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Recent studies show that the use of multiple Large-Volume Metrology (LVM) systems 
can lead to a systematic reduction in measurement uncertainty and a better exploitation of 
the available equipment. This is actually possible using a recently developed modular 
probe, which is equipped with different typologies of targets and integrated inertial 
sensors.  
The goal of this paper is to present a new mathematical/statistical model for the real-time 
localization of this probe. This model is efficient, as it is based on a system of linearized 
equations, and effective, as the equations are weighed with respect to their uncertainty 
contribution. 

Keywords: Large-volume metrology; Multi-target probe; Real-time localization; 
Generalized least squares. 

1.   Introduction 

Typical industrial applications in the field of Large-Volume Metrology (LVM) 
concern dimensional verification and assembly of large-sized mechanical 
components [1]. LVM systems are usually equipped with sensors that perform 
local measurements of distances and/or angles [2]. Even though the existing 
measuring systems may differ in technology and metrological characteristics, 
two common features are: (i) the use of some targets to be localized, which are 
generally mounted on a hand-held probe in direct contact with the measured 
object’s surface, and (ii) the fact that target localization is performed using the 
local measurements by sensors (e.g., through multilateration or multiangulation 
approaches). 

Recent studies show that the use of multiple LVM systems can lead to a 
systematic reduction in measurement uncertainty and a better exploitation of the 
available equipment [3]. Unfortunately, the sensors of a specific LVM system 
are able to localize only specific targets and not necessarily those related to other 
systems. To overcome this obstacle, the authors have recently developed a new 
modular probe, equipped with targets related to different systems, and a tip in 
contact with the point of interest (P), which allows to localize P in a single turn 
[4, 5]. This probe has several innovative features: the number and typology of 
targets can be varied depending on the specific application, and the probe can 
integrate additional inertial sensors (i.e., two-axis inclinometer and compass), 
which are able to provide additional data.  
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The goal of this paper is to present a new mathematical/statistical model to 
localize the probe in measurements involving combinations of different LVM 
systems, i.e., systems equipped with sensors of different nature and metrological 
characteristics. In a nutshell, the model consists of a set of linearized equations 
that are weighted with respect to their uncertainty contribution. 

The remainder of this paper is organized into three sections. Sect. 2 
summarizes the technical and functional characteristics of the probe. Sect. 3 
illustrates the mathematical/statistical model for the probe localization. Sect. 4 
summarizes the original contributions of this research, focusing on its practical 
implications, limitations, and future development. 

2.   Multi-target modular probe 

The probe has a modular structure. The main or primary module consists of a 
bar with a handle for the operator, two ends with several calibrated holes (in 
predefined positions), in which different types of secondary modules can be 
plugged in, and a power-supply and data-transmission system [4, 5]. There are 
different types of secondary modules: sphere mounts where to put spherically 
mounted retroreflectors (SMRs) for laser trackers; targets of different nature – 
such as those for rotary-laser automatic theodolites (R-LATs) or 
photogrammetric sensors; variable-length extensions, to be interposed between 
the primary module and the previous secondary modules; styli with a tip in 
contact with the point of interest. 

An important requirement is that these secondary modules are coupled on the 
primary module, quickly, precisely and with a certain repeatability. This 
requirement can be achieved by adopting different technical solutions, such as 
providing the calibrated holes and shafts with threads or adopting quick coupling 
systems with magnetic lock.  

The primary module has appropriate housings to lodge some integrated 
inertial sensors, such as two-axis inclinometer and compass, and is also equipped 
with a trigger for the acquisition of the point of interest: when the trigger is 
pressed, the probe tip is localized on the basis of the data collected by the probe 
targets/sensors at that time. 

Once the primary and secondary modules are assembled, the relative 
positions between the probe targets and tip can be measured using a standard 
coordinate measuring machine (CMM). At this stage, a local Cartesian 
coordinate system (oPxPyPzP) – with origin (oP) in the probe tip, and axes 
perpendicular to some reference planes on the surface of the primary module – 
can also be defined [4].  
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3.   Model for probe localization 

In general, each i-th LVM system (Si) includes a number of distributed sensors, 
which are positioned around the measurement volume; we conventionally 
indicate the generic j-th sensor of Si – or, for simplicity, the ij-th sensor – as sij 
(e.g., si1, si2, …, sij, …). The probe includes a number of targets of different 
nature and a tip, in contact with the points of interest on the surface of the 
measured object. Tk conventionally denotes a generic k-th target that is mounted 
on the probe. Sensors can be classified in two typologies: distance sensors, 
which are able to measure their distance (dijk) from the k-th target, and angular 
sensors, which are able to measure the azimuth (ijk) and elevation (ijk) angle, 
which are both subtended by the k-th target.  

The subscript “ijk” refers to the local measurements (of distances or angles) 
by the ij-th sensor with respect to the k-th probe target. It is worth remarking that 
each ij-th sensor is not necessarily able to perform local measurements with 
respect to each k-th probe target, for two basic reasons:  

  The communication range of the ij-th sensor should include the k-th target 
and there should be no interposed obstacle. 

  Even if a k-th target is included in the communication range of the ij-th 
sensor, local measurements can be performed only if this target and this 
sensor are compatible with each other. 

In the case of compatibility between the ij-th sensor and the k-th target, we 
can define some (linearized) equations related to the local measurements: 

th target) andsensor angular th each for  eqs.  two(i.e.,

th target) andsensor  distanceth each for  eq. one (i.e.,

angang

distdist

kij

kij

ijkijk

ijkijk

0

0





BXA

BXA
, (1) 

where X = [XP, YP, ZP, P, P,P]T is the (unknown) vector containing the 
spatial coordinates (XP, YP, ZP) of the centre of the probe tip (P) and the angles 
(P, P,P) of spatial orientation of the probe, referring to a global Cartesian 
coordinate system OXYZ. Matrices related to distance sensors are labelled with 
superscript “dist”, while those related to angular sensors with superscript “ang”. 
The matrices dist

ijkA , dist
ijkB , ang

ijkA  and ang
ijkB  contain: 

  the position/orientation parameters (
ijijij 000 ZYX  , , , ij, ij andij) related to 

the ij-th sensor; 
  the distance (dijk) and/or angles (ijk,ijk) subtended by the k-th target, with 

respect to a local Cartesian coordinate system oijxijyijzij of the ij-th sensor. 

Since the “true” values of the above parameters are never known exactly, they 
can be replaced with appropriate estimates, i.e., 

ijijij 000 ẐŶX̂  , , , ij̂ , ij̂  and ij̂ , 
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resulting from initial calibration process(es), ijkd̂ , resulting from distance 
measurements, and ijk̂  and ijk̂ , resulting from angular measurements.  

As already said, the probe can also be equipped with some integrated inertial 
sensors (two-axis inclinometer and compass) which are able to perform angular 
measurements for estimating the spatial orientation of the probe, through the 
following linearized equations: 

0 intint BXA  (i.e., three eqs. related to three angular measurements). (2) 

Matrices Aint and Bint contain local measurements of three angles (I, I,I), 
depicting the orientation of the integrated sensors with respect to a ground-
referenced coordinate system (xIyIzI).  

The probe-localization problem can therefore be formulated through the 
following linear model, which encapsulates the relationships in Eqs. 1 and 2: 
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where blocks Adist, Aang, Bdist and Bang are defined as: 
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Idist and Iang being the sets of index-pair values (ijk) relating to the ij-th 
distance/angular sensors that can see the k-th target. 

We remark that all the equations of the system in Eq. 3 are referenced to a 
unique global Cartesian coordinate system, OXYZ. These equations therefore 
include suitable roto-translation transformations to switch from other reference 
systems (e.g., the local reference system related to each distributed sensor, that 
one related to the probe, or the ground-referenced system of the inertial sensors 
that are integrated into the probe) to OXYZ. 

The six unknown parameters in X can be determined solving the system in 
Eq. 3, which is generally overdefined, i.e., there are more equations than 
unknown parameters: one for each combination of ij-th distance sensor and k-th 
target, two for each combination of ij-th angular sensor and k-th target, and three 
for the integrated sensors (i.e., two for the two-axis inclinometer and one for the 
compass). 

The equations of the system may differently contribute to the uncertainty in 
the probe localization. Four important factors affecting this uncertainty are: 

  Uncertainty in the position/orientation of distributed sensors (
ijijij 000 ẐŶX̂  , , , 

ij̂ , ij̂  and ij̂ ), resulting from initial calibration process(es); 
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  Uncertainty in the local measurements ( ijkd̂ , ijk̂  and ijk̂ ) by the distributed 
sensors with respect to probe targets, which depends on their metrological 
characteristics; 

  Uncertainty in the relative position between the probe targets and the tip (P), 
which may depend on the accuracy of the manufacturing and calibration 
processes of the probe modules. 

  Uncertainty in the angular measurements ( I̂ , I̂  and I̂ ) by the inertial 
sensors integrated into the probe, which depends on their metrological 
characteristics. 

Consequently, it would be appropriate to solve the system in Eq. 3, giving 
greater weight to the equations that produce less uncertainty and vice versa. To 
this purpose, a practical method is that of Generalized Least Squares (GLS) [6], 
in which a weight matrix (W), which takes into account the uncertainty produced 
by the equations, is defined as: 

  1
 TJJW ξ ,   (4) 

where J is the Jacobian matrix containing the partial derivatives of the 
elements in the first member of Eq. 3 (i.e., A∙X – B) with respect to the 
parameters contained in the vector , i.e., the position/orientation of distributed 
sensors, the local measurements by the distributed sensors available, the angular 
measurements by the integrated sensors, and the relative position of the probe 
targets with respect to the tip. For details, see [5]. ξ  is the covariance matrix of 
, which represents the variability of the parameters in . 

The parameters in ξ  can be determined in several ways: (i) from manuals 
or technical documents relating to the distributed/integrated sensors in use, or (ii) 
estimated through ad hoc experimental tests. We remark that these parameters 
should reflect the measurement uncertainty of the elements of , in realistic 
working conditions – e.g., in the presence of vibrations, light/temperature 
variations and other typical disturbance factors.  

By applying the GLS method to the system in Eq. 3, we obtain the final 
estimate of X as: 

  BWAAWAX 
 TT 1ˆ .   (5) 

For further details on the GLS method, see [6]. 
We remark that the metrological traceability of the probe localization is 

ensured by (i) initial calibration processes to determine the spatial 
position/orientation of the distributed sensors and (ii) another calibration process 
to determine the relative position of probe targets. In fact, these processes are 
generally based on the use of physical artefacts (such as calibrated bars with 
multiple reference positions) or measuring instruments (such as CMMs), which 
are traceable to the measurement unit of length [1].  
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4.   Conclusions 

This paper has described a novel mathematical/statistical model for the real-time 
localization of a modular and multi-target probe. The model is efficient, as it is 
based on a system of linearized equations, and effective, as the equations are 
weighed with respect to their uncertainty contribution, through the GLS method. 

For the model to be viable, some parameters relating to the sensors in use 
should be known in advance, e.g., uncertainties in the position/orientation or 
local measurements; this can be done through ad hoc experimental tests or using 
manuals or technical documentation of the measuring systems. The model is 
automatable and could be a key tool to promote the combined use of LVM 
systems.  

Regarding the future, we plan to extend the use of the probe from the 
measurement process to the distributed-sensor calibration process. 
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