the sampled voltages into “levels” represented in binary code. An 

important specification is the minimum acceptable signal resolution. A/D converter resolution is 

defined as the ratio between the input range and the number of quantization levels. With a specific 

baseline noise, it is necessary to digitize the signal with enough bits so that noise can be resolved with 

a suitable number of bits and even the faintest EMG activity can be appreciably quantified. It is 

common practice to select the resolution of the system somewhat below the noise level of the system 
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(1-5 μV), and the range somewhat above the maximum expected peak-to-peak amplitude of the 

signal at the output of the conditioning amplifier-filter (±20 mV to ±2 V). Thus, 16-bit A/D converters 

with a ±5V input range are commonly used, the gain of the amplifier is often 1000. If the desired 

resolution cannot be matched, the amplifier must be designed with adjustable gain in order to obtain 

the desired [9].  
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2 Stroke and motor rehabilitation 

In the present chapter the aspects related to the effects of stroke and to the rehabilitation therapies 

are presented. The use of EMG biofeedback in hemiplegic patients is analyzed from the earliest 

studies to more recent task-oriented rehabilitation therapies. The overview is focused on the role of 

technology applications and on the criteria that should be met for a wider applicability in 

rehabilitation protocols. 

2.1 Epidemiology and pathophysiology 

Stroke is characterized as a neurological deficit attributed to an acute focal injury of the central 

nervous system (CNS) by a vascular cause, including cerebral infarction (ischemic stroke), 

intracerebral hemorrhage and subarachnoid hemorrhage (hemorrhagic stroke) [41]. Stroke diagnosis 

tools include clinical diagnosis, radiographic diagnosis, serum Biomarkers and pathology. 

According to Béjot et al. [42], approximately 1.1 million inhabitants of Europe suffered a stroke each 

year. Moreover, rates observed in young adults are on the rise, thus suggesting a need for strategies 

to improve prevention. In addition, since incidence rates increase by a factor of 100 between the age 

of forty and eighty and because of the ageing population, the absolute number of stroke is expected 

to dramatically increase in coming years: by 2025, 1.5 million European people will suffer a stroke 

each year [42]. At the beginning of the 21st century, one-month case-fatality rates in population-

based studies ranged from 13 to 35%. Huge variations were observed according to the subtype of 

stroke. Intracerebral hemorrhage, accounting for 10 to 25% of overall cases, was associated with the 

highest one-month case-fatality rates ranging from 25 to 61%, better prognosis was noted in patients 

with ischemic stroke, accounted for 0.5 to 5%, with case-fatality rates ranging from 9 to 19%. 

Approximately one third of the patients who survive the stroke suffer from long-term disabilities, 

many of them requiring permanent care. As the third leading cause of death and the number one 

cause of adult physical disability in the developed world, stroke is a major public health burden. 
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Depending on which region of the brain is damaged, different disorders can arise: 

 Hemiplegia 

 Visual deficits  

 Aphasia (loss of the ability to speak or understand a known language) 

 Agnosia (inability to process sensory information) 

The hemiplegia involves the 75% of post-stroke patients and affects facial, trunk, lower and upper 

limb muscles [43]. Loss of upper limb motor control is characterized by weakness of specific muscles, 

abnormal muscle tone, lack of mobility, abnormal movement synergies, loss of inter-joint 

coordination and loss of sensation.  

Upper limbs, and especially the hand, strongly influence the human interaction with the environment.  

Reducing the independence of the subject in Activities of Daily Living (ADL), the impairment in the 

functional use of the hand may lead to a decrease in the life quality and social integration. ADL 

require fine motor control of the hand and fingers, in terms of regulation of the magnitude of muscle 

activity, integration of sensorimotor information and synchronization of temporal and spatial 

recruitment of relevant muscles [44], [45]. Therefore, the restoration of the functional use of the 

hand after a neurological injury appears as much challenging as relevant.  

Clinically, the most successful therapy to promote functional recovery is the rehabilitative training. 

The World Health Organization (WHO) defined rehabilitation as a term “to reach and maintain 

optimal functioning in physical, intellectual, psychological and/or social domains” [46]. Understanding 

of biological basis of neural recovery has been accompanied by a better understanding of 

rehabilitation mechanisms. Patients may be classified as being in an acute (<2 weeks), subacute (2 to 

12 weeks) or chronic (>12 weeks) stage after stroke [47]. Although several and different restorative 

processes can occur together in different stages after stroke, it can be said that spontaneous recovery 

begins in the very early stages after stroke but lasts several weeks until it reaches a plateau and 

represents a stable but still modifiable chronic phase [48]. In true recovery, the same muscles as 

before the injury are recruited through neuroplasticity strategies such as changes in interhemispheric 

lateralization, activity of association cortices linked to injured zones and organization of cortical 

representational maps. In compensation strategies, alternative muscle coalitions are used for skill 

performance. Clinical manifestations of maladaptive plasticity may occur in some cases [49]. To date, 

the influence of different therapy modalities on true recovery and compensation have not been 

https://www.strokengine.ca/int_domain/adl/
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clarified. In any case, learning is a necessary condition [50] and can be stimulated and shaped by 

rehabilitation therapies [51].  

2.2 Rehabilitation approaches 

The aim of a rehabilitative training is the recovery of the functional use of the paretic limb through 

impairment reduction or compensatory strategies. Hatem et al. [52] have recently published a 

systematic review focused on standard treatment methods and innovating rehabilitation techniques. 

The twenty-six rehabilitation treatments that have been analyzed, have been classified in six 

categories:  

 Neurofacilitatory approaches/multiple exercising approaches 

 Isolated concepts  

 Motor learning 

 Interventions based on the hypothesis of mirror neurons and motor imagery  

 Adjuvant therapies  

 Technology-supported training 

Neurofacilitatory approaches/multiple exercising approaches. Since the motor system learns by 

repetition and training, stroke rehabilitation massively applies exercise therapy [48]. Exercises may 

differ for their objective or technical characteristics (duration, training load, type of feedback) and 

involve both the patient and the therapist. The aim of the therapy is facilitating voluntary movements, 

normalizing of muscle tone or improving the patient perception of the joint position thus including 

cognitive sensory-motor training. 

Isolated concepts. Isolated rehabilitation techniques are sometimes included in multiple exercising 

protocols and are focused on specific objectives such as Muscle Strengthening [53][54]. Other 

techniques are based on the interaction between the paretic and the non-paretic upper limb 

requiring repetitive movements of the upper extremities in a symmetric or asymmetric design [55], or 

completely restraining the non-paretic limb without specific training protocols.  

Motor skill learning - Constraint-induced movement therapy (CIMT). In stroke, motor learning refers 

to the re-learning of a previously acquired movement pattern. CIMT is a high intensity protocol of 

repetitive task-oriented practice, constraint of the non-paretic upper extremity during 90% of the 
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waking hours and with translation of the achieved clinical setting in to the patient’s daily real-world 

environment [56]–[58] . 

Interventions based on the hypothesis of mirror neurons and motor imagery. The mirror neuron 

system is activated during the execution, as well as during the only observation of actions. Thus, these 

approaches are based on the re-assembling of the injured neural circuits associated with the 

execution of movements, through active (movement imitation) or passive (observation) involvement 

of the patient [59]. 

Adjuvant therapies. Different adjuvant therapies could be integrated with previously cited concepts 

to increase their efficacy. Electrical stimulation can be applied as somatosensory stimulation of 

peripheral nerves [60], to directly elicit muscles contraction [61] or to manipulate the membrane 

potential and modulate spontaneous firing rates of neurons [62]. Moreover, drugs can be used to 

influence neurotransmission or reduce spasticity [63][64]. 

Technology-supported training. Technological solutions participate to rehabilitation therapies in 

the forms of active (actuators moving limbs) or passive (stabilizing limbs) robotic systems, 

performance-related visual and auditory feedback in virtual environment and multimodal devices. 

The aim of technology-supported training is to close the sensory-motor loop to increase patient self-

consciousness and motivation [65]. 

 

2.3 Technology-supported training 

Scientific evidence [52] individuates some recommended rehabilitation approaches: muscle 

strengthening exercises, constraint-induced movement therapy, mirror therapy and botulinum toxin. 

Moreover, according to the stage of stroke, some rehabilitation concepts may be more appropriate 

than others. Technological approaches give promising outcome prognosis but further RCTs are 

needed to ascertain treatment effects.  

For the last few decades, rehabilitation evolution has conferred an important role to technology and 

its applications. Stroke incidence in Europe in 2025 is expected to increase to 1.5 million causing a 

general increase in the amount of therapy. Furthermore, it is well documented [66], [67] that 

functional and task-oriented approaches are more beneficial for skill acquisition than passive or 

impairment-oriented modalities.  
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In this scenario, the introduction of technology in the rehabilitation has good perspectives since it 

allows the decrease of the time a therapist needs to consume with each single patient. Moreover, the 

quality of the therapy can be guaranteed also after the discharge of the patient from the hospital and 

the automatically recorded training data can be retrieved by clinicians for subsequent analysis. There 

is scientific evidence that guided home rehabilitation helps patients in preserving their ability to 

undertake activities of daily living and may lead to further functional improvement [68] [69]. Training 

of skills that are meaningful to the stroke patient, are efficiently supported by three-dimensional 

graphical environments provided by technological rehabilitation systems and immediate biofeedback 

increases patient motivation, self-management and social interaction [70]–[74]. 

2.3.1 Biofeedback 

Biofeedback is the real-time recording of a biomedical variable providing information about the 

activity of the related system. 

The improvement of patient’s motor control supported by biofeedback consists of re-educating the 

patient in that control by providing visual or audio feedback about the measured biomedical variable.  

Feedback can be categorized as either “intrinsic” or “extrinsic”. Intrinsic feedback is provided to a 

person who performed the task and refers to his/her sensory-perceptual information. Extrinsic (or 

“augmented”) feedback is provided from an outside source and includes verbal encouragement from 

the therapist, video camera materials, charts, performance reports [75]. Extrinsic feedback can be 

further categorized in knowledge of results (KR) and knowledge of performance (KP). KR provides 

information about the outcome of performing a skill, KP gives information about characteristics of the 

movement performed in order to complete the task. Although extrinsic feedback is not necessary for 

the recovery of motor skills, the use of KR and KP in therapy has shown better motor outcomes 

[76][77]. Moreover, brain damages can impair a patient capability to understand intrinsic feedback, in 

these cases information about performance can be presented through alternative channels and tools 

[78]. 

Intrinsic feedback can be directly provided as a numerical value of the measured variable (i.e. Heart 

Rate displayed on a wearable device during treadmill exercise) or it can be used to control an adaptive 

auditory signal, visual display or tactile feedback. Giggins et al. [79] have categorized biofeedback in 

Biomechanical biofeedback, involving measurements of movement, postural control and force and 

Physiological biofeedback, which derived from measurement of specific physiological systems.  



Stroke and motor rehabilitation 
 

17 
 

Biomechanical biofeedback 

Biomechanical biofeedback estimates 3-D kinematic information of a body segment with a variety of 

sensors. Inertial sensors measure orientation, velocity and gravitational force [80][81], gyroscope is 

used to measure angular velocity [82][83]. Joint kinematics measurement during functional tasks 

could be performed by electrogoniometery [84], while optical motion capture systems use a network 

of cameras and a series of markers placed on anatomical landmarks on the subject’s body [85]. Gait, 

movement and balance analysis can also exploit measurements of the ground reaction forces 

generated by the body and quantified by force plate systems [86][87]. 

Physiological biofeedback 

Physiological biofeedback is related to the physiological system which is monitored. Cardiovascular 

biofeedback measure Heart Rate and Heart Rate Variability using a heart rate monitor or an 

electrocardiogram and provide it to the user as a numerical value. Electrodes and sensors attached to 

the abdomen are used to teach patients with respiratory diseases by converting breathing to auditory 

and visual signals. EMG biofeedback converts EMG signals, usually recorded with surface electrodes, 

into visual and auditory signals and are applied in both musculo-skeletal and neurological 

rehabilitation. 

Electromyography (EMG) biofeedback in hemiplegic patients 

EMG biofeedback was first introduced in the literature more than 40 years ago as a training tool used 

in rehabilitation therapies to facilitate the recovery of movement patterns after injury [88]. In earliest 

studies, the feedback was indicated in a relatively simple format through visual display of analog, 

digital or binary values, auditory pitch or volume, or mechanical tactile stimulation. Cues were 

ultimately proportional to the EMG signal recorded above electrodes located on specific muscles 

[89]–[95]. Patients usually worked in static positions and practiced to control a specific parameter 

however, performed movements were unrelated with ADL [92]–[94]. Traditional EMG biofeedback 

studies showed improvements in the control of trained muscles [91], [96], [97], increased range of 

joint motion [96], [98], [99] and positive trends in outcome measures used for physical and 

psychological assessment [89], [90], [100]. On the other hand, most reviews of static biofeedback 

therapy failed in demonstrating a significant motor recovery [101][102] showed that the effects are 

limited to specific muscles and joints. For example, functional walking does not benefit from static 

EMG biofeedback training to LE in hemiplegic patients [89][101]. 



Stroke and motor rehabilitation 
 

18 
 

Contemporary approach to rehabilitation therapy is more focused on promoting independent life of 

the patient, this requires the ability to complete functional tasks related to specific ADL performed in 

a real-word environment. Many studies have demonstrated that task-oriented biofeedback therapies 

are beneficial for the improvement in the recovery of functional activities [66], [67]. Thus, more 

recent studies about the efficacy of EMG-BF in neuromotor rehabilitation have applied this concept.  

Park et al. [103] have introduced EMG-BF in their task-oriented training to increase motivation and to 

reach maximum muscle contraction during kinetic chain exercises (KCE) and have revealed that closed 

KCE overtook open KCE in increasing the balance ability and lower extremity muscle activation of 

vastus lateralis and vastus medialis. In the field of the recovery of the walking capacity of stroke 

patients, continuous repetition of movements allowed by cycling exercises in condition of a reduced 

lower physical load and therapist’s engagement has shown good perspectives. This task-oriented 

locomotor training has shown good results with a more efficient contraction of the flexor muscles of 

the paretic leg and in the inhibition of hypertonicity in the extensor [104], [105]. Jonsdottir et al. have 

revealed that task-oriented BF treatment was effective in increasing peak ankle power, gait velocity, 

and stride length in a population with hemiparesis [106]. A randomized pilot clinical study was 

conducted with stroke patients to compare the effect of EMG-BF in combination with conventional 

occupational therapy for performing basic activities of daily living [107]. Results show that the group 

that underwent the combined therapy showed a significantly better performance in all assessments.  

2.3.2 Closed loop rehabilitation technologies 

In the last decade, a variety of technological opportunities have been created for patients and 

therapists to close the sensory motor loop during rehabilitation therapies. A variety of solutions based 

on different control strategies are available on the market of medical devices. Riablo (CoRehab, 

Trento, Italy) and Sword (SWORD Health, Porto, Portugal) provide biomechanical feedback through 

wearable inertial sensors and continuous movement analysis of body segments. Movements and 

posture of the patient are monitored, and a real-time visual, auditory and vibratory feedback is 

provided about the execution of the exercises. VRRS (Khymeia, Padova, Italy) supplies virtual and 

augmented reality environments for the rehabilitation therapy. Patient movements are monitored 

using a magnetic kinematic acquisition system or infrared cameras. This is the case of VRRS Handbox, 

the system dedicated to wrist, hand and fingers rehabilitation. Virtual reality is often associated with 

devices based on motion capture and 3D tracking systems: SeeMe and VAST.REHAB (Brontes 
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Processing, Gliwice, Poland) use Kinect technology (Microsoft, Redmond, Washington), whereas 

GRAIL (Motekforce Link, Amsterdam, The Netherlands) combines data from 3 video cameras to 

reconstruct movements. RAFAEL Smart Glove (NEOFECT, Burlingame, California) is a haptic glove 

based on inertial and magnetic sensors. Wrist and single finger movements are monitored and visual 

and auditory feedback in virtual reality are provided to the patient. In the robot-assisted rehabilitation 

field, physiological or motor parameters (e.g. force and EMG signals) can be used to trigger the 

assistance supplied by the robot. Hand of Hope (Rehab-Robotics, Hong Kong, China) is an EMG driven 

hand exoskeleton. Signals are recorded by single cabled electrodes positioned by the therapist on 

patient forearm. A similar control strategy is performed by Amadeo (Tyromotion, Graz, Austria), a 

rehabilitation robot that can use force measurements or EMG signals recorded with single cable 

electrodes to trigger the robot assistance. Both these systems support patients in performing finger 

flexion and extension and provide a visual feedback during the execution of the rehabilitation 

therapy. 

Most of the above cited systems are based on the kinematic and force data produced by the patient 

during the movement execution. Both aspects are the result of a process that origins in the cortical 

areas dedicated to motor control and reaches motor neurons, whose axons exit the spinal cord and 

traverse progressively smaller branches of peripheral nerves until they enter the muscle they control. 

In some cases, the high level of motor impairment of a post-stroke patient prevents the subject from 

developing a movement or producing a level of force that biomechanical sensors can reveal. In case of 

highly impaired patient who are unable to produce movement, the produced EMG signal can quantify 

muscular activity and interpret user’s intentions. Moreover, a biofeedback based rehabilitation 

system that exploits the analysis of muscular activation patterns, can reveal unwanted compensation 

strategies that the patient could use to perform the correct movement [108].  

Many studies have been performed to assess the effect of the introduction of EMG-BF based systems 

in hand rehabilitation protocols. Results are promising but the focus is on the rehabilitation approach 

and a lack in the optimization of the devices for the application in the clinical context can be revealed: 

single cabled electrodes have been used and a non-portable acquisition system has been applied to 

process EMG signals. Such a configuration increases the application time, reduces usability in a clinical 

context and can introduce variability in electrodes location and thus in the control of the system by 

the patients across different rehabilitation sessions. Moreover, in most of the cases, the recognition 
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of the performed movement is threshold based which can be a practical strategy when the device is 

applied in protocols that include only movements that require the activation of antagonist muscles 

but is no more robust when the rehabilitation protocol becomes more structured.   

In recent years, Myo armband (Thalmic Labs, Ontario, Canada) has been commercialized. It recognizes 

arm, hand and finger gestures using a set of EMG sensors, combined with a gyroscope, accelerometer 

and magnetometer. It has been conceived as a device to control video games, presentations, music 

and visual entertainment. Several hand rehabilitation studies applied Myo armband as an EMG 

acquisition system since it represents a good trade-off between performance and wearability.  

2.3.1 Implementation criteria 

A vast spectrum of technological solutions are available for closed loop rehabilitation protocols  

however, widespread application of the devices in clinical field remains low [67]. Reasons for this 

phenomenon should be individuated and solved for the technology to be more applied in 

rehabilitation protocols. 

Hochstenbach et al. [110] have acquired information by a vast literature review and a semi-structured 

interview with therapists of post-stroke patients rehabilitation, they have identified two series of 

criteria and conditions that technology should meet. The result is a guidance, from a therapist’s 

perspective, that could facilitate successful implementation of technology assisting rehabilitation 

devices in clinical environment. 

Therapy-related criteria 

WHO classifies health and disease at three levels: 1) Function level (aimed at body structures and 

functions), 2) Activity level (aimed at skills, task execution and activity completion) and 3) 

Participation level (focused on how a person takes up his/her role in society) [46]. 

Current therapy strategies are widely influenced by the growing awareness that healthcare goes 

further than mere function level, as has been the case until the middle of the last decade. Therefore, 

training should be oriented to the specific task the patient need to recover and should be applied in a 

meaningful context with methods supporting a practical translation in the real-world environment 

[111]. Therapies should be patient-tailored considering any cognitive impairment and proposing 

challenging but achievable objectives. The inclusion of gaming elements, variability in the exercises 

and feedback has been found to increase patient attention and participation and offers a good 

https://en.wikipedia.org/wiki/Electromyography
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compensation to training hardship [72]. Finally, training intensity and frequency need to be 

determined individually, according to the degree of impairment and to the rehabilitation stage. 

Software- and hardware-related criteria 

From the therapists point of view, most software- and hardware-related criteria concerns the usability 

of the system which should require little time for the setup, should adapt to the individual patient, to 

patient progression over time and to various tasks [110]. The patient perception of the system is also 

relevant: it should not represent a constraint or disturb to the interaction of the patient with the 

environment and the therapists; restrained size, lightweight and portability could support the 

compliance of the device, especially in home-therapy protocols. With this perspective, clear 

instructions and feedback during and after exercises promote the patient independence for the use, 

making possible a continued rehabilitation in chronic patients [20]. Moreover, therapists need to 

observe some performance parameters to monitor patient progression and to tailor therapy to the 

specific patient needs and abilities over time, these parameters should be also provided by 

technological solutions. Some examples of measurable variables are strength, speed in task 

completion, coordination, deviation from the intended trajectory. Moreover, new systems should be 

able to register the exercise history of the patient. Some relevant exercise parameters are: type of 

exercise, number of repetitions, speed of motion, range of motion, force of resistance and period of 

training. 
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3 Medical devices and closed loop 

rehabilitation technology 

The present chapter presents main concepts about medical devices and clinical trials performed on 

patients in order to assess their security and efficacy. 

Medical devices refer to any device, instrument, apparatus, software or material intended to be used 

in diagnosis, prevention, monitoring, treatment, or alleviation of a disease. In 2010, the World Health 

Organization (WHO), has estimated that there are around 1.5 million different medical devices, with a 

variety of products ranging from needles to engineered tissues, defibrillators or prosthesis. Despite 

the mixture of products, some characteristics are common such as the development process, the 

standards that must be complied, the regulatory framework, the classification, the pathway to 

market, and the post-market reporting process. Clinical trials in humans are generally required for a 

medical device to be commercialized and allow the assessment of the quality and the efficacy of the 

device. Trials in clinical context involving medical devices, must meet specific safety and ethic 

requirements which include aspects related to technical, legal, and social fields.  

Since the device used in the present thesis was developed and tested in Italy, these aspects will be 

evaluated in accordance with the European Community (EU) Law. In order for the requirements in the 

European Directives to be mandatory in each member state, the directives were transposed to each 

state’s legislation. Moreover, to ensure a uniform application, the MEDDEV guidelines (Directorate 

General Health & Consumers 2010) were created. Albeit, they are legally non-binding documents, 

they are widely used as reference for the procedures involving new medical devices. 

Finally, the device is devoid of the CE mark (abbreviation of French “Conformité Européenne” 

meaning “European Conformity”), which is the required mark for medical devices to be 

commercialized in EU. Thus, the following paragraphs will be focused on clinical trials performed in EU 

with non-marked medical devices.  

3.1 Main Directives  

Nowadays, clinical trials with medical devices in Italy are regulated by the following laws:  
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 Legislative Decree 46/97 (transposition in National Law of the European Council Directive 

93/42/EEC which covers most of the medical devices) modified by the Legislative Decree 

25/01/2010 n. 37; 

 Legislative Decree 507/92 (transposition in National Law of the European Council Directive 

90/385/EEC on active implantable medical devices) modified by the Legislative Decree 

25/01/2010 n. 37; 

 Health Ministry, Decree of 2 August 2005: “Modalità di presentazione della documentazione 

per notifica di indagine clinica con dispositivi medici”; 

 Circular 2 August 2011: “Chiarimenti sulle modalità di presentazione della documentazione per 

notifica di indagine clinica con dispositivi medici”; 

 Health Ministry, Decree of 08 February 2013: “Criteri per la composizione e il funzionamento 

dei comitati etici”; 

 Health Ministry, Decree of 12 March 2013: “Limiti, condizioni e strutture presso cui è possibile 

effettuare indagini cliniche di dispositivi medici, ai sensi dell’articolo 14 del decreto legislativo 

24 febbraio 1997, numero 46 e successive modificazioni”; 

 Health Ministry, Decree of 25 June 2014: “Modalità, procedure e condizioni per lo svolgimento 

delle indagini cliniche con dispositivi medici impiantabili attivi ai sensi dell'articolo 7, comma 6, 

del decreto legislativo 14 dicembre 1992, n. 507 e successive modificazioni”. 

3.2 Clinical trial with medical devices devoid of CE mark  

Most clinical trials on medical devices devoid of CE mark are promoted by the device manufacturer in 

order to verify the device safety and performance and obtain the CE mark (pre-market trial). In other 

cases, universities, research centers, hospitals or Institutions not qualified as the manufacturer 

perform clinical investigations for the purpose of research or analysis (no-profit trials). Regardless the 

aim of the clinical trial, it has to be notified to the Health Department and obtain the authorization of 

a Research Ethics Committee.  

3.2.1 Classification 

The first step of the procedure is the definition of the risk class of the device according to Annex IX of 

the Legislative Decree 46/97. The classification mainly depends on the following aspects: 
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 duration of the contact with the body and degree of invasiveness; 

 whether the device is active or not; 

 whether special rules are applicable to the device.  

The risk class has to be based on the intended use of the device. If multiple applications are planned, 

the classification has to be performed according to the most critical use. Accessories are classified 

separately from the device moreover, any software for the device proper functioning automatically 

acquires the same risk class of the device itself. The following table summarizes characteristics of 

medical devices for every risk class. 

 

Table I. Summary of medical devices characteristics according to the risk class. 

Risk Class Type Description 

I 

Invasive Devices invasive in stoma or body orifice for transient use or short-term 

use in oral or nasal cavity or ear canal; reusable surgical instruments 

Non-invasive 
Devices that either do not touch patient or contact only intact skin; 

devices in contact with injured skin (only mechanical barrier - absorb 

exudates) 

Active All active devices not included in the other classes 

Special Rules Special rules are not applicable 

IIa 

Invasive 
Devices intended for short term use in stoma or body orifice or long-

term use in oral or nasal cavity or ear canal; devices connected to a 

device of Class IIa or higher 

Non-invasive Devices for channeling or storing for use with body fluids, organs, 

tissues and/or connected to an active medical device 

Active 
Devices intended to administer or exchange energy and medicines with 

the body; device for diagnosis; applications with low risk 

Special Rules 
Devices to record X-ray diagnostic images; substances for disinfecting 

medical devices (no contact lenses) other than by physical action 

IIb 

Invasive 

Devices for long term or mainly absorbed; short term devices which 

undergo chemical change in body (NOT in teeth) or supply 

energy/ionizing radiation 

Non-invasive 
Devices for biochemical modification of anybody liquids intended for 

infusion; devices intended for wounds which breach dermis 
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Active 

Devices intended to exchange energy or administer medicine in a 

potentially hazardous way; devices to monitor vital processes where 

variations could result in immediate danger; blood bags 

Special rules 

Short term devices used for contraception or prevention of sexually 

transmitted diseases; devices emitting ionizing radiation and related 

monitors in medical procedure 

III 

Invasive 

Devices for diagnose/control of or in direct contact with heart, central 

circulation system or central nervous system; Long-term use and 

implantable devices; devices for short-term use mainly absorbed; long 

term devices which undergo chemical change in body - or administer 

medicines (NOT in teeth) 

Non-invasive Special rules are not applicable 

Active Special rules are not applicable 

Special rules 
Devices used for contraception or prevention of sexually transmitted 

diseases if implantable or long-term invasive 

3.2.2 Clinical Trial Notification  

The notification of clinical trials requires the following type of documents: 

 information and responsibility statements of the persons responsible for the trial; 

 device related documents; 

 protocol related documents. 

Information and responsibility statements 

The sponsor of the clinical trial has to assume the responsibility of the investigation according to the 

Directives 90/385/EEC and 93/42/EEC and declare that the clinical protocol has been specifically 

conceived to definitely prove or deny the expectation formulated for the device. Moreover, the 

sponsor has to declare that the investigation will be conducted according to the Annex VIII and X of 

the Legislative Decree 24 February 1997, n.46 and to the Annex VI and VII of Legislative Decree 14 

December 1992, n. 507 that regulate devices for particular intended use and implantable active 

devices respectively. Moreover, the sponsor undertakes to notify every adverse event occurred 

during the investigation. The study must be in accordance with the Helsinki Declaration [112] and 

with the UNI EN ISO 14155-2012 about the Good Clinical Practice (GCP), participant data have to be 

treated according to the Legislative Decree n. 196/03 about Protection of Personal Data. The sponsor 
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must provide the authorization for the investigation obtained by an Ethical Committee that further 

guarantee protection of patients from a legal, ethical and insurance point of view.  

The sponsor also assumes the responsibility for the device, which has to be compliant with the 

essential requirements provided by for law, a risk assessment has to be performed on the device 

according the EN ISO 14971:2012 or to other harmonized international standards. All the costs 

associated to the investigation have to be paid by the sponsor and however, neither the public health 

nor patients must be involved in the expenses.   

Finally, all the documents about the clinical protocol and the device have to be kept at the disposal of 

the Health Department. 

 

Device related documents 

The device has to be univocally identified by document information such as name, model number and 

name and address of manufacturer. Full description of device, including a list of accessories and user 

manual is required, moreover principal design drawings and circuit diagrams including descriptions 

and explanations necessary to understand the aforementioned drawings/diagrams must be provided. 

Material selection has to be documented to fully characterize the identity and chemical composition 

of all materials coming into patient contact, including name and address of manufacturer, trade 

name/code. Detailed description of how biocompatibility and biological safety have been addressed 

must be included in the documentation. The application of harmonized standards is not mandatory 

and alternative methods can be chose to demonstrate compliance with the essential requirements, 

which should be supported by a risk assessment, preferably to EN ISO 14971. It should be apparent 

from the risk assessment, how hazards were identified and characterized and how the risks arising 

from the identified hazards were estimated and justified in relation to anticipated benefits.  

Protocol related documents 

The Ministerial Decrees 12 March and 25 June 2014 define limits and conditions for the evaluation of 

the eligibility of Institutions to the execution of the clinical trials. Clinical structures where the 

investigation take place and the clinical investigator of the study have to demonstrate expertise in the 

specific field of the investigation under the experiment and support it by scientific publications or 

patents. A copy of the Ethics Committee opinion of the structure has to be provided to ensure that 
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the health, safety and human rights of the participating patients are protected. Moreover, for the 

same purpose, a copy of informed consent, of the patient information sheet and of the insurance of 

subjects must be attached to the documentation. All investigation parameters and design features 

have to be communicated: aims and objectives, type of investigation (i.e. whether the use of a 

controlled group of patients is planned), number of patients, duration of study, inclusion and 

exclusion criteria for patient enrollment. Moreover, a description of data recording is required, with a 

justification of statistical design, method and analytical procedures.  

3.2.3 Clinical trial approval 

The Notification has to be presented to the Health Department within 60 days prior to the intended 

clinical investigation. If the Health Department raises grounds for objection or need some integrative 

documentation it will notify the sponsor of the decision and the assessment period is suspended. The 

sponsor of the clinical investigation has 90 days to provide the requested documentation or 

clarifications. The approval of the clinical trial is notified to the sponsor through a formal acceptance.  

However, if within 60 days the Health Department has not given written notice of objection, the 

clinical investigation may proceed.  

3.2.4 Clinical trial conclusion 

The sponsors are required to notify the Health Department when a clinical investigation comes to an 

end (Annex X of the Legislative Decree 24 February 1997, n. 46). A final report of the trial had to be 

redacted and make public. Risk assessment has to be revised according to data collected during the 

investigation. The final report includes a resume of all clinical and technical aspects of the 

investigation. Adverse events and device deficiencies have to be reported and corrective actions 

taken in order to solve encountered problems documented. The conclusion section of the report 

includes a critical evaluation of results from the point of view of security, performance and efficacy of 

the device under study. 
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4 Hypotheses and aims 

Drawing on the analysis of the state of the art and on the consultation of rehabilitation therapists, the 

following hypotheses were made: 

 Hypothesis 1 - The optimization of an EMG-BF system in a real clinical context can lead to the 

implementation of a device which shows both high usability from the point of view of the 

therapist and the patient, and high efficacy in the rehabilitation process;  

 Hypothesis 2 - The temporal relation between the activation of the muscles involved in 

continuous movements performed during motor rehabilitation therapies could provide an 

important support to the study of this type of movement. 

 

The overall aim of this thesis work was, therefore, the optimization and the validation of an EMG-BF 

system in the post-stroke rehabilitation setting. In this context, a further aim was to broaden the 

understanding of the relevance of the EMG temporal information in the interpretation of continuous 

motions.  

These objectives were pursued by means of two activities: a clinical trial that employs the proposed 

system and the analysis of the clinical and instrumental patient data collected during the therapy 

(described in detail in Chapter 5), and  an experimental protocol specifically conceived to investigate 

the contribution of temporal information and to quantitatively evaluate its relevance in the 

interpretation of the sEMG signals recorded during continuous movements (described in detail in 

Chapter 6). 
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5 The clinical trial 

The following chapter describes the developed EMG-BF system and the clinical pilot study that was 

conducted in order to gain useful information for the definition of the clinical trial. Moreover, the 

clinical trial and the results of the analysis performed on the available dataset are presented. The goal 

of the clinical trial was to investigate the characteristics of sub-acute post stroke patients that are 

eligible for a rehabilitation therapy with the device and the short-term clinical effect of the therapy on 

the recovery of the hand functionality.  

5.1 The EMG-BF system 

5.1.1 Hardware 

Myo armband (described in Paragraph 2.3.2) has been considered for the present study, nevertheless, 

some technical requirements have not been met. In fact, Myo transmits a downsampled sEMG signal 

(sampling frequency 200 Hz) digitalized with low resolution (8 bit) that may cause information loss. 

Furthermore, the minimum forearm circumference that the armband can support is 19 cm. The 

muscular hypotonia that may occur in the acute phase of stroke, could prevent some patients from 

using the device as reported by the therapists of the Cerebrovascular Disease Unit of the San Camillo 

Hospital (Venezia, Italy), who contributed from a clinical point of view to the realization of the device 

applied in the present study. 

A wearable EMG-BF device was developed by the Artificial Physiology group of the Istituto Italiano di 

Tecnologia (IIT), Torino. The system was conceived for the application in a clinical environment 

following principles of electrical and mechanical safety. The system comprises two components: a 

flexible and stretchable electrode array (Figure 4.A) and an elaboration module (Figure 4.B), the two 

components are connected through a USB Type-C (Figure 4.C). 
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Figure 4. A. Electrode array with USB-C connector. B. Elaboration module with USB-C port and  on/off switch. C.  
Complete set up 

The electrode array includes 8 bipolar stainless steel dry electrodes embedded in a biocompatible 

shell. The electrode diameter is 10 mm with an interelectrode distance ranging from 2 to 3 cm 

depending on the degree of stretch of the array. This configuration is in line with literature related to 

movement analysis based on sEMG signals [113], [114]. Several studies have revealed that the 

classification accuracy of movements based on sEMG improves by increasing the number of 

electrodes, up to a limit beyond which a plateau is reached. In fact, studies about the optimal number 

of electrodes needed to analyze hand and finger movements, suggested that 8 electrodes could be a 

good compromise between classification performance and reduction in the electrode number for 

practical myoelectric control applications [33], [83], [113]–[117]. The electrode array has been 

conceived to be placed around the proximal portion of the forearm as shown in Figure 5, over the 

apex of the muscle bulge (3-5 cm distal to the elbow crease), in order to record signals from muscles 

physiologically related to wrist and hand movements [118].  
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Figure 5. Scheme of electrode positioning on the forearm. 

The length of the electrode array ranges between 17 to 27 cm, these values were determined mixing 

several information related to anatomical forearm percentile of man, woman, old and young people. 

The system design allows a practical electrode placement from the point of view of the 

physiotherapist and an efficient adaptation to different upper limb rehabilitation protocols.  

The elaboration module (weight [gr]: 40, size [mm]: 50x50x15) integrated an analog front-end for bio-

electrical signal acquisition and inertial measurement unit (IMU). Here the signals were band-pass 

filtered (10-500 Hz), sampled at 1000 Hz and digitally converted (24-bit A/D converter) with a 

resolution per least significant bit of 0.28 µV. Input impedance is > 90MΩ on the whole bandwidth, 

the Common Mode Rejection Rate (CMRR) is > 96dB. Furthermore, the elaboration module calculates 

the Root Mean Square (RMS) of the digitalized signal on a window of 64 ms and transmitted it to a 

host PC via Bluetooth 4.1 by the included ARM R processor. The elaboration module is powered by a 

rechargeable 3.7 V integrated battery which lasts around 8 hours of continued use on one charge. 

5.1.1 Device classification and compliance aspects 

The device is noninvasive, it is an active device intended to not administer or exchange energy and 

medicines with the body and it is not a diagnosis device. Thus, according to Annex IX of the Legislative 

Decree 46/97 the class of risk of the device is I.  

The conformity of the device with the requirements of the European Community Directives 

“Electromagnetic Compatibility (EMC) Directive 2014/30/UE” (implemented in Italy by Legislative 

Decree 80/16) and the compliance with Community Directives “Medical Equipment Directive CEE 

93/42, and CE 2007/47” have been verified by an accredited laboratory, with reference to the EN 

60601-1-2 and EN 60601-2-40 standards. Safety requirements from the point of view of the 
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biocompatibility of the device parts that contact with the patient skin are met using certified bipolar 

stainless-steel electrodes embedded in a biocompatible shell of a polyjet photopolymer, specifically 

intended for medical purposes including prolonged skin contact and short term mucosal-membrane 

contact. 

5.1.2 Software 

A Graphical User Interface (GUI) has been developed with Matlab and provided to the therapists for 

the clinical trial. The GUI provides a step-by-step guide for positioning the electrode array on the 

patient forearm, exploiting signals from the accelerometers and gyroscopes integrated in the 

elaboration module. The RMS signal received from the device is visualized on a radar graph, where 

each spoke represented one of the channels (Figure 6Error! Reference source not found.). 

 
Figure 6. Radargraph of signals recorded from each channel 

Thanks to the positioning guide provided by the GUI, the graph shows some anatomical references 

that allow the evaluation of the EMG patterns associated to each movement. The GUI supports 

therapists also during the calibration of the device and the execution of the exercises of the 

therapeutic protocol. The real-time biofeedback is represented by a marker displayed on the PC 

screen, whose position is related to the RMS signal recorded by the device. The biofeedback control 

strategy is based on two concurrent aspects: the repeatability of the sEMG patterns that the patient 

produces during the execution of a specific movement of the hand and/or wrist and the muscular 

force of the contraction during the movement.  

The sEMG patterns repeatability is assessed by a movement recognition algorithm. Since the muscle 

force and the EMG amplitude depend on the same physiological mechanisms [29], the estimation of 
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muscle force is performed evaluating the amplitude of the RMS signal. Moreover, the GUI has been 

optimized to obtain a controller delay <200 ms in order to avoid that the processing delay could be 

perceivable for the user [119].  

The GUI allows local storage of relevant information such as demographic patient data and therapy-

related data. For every therapeutic session, type of exercises performed with related parameters and 

patient’s performance (e.g. exercises completion and time requested to complete exercises) are 

saved. Moreover, all signals recorded and calculated by the device and the GUI during each 

movement calibration and exercise are stored: RMS signals, control signals generated by the patient 

(i.e. signals resulting from the RMS processing performed by the pattern recognition algorithm), 

target signals (i.e. true control signals that the patient should generate to complete the exercise). The 

complete data set about the rehabilitation session can be post-processed with the aim of monitor 

patient performance and to tailor the therapy to the specific patient needs. 

5.2 Clinical pilot study 

In order to evaluate the feasibility of using the aforementioned system in a clinical context on a group 

of post-stroke patients with different levels of impairment, a pilot study was conducted. The system 

evaluation was conducted considering the device setup time, the duration of the calibration 

procedure, and the patients’ capability to understand and complete the proposed EMG-BF exercises. 

Furthermore, two therapy outcomes were calculated with the aim of quantifying the capability to 

modulate the muscle contraction from patients. Also a group of healthy subjects were involved in the 

pilot study, in order to assess if the calculated outcomes were able to reveal some differences 

between neurological patients and healthy subjects.  

Subjects were informed about the protocol and signed informed consent form prior to enrollment. 

Experiments were approved by the Ethics Committee of the Provincia di Venezia and IRCCS San 

Camillo. The study was carried out in accordance with the ethical standards of the Declaration of 

Helsinki and participant data have been treated according to the Organic Law of Protection of 

Personal Data. 
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Demographics of the participants 

Three patients (see Table II for demographic data) were recruited from the Cerebrovascular Disease 

Unit of the San Camillo Hospital. Inclusion criteria were: age between 18-90 years, mild to severe 

post-stroke upper limb impairment (0 <FMA-UE< 66) and ability to understand instructions. Exclusion 

criteria were: epilepsy without a pharmacologic treatment, severe aphasia (Token Test score < 58) 

and upper limb pain. Table III shows demographic data of 5 healthy subjects that were recruited.  

 

Table II. Demographic data of recruited patients 

Patient 1 2 3 

Age 60 45 43 

Gender M M M 

Paretic side Left Right Right 

Nature of stroke Hemorrhage Hemorrhage Infarct 

Time since stroke (mths) 73 10 8 

Time since evaluation (mths) 1 1 1 

MAS-UE score 6 0 2 

FMA-UE 38 65 52 

FMA-UE: Fugl-Meyer Assessment [120] for the upper extremity (maximum score=66) 

MAS-UE: Modified Ashworth Scale [121] for the upper extremity (maximum score=20) 

 

Table III. Demographic data of healthy subjects 

Subject 1 2 3 4 5 

Age 21 35 27 23 22 

Gender F M M F F 
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Experimental setup and protocol 

Subjects’ forearm length was measured. Thus, the 25% of the forearm length was calculated and 

used as reference from the elbow crease to position the device. The electrode configuration allowed 

the acquisition of the sEMG activity of extensor and flexor muscles of the forearm, that make a 

fundamental contribution to the movement and to the dexterity of the human hand and wrist and to 

their motor functionalities [118] (Figure 7.A-C). 

Figure 7. Experimental setup for the pilot study. A) The device positioned on the left forearm of a healthy 
subject, the stretchable electrode array complies with different forearm circumferences. B) The wireless device 
positioned on the forearm of a patient impaired side and the PC used to receive EMG data and display the GUI. 
C) Detail of an exercise displayed during the experimental protocol. 

No skin preparation was required. The subject comfortably sat in front of a PC screen with the elbow 

and the forearm resting on a horizontal surface and with the arm forming a 45° angle with it.  

This configuration was maintained during the entire experimental protocol, providing proper 

corrections during exercises that required a forearm support. 

Subjects performed each of the following task: 

1. Thumb extension (prone hand) - The thumb moved to the most extended position. 

2. Fingers extension (prone hand) - Fingers were extended avoiding involvement of the wrist.  
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3. Wrist flexion and extension (lateral hand) - Fingers were relaxed during both flexion and 

extension movements.  

4. Hand cupping and fingers extension (prone hand) - During the cupping of the hand, the subject 

slid the tips of its fingers along the table towards his palm, without fingers flexion and with 

wrist and forearm in their stationary position. For fingers extension see task number 2. 

Calibration 

The RMS were visualized on a radar graph, where each spoke represented one of the channels.  The 

EMG background activity (EMG baseline) was firstly acquired in relaxed condition. Afterwards, during 

the subject-specific calibration phase, EMG activation patterns of each movement included in the task 

were acquired: users were asked to maintain each target movement for 3 seconds. According to the 

recorded calibration signals, most active channels were automatically selected as the channels with 

maximum relative amplitude. The relative amplitude was calculated after removing the baseline 

activity recorded during the previous phase. 

Online test 

During the online test, the subject was able to proportionally control the vertical position of a marker 

modulating the contraction intensity of calibrated movements. Tasks including two movements were 

managed through a classification algorithm allowing the marker movement in two different directions 

depending on the performed movement. Two types of exercises have been performed: Reach a target 

(R-ex) and Jump an obstacle (J-ex) following a trapezoidal profile. Both the exercises are outlined in 

Figure 8. Tasks comprised 10 cyclic repetitions in which the reference marker or the obstacle changed 

the vertical position from 50% to 70% of the maximum voluntary contraction (MCV) in a random 

order. The entire experimental protocol lasted approximately 30 minutes.  
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Figure 8. In R-ex the subject had to maintain a large blue marker, indicating the estimated activation level 
superimposed on a smaller target red circle, representing the desired activation. An auditory signal indicated 
when the subject succeeded to maintain the correspondence for 0.4 s and the exercise proceeded to the next 
repetition. In J-ex the user produced a controlled and sustained contraction following a trapezoidal target 
profile (green dashed line) and without intersecting the obstacle. The marker was controlled in its vertical 
position and the background with target references moved at a proper constant speed. The obstacle required a 
constant contraction of 1 s. 

Data analysis  

The root mean square error (RMSE) between the control signal and the target signal during J-ex was 

calculated. The parameter was evaluated only during each sustained contraction at required level and 

not during the entire trapezoidal profile. Values were averaged across all repetitions related to each 

task. 

During each R-ex, the time that the subject took to complete each task repetition was saved. The 

average needed time across repetitions of each task were evaluated. 

RMS signals related to samples during which subjects successfully completed R-ex repetitions, were 

applied to calculate the ratio between RMS amplitude on selected channels and the mean of RMS 

amplitude of channels not supposed to be active. 

Results of eight subjects were statistically analyzed with the statistics software GraphPad Prism 5 

using non-parametric tests. The Friedman test was applied to assess the statistically significant 

difference at the group level. If the Friedman test determined the difference, the conditions were 

compared pairwise using the Wilcoxon signed-rank tests with Bonferroni correction. A level of p<0.05 

was selected as the threshold for the statistical significance. 
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Results 

All subjects succeeded to complete the entire experimental protocol. The setup time lasted less than 

3 minutes and the calibration of the movements described in section II-B lasted approximately 10 

minutes. These timings are consistent with guidelines for post-stroke rehabilitation technology 

design. 

Figure 9 shows the EMG-BF signal (blue line) generated by one representative patient during a J-ex of 

wrist flexion and extension. The patient was able to produce a contraction higher than the obstacle 

(constant phase of the trapezoidal profile) with both movements, accomplishing the exercise 10 

repetitions. Nevertheless, the blue signal presents fast rising/falling edges, suggesting a poor 

muscular contraction modulation.  

 
Figure 9. EMG-BF produced by a representative patient (p1) during the J-ex of wrist flexion and extension. 

The patient lack of modulation is underlined in Figure 10, that shows the RMSE (median and 

interquartile range - IQR 25% - 75%) between control signal and target signal calculated for all the J-

ex. It can be observed that patients’ data have a considerably higher median values (0.4-0.82 for 

patients vs 0.18-0.2 for healthy subjects) and a higher IQR if compared with healthy subjects data. 

Specifically (as shown in Figure 10), the Mann-Whitney test performed to reveal the statistically 

significant difference between not normally distributed groups, shows that there is no difference 

between accuracy reached by healthy subjects (s1, s2, s3, s4, s5), who consistently differs from p1 and 

p2 (p<0.01).  
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Figure 10. RMSE (median and interquartile range - IQR 25% - 75%) between control signal and target signal 

calculated during the constant sustained contraction of J-ex. Results of the Mann-Whitney reveal statistically 
significant differences between the group of healthy subjects and p1 and p2, with p-value<0.01. 

During the R-ex, an outcome of the exercise was the time that the subject needed to complete a task 

repetition. As shown in Figure 11, patient timings have median values from 2.6 s to 3.8 s while healthy 

subjects data ranges between 1.7 s and 2.6 s. Also in this case healthy subjects perform similarly 

without statistical difference within the group, according to the Mann-Whitney test. Median and IQR 

of the patients are distributed in a wide range of values, and specifically p1 statistically differs from 

s1, s2, s3, s4 and s5 (p<0.01). 

 
Figure 11. Time required to reach a target (median and interquartile range - IQR 25% - 75%) during R-ex. 

Results of the Mann-Whitney reveal statistically significant differences between the group of healthy subjects 
and p1, with p-value<0.01. 
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Although post-stroke patients had a less accurate modulation of the intensity of the contraction, their 

timings in concluding a repetition are not extremely higher if compared to those of healthy subjects 

because the trained movement and the intensity of the requested contraction were personalized 

during the training phase of the algorithm. 

During the calibration phase, the maximum RMS value and most active channels were selected. An 

additional outcome of the training session was the ratio between the RMS amplitude recorded on the 

selected channels and the mean RMS amplitude of all other channels during Reach tasks. As shown in 

Figure 12, for all the subjects the activity related to the selected channels is higher than the mean 

activity over channels not supposed to be active.  

 
Figure 12. Ratio between RMS value of selected channels and channels not supposed to be active (median 

and interquartile range - IQR 25% - 75%) during R-ex. The Mann-Whitney reveals no statistically significant 
differences between groups (χ2=11, p=0.13). 

The median values of the ratio are slightly higher in healthy subjects (selected channels activity is 

from 1.6 to 2.4 times left over channels) with respect to patients (the ratio is from 1.34 to 1.7), 

nevertheless the Mann-Whitney test shows that there is no statistical difference between subjects 

(χ2=11, p=0.13). According to this results the device configuration and the channel selection strategy 

was effective to recognize movements included in the training protocol. 

Conclusions from the pilot study 

The aim of the pilot study was to preliminarily test the system which was conceived to address the 

main recommendation for rehabilitation technology design according to the ICF [46]. These criteria 
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are related to the comfortability of the sensor system and to the use of intuitive and clear feedback to 

avoid possible attention-capacity overload.  

The electrode application, which did not require skin preparation and the flexible bracelet allowed 

quick configuration of the acquisition system by the therapists and a good adaptability to different 

forearm sizes. The graphical interface drove the execution of repetitive hand rehabilitation tasks, 

providing feedback proportional to the exerted force and allowing the complete execution of the 

protocol by all patients. Moreover, the subject-specific calibration made it possible to personalize 

tests according to the muscular activity and to the degree of impairment of each subject. The patients 

reported that the movement of the marker was synchronized and congruent with the type and the 

intensity of contraction they were trying to perform. The therapy outcomes related to contraction 

strength and degree of motor control were able to revealed the pathological condition of stroke 

patients with respect to healthy subjects. 

In conclusion, the application of the system to a clinical environment showed promising perspectives 

and the experience gained from this pilot study has been applied to improve the definite EMG-BF 

protocol. The specific observations are both therapy, and software- and hardware- related:  

Therapy-related criteria 

 The system should promote patient-tailored therapies: training intensity and frequency need 

to be parametrized and the therapist should be able to set parameters according to the 

degree of impairment and to the rehabilitation stage. The aim is to provide to each patient 

and at every therapy stage a challenging but not frustrating set of exercises. 

 Spasticity following a stroke occurs in about 30% of patients [122], thus the system should give 

a feedback about the relaxed condition before and after each repetition of the exercise; 

 The sensitivity of the control signal (i.e. the minimum variation of EMG signals that determines 

a variation in the control signal) need to be adapted to the rehabilitation context and 

adjustable according to the patient degree of impairment. 

 The therapy should stimulate patient attention and participation through a greater variability 

in the exercises and feedback. 

 Patients enrolled to a further clinical trial should have a minimum cognitive function in order 

to understand the cognitive task (study inclusion/exclusion criteria). 
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Software- and hardware-related criteria 

 More audio feedback should be added to give clearer instructions to the patient. 

 The use of images is preferable to make the GUI instructions more intuitive. 

 The intervention of the therapist in the exercise session (prematurely ending the session or 

modifying some parameters of the exercise) should be minimum but always feasible and it 

should not entail loss of data.  

 Data recorded during the therapy should be managed and organized in order to provide both 

KR and KP biofeedback, thus a complete set of parameters related to the patient and the 

therapy should be save for further elaboration.  

5.3 Study protocol design 

The clinical trial planned for the device was approved by the Ethics Committee of the Provincia di 

Venezia and IRCCS San Camillo on 21/03/2017, obtained the approval of the Health Department  and 

started on 15/10/2017. 

The study duration is two years and consists of two potentially concomitant phases. The first phase is 

a cross-sectional study (named Screening). The control of the device by patients is appropriate if the 

subject succeeds in the calibration of the protocol movements and in addition, if he/she is able to 

manage the visual feedback through the calibrated movements. In addition, during the Screening 

phase, the patients that are enrolled for the second phase of the study are selected. The second 

phase is a longitudinal pilot study (named Therapy) for the evaluation of the clinical effect and safety 

of a rehabilitation therapy performed with the device. 

For the cross-sectional study, clinical outcome measures are evaluated once, before the beginning of 

this phase. The longitudinal study provides for three evaluation phases: 

1. Initial evaluation: before the beginning of the therapy (T0); 

2. Final evaluation: at the end of the therapy (T1); 

3. Follow-up assessment: after one month (T2). 

Clinical assessments are detailed in Table IV. 
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Table IV. Clinical assessment scales measuring motor and sensory deficits 

Assessment scale Measuring Scoring 

FMA-WH: Fugl-Meyer Assessment 
scale of wrist and hand [120] 

Motor impairment of the wrist and 
hand 
 

0-24 points (lower scores 
indicate greater impairment) 
 

FMA-UE-SPJM: Fugl-Meyer 
Assessment scale of range of motion of 
joints and Joint pain (upper limb) [120] 

Range of motion and joint pain of the 
upper limb 
 

0-48 points (lower scores 
indicate greater pain and lower range 
of motion) 
 

FMA-UE-SF: Fugl-Meyer Assessment 
scale of upper limb sensory function 
[120] 

Sensory function of the upper limb 
 

0-24 points (lower scores 
indicate lower sensory function) 
 

RPS: Reaching performance scale 
[123] 

Compensatory movements used during 
the transport phase of reaching 

0-36 points (higher scores 
indicate less compensatory strategies) 
 

BBT: Box and Block Test [124] Functional level in dexterity 

Number of transported 
blocks in one minute 
(larger scores indicate better 
dexterity) 

NHPT: Nine Hole Pegboard Test Functional level in fine dexterity 

Ratio between the number of 
transported pegs and time interval (50 
s) (larger scores indicate better fine 
dexterity) 

MAS-UE*: Modified Ashworth Scale 
of upper extremity [125].  

Spasticity level of the upper limb 
muscles 

Sum of all five joints: 0-25 
points (lower scores indicate 
less spasticity) 

FIM: Functional Independence 
Measure Level of disability in ADL 0-126 points (lower scores indicate 

lower independence) 
*Only values related to Flexor carpi, Flexor digitorum profundus, Flexor digitorum superficialis have been considered for 

the present study 

The clinical assessment scales will be employed to evaluate the therapy efficacy. The FMA-UE scale 

will be monitored and in accordance with literature [126], an improvement of 5 points from T0 to T1 

is representative of clinically important changes. Moreover, clinical assessments will be applied to 

evaluate the treatment effect size and to quantify the sample size of a randomized controlled study 

(RCT) [127], expected for the next stage of the research. 

5.3.1 Experimental setup 

The experimental setup of the pilot study has been replicated since it allowed the acquisition of the 

sEMG activity of extensor and flexor muscles of the hand.  A rigid forearm support has been provided 

during all exercises to increase patient comfortability and ergonomics (Figure 13).  
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Figure 13.  The patient sat on a wheelchair or on a chair depending on his/her trunk control level. The PC 

and the forearm support (size [cm]: 54x26x9) located on a height adjustable mobile table. 

5.3.2 Experimental protocol 

The exercises proposed during the therapy involve coarse movements of the wrist and fine motions of 

the fingers. These exercises are typically proposed during upper limb rehabilitation sessions: 

 Wrist pronation 

 Wrist supination 

 Wrist flexion 

 Wrist extension 

 Wrist abduction 

 Wrist adduction 

 Finger flexion 

 Finger extension 

 Thumb abduction 

 Pinch 

As suggested by the notion that repetition of identical movements is the basis of motor learning and 

as highlighted by some studies that applied the same concept to rehabilitation protocols [128]–[130], 

the therapy is based on the repetitive training of each movement. Moreover, the patient is required 

to relax forearm muscles to successfully complete a movement repetition. The feedback about the 

relaxed condition before and after each repetition of the exercise has been included with the aim of 

monitoring also the degree of inability to fully relax as a result of impaired motor control. 
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5.3.2.1 Screening protocol 

The cross-sectional study procedure is performed once for each patient and consists of two phases: 

the calibration of each movement and the control of the visual feedback performing calibrated 

movements. During the calibration phase, the patient is asked to perform each movement and to 

maintain the contraction for 3 seconds. A movement is successfully calibrated if the amplitude of the 

RMS signal recorded during a Maximum Voluntary Contraction (MVC), exceeds a threshold 

proportional to the baseline signal recorded during the rest position. Then, for each calibrated 

movement, the patient ability to control the device with the specific movement is investigated: the 

patient performs 6 repetitions of reach a target exercise described in paragraph 5.2 of the present 

thesis, and consists in proportionally controlling the vertical position of a marker modulating the 

contraction intensity of the movement. The reference marker has a constant position that 

corresponds to the range 20%-40% of the MCV. The maximum time to perform each repetition is 10 

seconds, if the patient successfully completed at least 1 repetition, it is able to control the device with 

the specific movement. The maximum duration of the test is 30 seconds for each movement. Thus, 

the entire procedure can last approximately from 15 to 30 minutes.  

5.3.2.2 Therapy protocol 

During the longitudinal pilot study, the rehabilitation therapy is administered to patients who 

successfully control the device and have been enrolled in the Therapy phase. Before each session, the 

calibration of all movements is repeated to reveal if the patient spontaneously recovers the control of 

new movements with respect to the previous session. The duration of the entire EMG-BF therapy is 

15 hours as suggested by the literature evidence [131], [132], that investigated the minimum time 

required for a therapy with augmentative technologies (i.e. Robot, Virtual Reality Environments, 

Biofeedback supported therapy) to be clinically effective. Patients receive one-hour session per day, 

five days a week for three consecutive weeks. Missed sessions are made up as early as possible.  

Four types of exercises are available for the therapy protocol and are presented in the following 

paragraphs. Figures show the GUI screen associated, an illustrative description is presented for the 

first exercise and is valid for the structure of all the other cases. 

1. Exercise Bar: in this exercise the patient has to maintain the top of a bar (the marker) on a 

grey square which becomes green if the marker is in the right position, representing the range 

of the desired activation level, for a minimum amount of time. Then, the patient has to take 
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back the marker under a threshold level. The marker is controlled through the intensity of the 

contraction. The bar top can be moved in a maximum of 4 directions, each direction is 

associated to a different movement according therapist settings. Figure 14 shows the GUI 

visualized during this exercise, three main sections are included: 

 A settings panel (sections B and C) for the selection of the movements and related 

directions and for the exercise parameter selection, moreover it allows to turn on/off the 

sound signal (section E); 

 Play/Pause and Stop buttons (section F), so that the therapist can manage the exercise if it 

is necessary; 

 Sections for the feedback that the GUI provides to the user about the exercise type 

(sections A), the progress of the exercise (sections D) and the performed muscular activity 

(section G). 

 
Figure 14. User interface visualization during the exercise Bar 
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2. Exercise Ball: in this exercise, the patient has to move a ball from its initial position to its 

target position, represented by a grey circle. The ball can be moved in a maximum of 4 

directions by means of likewise movements. The association between directions and 

movements is set by the therapist.   

 
Figure 15. User interface visualization during the exercise Ball 

3. Exercise Jump: a ball is controlled in its vertical position and the background, with target 

references, moves at a constant speed. The patient produces a controlled and sustained 

contraction avoiding the obstacle. The marker can be moved in a maximum of two directions. 

 
Figure 16. User interface visualization during the exercise Jump 
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4. Exercise Arrow: this exercise is a variation of the jump exercise. The marker can be moved in a 

maximum of two directions. The arrow movement in each direction is controlled by different 

movements and the target position moves at a constant speed. 

 
Figure 17. User interface visualization during the exercise Arrow 

Exercises can be grouped according to two aspects: the real-time feedback strategy control and if the 

movement execution timing is constrained by the GUI or not. 

With regard to the biofeedback control strategy, in exercises Bar and Jump the position of the marker 

is proportional to the intensity of the muscular contraction: whenever the RMS amplitude increases, 

also the marker distance from the initial position increases and the marker accelerates, when the RMS 

amplitude decreases, the marker distance also decreases, and the marker gets slower. In exercises 

Ball and Arrow, only the marker speed is proportional to the contraction intensity and if the RMS 

amplitude decreases and tends to the baseline, the speed decreases until the marker stops in the 

position reached at that moment. This type of exercises had been introduced to remove, from the BF 

control strategy, the aspect related to muscular force and to concentrate on the repeatability of the 

sEMG patterns. This control strategy could be applied if the therapeutic exercise is focused on the 

execution of the right movement or if the impairment level of the patient in modulating the muscular 

contraction prevents the execution of exercises Bar and Jump. 
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Regarding the constrained or not timing of the movement execution, in exercise Jump and Arrow, the 

background of the GUI screen moves at a constant speed, requiring that the muscle contraction is 

performed at a specific moment.  

In accordance with the therapy-related criteria that technological solutions for rehabilitation should 

meet which have been individuated by Hochstenbach et al. [110], the GUI allows the therapist to 

perform a patient-tailored therapy. With this aim, the therapy is modular, and each exercise can be 

associated with different movements according the type of patient motor impairment. Moreover, the 

degree of difficulty of the therapy can be modulated through a series of parameters: the number of 

movement repetitions to successfully complete an exercise, the required muscular contraction force 

(calculated as percentage of the MVC recorded during the calibration phase), the duration of an 

exercise repetition and the dimension of the target. The following table presents the range of the 

parameters for each exercise.  

Table V. Summary of exercise parameters 

Exercise Repetition number %MVC [%] Repetition duration [s] Target dimension 

Bar 

1-10 

30-90 
0.1 - 1 

5-40% 

Ball N.A. 1-3 

Jump 10-90 
3 - 10 

5-50% 

Arrow N.A. 1-3 

 

For exercises Bar and Ball, the duration of a repetition is the maximum waiting time for the exercise 

to move forward to the next repetition, while for exercises Jump and Arrow it is proportional to the 

target speed. Moreover, the target dimension parameter for exercise Bar is the percentage variation 

of the target vertical size with respect to the selected MVC, while for exercises Ball and Arrow it is the 

multiplier factor between the dimension of the target and the dimension of the ball, finally for 

exercise Jump it is the percentage width of the obstacle calculated with respect to the repetition 

duration. 

5.3.3 Participants 

The stroke patients are recruited from the Cerebrovascular Disease Unit of the San Camillo Hospital.  

All these patients are hospitalized and identified according to the recommendation of the Italian 

guidelines “The Stroke Prevention and Educational Awareness Diffusion” (SPREAD) [133] for stroke 
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prevention. The confirmation of the diagnosis of stroke and the location of the side affected are 

obtained following the criteria of the Oxford Community Stroke Project (OCSP) and the results of 

Computerized Axial Tomography (CAT) or Magnetic Resonance Tomography (MRT).  

Prior to being enrolled, all patients are informed about the study and gave written consent. 

Study inclusion and exclusion criteria 

Eligible patients have to receive a clinical diagnosis of hemorrhage or ischemic stroke with a score in 

the Functional Independence Measure (FIM) [134] ≤100. There is no age limit. Exclusion criteria 

include: depression diagnosis, head injury, epilepsy without a pharmacologic treatment, apraxia or 

severe aphasia (Token Test score < 58). These criteria guarantee the enrollment of a stroke 

population which needs for intensive rehabilitation therapy, without cognitive impairment which 

could impair their capacity to take part in the research. 

Sample size 

The expectation for the cross-sectional study is that at least the 90% of enrolled patients succeeds in 

efficiently interacting with the EMG-BF device, with a level of confidence of 90% and precision of 5%. 

Thus, the sample size estimated is 97.4 patients [135]. The enrollment of 100 patients is suitable to 

the statistical analysis that will be performed on data. The sample size of 40, for the longitudinal pilot 

study is determined according previous pilot studies for robotic treatments [136], [137]. 

5.3.4 Statistical analysis 

Statistical analysis is performed on the data from the longitudinal study, with the aim of designing a 

randomized control study. Depending on the results of the Shapiro-Wilk normality test, the two-

sample t-test (parametric test) or the Wilcoxon test for paired data (non parametric test) is used to 

compare patient clinical assessments across different evaluation phases (T0, T1 and T2).  

Logistic regression is used to estimate the probability that a patient can receive the EMG-BF based 

therapy. Clinical assessment scales (i.e. Fugl-Meyer Upper Extremity, Reaching Performance Scale, 

Modified Ashworth Scale, Nine Hole Pegboard Test, Box and Block Test, see paragraph 5.3) are used 

as the covariates of the model. The Cohen's d effect size is calculated for all clinical outcomes. The 

effect size is then applied to determine the sample size of the randomized controlled study that will 

be performed in the future. 
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5.4 Preliminary study of results   

 
The clinical trial presented in the previous paragraphs was still ongoing when the dataset analyzed in 

the present thesis was acquired. The cross-sectional study and the longitudinal study have been 

simultaneously performed and twenty-eight and four patients have been respectively recruited. Since 

the two phases of the clinical trial differ in protocols, main objectives and sample size, the related 

datasets have been separately studied. The performed analysis partially differed from the statistical 

analysis planned for the clinical trial, because the number of recruited patients was lower than the 

sample size estimated for the complete study. The preliminary dataset has been assessed with the 

aim of investigating the relation between data recorded with the EMG-BF device and patient clinical 

data. A level of p<0.05 was selected as the threshold for the statistical significance. 

5.4.1 Cross-sectional study 

5.4.1.1 Participants 

Twenty-eight post-stroke patients (eleven females and seventeen males, 65±12 years old 

(mean±std)), recruited from the San Camillo Hospital, were considered for the analysis of the cross-

sectional study data. Based on the FMA-UE, patients are stratified into different severity levels: severe 

(0-20), moderate (21-50), mild (51-66) [120]. Each category of motor impairment was represented as 

follow: 39.28% of patients showed severe, 21.42% showed moderate and 39.28% showed mild upper 

limb impairment. Most patients (75%) suffered from ischemic strokes, the populations were 

comparable from the point of view of affected side (46% suffered from right-side stroke, 54% from 

left-side stroke). Table VI details patients’ demographics. 

Patients have been divided in two groups depending on their capability in controlling the device with 

the entire set of movements included in the experimental protocol: patients who succeeded in 

completing the protocol have been included in the group called Complete Group (CG), patients who 

failed in controlling the device with one or more movements or needed support by the therapists, 

have been included in the group called Not Complete Group (NCG).  
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Table VI. Demographic data of patients enrolled in the cross-sectional study. FMA-UE (-WH): Fugl-Meyer 
Assessment of Upper Extremity (Wrist and Hand); FMA-UE SPJM: FMA-UE Scale of Pain and range of Joint 
Motion; FMA-UE SF: FMA-UE Sensory Function;  RPS: Reaching  Performance Scale; BBT: Box and Blocks Test; 
NHPT: Nine Hole Pegboard Test;  MAS-UE: Modified Ashworth Scale of Upper Extremity ; FIM: Functional 
Independence Measure; Severity: based on the FMA-UE - severe (0-20), moderate (21-50), mild (51-66)*[115] 

Patient Age Gender Paretic 
side 

Nature 
of stroke 

Time 
since 

stroke 

FMA-
UE        

(-WH) 

FMA-
UE 

SPJM 

FMA-
UE SF RPS BBT NHPT MAS-

UE FIM SEVERITY* 

P1 77 F R Isc. 1.8 66(24) 48 24 34 57 0.6 0 121 mild 

P2 75 M L Isc. 3.7 4(0) 44 13 0 0 0.00 0 68 severe 

P3 45 M R Hemod. 37.3 4(0) 39 11 0 0 0.00 4(211) 70 severe 

P4 83 F R Isc. 1.8 58(21) 46 19 36 59 0.56 0(000) 103 mild 

P5 59 M R Isc. 11.4 10(0) 41 13 0 0 0.00 4(400) 96 severe 

P6 49 M R Hemod. 3.3 5(0) 34 2 0 0 0.00 4(211) 45 severe 

P7 73 F L Isc. 0.5 2(0) 45 18 0 28 0.00 3(111) 37 severe 

P8 82 M R Isc. 1.6 66(24) 48 24 36 57 0.69 0 112 mild 

P9 76 M L Isc. 0.9 63(23) 46 19 34 32 0.26 0 71 mild 

P10 83 M R Isc. 69.5 18(6) 33 16 13 0 0.00 0 80 severe 

P11 67 M L Isc. 10.6 42(9) 46 22 24 9 0.02 1(100) 114 moderate 

P12 71 M R Isc. 4.0 33(8) 38 23 17 0 0.00 1(100) 113 moderate 

P13 57 F L Isc. 0.4 51(17) 41 22 27 29 0.29 0 103 mild 

P14 61 F R Isc. 0.4 58(23) 48 24 36 27 0.39 0(000) 116 mild 

P15 75 F L Isc. 1.3 42(11) 48 12 31 30 0.00 1(100) 62 moderate 

P16 55 F L Isc. 0.7 54(17) 48 24 29 33 0.04 0 118 mild 

P17 45 F L Hemod. 29.6 11(0) 33 20 3 0 0.00 7(432) 104 severe 

P18 52 F L Hemod. 2.5 63(24) 44 24 36 65 0.69 0 99 mild 

P19 48 M L Hemod. 45.3 2(0) 42 6 0 0 0.00 12(001) 56 severe 

P20 66 M L Isc. 0.6 57(24) 46 23 34 53 0.5 0 106 mild 

P21 71 F R Isc. 4.6 7(0) 34 23 0 0 0.00 2(200) 75 severe 

P22 78 M L Hemod. 1.2 45(18) 45 19 31 16 0.10 0(000) 63 moderate 

P23 74 M R Isc. 0.9 65(24) 48 12 35 48 0.45 0 36 mild 

P24 62 M R Isc. 1.5 59(15) 45 24 36 52 0.45 0(000) 116 mild 

P25 73 M L Isc. 0.6 4(2) 46 22 0 0 0.00 0 46 severe 

P26 67 M R Hemod. 7.8 9(5) 34 14 0 0 0.00 0(000) 65 severe 

P27 63 F L Isc. 44.03 36(8) 45 22 18 16 0.02 3 112 moderate 

P28 45 M R Isc. 23 34(11) 48 24 13 6 0 3 119 moderate 
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5.4.1.2 Statistical analysis 

Clinical data 

The statistical analysis of clinical data of the cross-sectional study has been performed with the 

statistics software GraphPad Prism 5 and included 3 phases. After a univariate analysis of patient 

clinical outcomes (phase 1), a bivariate analysis (phase 2) was performed to evaluate the differences 

between the group of patients that were able to successfully control the device with all the proposed 

movements and the patient group that failed in controlling the device with one or more movements. 

During the third phase, clinical outcomes that had statistically significant differences between the two 

groups of patients, were further analyzed and cut-off values able to discriminate patients were 

calculated. 

The following paragraph shows the results of the univariate analysis of variables. 

The boxplot of each quantitative variable of the population is shown in Figure 18. Results show that 

Age has a symmetrical distribution, Time since stroke, BBT and NPHT are positively skewed, which 

means that the bulk of observations shows higher frequency of high valued scores for the related 

variables, while FMA-UE SJM, FMA-UE SF and FIM are negatively skewed. The only data set that 

contains outliers is the Time since stroke variable set, with 5 patients with anomalous values.  

Figure 18. Boxplots of quantitative clinical variables. 
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Figure 19. Histograms representing the percentage of patients for each degree of muscle spasticity of the 
MAS 

Figure 19 shows the percentage of patients with regard to the muscular spasticity of hand muscles 

measured whit the MAS. Most patients show no increase of muscle tone in the investigated muscles.  

A bivariate analysis has been performed to reveal a statistically significant difference between 

patients included in the CG or in the NCG. Normality of quantitative variables of patient groups has 

been verified by the Shapiro-Wilk test with a significance level of 0.05. Normality has been verified in 

both groups only for Age, thus the t-test was applied to investigate the statistical statistically 

significant difference between the two groups for this variable. All other variables were compared 

through the Mann-Whitney test. 
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Figure 20. Boxplots of the bivariate analysis performed to compare the clinical data of patients of Complete 

Group and Not Complete Group. * (p<0.05). ** (p<0.01). *** (p<0.001). 

Figure 20 shows the boxplots of the quantitative variables, separately for CG and NCG and reports the 

statistical significance of the difference between the groups. Median values of CG and NCG are similar 

only for Time since stroke variable, all other variables show higher median values for patients in CG. 

FMA-UE and NHPT for patients who failed in completing the entire protocol are equal to 0, thus the 

Mann-Whitney couldn’t be performed. RPS and BB distributions contain one outlier with respect to 

the rest of the values which are equal to 0. CG presents some outliers for Time since stroke and FMA-

UE-SPJM with three values respectively higher than 10 and lower than 41. The variability is similar for 

every variable, except for FMA-UE-SF with a standard deviation, for NCG, which is twice than the 

standard deviation of CG.  

The percentage of patients included in CG and NCG and related qualitative variables have been 

calculated and are shown in Table VII. 
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Table VII. Distributions of Complete Group (CG) and Not Complete Group (NCG) regarding the qualitative 
clinical variables 

  Gender Affected UE Nature of stroke Flexor carpi  Flexor digitorum 
profundus 

Flexor digitorum 
superficialis 

  M F R L Isc Hemod 0 1-4 0 1-4 0 1-4 

CG 60 40 50 50 75 25 75 25 85 15 85 15 

NCG 60 40 50 50 50 50 25 75 63 38 38 63 

 

The percentage values for Gender and Affected UE are equal for CG and NCG. Most patients who 

completed the protocol with the entire set of movements suffered from Ischemic stroke while 

patients who failed are equally distributed. Flexor carpi and Flexor digitorum superficialis MAS values 

reveal a higher spasticity level in patients of NCG, with most patients showing MAS values between 1 

and 4. Instead, the distribution of patients in regard to the Flexor digitorum profundus MAS value has 

no difference between the groups. 

The Fisher's exact test has been applied to assess the significance of categorical (Gender, Nature of 

stroke and Affected UE) and ordinal variables (Flexor carpi, Flexor digitorum profundus, Flexor 

digitorum superficialis values of the MAS) in determining if a patient belongs to Complete Group or to 

Not Complete Group. MAS values from 1 to 4 have been aggregated as the related percentage of 

patients was considerably lower with respect to the percentage of patients with MAS values equal to 

0 (see Figure 19). The Fisher's exact test rejected the null hypothesis of independence for Flexor carpi 

(p-value = 0.0283) and Flexor digitorum superficialis (p-value = 0.0114). All other tested variables 

proved to be independent from the Group. 

The bivariate analysis highlights that some clinical data can reveal if a patient is able to manage to 

EMG-BF system and be involved in a rehabilitation protocol based on the system. Nevertheless, it 

could be of interest to determine the threshold values of these parameters. With this aim, the clinical 

outcomes that had statistically significant differences between the two groups of patients, have been 

further analyzed and cut-off values able to discriminate patients have been calculated. The study was 

based on the Receiver Operating Characteristic (ROC) curve analysis. The Area under the ROC Curve 

(AUC) has been calculated for each variable and a threshold of 0.7 has been selected to highlight 

variables that sufficiently discriminate patients. All variables have been found suitable 

(0.7344<AUC<0.8438). Cut-off values have been individuated with the aim of guarantee the best 
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compromise between  the sensitivity and the specificity of the test [138]: the point on the ROC curve 

closest to the 0.1 has been selected. Results are detailed in Table VIII. 

Table VIII. Results obtain from the study of the ROC curve about the cut-off values of clinical outcomes 

  Age 
FM-UE 
(-WH) 

FMA-UE-
SPJM 

FMA-
UE-SF  

RPS BBT FIM 

AUC* 0.7344 1 0.8438 0.8313 0.9125 0.7938 0.7688 

Cut-off value < 50.50 < 1.020 < 45,5 < 18.50 < 8.000 < 3.015 < 105.0 

Sensitivity 50 100 100 75 100 87.5 100 

Specificity 95 100 60 80 90 80 50 
*AUC: Area Under Curve 

The Specificity of the cut-off values is higher than 80% for all variables except for FMA-UE-SPJM and 

FIM that respectively obtained 60% and 50%. The Sensitivity has slightly lower values for Age, FMA-

UE-SF and BBT but is higher than 75% for all other outcomes.  

Instrumental data 

As mentioned in paragraph 5.1.2, the GUI locally stores some therapy-related data. All signals 

recorded during the therapeutic protocol and related to each movement repetition were 

automatically segmented. Recorded data are post-processed with the aim of extracting some relevant 

information about task performance.  

No patients of Not Complete Group succeeded in performing movements of finger extension, thumb 

abduction and pinch. Seven patients successfully performed wrist supination, while wrist pronation, 

flexion, adduction and finger flexion has been managed by six patients. The device has been 

controlled thought wrist extension and adduction by 5 patients only. 

Since only patients of Complete Group succeeded in completing the entire protocol, instrumental 

data from this group have been analyzed. 

Studies on the effects of stroke on motor control in the human upper extremity suggest that stroke 

alters the normal muscle patterns [139], [140]. Prior studies have reported that during voluntary wrist 

flexion and extension [141] and during contraction of the finger extensors [142], stroke patients 

exhibit weakness and impersistence of muscle contraction. Recent studies showed the capability of 

EMG amplitude in highlighting motor control impairment of different stroke group patient when 

compared to healthy subjects [143], [144]. Thus, in the present study, the RMS amplitude has been 

assessed and correlated with clinical outcomes related to the upper limb motor impairment. The RMS 
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amplitude has been evaluated on the 3 channels that recorded the highest signals calculated as the 

mean value during the entire task execution. 

For each movement of the experimental protocol, the Spearman’s correlation analysis has been 

applied to evaluate the correlation between clinical assessments and instrumental data. Results of the 

analysis are summarized in Table IX. 

Table IX. Correlation between RMS values and clinical assessments 

  Age Time since 
stroke 

FM-UE          
(-WH) 

FMA-UE      
SPJM 

FMA-UE    
SF  RPS BBT NHPT FIM 

Wrist pronation 0,06933 -0,2328 0,4225 -0,05888 0,3675 -0,03175 0,2714 0,2757 0,2465 

Wrist supination 0,3537 0,02293 0,563* -0,1223 0,4819* -0,1922 0,2489 0,4207 0,4435 

Wrist flexion 0,05968 0,02646 0,5923** 0,1839 0,4558* 0,2346 0,4589* 0,5957** 0,6281** 

Wrist extension 0,2606 -0,01764 0,2126 -0,3161 0,327 -0,142 0,3066 0,1909 0,212 

Wrist abduction 0,1181 -0,2054 0,7288*** 0,1499 0,5107* 0,02266 0,5564* 0,654** 0,6333** 

Wrist adduction 0,2121 -0,05967 0,2564 0,0007728 0,3169 0,0506 0,2312 0,2347 0,2217 

Finger flexion 0,1571 -0,3386 0,4954* -0,05435 0,3973 -0,1878 0,1749 0,2881 0,2447 

Finger extension 0,2799 -0,2205 0,7569*** 0,1069 0,4315 -0,03439 0,6366** 0,7468*** 0,75*** 

Thumb abduction 0,2354 -0,105 0,5729** 0,04946 0,4686* 0,05967 0,518* 0,5872** 0,609** 

Pinch 0,3746 -0,2545 0,6786** 0,09273 0,5709** 0,05363 0,6273** 0,6388** 0,612** 
* (p<0.05). ** (p<0.01). *** (p<0.001). 

RMS values are significantly correlated with FM-UE(-WH), FMA-UE SF, BBT, NHPT and FIM for Wrist 

flexion and abduction and for Thumb adbuction and Pinch. A correlation is revealed for Wrist 

supination in case of FM-UE(-WH) and FMA-UE SF and for Finger flexion when FM-UE(-WH) values are 

evaluated. All statistically significant results show a positive correlation. 

Li et al. [145] recorded EMG signals and movement kinematics in patients and control subjects while 

performing arm reaching tasks. They found that the patient group showed a longer duration of each 

task. Therefore, the time that the patient took to complete each task repetition has been assessed. It 

has been calculated as the period from the GUI trigger and the end of the period during which the 

patient was required to maintain the marker on the target, normalized to the selected duration of the 

contraction.  

Table X shows the Spearman’s correlation analysis results between the time that the patient took to 

complete each task repetition and clinical assessments.  
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Table X. Correlation between the time to complete task repetition and clinical assessments 

  Age Time since 
stroke 

FM-UE          
(-WH) 

FMA-UE      
SPJM 

FMA-UE    
SF  RPS BBT NHPT FIM 

Wrist pronation 0,2406 -0,002646 -0,01512 0,05855 -0,2998 -0,1271 -0,1643 -0,1529 -0,2443 

Wrist supination 0,4715* -0,08113 0,4349 0,2144 0,02446 0,3093 0,4187 0,449 -0,07231 

Wrist flexion 0,4612* -0,01284 -0,01826 0,2955 0,05023 0,127 0,08353 0,1253 0,2273 

Wrist extension 0,62** 0,1397 0,1164 0,007694 -0,4498* -0,08082 0,2179 0,1572 -0,5453* 

Wrist abduction 0,2643 0,08378 -0,04002 0,1549 -0,05254 0,04148 -0,06272 -0,009722 -0,172 

Wrist adduction 0,2859 0,01279 0,08898 0,2163 -0,1124 0,1741 0,1193 0,1578 -0,341 

Finger flexion 0,3529 0,3376 -0,3279 0,04999 -0,4397 -0,1125 -0,2377 -0,2081 -0,2183 

Finger extension 0,2954 -0,001511 -0,2546 -0,03155 -0,4144 -0,03855 -0,1869 -0,1592 -0,368 

Thumb abduction 0,2846 0,2554 -0,3332 -0,164 -0,2692 -0,07036 -0,09987 -0,1331 -0,3361 

Pinch 0,3898 0,05291 -0,1601 0,03153 -0,2536 0,02705 0,007067 0,01149 -0,2954 
* (p<0.05). ** (p<0.01). *** (p<0.001). 

Results show that time significantly correlates with Age for Wrist supination, flexion and extension. 

Moreover, for Wrist extension, significant negative correlations are revealed with FMA-UE SF and 

FIM.  

5.4.1.3 Conclusions 

Summarizing key results, the analysis of the dataset recorded during the cross-sectional study 

reveals some relevant aspects. All patients who failed in completing the entire protocol (Not 

Complete Group), have severe upper limb impairment and represent the 72% of patients that show 

this level of impairment. Moreover, all the quantitative clinical outcomes show higher median values 

for patients in Complete Group, showing that the ability of controlling the device is related to the 

patient clinical picture. The Fisher's exact test highlights a significant association also with spasticity of 

Flexor carpi and Flexor digitorum superficialis muscles measured with MAS. These results are 

confirmed by the study performed on the cut-off values. The promising sensibility and specificity 

levels obtained with the calculted cut-off values, have prospects for a preventive evaluation of 

patients that could successfully perform the EMG-BF based rehabilation therapy on the complete set 

of movements. An optimization could be performed in order to improve the discriminant power of 

the procedure: since consequences of a wrong classification of a patient as a subject that can control 

the device has a low criticity, specificity could be increased in the face of a slight reduction of the 

sensitivy value.  
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Evidence about the analysis on instrumental data recorded from patients included in the 

Complete Group is also promising. The correlation with the RMS amplitude of the EMG signal has 

statistical significance for a subset of movements and outcomes. Results are in line with baseline 

studies [143], [144] and, actually, the conclusions are confirmed on finest movements of the wrist and 

fingers, monitored with the only EMG signal. The positive correlation suggests that higher RMS 

amplitude can be related to lower levels of motor impairment for stroke patients. The correlation of 

clinical outcomes with the time that patients need to complete exercises is rarely verified and 

revealed lower precision levels. The significant correlations that have been found, however, are 

plausible: time values are higher for older patients and for patients with reduced sensory functions 

and a lower independence level. 

In conclusion, it is evident that the degree of control of the device is related with the patient’s 

motor impairment and data recorded during exercise execution are promising as performance 

parameters to monitor patient progression and to tailor therapy to the specific needs and abilities 

over time. Further work should be done in order to confirm the relevance and reliability of proposed 

parameters and to identify other efficient performance measures.  

5.4.2 Longitudinal study 

5.4.2.1 Participants 

 
Four patients (P11, P12, P14, P15; 63±11 years old) were selected for the longitudinal study. Table XI 

shows patients’ demographic and clinical data. They have been treated as mentioned in Paragraph 

5.3.2.2 of the present thesis:  1 hour per day, 5 days a week for 3 weeks. The therapy has been 

patient-tailored considering the specific degree and the type of motor impairment and has been 

administered by the therapists according the rehabilitation stage from the point of view of intensity 

and frequency of the proposed tasks. Moreover, each session included different exercises with the 

aim of focusing on muscular force or on the repeatability of the sEMG patterns and in order to 

increase patient attention and participation. 
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5.4.2.2 Data analysis 

 Clinical data  

Preliminary assessments have been done on the comparison between initial (before the beginning of 

the therapy) and final evaluation (at the end of the therapy). Table XI shows clinical assessments of 

each patient, mean and standard deviation values have been calculated for each outcome. Moreover, 

the percent variation of quantitative clinical data has been calculated as the ratio between mean 

values before and after the therapy. 

Table XI. Before and after-therapy clinical assessments.  

Variable 
Patient 

Mean Standard 
deviation 

Percent 
variation 

[%] 1 2 3 4 

FMA-WH  
PRE 8 23 11 9 12.75 6.02 

13.73 
POST 11 21 15 11 14.50 4.09 

FMA-UE-SPJM 
PRE 38 48 48 46 45.00 4.12 

-6.11 
POST 36 43 46 44 42.25 3.77 

FMA-UE-SF 
PRE 23 24 12 22 20.25 4.82 

-7.41 
POST 22 24 7 22 18.75 6.83 

RPS 
PRE 17 36 31 24 27.00 7.18 

8.33 
POST 19 36 36 26 29.25 7.19 

BBT 
PRE 0 27 30 9 16.50 12.46 

42.42 
POST 10 40 29 15 23.50 11.80 

NHPT 
PRE 0 0.39 0.00 0.02 0.10 0.17 

-7.61 
POST 0.00 0.36 0.00 0.02 0.10 0.15 

FIM 
PRE 113 116 62 114 101.25 22.69 

10.86 
POST 113 124 98 114 112.25 9.28 

MAS-UE 
PRE 2 1 2 1 / / 

/ 
POST 3 1 2 1 / / 

 

Mean values of FMA-WH, RPS, BBT and FIM show a positive percent variation ranged between 

10.86% and 42.42%, a maximum decrease of 7.61% is calculated for the other parameters. 

Instrumental data 

As above mentioned, the GUI locally saves some relevant information about exercise performance. 

For each exercise, a significant output variable has been individuated which allowed the quantitative 

assessment of patient performance during the execution of the therapy. Moreover, the exercise 

parameters that have been modified by the therapists during the therapy protocol have been 
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individuated. Data recorded during different therapy sessions and with different parameters have 

been separately analyzed for each exercise in order to reveal two aspects: the existence of any trends 

in the variations of the output variable across therapy sessions and the influence of exercise 

parameters on patient performance. In order to evaluate the first aspect, the mean value of the 

output variable has been calculated for each patient. The second aspect has been analyzed calculating 

the mean value of data recorded for all patients during the entire rehabilitation protocol. Movements 

have been firstly compared to reveal if specific movements were more difficult to perform then, the 

output variable has been studied for each specific movement, in order to assess the influence of 

parameters variation on the output variable values. Data have been pre-processed to remove outliers 

from the data set. The statistical analysis has been performed with the statistics software GraphPad 

Prism 5. 

Exercise: Bar 

The output variable of this exercise is the time that the patient took to complete each task repetition, 

this parameter has been assessed as the period from the GUI trigger and the end of the period during 

which the patient was required to maintain the marker on the target, normalized to the selected 

duration of the contraction. Parameters that have been varied during the therapy were the 

percentage of the MVC required to manage the control signal and the duration of the required 

contraction (Hold Time), three combinations of these parameters have been applied and analyzed: 

1. %MVC (M): 30% -  Hold Time (H): 0.3 s; 

2. %MVC (M): 60% -  Hold Time (H): 0.3 s; 

3. %MVC (M): 60% -  Hold Time (H): 0.4 s. 

Following figures (Figure 21-Figure 24) show the variation of the mean time across therapy 

sessions and the respective exercise parameters. 
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Figure 21. Mean values of the output value and related parameters across sections for patient 1. 

 

Figure 22. Mean values of the output value and related parameters across sections for patient 2. 
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Figure 23. Mean values of the output value and related parameters across sections for patient 3. 

 

 

Figure 24. Mean values of the output value and related parameters across sections for patient 4. 
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It can be observed that each patient received a specific therapy: parameters have been usually 

adjusted across sessions, some movements have been performed twice or they have been completely 

omitted from a session. No trend can be detected according the therapy phase. Results of therapy 

sessions could be influenced by the variation of the exercise parameters. Therefore, instrumental data 

have been analyzed to evaluate the parameters’ influence on patient performance. Following figures 

(Figure 25-Figure 27) show the distribution of the output variable separately for each parameter 

combination, they have been calculated only if the data set had a minimum required sample size. 

 
Figure 25. Boxplot showing the distribution of the output variable for each movement 

 
Figure 26. Boxplot showing the distribution of the output variable for each movement 
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Figure 27. Boxplot showing the distribution of the output variable for each movement 

Some observation can be made about the distribution of the median values (reported in Table XII) 

for the three parameter combinations: for both the first and the second combination Wrist abduction 

and Pinch show the lowest median values, while Wrist pronation and flexion show the highest values. 

The third combination of parameters determine a variation in the relation between movements and 

the movement with the lowest median value is Finger extension while Wrist supination and Finger 

flexion have the highest values.  

Table XII. Numerical values of boxplot percentiles shown in Figure 25-Figure 27 

Exercise Parameters - MVC: 30%; Duration of the contraction: 0.3 s 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th 0.70 0.82 4.54 0.87 0.36 2.05 1.61 0.60 3.67 0.59 

50th 5.10 1.89 9.82 2.42 0.94 2.82 2.27 3.46 5.54 0.62 

75th 24.49 5.47 13.62 3.46 6.33 4.69 2.78 7.30 9.31 5.82 

Exercise Parameters - MVC: 60%; Duration of the contraction: 0.3 s 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th 2.15 0.84 1.34 1.30 0.48 1.21 0.32 1.28 0.49 0.32 

50th 5.95 1.92 2.72 2.22 0.80 1.54 2.67 2.71 1.45 0.89 

75th 11.17 7.77 29.10 21.33 3.87 4.34 7.02 4.72 9.56 1.31 

Exercise Parameters - MVC: 60%; Duration of the contraction: 0.4 s 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th 0.94 0.84 / / 0.78 0.83 0.71 0.37 / / 

50th 1.26 1.97 / / 1.49 1.15 1.89 0.60 / / 

75th 1.78 2.01 / / 3.28 1.77 5.22 0.93 / / 
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The Kruskal-Wallis test has been applied to reveal if the output variable significantly differs for 

different movements. For all the combinations, the test doesn’t reject the null hypothesis that 

movements samples are from identical distributions, this means that no movements show time values 

significantly different from the others. 

The output variable has been also studied for each specific movement, in order to assess the 

influence of parameters variation on patient performance. Figure 28 shows the boxplots of time 

values for each combination. 

 

Figure 28. Boxplot of the output variable for each movement and parameter combination 
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The percent variation of the time values has been calculated when an exercise parameter has been 

modified from its initial value to its final value (the other parameter has been maintained constant). 

Results are shown in Table XIII. 

Table XIII. Percentage variation of the output variable corresponding to a variation of an exercise 
parameter.  

Percent variation of time values 

Variation WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch Mean 

%MVC  16.58 1.61 -72.34 -8.17 -14.74 -45.19 17.83 -21.55 -73.86 43.37 -15.65 

Hold Time -78.88 2.79 / / 87.22 -25.28 -29.24 -77.76 / / -20.19 

 

When the %MVC value is increased, time values increase for 4 movements. The variation of time values 

recorded when the duration of the required contraction was increased can be evaluated only for 6 

movements: median values increase for 2 movements. The mean value of the percent variations is 

slightly negative in both cases, which means that a reduction of the output variable has been 

revealed. Also in this case, the Kruskal-Wallis test doesn’t reveal any statistically significant difference 

between distributions recorded with different parameters. 

Exercise: Ball 

For exercise Ball, the time that the patient took to reach the target normalized to the target distance 

from the initial position of the marker has been considered as the output variable. Parameters that 

have been modified are the %MVC required to control the BF signal and the target dimension. The 

exercise has been performed using four combinations of parameters: 

1. %MVC (M): 30% -  Target dimension (T): 1 

2. %MVC (M): 30% -  Target dimension (T): 2 

3. %MVC (M): 50% -  Target dimension (T): 1 

4. %MVC (M): 60% -  Target dimension (T): 1 

Following figures show the mean value of the output variable for each patient and movement, across 

therapy sessions. 



The clinical trial 
 

69 
 

 

Figure 29. Mean values of the output value and related parameters across sections for patient 1. 

 
Figure 30. Mean values of the output value and related parameters across sections for patient 2. 

 



The clinical trial 
 

70 
 

 

Figure 31. Mean values of the output value and related parameters across sections for patient 3. 

 
Figure 32. Mean values of the output value and related parameters across sections for patient 4. 
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Also in this case, figures highlight the variability of the therapy administered to the patients according 

their level and type of motor impairment.  

For each performed movement, the distribution of the output variable has been evaluated according 

the exercise parameters. Following figures show the result of the study.  

 
Figure 33. Boxplot showing the distribution of the output variable for each movement. ** (p<0.01) 

 
Figure 34. Boxplot showing the distribution of the output variable for each movement. 
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Figure 35. Boxplot showing the distribution of the output variable for each movement. 

 
Figure 36. Boxplot showing the distribution of the output variable for each movement. 

The Kruskal-Wallis test reveals significant differences between movements only for the first 

combination of the parameters. In this exercise, different subsets of movements have been 

performed for each combination of parameters. Moreover, no parameter combination has been 

applied to the complete movement set so a conclusion on the comparison between movements 

cannot be performed. 

Movements are then analyzed to reveal the influence of parameters on task performance.  
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Figure 37. Boxplot of the output variable for each movement and parameter combination 

The percent variation of the time values has been calculated when the %MVC has been modified from 

its initial value to its second and third values (target dimension has been maintained constant). 

Results are shown in Table XIV. 

Table XIV. Percentage variation of the output variable corresponding to a variation of an exercise 
parameter 

Percent variation of output variable 

Variation WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch Mean 

MVC - I / / / / / / -56.92 497.65 -85.84 / 118.30 

MVC - II / 47.76 / -10.39 / / 29.13 -27.72 / / 9.70 

Target dimension -55.14 / 40.00 / / / 32.97 246.73 -11.58 / 50.60 

 

Both the variation of the %MVC required to manage the control signal and the increase of the target 

dimension has the effect of increasing the speed of target reaching. 

Fitts’ law application 

For exercise Ball, the results about variations of target dimension and exercise duration observed in 

the clinical trial, are also analyzed with reference to the Fitts’ Law. Fitts’ Law is a predictive model of 
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human movement primarily used in human–computer interaction and ergonomics. This scientific law 

predicts that the time required to rapidly move to a target area is a function of the ratio between the 

distance to the target and the width of the target [146]. This analysis is based on Fitts’ law reviewed 

for the two-dimensional tasks by Scott MacKenzie and Buxton [147]. 

According to the Fitts’ Law proposed for the two-dimensional tasks, the time (MT) to move and select 

a target of width W which lies at distance A is:  

𝑀𝑇 = 𝑎 + 𝑏 ∗log2(A / W + 1)  (2) 

where a and b are constants determined through linear regression, W corresponds to the region 

where an action terminates and the log term is the index of difficulty (ID). Figure 38 shows MT for 

each movement as a function of the ID. 

 

Figure 38. MT for each movement as a function of the ID 

A linear regression is performed for the data of every movements, in order to determine the 

constants a and b of the model. Moreover, the performance parameters of the models are calculated 

and shown in Table XV.  
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Table XV. Performance parameters of Fitts’ Law models 

Movement Wrist pronation Wrist supination Wrist flexion Wrist extension Wrist abduction 

SSE 5.37E+05 1.44E+05 3.44E+04 1.23E+05 2.37E+04 

R2 [%] 0.5961 8.163 15.5 0.504 2.25 

RMSE 21.26 13.11 6.918 13.06 5.705 

Movement Wrist adduction Finger flexion Finger extension Thumb abduction pinch 

SSE 2.01E+05 2.07E+05 1.58E+04 9.22E+04 9.62E+04 

R2 [%] 0.1763 0.3663 4.469 1.088 5.609 

RMSE 14.62 17.73 5.808 13.34 11.66 

 

The root-mean-square error (RMSE) is acceptable with respect to the range of values of the MT. 

However, the sum of squared errors of prediction (SSE) tends to be large. Moreover, low R2 values 

represent models that badly explain the variation in the response variable around its mean. 

Exercise: Jump  

The output variable of exercise Jump is the number of samples of error. The tested parameter is the 

obstacle width expressed in terms of sample number. Since a high number of obstacle widths has 

been employed, values have been grouped in four intervals: 

1. Obstacle width (OW): 10-19; 

2. Obstacle width (OW): 20-29; 

3. Obstacle width (OW): 30-39; 

4. Obstacle width (OW): >40. 

The mean error number for each session is shown in following figures, separately for each patient. 
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Figure 39. Mean values of the output value and related parameters across sections for patient 1 

 

 

Figure 40. Mean values of the output value and related parameters across sections for patient 2 
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Figure 41. Mean values of the output value and related parameters across sections for patient 3 

 

Figure 42. Mean values of the output value and related parameters across sections for patient 4. 

Also in this case, therapies and parameters are highly patient-tailored. Some movements are 

included in the very late of the rehabilitation process and only the patient 2 performs this exercise 

on the entire set of movements. 

Only the second and the third parameter combinations have a sufficient number of samples and 

have been analyzed from the point of view of the influence of parameters on the exercise 
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performance. Results of the comparison between movements performed with the same values of 

obstacle width are shown in the following figures.  

 

Figure 43. Boxplot showing the distribution of the output variable for each movement. 

 

Figure 44. Boxplot showing the distribution of the output variable for each movement. 

Wrist extension and abduction have been performed with no error when the obstacle width is in 

the range 20-29 samples and reveal a statistically significant difference with Finger flexion. 

As shown in Table XVI, when the exercise has been performed with coarse movements of the 

wrist, the number of samples is generally lower with respect to the cases requiring movements 
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that involved fingers. An exception is Wrist supination when the obstacle width is between 20 and 

29 samples.  

Table XVI. Numerical values of boxplot percentiles shown in previous figures 

Exercise Parameters - Obstacle width: 20-29 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th / 2.75 0.00 0.00 0.00 0.00 3.47 0.00 / / 

50th / 6.67 0.00 0.00 0.00 1.38 7.30 0.00 / / 

75th / 15.32 2.15 0.00 0.00 5.88 14.10 6.25 / / 

Exercise Parameters - Obstacle width: 30-39 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.14 

50th 0.00 0.00 1.90 0.00 0.83 0.00 0.00 2.00 3.15 3.59 

75th 5.65 0.06 4.95 9.22 7.73 4.35 2.83 12.03 12.69 8.24 

 

Figure 45 shows the boxplots obtained for each movement.  

 

Figure 45. Boxplot of the output variable for each movement and parameter combination 
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The Kruskal-Wallis test doesn’t reveal any statistically significant difference. Table XVII shows the 

variation of the output variable, it can be observed that the mean variation is null, which mean that 

globally, the variation of the obstacle width doesn’t seem to influence the exercise performance. 

Table XVII. Percentage variation of the output variable corresponding to a variation of an exercise 
parameter  

Percent variation of output variable 

Variation WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch Mean 

Obstacle width / -100.00 100.00 0.00 100.00 -100.00 -100.00 100.00 / / 0.00 

Exercise: Arrow 

In this exercise, the output variable is a Boolean whose value is 0 if the patient succeeded in reaching 

the target area, 1 otherwise. The parameters that have been modified and analyzed are the 

dimension of the target and the duration of the repetition. 

The three combinations of these parameters are: 

1. Target dimension (T): 2 - Repetition duration (D): 8 s; 

2. Target dimension (T): 2 - Repetition duration (D): 10 s; 

3. Target dimension (T): 3 - Repetition duration (D): 10 s; 

Figure 46-Figure 49 show, for each patient, the administered therapy and the exercise parameters 

selected by the therapists.  
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Figure 46. Mean values of the output value and related parameters across sections for patient 1 

 

Figure 47. Mean values of the output value and related parameters across sections for patient 2 
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Figure 48. Mean values of the output value and related parameters across sections for patient 3 

 

Figure 49. Mean values of the output value and related parameters across sections for patient 4 
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This exercise has been proposed with the entire set of movements to all patients. The 

repetition duration has been rarely set up to a value lower that 10 s while several values of the 

target dimension have been applied.  

The output variable values for the movements are then compared separately for each 

parameter combination, with the aim of revealing if they significantly differ. 

 

Figure 50. Boxplot showing the distribution of the output variable for each movement. 

 

Figure 51. Boxplot showing the distribution of the output variable for each movement. 
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Figure 52. Boxplot showing the distribution of the output variable for each movement. 

The Kruskal-Wallis test doesn’t highlight any statistically significant difference between sets of 

movements performed with same parameters. Table XVIII shows numerical values of the output 

distributions. Wrist supination, extension and Thumb abduction reveal median error values lower 

than 0.1 for the first and second combination while the minimum median value for the third 

combination of parameters is 0.27. 

Table XVIII. Numerical values of boxplot percentiles shown in previous figures 

Exercise Parameters - Target dimension: 2; Duration: 8 s 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th 0.05 0.00 0.00 0.00 0.00 0.00 NaN NaN 0.00 0.00 

50th 0.20 0.00 0.20 0.00 0.10 0.00 NaN NaN 0.00 0.00 

75th 0.50 0.30 0.50 0.40 0.30 0.40 NaN NaN 0.30 0.15 

Exercise Parameters - Target dimension: 2; Duration: 10 s 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.15 

50th 0.00 0.10 0.00 0.00 0.20 0.33 0.20 0.00 0.00 0.20 

75th 0.30 0.27 0.40 0.47 0.35 0.50 0.40 0.20 0.20 0.40 

Exercise Parameters - Target dimension: 3; Duration: 10 s 

Percentiles WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch 

25th 0.20 0.00 0.10 0.20 0.17 0.10 0.20 0.00 0.05 0.05 

50th 0.40 0.27 0.20 0.27 0.37 0.27 0.60 0.33 0.20 0.33 

75th 0.60 0.40 0.40 0.50 0.40 0.37 0.67 0.40 0.55 0.55 
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Figure 53. Boxplot of the output variable for each movement and parameter combination 

Also in this case, no statistically significant difference has been revealed when movements are 

performed with each of the parameter combination.  

The percent variation of the error number has been calculated. Table XIX show obtained results.  

Table XIX. Percentage variation of the output variable corresponding to a variation of an exercise 
parameter  

Percent variation of output variable 

Variation WPron WSup WFlex WExt WAbd WAdd FFlex FExt ThAbd Pinch Mean 

Target 
dimension 100.00 166.67 100.00 100.00 83.33 -20.00 200.00 100.00 100.00 66.67 103.33 

Duration -100.00 100.00 -100.00 0.00 100.00 100.00 / / 0.00 100.00 25.00 

It can be observed that the median values generally increase when both the parameters are 

increased, especially when the target dimension is modified from 2 to 3. In this case the mean value 

of variations is higher than 100%. The mean percent variation for the increase of the duration of a 
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task repetition is slightly positive, this means that, when the speed of the marker has been decreased, 

the error number moderately increased. 

5.4.2.3 Conclusions 

The comparison between the clinical outcome measured before the begin and at the end of the 

therapy reveals that parameters related to join pain and sensory function of the upper limb slightly 

decrease. Since the device and the protocol are not suitable for the treatment of sensory impairment 

or for the reduction of pain, these results are plausible. On the other hand, the increase of FMA-WH 

and BBT, suggests that the outcomes that are more specifically related with hand and finger motor 

functionalities, benefit from the EMG-BF therapy. NHPT decrease for patient P12 and remain the 

same for the other patients. The NHPT test requires fine dexterity of the thumb, a good tactile 

sensitivity and low tremor: the system and the rehabilitation protocol, as conceived for the clinical 

trial, are probably inefficient in the treatment of such a fine motor function. If these results will be 

confirmed by further evidence, the causes of this should be investigated and suitable improvements 

should be applied to the device: the EMG recording system could be further enhanced with the aim of 

better analyze signals produced during thumb and fingers movements, or the motion recognition 

strategy could be further developed for this purpose, or exercises focused on thumb and fingers could 

be proposed with higher frequency during the rehabilitation protocol. 

One of the main requests of the rehabilitation field is related to the need of highly patient-specific 

therapies. Evidence from the instrumental data of the preliminary dataset shows an extensive use of 

this functionality. In fact, the protocols have been widely varied for different patients regarding the 

movements, the intensity and frequency of tasks, and the exercise level of challenge.  

The comparison between exercise performance seems to reveal that no relevant difference exists 

between movements. Surprisingly, finger movements showed lower performance measures in only 

one case. These results are ascribable to the device control strategy: the calibration of the device is 

performed before every session and can be quickly repeated in case the patient or the therapist 

reveals anomalies in the control signal. This strategy is efficient in order to guarantee a stable control 

and the possibility of including in the protocol also highly impaired movements. 
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Exercise performance related to the variation of the intensity of the contraction requested to 

control the signal show interesting results for exercise Bar and for exercise Ball. In fact, it can be 

observed that an increase of the requested contraction within the 60% of the MVC, doesn’t seem to 

increase the degree of difficulty of the exercise. On the contrary, an improvement of performance is 

highlighted. This means that the degree of controllability of the EMG-BF is a trade-off between a high 

sensibility of the device to the RMS signal variations, that can cause instability of the control signal 

and the comfortability of the patient who needs to control the signal with an MVC percentage that 

should be consistent with his/her degree of impairment. It could be of interest to investigate if this 

evidences is confirmed on a complete dataset and if a statistical significance is proved to exist. If these 

results are confirmed, a study about the cut-off value of the %MVC could be performed in order to 

reveal values that optimize the device controllability. This parameter could then be employed by the 

therapists to optimize the rehabilitation protocol in order to focus the therapy on EMG patterns 

reproducibility or on muscle reinforcement.  

The analysis that has been performed with reference to the Fitts’ Law on exercise Ball results, 

show that the Fitts’ Law model is not suitable for the present experimental data: the experimental 

protocol included other exercises besides the exercise Ball and fatigue phenomena could alter the 

results. Moreover, the exercise has been performed with only two values of target width: more 

significant results could be obtained if the variation of the target width includes more values. 

Dedicated tests could be planned for the final design of the GUI, in order to further investigate this 

aspect.  

Unfortunately, the longitudinal study is in the preliminary stages at the time of writing and the 

dataset is poor. Nevertheless, some interesting results have been revealed and it is expected that 

their consistence would increase when the complete dataset of enrolled patients will be analyzed. 
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6 Analysis of continuous movements: a 
comparison between temporal and spatial 
information 

This chapter presents the research activity, not included in the clinical trial, that is more directly 

related to the EMG signal analysis.  

Many studies highlighted the relevant role of the EMG signal in the quantitative assessment of 

motor impairment. The analysis of the muscular activity from an electrical point of view finds an 

important application to the cases of highly impaired patients who are unable to develop a movement 

or to produce a level of force that biomechanical sensors can reveal. These aspects strongly fostered 

the EMG signal study for application in the clinical and rehabilitation fields. This chapter presents a 

study that has been performed for this purpose and is focused on continuous movements of the hand 

and the wrist. The interpretation of EMG signals is based on the optimization of several parameters. 

Two relevant parameters are the spatial are the temporal information included in the EMG signal. In 

literature, the temporal information is mainly related to the length of the window employed to 

calculate the features of the EMG signal. The spatial information refers to the effect of electrode 

number, orientation, configuration and geometry on the analysis of sEMG signal. Recent focus on the 

analysis of continuous motions and on the interaction between sEMG temporal and spatial 

information reveals the importance of quantifying their respective discriminant powers in the analysis 

of continuous movements. The aim of the present work is to investigate the separate contributions of 

spatial and temporal information and quantitatively evaluate their relevance in the interpretation of 

the sEMG signals recorded during continuous movements. The spatial information was represented 

by RMS signals recorded on different electrodes while, differently from literature, the temporal 

information was expressed by the behavior of sEMG over time through RMS time series [148]. 
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6.1 Experimental Setup and Protocol 

The EMG signals were recorded using the portable EMG device employed in the clinical trial exposed 

in the present thesis (see Paragraph 5.1.1 for details) and same references have been used to position 

the electrode array (see Paragraph 5.2 – Experimental setup and protocol).  

A group of 10 healthy volunteers (seven males and three females) aged between 26 and 35 years 

participated in the experiment and signed informed consent form. The study was in accordance with 

the Helsinki Declaration [112] and participant data have been treated according to the Organic Law of 

Protection of Personal Data. Subjects comfortably sat in front of a PC screen, with their elbow lying on 

the table, the forearm was perpendicular to the table to guarantee a comfortable rest position with 

no relevant muscular activity. Furthermore, the rest position allowed the execution of free wrist 

movements.  

The experimental protocol comprised 14 wrist movements and the rest position. Specifically, the 

protocol included 4 movements (named single movements) activating different muscular areas: 

flexion, extension, supination and pronation. Each of the 4 movements was also performed in 2 

temporal variants; in the first one (named double movement) the subject performed the same 

movement twice, returning in the rest position between two motion repetitions, in the second one 

(named maintained movement) the subject had to perform the movement and then maintain an 

isometric contraction in the target position. Finally, a rotation of the wrist (i.e. a continuous sequence 

of abduction, flexion, adduction, extension), was included. The wrist rotation was performed as a 

single movement and as a double movement (See Table XX).  

Table XX. Movements included in the experimental protocol and labels   

Mov. N° 
Movement Mov. 

Label Variants Var. 

Labels 
0 Rest Re   
1 Flexion  F Single S 
2 Flexion F Double D 
3 Flexion F Maintained M 
4 Extension E Single S 
5 Extension E Double D 
6 Extension E Maintained M 
7 Supination S Single S 
8 Supination S Double D 
9 Supination S Maintained M 
10 Pronation P Single S 
11 Pronation P Double D 
12 Pronation P Maintained M 
13 Rotation R Single S 
14 Rotation R Double D 
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The experimental protocol was selected to record a heterogeneous dataset about movements which 

differ both from a spatial and from a temporal point of view. For example, single flexion and single 

extension induce different activation maps for forearm muscles, but they have similar temporal 

profiles. On the contrary, single flexion and double flexion, involve the same muscles but the single 

flexion shows a single peak in the RMS signal, whereas the double flexion induces two peaks. The 

rotation of the wrist was introduced because its complex patterns involve a specific evolution of the 

muscular areas on the entire circumference covered by the electrode array over time. 

A graphical interface (GUI) helped subjects to perform the protocol in the correct way and with the 

correct timing. The training phase was composed by 10 repetitions of all the movements. The testing 

phase consisted of 5 repetitions of a randomized sequence of the trained motions; the randomization 

was applied in order to avoid any adaptation effects. The GUI reproduced sounds in order to indicate 

timing and duration of the tasks; every repetition of a motion was performed with a predefined 

timing. Rest periods were introduced every 10 movements and additionally whenever the subject 

needed to avoid fatigue. The entire protocol lasted about 40 minutes. 

6.2 Template making and matching (TMM) 

Training repetitions were automatically segmented during the template making (training phase); the 

muscular activity was considered only when the RMS signal of at least 2 channels was higher than a 

threshold Sth equal to the 66° quantile of the signal. The quantile-based threshold improved the 

algorithm robustness to noise and its value was empirically determined for the experimental protocol. 

Whenever the threshold crossing was detected, the signal was segmented for W samples. The optimal 

value of W equal to 100 was empirically determined as the minimum time interval that guaranteed a 

uniform segmentation (W equal for all the movements), avoiding the overlap between two 

consecutive tasks. The window length W equal to 100 was applied to the entire protocol. The RMS 

signal on each channel was then normalized with respect to the maximum RMS value measured inside 

the window. Each template sample was then modelled as a gaussian variable X of parameters μ and σ 

using segmented data. Therefore, for each recording channel, each movement was represented as a 

series of W Gaussian variables. 

For template matching (testing phase), a similarity measure between the templates and RMS signals 

recorded was calculated. The normalized RMS signals of the testing dataset were evaluated over a 
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sliding window (the testing window) of length W. To establish the equivalence between the testing 

window and the motion templates, the probability that every sample of the testing window belonged 

to each template was computed. To this purpose, for every sample of the testing window, the 

Complementary Cumulative Distribution Function (CCDF) was calculated with Equation 3. 

𝐹𝑋(𝑥) = 𝑃(𝑋 > 𝑥) = ∫ 𝑓𝑋(𝑡)𝑑𝑡
+∞

𝑥
  (3) 

where fX(t) was the density function of X, X was the gaussian variable that model a template sample 

and x was the value of the testing sample. All the gaussian distributions were normalized to the 

standard normal (μ=0, σ=1) to reduce the computational power. CCDF values were then weighted 

according to the normalized RMS signal amplitude. The linear combination of the CCDF values (global 

CCDF) of all samples of the testing window was calculated for every movement. 

The classification was performed in 2 steps: 

1. Rest position vs. all: if the entire signal in the testing window was lower than Sth, the window 

was assigned to the rest position class. 

2. Movement classification: windows that were not assigned to the rest position class were 

analyzed and classified. The testing window was assigned to the template that generated the 

highest global CCDF. However, if all the global CCDF values were lower than a minimum 

probability threshold Pth, the testing window was rejected and associated to the rest position. 

The Pth threshold was optimized over the training data of each subject in order to maximize the 

recognition performance. 

Finally, the testing window was shifted by one sample and the new testing window was evaluated 

on the base of its global CCDF value. This procedure was repeated until the entire testing dataset was 

analyzed. Figure 54 shows the flow chart of the template making and matching process. 
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Figure 54. TMM Work Flow. During the training phase, RMS signals were segmented to identify movement 
repetitions and define templates. During the testing phase, signals were evaluated over a sliding window of 
length W. If the amplitude of the window signal was lower that the threshold Sth it was classified as Rest 
position. If it exceeded Sth, the linear combination of the Complementary Cumulative Distribution Function 
(CCDF) of all the window samples was calculated and compared with the threshold Pth. If the global CCDF 
didn’t exceed Pth the window was classified as Rest Position, otherwise the template matching was performed, 
and the window was classified as the template associated with the highest CCDF. 

6.2.1 TMM algorithm implementation 

Since the aim of this work was to separately quantify the discriminant powers of the EMG 

temporal and spatial information for continuous motions, two different approaches to movement 

classification were considered and compared: the temporal approach and the spatial approach. 

Moreover, an additional approach was tested as a combination of both: the spatio-temporal 

approach. The spatio-temporal approach allowed the validation of the algorithm implemented and an 

evaluation of performance improvement when signals recorded on different electrodes were 

associated to RMS time series and vice-versa. Template making and matching was performed as 

described, but the data used to build templates and testing windows were different depending on the 

applied approach.  
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Temporal approach 

In this technique the information of muscular activation areas was removed, thus a single signal 

calculated from all electrodes was applied as the input of the algorithm. Data window were averaged 

over the 4 channels with the highest average RMS value. The information related to the temporal 

variation of the RMS value was preserved, while the localization of the electrodes that contributed to 

the time series was neglected. Every time the segmentation window for template making moved or 

the testing window for template matching shifted, the selection of active channels was renewed and 

the averaging process was repeated. Thus, the input signal described the RMS time series generated 

when a specific movement was performed. Figure 55 details an example of training signals (red line) 

and template mean values (blue line) for wrist flexion (Figure 55.A) and extension (Figure 55.B) in the 

3 temporal variants. It can be seen that RMS time series for movements performed with the same 

timings are not distinguishable. 

 
Figure 55. Examples of templates for wrist flexion (Figure 55.A) and extension (Figure 55.B) in single, 

double and maintained variants. 

 

This test was performed in order to analyze the protocol while neglecting the muscles that were 

involved in the movements and to test the discriminant power of the only temporal information 

through the RMS time series. It could be expected that this method would completely fail in 

discriminating movements with same timings (see Figure 55) even if they differed in the muscles they 

activated (e.g. single flexion and single extension should induce the same temporal profile on 

different muscles).  
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Spatial approach 

For this approach, the classification was solely based on spatial localization of muscular activation 

areas. The temporal information was removed averaging the RMS signals over the entire observation 

window. A subset of consecutive samples (from 20 samples to 50 samples, according to the 

movement duration) that exceeded the threshold Sth was identified separately for each channel. The 

RMS mean value of active samples was then calculated. The templates and the testing windows 

described the level of activation of each channel in terms of mean RMS amplitude for a specific 

movement. Radargraphs in Figure 56 represent training signals (red line) and template mean values 

(blue line) calculated with the spatial approach for wrist flexion and extension. The data length of 

each spoke is proportional to the normalized RMS amplitude on each channel (radargraph rays). In 

this case the 3 temporal variants are very similar while movements activating different muscles 

produce highly different templates.  

 
Figure 56. Radargraphs corresponding to templates for wrist flexion (Figure 56.A) and extension (Figure 

56.B) in single, double and maintained variants. Each spoke represents a recording channel and the data length 
of each spoke is proportional to the normalized RMS amplitude. 

This test should highlight that it was difficult to distinguish when a movement was performed 

once, twice or if it was maintained for a long time. On the contrary, this method should discriminate 

movements performed with different muscles (e.g. flexions from extensions) but confuse when the 

same motion was performed with different timings (e.g. single flexion vs. double flexion etc.). 
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Spatio-temporal approach  

Considering the information from both the spatial and the temporal approaches, the input of the 

spatio-temporal approach was a matrix of size N ∙ W, where N is the electrodes number equal to 8 

and W is the window length equal to 100. Thus, a template was represented by the RMS time series 

on every channel. This approach was tested to validate the algorithm with a complete set of 

information and to compare recognition performance when the partial set was applied. The 

expectation was that this method discriminated both movements where different muscles were 

involved (i.e. flexion vs. extension vs. supination vs. pronation) and motions with different temporal 

profiles (e.g. single flexion from double flexion from maintained flexion). Moreover, high accuracy was 

expected for the recognition of wrist rotation, since this approach should be able to take into 

consideration both the dynamic spatial pattern, and timings of activation of all the muscles involved 

in the movement. 

6.2.2 Evaluation of recognition performance 

To evaluate classification performance the Confusion Matrix (CM) was computed. The CM is a 

matrix that easily allows the visualization of an algorithm performance. Each column of the matrix 

represents instances in an actual class (true class), while each row represents instances in a predicted 

class (output class). Three parameters were calculated from the CM: the Global Classification 

Accuracy for all approaches, the Local Classification Accuracy and the Output Percentage only for 

temporal and spatial approaches. 

Global Classification Accuracy (GCA) - The GCA is a CM based measure of the classification 

performance of an algorithm. It is calculated as the ratio between the sum of instances in the 

principal diagonal and the sum of all instances. The expectation was that the CM of the spatio-

temporal approach had a high GCA. The GCA of the spatio-temporal approach has been calculated in 

order to validate the TMM algorithm implemented. The temporal and the spatial approaches should 

have lower GCA values since they are not suitable to recognize respectively, spatial or temporal 

patterns. 
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Local Classification Accuracy (LCA) - According to previous considerations, it could be 

supposed that the spatial and the temporal approaches revealed some classification clusters. 

Therefore, in the CM calculated for the temporal approach the movements were ordered in the 

following way: all the single movements, then all the movements repeated twice and finally all the 

maintained movements. In fact, this approach should fail in discriminating motions that only differed 

in the muscles activated. On the contrary, the CM computed for the spatial approach was organized 

depending on the muscles activated: firstly all flexion movements, then all extension movements et 

cetera. The submatrix represented by each cluster was individuated. The LCA was calculated as the 

GCA of each submatrix. The LCA allows the quantification of the discriminant power of the type of 

information expressed by the input data on a specific subset of movements. The LCA was evaluated in 

comparison with the random guessing. In the case of the temporal approach, the expectation was a 

homogeneous classification rate of 20% for submatrices including 5 movements (single and double 

variations) and of 25% for the submatrix including 4 movements (maintained variation). For the 

spatial approach the expectation was that the recognition and the confusion of single, double and 

maintained versions of every movement should be homogeneously distributed with a rate of internal 

confusion comparable to the random guessing; 33% for submatrix of size 3x3 (submatrix for all the 

movements but the rotation) and 50% for the submatrix of size 2x2 (submatrix for the rotation). 

Output Percentage (OP) - The OP was evaluated on the submatrices and calculated in 2 steps. 

Firstly, the sums of instances in each column of the submatrix (true classes) were calculated and 

normalized with respect to the number of actual instances pertaining each class. Then, the mean 

value of the sums was calculated. The OP value allowed the quantification of the correct instances in a 

specific submatrix. The ideal OP of all the submatrices for both the spatial and temporal approach is 

100%. In fact, with the temporal approach the temporal variants should be clearly recognized from 

each other. On the contrary, the spatial approach should correctly discriminate the movements which 

generate different activation maps. 

To assess the statistically significant difference between the approaches, the Friedman test was 

applied. If the Friedman test determined the difference, the conditions were compared pairwise using 

the Wilcoxon signed-rank tests. A level of p<0.05 was selected as the threshold for the statistical 

significance. 



Analysis of continuous movements: a comparison between temporal and spatial information 
 

97 
 

6.3 Results and discussion 

 For each approach, the movements in the CMs were ordered to highlight classification clusters. 

Different clusters are highlighted with different colors. See Table XX for labels used in CM. Following 

figures show the CMs obtained for the tested approaches that allowed the evaluation of the 

discriminant power separately for the spatial and the temporal information. 

 
CM 1.Confusion Matrix [%] of the temporal approach, LCA (dashed line) and OP (continuous line) of 

submatrices grouping movements with similar timings. 
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CM 2.Confusion Matrix [%] of the spatial approach, LCA (dashed line) and OP (continuous line) of 

submatrix grouping movements involving same muscular areas. 

 
CM 3.Confusion Matrix [%] of the spatio-temporal approach. 

CM1 show results obtained for the temporal approach. The GCA of 44±26% and the OP of 87% 

are in line with expectations and reveal that the only temporal patterns are not sufficient to correctly 

discriminate the set that include movements which differ only in the muscles they activate. 

Nevertheless, the LCA of the temporal submatrices overtake expectations. In fact, LCA values are 
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respectively 41% for single movements, 51% for double movements and 45% for maintained 

movements. These values are about twofold (χ2 = 30, p ≪ 0.001) with respect to 20% (single and 

double variations) and 25% (maintained variation). This suggests that the movements of the protocol 

performed with similar timings but activating different muscles, have specific RMS temporal patterns 

which contributed to distinguish one from each other. This is in line with previous studies [149], [150] 

and suggests that the specificity of temporal patterns is also relevant for EMG feature time series 

regardless the position of the recording electrodes. 

CM2 represent the confusion matrix obtained with the spatial approach. The results reveal a 

mean GCA value of 29±22%. This approach shows no statistical differences with random guessing 

(χ2 = 0.08, p = 0.8) with a mean LCA of 38% that was few lower than the expected value of 41.5%, with 

a minimum of 23% for the supination and a maximum of 48% for the rotation. Moreover, the mean 

OP value of 64% is calculated, it is considerably lower than the ideal value of 100%. In fact, it can be 

observed that the pronation and the maintained pronation, are often wrongly recognized and 

confused with the 3 temporal variants of the extension, while the flexion is often misclassified as 

supination and pronation movements. It indicates that the contribution of the temporal information 

for the recognition of movements of the protocol is not limited to the capability to distinguish 

temporal variants of the same movement, but also helps to more accurately discriminate different 

movements with close activation areas. 

The spatio-temporal approach allows the validation of the algorithm implemented. It can be seen 

that the CM3 is highly diagonal with a GCA of 90±10.5%, this suggests that the algorithm 

implemented is efficient when applied to the experimental protocol. This result is comparable with 

the results obtained with the TMM applied to handwriting recognition with a maximum of 6 pair of 

electrodes positioned on the forearm muscles [151][152]. This approach allows the discrimination of 

both the movements that are different for muscles involved and movements that are performed with 

same muscles but with different timings. Moreover, the wrist rotation (single and double variations) 

has classification accuracy values comparable with the other movements of the protocol. 

The statistical difference between the tested approaches was verified (p<<0.01). 
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6.4 Conclusion 

This study provided a TMM algorithm and an experimental protocol with the aim of fully 

separating the contributions of spatial and temporal information for continuous movement analysis. 

The proposed algorithm showed congruent results for the three approaches tested and demonstrated 

the significance of the temporal information of the EMG signal for discriminating continuous 

movements, both when they only differ in the muscular areas they activate and when they are 

performed with different timings. Moreover, the results for the spatio-temporal approach could also 

have relevance in other fields such as rehabilitation, sports and recognition of Sign Language gestures. 

Findings of the present study are promising and suggest that the EMG temporal information for 

continuous motions analysis should have a major attention. Latest requests in the rehabilitation field 

include task-oriented (instead of impairment-oriented) therapies and tools to quantitative monitor 

the recovery progress of patients. This goal demands instruments that enhance information related to 

the kinematics of the movement and approaches that allow the analysis of muscular patterns. An 

approach that tracks the temporal relation between the activation of the muscles involved in the 

movement could provide an important support to this study. The spatio-temporal approach proposed 

in the present study appears suitable for these applications, since it provides an activation map of the 

muscular areas and information about their evolution during the movement execution. 

Further work will be done to test the algorithm on a more challenging experimental protocol 

including a set of complex movements. Dynamic Time Warping could be introduced as a 

preprocessing step to find an optimal alignment between time series and improve results. Finally, the 

robustness of the method will be tested using other features (e.g. MAV, IEMG, WL, AAC) and other 

distance measures between the templates and testing sample sequences. 
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7 Thesis conclusions 

Technological solutions have shown great potentialities in motor rehabilitation applications. The 

present research was motivated by the aim of developing and validating an EMG-BF device in the 

context of post-stroke motor rehabilitation of the hand. The development of the device has been 

preceded by an extensive literature review on rehabilitation technologies. Moreover, the 

consultations of the therapists of the Cerebrovascular Disease Unit of the San Camillo Hospital 

(Venezia, Italy) supported all the evolution phases of the system. The device was portable, lightweight 

and suitable for a wide variety of forearm diameters. EMG signals were processed and transmitted via 

Bluetooth to a host PC, where a GUI displayed the BF and supported therapists and patients during 

the rehabilitation sessions. 

A clinical trial has been planned and successfully submitted to the Health Department. The study 

included two phases: a cross-sectional study performed in order to reveal the clinical characteristics 

of patients who are able to control the device and a longitudinal study, for the evaluation of the 

clinical effect and safety of a rehabilitation therapy performed with the device. Preliminary results of 

the cross-sectional study highlighted a correlation between the patient clinical picture and the 

dexterity in successfully managing the control signal. Moreover, a significant relation has been found 

between clinical outcomes and the data recorded with the device during the exercises, i.e. the RMS of 

the EMG signal and the time that the patients need to complete the proposed tasks. The evidence 

confirms the feasibility of the technological solution in a clinical context and gives some quantitative 

results about the reliability of the performance parameters that can be extracted. The longitudinal 

study is in the early stages, but the related data analysis revealed some relevant aspects. In fact, 

clinical measures specifically related to the functionality of the hand and fingers improved, suggesting 

the efficacy of the therapy. Measures that have been selected in order to assess the patient 

performance, revealed the efficacy of the device calibration strategy: exercises performed with 

fingers movements such as thumb abduction and pinch, revealed degrees of difficulty that were 

comparable with wrist movements. Therapies administered were highly patient-tailored, showing 

that the device satisfied this aspect of the therapy-related criteria requested for technological 
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solutions. The system should be integrated with a tool for EMG post-processing. Results of the 

analysis on patient motor patterns could be additional parameters included in performance reports. 

From this perspective, Chapter 6 investigated the aspects related to the analysis of continuous 

motions of the wrist and highlighted the relevance of the temporal information in the interpretation 

of this type of movements. 

Summarizing, the present thesis evolved from a research environment to a clinical context, 

through a productive collaboration with the therapists and patients and through the starting of a 

clinical trial. The tested device is one of the first technologies that shows both a level of comfortability 

as high as commercial devices and the technical characteristics requested for an effective EMG 

analysis, even on finger movements. Moreover, an efficient approach for the analysis of continuous 

movements performed during the therapy has been identified. 

A comprehensive data analysis will be done when the trial will be concluded, and results will be 

used for further improvements of the system and to plan a randomized control study. From a broader 

perspective, the EMG-BF device could be tested in other motor rehabilitation fields (e.g. orthopedic 

rehabilitation) and in telerehabilitation applications.  

  

http://context.reverso.net/traduzione/inglese-italiano/technical+characteristics
http://context.reverso.net/traduzione/inglese-italiano/from+a+broader+perspective
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