
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization / Corno, Fulvio; De Russis,
Luigi; Monge Roffarello, Alberto. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 7:(2019), pp. 37950-37960.
[10.1109/ACCESS.2019.2905619]

Original

EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

Publisher:

Published
DOI:10.1109/ACCESS.2019.2905619

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2728803 since: 2019-04-04T09:18:22Z

IEEE

Received February 7, 2019, accepted March 12, 2019, date of publication March 18, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2905619

EUDoptimizer: Assisting End Users in Composing
IF-THEN Rules Through Optimization
FULVIO CORNO , (Member, IEEE), LUIGI DE RUSSIS , (Member, IEEE),
AND ALBERTO MONGE ROFFARELLO, (Student Member, IEEE)
Dipartimento di Automatica e Informatica, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Luigi De Russis (luigi.derussis@polito.it)

ABSTRACT Nowadays, several interfaces for end-user development (EUD) empower end users to jointly
program the behavior of their smart devices and online services, typically through trigger-action rules.
Despite their popularity, such interfaces often expose too much functionality and force the user to search
among a large number of supported technologies disposed of confused grid menus. This paper contributes
to the EUD with the aim of interactively assisting end users in composing IF–THEN rules with an optimizer
in the loop. The goal, in particular, is to automatically redesign the layout of the EUD interfaces to facilitate
the users in defining triggers and actions. For this purpose, we define a predictive model to characterize the
composition of trigger-action rules on the basis of their final functionality, we adopt different optimization
algorithms to explore the design space, and c) we present EUDoptimizer, the integration of our approach
in IFTTT, one of themost popular EUD interfaces.We demonstrate that good layout solutions can be obtained
in a reasonable amount of time. Furthermore, an empirical evaluation with 12 end users shows evidence that
EUDoptimizer reduces the efforts needed to compose trigger-action rules.

INDEX TERMS Combinatorial optimization, end-user development, service automation, trigger-action
programming.

I. INTRODUCTION
The need of providing end users with adequate paradigms
and tools to customize their smart environments on the basis
of their personal needs has recently gained interest [1].
Nowadays, in fact, end users interact with a huge number
of smart devices and online services on a daily base. End-
User Development (EUD) methodologies [2] are suitable for
letting non-technical users to program their smart objects and
web services. In this field, the most commonly adopted EUD
paradigm is trigger-action programming, with which users
can define IF-THEN rules such as ‘‘if I receive a Facebook
notification, then blink the Philips Hue lamp in the kitchen’’
or ‘‘if the Nest camera detects amovement, then set 22 degrees
on my Nest thermostat.’’

Contemporary EUD interfaces, e.g., IFTTT1 and Zapier2,
are typically organized through grid layouts (Figure 1),
i.e., a particular type of menu3 where items are organized

The associate editor coordinating the review of this manuscript and
approving it for publication was Shiqiang Wang.

1https://ifttt.com/ last visited on January 12, 2018
2https://zapier.com/ last visited on January 12, 2018
3In the remainder of the paper, grid layout and grid menu will be used

interchangeably

in rows and columns. Furthermore, they share the same
modality for composing trigger-action rules [1]: users have
to firstly select a technology from a grid menu. The technol-
ogy represents the manufacturer or the brand of a supported
smart device or web service, e.g., Philips Hue or Facebook.
On the selected technology, users can then define a particu-
lar trigger (if) through a wizard-based procedure. The same
operations need to be repeated to define the action (then) of
the rule.

Despite apparent simplicity, the composition of trigger-
action rules through EUD interfaces is challenging, mainly
because the rapid spread of new heterogeneous technolo-
gies [3]. Contemporary EUD interfaces display a huge num-
ber of information without any support to discover useful
triggers and actions, and become too complex for non pro-
grammers. Consequently, users without technical skills may
not find these systems useful [4]. IFTTT and Zapier, for
example, force users to define their rules by searching
between 500 and 1,000 supported technologies displayed
with a meaningless order (Figure 1). Many previous works
tried to mitigate such a complexity in different ways, thus
confirming the need of better assisting users in program-
ming their devices and services. Some of them, for example,

37950 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-9818-0999
https://orcid.org/0000-0001-7647-6652
https://ifttt.com/
https://zapier.com/

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

FIGURE 1. Selection of a technology for defining triggers (or actions) in IFTTT (a) and Zapier (b). In each
platform there are, as of today, between 500 and 1,000 supported devices and online services.

face the problem by changing the underlying representa-
tions [5], [6], while others by exploring new composition
paradigms, e.g., [1].

In this paper, we explore a different approach that is fully
compatible with contemporary EUD interfaces, such as those
of Figure 1, thus not requiring any radical change. Rather
than acting on representations or composition paradigms,
we adopt an optimizer in the loop to interactively assist end
users in composing IF-THEN rules. The goal, in particular,
is to dynamically redesign grid layouts in EUD interfaces in
an interactive way, i.e., by considering the choices made by
end users during the rule composition phase.

To reach our goal, we define two different predictive
models to be used in a multi-objective optimization prob-
lem. In particular, we adapt Search-Decision-Pointing (SDP),
a state-of-the-art predictive model of user performance in
linear menu search, to work with grid layouts. Further-
more, we propose the Functionality Similarity Model (FSM),
a novel model based on Semantic Web to take into account
whether different and heterogeneous technologies provide
similar functionality. As previous works demonstrate [7], [8],
we claim that users would benefit from more support in
discovering functionality, rather than being forced to get
acquainted with technological details. Users, in fact, are often
interested in what a device or service can do, and they reason
about abstract behaviors, e.g., ‘‘turn on the lights of the
kitchen’’, rather than specific technologies, e.g., ‘‘turn on
the Philips Hue lamp in the kitchen.’’ To explore the design
space of grid-based EUD interfaces, we consider two differ-
ent optimization algorithms, i.e., Simulated Annealing and
Ant Colony Optimization, and we integrate those optimiza-
tion methods in EUDoptimizer (End-UserDevelopment opti-
mizer), an implementation of our approach on top of IFTTT.
The implementation allowed us to qualitatively and quantita-
tively evaluate our approach. By exploiting a dataset of more
than 200,000 trigger-action rules extracted from IFTTT [7],
we show that EUDoptimizer can produce satisfactory solu-
tions in a reasonable amount of time. Moreover, data from
a user study with 12 participants suggest that EUDoptimizer

can help end users define IF-THEN rules with less time and
cognitive effort.

The paper is organized as follows. In Section II we contex-
tualize our work by describing related works. In Section III
we exemplify our approach by presenting a use case of
EUDoptimizer. Then, we describe the components needed
to realize such a use case, i.e., the predictive models
(Section IV), the optimization methods (Section V), and
the implementation of the EUDoptimizer tool that allows
the interaction between users and the optimization method
(Section VI). Section VII and Section VIII report a technical
assessment of the implemented algorithm and the evaluation
of EUDoptimizer in a user study, respectively. Eventually,
Section IX discusses results and Section X concludes the
paper.

II. BACKGROUND AND RELATED WORK
In this section, we first report some previous works that aim at
improving EUD approaches and interfaces. Then, we contex-
tualize our work in the large topic of applying optimization
methods to user interface design.

A. IMPROVING END-USER DEVELOPMENT
Lieberman et al. [2] define End-User Development as ‘‘a set
of methods, techniques, and tools that allow users of software
systems, who are acting as non-professional software devel-
opers, at some point to create, modify or extend a software
artifact.’’With the technological advances we are confronting
today, people are increasingly moving from passive con-
sumers to active producers of information, data, and software:
in the last 10 years, several commercial tools for end-user
personalization of devices and services, such as IFTTT or
Zapier, were born.

Some previous works try to overcome the issues character-
izing such tools, e.g., complexity [4] and scarce expressive-
ness [7], by acting on the underlying models, with the aim
of simplifying the trigger-action rules composition process.
Barricelli andValtolina [5] present an extension of the trigger-
action paradigm to better cope with the evolving Internet of

VOLUME 7, 2019 37951

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

Things (IoT) scenario. Besides devices andWeb applications,
they also incorporate other users, space and time, and the
social dimension. With the EUPont ontology, Corno et al. [6]
propose a high-level ontology for modeling triggers and
actions. The semantic model allows the definition of generic
rules that can be adapted for different contextual situations.
In our work, we use EUPont in the predictive model used
for assessing whether different technologies provide similar
functionality.

Other works focus on new interfaces and tools for End-
User Development. Desolda et al. [1], for example, report
the results of a study to identify possible visual paradigms
to compose trigger-action rules for smart environments,
and present the architecture of a platform to support rules
execution.

In our work, we follow a different approach. We are
not interested in changing the underlying models nor the
composition paradigms. To assist end users in defining
IF-THEN rules, we employ optimization methods to dynam-
ically redesign the grid menus of contemporary EUD inter-
faces. In a certain way, our approach can be seen as a sort of
recommender system. In fact, by exploiting models of user
performance and perception, we suggest technologies to be
used in triggers and actions to the user, dynamically.

B. COMBINATORIAL OPTIMIZATION OF USER INTERFACES
Applying optimization methods to user interface design is a
long standing topic in human-computer interaction research:
when assumptions are appropriate, optimization methods
offer a greater-than-zero chance of finding an optimal
design [9]. Optimization methods have been firstly adopted
for keyboard layouts [10], [11], and then in many other appli-
cation areas, e.g., accessibility [12], menus [13], [14], sketch-
ing [15], and web layouts [16]. Since EUD interfaces are
typically organized through grid menus, our work is strictly
related to themenu optimization problem. Due to large design
space, menus are good candidates for optimization problems.
A menu with n elements, in fact, can be organized in n!ways,
and design heuristics, e.g., displaying frequently used items
at the top, may be effective for small n but fail with larger n
or if additional human factors such as semantic relationships
among items are considered [14]. Combinatorial optimization
methods, instead, explore a large number of designs in order
to find a good (preferably optimal) solution that minimize
or maximize an objective function. While the computational
cost is often a problem, reasonable solutions can be obtained
by adopting interactive approaches, i.e., by involving users in
redefining and refining the optimization problem [14]. In our
work, the problem of defining trigger-action rules contains
steps that are intrinsically interactive: components layout for
defining an action, for example, may change on the basis of
the defined trigger.

Similarly to previous works , we follow a model-based
optimization approach [9]. Unlike heuristic approaches,
which do not predict effects on end users, model-based opti-
mization exploits predictive models of user performance and

layout perception. The idea is to represent a design prob-
lem, along with a design knowledge, as an objective func-
tion. Then, a search algorithm is used to iteratively improve
designs for the stated object. Several models of user perfor-
mance and layout perception have been proposed for specific
tasks. Examples can be seen in Sketchplore [15], a multi-
touch sketching tool that uses a real-time layout optimizer,
andMenuOptimizer [14], an interactive design tool for menus
that exploits the SDP [17] model, and a model of expected
item groupings (i.e., FSM). Similarly to MenuOptimizer,
we adapt SDP to predict the selection time of a technology
from a grid layout, and we involve the user in the optimization
process: by defining the trigger, users interactively provide
the optimizer with fundamental information to produce the
layout for defining the action.

III. OPTIMIZING IF-THEN RULES COMPOSITION
To clearly define and exemplify our approach, we introduce
its implementation (EUDoptimizer, described in Section VI)
in a scenario of trigger-action programming.
John owns many devices always connected to the Internet,

and he is subscribed to various social networks and cloud
services. John has just started to use EUDoptimizer to define
trigger-action rules for customizing the joint behavior of his
devices and services. John would like to have all the photos
taken with his two smartphones saved in different places,
e.g., for backup purposes, and for making them available on
all his other devices. Furthermore, he would like to auto-
matically share the photos on image sharing platforms. John
opens EUDoptimizer and starts to define a trigger-action
rule.

A. TRIGGER DEFINITION
For the definition of the trigger, EUDoptimizer shows John a
grid layout in which the optimizer has found a trade-off for a)
displaying technologies according to their usage probability,
and b) grouping together technologies to maintain logical
groups of functional-related devices or services. Thanks to
the FSM model, which characterize devices and services on
the basis of what they can do, photo and video technologies
with similar functionality are grouped together (as shown
later in Figure 3a), thus facilitating John in finding what he
needs. Furthermore, thanks to SDP and since most people
extensively use such technologies, they are displayed on the
top of the layout. John select the iOS Photo technology, that
allows him to define a trigger to monitor every time he takes
a photo on his iOS smartphone.

B. ACTION DEFINITION
The definition of the action strongly depends on the definition
of the trigger, i.e., the grid menu for defining the action
should interactively change according to the chosen trig-
ger. As for the trigger definition, EUDoptimizer previously
calculated an optimized components layout to be used as
an initial solution by considering usage probabilities and
functional similarities. As soon as John selects iOS Photo

37952 VOLUME 7, 2019

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

for defining the trigger, EUDoptimizer starts to refine the
initial solution according to on the user choice. The idea is
to find the best trade-off for promoting the elements most
commonly associated with the selected trigger technology,
without affecting groups of functionally similar technologies.
When John wants to define the action, EUDoptimizer shows
the grid layout of Figure 4. Not surprisingly, the functionality
in which John is interested are not uncommon. At the top of
the layout, John can find different technologies that allow him
to reach his goals. With Dropbox, Google Drive, etc., John
can save the photos taken with his smartphone on the cloud,
thus making them available for all his other Internet-enabled
devices. John decide to the define an action for saving the
photos on his Google Drive folder. John is very satisfied
of EUDoptimizer: now he can define many other rules to
customize his other smartphone, an Android-based device,
and to save and share his photos with many different online
services.

IV. PREDICTIVE MODELS FOR TRIGGER-
ACTION PROGRAMMING
The goal of our approach is to employ model-based opti-
mization methods to dynamically redesign grid layouts in
EUD interfaces in an interactive way, i.e., by considering
the choices made by end users. Model-based optimization
methods need to be supported by valid and comprehensive
predictive models. One of the most recent model of menu
performance is SDP [17].We adapt such amodel to workwith
grid layouts in EUD interfaces, which display technologies
for defining triggers and actions. Furthermore, similarly to
the menu optimizer proposed by Bailly et al. [14], we use
SDP in combination with a model that takes into account
the expectation of item groups, i.e., the expectations of users
in finding certain items together. Such a novel model for
item grouping, named Functionality SimilarityModel (FSM),
considers similarities between technologies in terms of the
functionality they allow to define through their triggers and
actions. Roughly speaking, a Philips Hue lamp shares some
functionality with a Hunter Duglas blind for defining an
action, because they both allow the increase or decrease of
the brightness of a room. The Android Location service and
the Nest surveillance camera, instead, allow the definition
of triggers with the same final goal, i.e., to monitor when
someone is entering a place. To discover such similarities,
we use the Semantic Web framework, and, in particular,
the EUPont ontology.4

A. SDP: SEARCH DECISION POINTING
SDP is a state-of-the-art model of human performance in
linear menu search. It incorporates both Hick-Hyman and
Fitts’ laws, and integrates a transition from novice to expert
performance. We adapt the model to be used for grid layouts,
i.e., a particular type of menu, by using the euclidean distance

4https://elite.polito.it/ontologies/eupont.owl last
visited on April 10, 2018

between items. SDP predicts the selection time of an item i
in a menu with the following formula [17]:

Ti = (1− ei) · Tst + ei · Tdt + Tpt , (1)

where:
• ei models the user expertise with the item i.
• Tst is the search time, i.e., the time to localize the item,
linear with the total number of items when the user is
inexperienced.

• Tdt is the decision time, i.e., the time to decide from
among items, given by the Hick-Hyman law once the
user becomes expert with the item i.

• Tpt is the pointing time, i.e., the time to ‘‘point’’ the
item, described according to the Fitts’ law, which pre-
dicts that items closer to the top are faster to select.

To predict the average performance of an entire menu,
SDP uses the following formula:

Tavg =
∑

n
i=1pi · Ti, (2)

where pi is the probability of item i being selected, i.e., its
usage probability, and n is the number of menu items.

The probability function pi can be reformulated as the
frequency probability, i.e., the probability of the technology
i to be used in a trigger or in an action. The idea is to move
towards the top of the grid layout the technologies most com-
monly selected as triggers or actions. When the user select
a technology i for the trigger, the SDP model interactively
changes in SDP(i), where p is reformulated as the bigram
probability pij of selecting an action technology j after having
selected the technology i for the trigger. The idea is to move
towards the top of the grid layout the action technologiesmost
commonly associated with the trigger technology i.

The parameters we used for the SDP model are the same
used both in the original paper [17] and in the optimizations
carried out in MenuOptimizer [14].

B. FSM: FUNCTIONALITY SIMILARITY MODEL
We propose and define the Functionality Similarity Model to
allow the optimizer to produce groups of technologies that
are functionally correlated, even if they are heterogeneous
technologies. The model exploits the EUPont [8] ontology,
a semantic representation for trigger-action programming that
offers a three-layer hierarchical categorization of triggers
and actions in terms of their final functionality. The three
categories, named Low-Level, Medium-Level, and High-
Level, represent three different levels of abstraction in which
triggers and actions can be expressed and categorized. For
example, the Low-Level category ‘‘turn lamp x on’’ includes
all the actions aiming at turning a specific lamp (identified
by x) on. Such a category can be further abstracted in ‘‘turn
the lights on’’ (Medium-Level category) and ‘‘illuminate a
place’’ (High-Level category), respectively. With this hier-
archical representation, the ‘‘illuminate a place’’ category
includes all the actions for turning lights on, along with other
actions that allow to reach the final goal of illuminating a
place, e.g., opening a blind.

VOLUME 7, 2019 37953

https://elite.polito.it/ontologies/eupont.owl

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

By considering this EUPont categorization, the Trigger
Functionality Association (FAt) between two technologies i
and j is calculated as:

FAt (i, j)=αf · LLt (i, j)+βf ·MLt (i, j)+γf · HLt (i, j), (3)

where:
• LLt (i, j) is the number of Low-Level categories for
which i and j both offer at least one trigger.

• MLt (i, j) is the number of Medium-Level categories for
which i and j both offer at least one trigger.

• HLt (i, j) is the number of High-Level categories for
which i and j both offer at least one trigger.

• αf , βf , and γf sum to 1, and are used to weights the three
elements modeled in FSM, i.e., LLt , MLt , and HLt .

In the same way, the Action Functionality Associa-
tion (FAa) between i and j is calculated as:

FAa(i, j)=αf · LLa(i, j)+βf ·MLa(i, j)+γf · HLa(i, j) (4)

In our implementation, we empirically set αf = 0.6,
βf = 0.3, and γf = 0.1. This means that technologies that
shares Low-Level (very specific) categories are more similar
than technologies that only shares Medium or High-Level
categories, that are intrinsically more abstract.

To use the model in a minimization problem, we exploit
the pairwise Functionality Associations to compute the Func-
tionality Incoherence score of a given grid menu, both for the
definition of triggers and actions (FIt and FIa):

FIt =
∑

n
i=1

∑
n
j=i+1FAt (i, j) · d(i, j), (5)

FIa =
∑

n
i=1

∑
n
j=i+1FAa(i, j) · d(i, j), (6)

where d(i, j) is the euclidean distance between objects i and j
in the grid layout.

As shown in Figure 3b, the FSM model has desirable
effects on the optimizer: technologies that offer triggers
(or actions) with similar functionality tend to be pulled
together, while unrelated technologies are moved away.

V. OPTIMIZATION PROBLEM AND METHODS
In this section, we first formulate the optimization problem by
defining the objective function we used to explore the design
space. Then, we present the optimization methods we used to
attack the problem, based on metaheuristic strategies.

A. PROBLEM FORMULATION
To explore the design space looking for ‘‘good’’ or ‘‘desir-
able’’ grid menu alternatives, we define a multi-objective
task. The goal of the optimizer is to minimize a weighted
combination of the outputs of the two models Mi exploited
by EUDoptimizer, i.e., SDP and FSM:

min
∑

2
i=1λi ·Mi, (7)

where the sum of all the weights λi is 1. In our implemen-
tation, we empirically set the λ values thanks to the trials
performed in the technical assessment of the implemented
algorithms (Section VII).

To make the single objectives less sensitive to weight
selection, we normalized each Mi with the objective value θi
calculated for an initial point x0:

θi = Mi(x0). (8)

The problem for designing the grid menu for trigger
definition is therefore:

min (λ1 · SDP+ λ2 · FIt) (9)

while for the action the problem is:

min (λ1 · SDP+ λ2 · FIa) (10)

Based on the interaction of the user, i.e., when the user
select a technology i, the problem for the action changes, and
becomes:

min (λ1 · SDPi + λ2 · FIa) (11)

B. SOLVING THE OPTIMIZATION PROBLEM
The problem of designing menu systems, both linear and
grid-based, can be formulated as a Quadratic Assignment
Problem (QAP) [14]. Developed in operational research,
QAP [18] allows the modeling of relationships between
elements of two sets to minimize the total pairwise cost.
In designing menus, m items have to be assigned to m
predetermined locations in order to maximize usability,
e.g., expected selection time, menu coherence, etc. QAP is
a NP-hard problem, and it is considered one of the hard-
est optimization problems since general instances of size
m > 20 cannot be solved to optimality. In our case, for
example, m technologies (typically with m > 200) can be
organized in m! ways. Given the complexity of the prob-
lem, we cannot claim global optimality, e.g., through exact
methods. To attack the problem, we exploit metaheuristic
strategies. A heuristic is a technique that seeks near-optimal
solutions at a reasonable computational cost without guar-
anteeing optimality. Some heuristic methods, however, can
get easily trapped in a local optimum: metaheuristics meth-
ods modify their use of heuristics methods as optimization
progresses [19]. Our implementation, described in the next
section, supports two metaheuristics successfully used for
QAP problems, i.e., Simulated Annealing [20], [21] and
Ant Colony System [22]. Simulated Annealing is based on
mimicking the metal annealing processing and exploits local
and random search in a exploration/exploitation scheme. The
main advantage of simulated annealing is its ability to avoid
being trapped in local optima. In fact, a neighboring solution
is not considered only when it yields to a better objective
value: with a certain probability the solution is accepted even
if it does not improve the objective. The pseudo-code for the
simulated annealing is reported in Algorithm 1.

Instead, Ant Colony System is based on the biological
metaphor of an ant colony foraging for food, in which mul-
tiple searchers cooperate to produce solutions according to
a memory of past solutions. The pseudo-code of ACS is
presented in Algorithm 2.

37954 VOLUME 7, 2019

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

Algorithm 1 Simulated Annealing
1: Let s = s0
2: for k = 0 through kmax do
3: T ← temperature(k/kmax)
4: Pick a random neighbour, snew← neighbour(s)
5: if P(E(s),E(snew),T) ≥ random(0, 1) then
6: s← snew
7: Output: the final state s

Algorithm 2 Ant Colony System
1: while (not converged) do
2: Position each ant in a starting node
3: repeat
4: for all ant do
5: Chose next node with the transition rule
6: Apply local pheromone update
7: until every ant has built a solution
8: Update best solution
9: Apply global pheromone update

VI. EUDOPTIMIZER
In this section, we describe EUDoptimizer, an implementa-
tion of our approach on top of IFTTT. Despite our approach is
generic, i.e., it can be applied to any grid-based EUD interface
for trigger-action programming, we chose IFTTT due to the
popularity of the platform and the availability of real usage
data [7]. To maintain a high level of interactivity, we imple-
mented a client-server architecture between the optimizer and
the user interface for composing trigger-action rules.

A. DATA AND MODELS
We exploited a large dataset of trigger-action rules obtained
by Ur et al. [7] with a web scrape of the public rules shared
on IFTTT as of September 2016. The dataset is composed
of 295,156 rules created by 129,206 different authors, and
it includes more than 200 different technologies, ranging
from smart home devices to web applications. Besides the
information about triggers and actions, each rule also includes
a sharing information, i.e, the number of times that it has

been reused by other users, thus providing a direct measure
of its popularity. We used the sharing information of each
rule, normalized between 0 and 1, to calculate the frequency
probabilities and the bigram probabilities, to be used in
SDP model. Furthermore, we linked each technology with
the corresponding EUPont entity by using the translation
process described in [6], and we calculated the Functionality
Associations (FA) to be used in the FSM model.

B. USER INTERFACE
By exploiting the information extracted from the dataset,
we modeled a user interface after IFTTT with the Angu-
larJS framework.5 The interface, shown in Figure 2, allows
the composition of trigger-action rules exactly as in IFTTT.
For defining a trigger, for example, users have to click on
the ‘‘this’’ button (Figure 2a), and then select the desired
technology from a grid layout (Figure 2b). Finally, they
can select the specific trigger to be monitored (Figure 2c),
by filling any required details. To compare EUDoptimizer
with the original IFTTT, we realized two versions of the same
interface, namely IFTTT and EUDoptimizer. The difference
is obviously in the grid menu of Figure 2b: while for EUDop-
timizer the layout of such amenu is provided by the optimizer,
in IFTTT it reflects the same menu available on the original
platform.

C. OPTIMIZER
We implemented two different solvers in Python, based on
Simulated Annealing (SA) and Ant Colony System (ACS),
respectively. We executed them on a regular laptop (a 2015
MacBook Pro with a 2.7 Ghz Intel Core i5 and 8 GB
of RAM), separately. To define the algorithm parameters,
we empirically run a set of 100 optimizations by varying the
parameter values. Both optimizers provide the same function-
ality. They initially generates two grid layouts T1 and A1 (for
defining triggers and actions, respectively) by using the two
‘‘static’’ versions of the optimization problem (Equation 9
and Equation 10). Such layouts are periodically recalculated
to reflect changes in the probability distributions, e.g., due to
new rules defined by the user. As soon as the user selects a

5https://angularjs.org/ last visited on February 12, 2018

FIGURE 2. Some screenshots of the user interface used in the empirical evaluation. The interface resembles IFTTT and allows the
composition of trigger-action rules with both the IFTTT version and the EUDoptimizer enhanced version. In the IFTTT terminology, rules are
named applets, while technologies are named services. (a) New rule page. (b) Trigger technology selection step. (c) Trigger selection step.

VOLUME 7, 2019 37955

https://angularjs.org/

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

TABLE 1. Results of the simulated annealing for the trigger layout with
100, 1,000, 5,000, and 10,000 iterations.

TABLE 2. Results of the ant colony system for the trigger layout with 100,
1,000, 5,000 and 10,000 iterations.

technology for defining the trigger, each optimizer interac-
tively receive the information. Starting from the layout A1,
each of them starts to explore the problem described by the
Equation 11 to refine the initial layout to take into account the
user’s choice. When the user finishes the trigger definition,
i.e., she completes it with all the required parameters, each
optimizer generates a grid menu A2, an improved version of
A1 in which the technologies that are most likely to be used
with the selected trigger are promoted towards the top.

VII. TECHNICAL ASSESSMENT
To assess the feasibility of our approach, and to evaluate
which optimizer provide better solutions, we executed the SA
and the ACS solvers ‘‘off-line,’’ by changing the number of
iterations of the algorithms. During the trials, we also tuned
the parameters of the algorithms, along with the weights of
our optimization problem.

A. TRIGGER DEFINITION
We first executed the optimizers for calculating a grid layout
for trigger definition, thus solving Equation 9. Table 1 and
Table 2 report the results obtained with 100, 1,000, 5,000,

and 10,000 iterations with SA and ACS, respectively. Despite
the ACS solver provides better solutions for 100 and
1,000 iterations, the SA solver performs better with a higher
number of iterations. Furthermore, SA is faster than ACS in
all cases. Figure 3 shows two screenshots of the grid menu
calculated with 10,000 iterations of SA, obtained in less than
20 minutes.

We can observe that:
• The 10 most frequently used technologies6 for defining
triggers are prominently placed in the 10 positions closer
to the top of the grid menu (Figure 3a). Their functional
similarities are pulled together and organized in logical
groups, e.g., locations (Android Location, iOS Loca-
tion), photos and videos (iOSPhoto, Android Photo,
Eyefy, Youtube, Flickr, Dailymotion, and 500px), etc.

• Figure 3b further highlights that technologies with func-
tional similarities are pulled together in logical groups.
The figure, in particular, shows a huge group of hubs,
cameras, and doorbells, all related to home security.

B. ACTION DEFINITION
We then executed the optimizers for calculating the action
grid menu. In this case, we initially used the solvers to
calculate (with 10,000 iterations) an initial solution for the
menu, i.e., by solving Equation 10. Then, we manually fixed
the selected trigger technology to iOS Photo, one of the most
used trigger in the data set, and we tested the optimizers to
solve the problem defined by Equation 11, i.e., the inter-
active optimization. Table 3 and Table 4 report the opti-
mization results for SA and ACS, respectively. Also in this
case, SA performed better than ACS with 10,000 iterations.
Figure 4 shows the top part of the best grid menu obtained
with 10,000 iterations by SA. Both Figure and Table confirm
that the SA solver produces good solutions in a reasonable
amount of time. In fact, 9 of the 10 technologies most fre-
quently associated with iOS Photo are presented on the top

6according to the dataset of Ur et al. [7]

FIGURE 3. Optimized grid layout for defining triggers calculated with the Simulated Annealing solver
(10,000 iterations). (a) shows the top of the layout (the added stars indicate the 10 most frequently used
technologies). (b) shows the bottom part; a yellow border highlights a logical group of technologies related
to home security.

37956 VOLUME 7, 2019

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

TABLE 3. Results of the simulated annealing for the action layout when
the selected trigger technology is iOS Photo.

TABLE 4. Results of the ant colony system for the action layout when the
selected trigger technology is iOS Photo.

FIGURE 4. Optimized grid layout for actions calculated with SA when the
selected trigger technology is iOS Photo (10,000 iterations). Stars indicate
the most frequently used technologies: 9 out of 10 are at the top of the
grid layout.

of the grid layout. Furthermore, there are logical groups
of related technologies that allow the definition of similar
functionality, e.g., One Note, Nimbus Note, and Evernote.

VIII. USER STUDY
Thanks to the technical assessment, we selected the SA
solver to be used in EUDoptimizer, and we compared the
optimized interface with IFTTT in a user study with 12 par-
ticipants, by asking participants to compose trigger-action
rules with both interfaces. The goal was to understand
whether EUDoptimizer a) improved the user performance,
i.e., the time needed for composing trigger-action rules, and
b) reduced the cognitive load in the composition of trigger-
action rules with respect to the ‘‘normal’’ version. In this
section, we describe the study, and we report the quantitative
and qualitative results used for investigating the time variable
and the cognitive effort, respectively.

A. STUDY DESCRIPTION
1) DESIGN AND PROCEDURE
We devised a within-subject user study, where we considered
the interface version (IFTTT vs. EUDoptimizer) as the inde-
pendent variable. We first submitted participants an initial

questionnaire to collect demographic data and information
about their programming skills and their previous experience
with IFTTT. Then, we introduced them to trigger-action pro-
gramming and to the IFTTT environment, and we explained
the nature of the study. During this phase, we showed the
interface to the users, by composing a trigger-action rule in
IFTTT as an example. After the training phase, we asked
participants to complete 6 similar tasks related to the com-
position of trigger-action rules with both interface versions,
without telling them which version they were using. Interface
versions and tasks were fully counterbalanced between the
participants. The study was carried out in a university office,
and took about 30 minutes per participant. All the sessions
were audio recorded.

2) PARTICIPANTS
We recruited 12 participants (4 female and 8 male) with a
mean age of 25.91 years (SD = 4.48, range : 19 − 34).
To consider users with and without programming skills,
participants were recruited from different background,
i.e., Education, Biology, Aerospace Engineering, Manage-
ment Engineering, and Computer Engineering. 3 participants
were undergraduate students, 7 were Ph.D. students, while
2 where post-doc researchers, all coming from different uni-
versities. On a Likert scale from 1 (No experience at all) to
5 (I am an expert), participants declared their programming
experience level (M = 3, SD = 1.04), and their experience
with IFTTT (M = 1.67, SD = 0.89).

3) TASKS
In the study, each task consisted in the composition of a
single trigger-action rule. We defined 6 different tasks that
asked participants to replicate trigger-action rules previously
extracted from the IFTTT dataset [7]. To explore the full
range of possible alternatives, e.g., to evaluate EUDoptimizer
both with commonly and rarely used technologies, we first
divided the dataset in three layers by grouping together the
most common rules (i.e., shared more than 10,000 times),
the common rules (i.e., shared 1,000 to 10,000 times), and the
uncommon ones (i.e., shared fewer than 1,000 times). Then,
we randomly selected 2 rules for each category. The rules,
rephrased for the sake of readability, were:

Most common rules
• IF theWeather Underground service notifies that tomor-
row’s forecast call for rain, THEN use Notifications to
send me a notification.

• IF I share a photo on Instagram, THEN add the file on
my Dropbox.

Common rules
• IF I add a photo on iOS Photo, THEN add the file on my
Google Drive.

• IF I receive a new labeled email onGmail, THEN create
a note on Evernote.

Uncommon rules
• IF the laundry cycle of my Samsung Washer is finished,
THEN add an event on Google Calendar.

VOLUME 7, 2019 37957

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

• IF the Nest Cam recognizes a new sound or motion
event, THEN turn the Philips Hue on.

4) MEASURES
For each task completion (with both the IFTTT and the
EUDoptimizer interface), we measured the following times:
• Trigger Time (TT). The time for selecting the technol-
ogy to define the trigger from the grid layout.

• Action Time (AT). The time for selecting the technol-
ogy to define the action from the grid layout.

• Rule Time (RT).The time for composing the entire rule,
composed of the Trigger and Action times (TT and AT),
and the time needed for completing the specific trigger
and action, e.g., for filling the required details.

Furthermore, we extracted any consideration made by the
participants from the audio registrations.

TABLE 5. Average trigger time (TT), action time (AT), and rule time (RT)
with the IFTTT interface.

TABLE 6. Average trigger time (TT), action time (AT), and rule time (RT)
with the EUDoptimizer interface.

FIGURE 5. Average trigger time (TT), action time (AT), and rule time (RT)
compared between the IFTTT-like interface and its EUDoptmizer
enhanced version. All the time measures are lower in the optimized
interface.

B. QUANTITATIVE RESULTS
Table 5, Table 6, and Figure 5 show and compare themeasures
obtained with the IFTTT and the EUDoptimizer interfaces,
respectively, averaged for all participants and tasks.

All the time measures were lower with the optimized inter-
face. Therefore, EUDoptimizer improved the selection time
in the trigger and in the action definition. Such improvements
were reflected in the time needed by end users to compose a

trigger-action rule (RT): the EUDoptimizer interface, in fact,
allowed participants to define rules faster that the IFTTT
interface.

To investigate whether the differences in themeasures were
significant, we analyzed the effect of the independent variable
(IFTTT vs. EUDoptimizer) over the three dependent variables
(TT, AT, and RT) with a one-way repeated measures ANOVA
carried out in SPSS. The Mauchly’s sphericity test was sat-
isfied in all the three analysis. There was a significant main
effect of the used interface on TT (F(1, 11) = 8.30, p < .05),
AT (F(1, 11) = 12.46, p < .05) and RT (F(1, 11) =
15.82, p < .05). For all the 3 dependent variables, a post-
hoc test with the Bonferroni correction revealed that the
mean differences between the two interfaces were statistically
significant (p < .05), thus confirming the evidence that
EUDoptimizer improved the selection time in the trigger and
action definition phases, and the overall composition time of
trigger-action rules.

FIGURE 6. Average trigger time (TT), action time (AT), and rule time (RT)
compared between the IFTTT-like interface and its EUDoptmizer version
for the two uncommon rules.

We can say that EUDoptimizer improves the composition
of trigger-action rules by reducing the time effort in the
definition of triggers and actions. To further demonstrate such
a statement, we separately analyzed the measures for the
two uncommon rules, only (Figure 6). We were particularly
interested in evaluating the potential of EUDoptimizer in the
worst case. In fact, since we used the dataset to weight items
by their frequency, technologies involved in the uncommon
rules were not placed in the first position of the grid layouts.

We found that the optimized interface improved the defi-
nition of triggers also for the two uncommon rules. The TT
measure was lower with the EUDoptimizer interface (75.32±
44.25 sec vs. 116.81± 49.19 sec). On average, the selection
of a technology for defining actions was instead performed
with similar performances by participants (16.67±24.21 sec
vs. 17.70± 33.43 sec). However, the time for composing the
entire rules (RT measure) was considerably lower with the
EUDoptimizer interface (116.52 ± 59.82 sec vs. 158.31 ±
53.17 sec).

C. QUALITATIVE RESULTS
Qualitative data extracted from the audio recorded files show
that the benefit of EUDoptimizer are not restricted to time
performance, only. The indications of the participants, in fact,

37958 VOLUME 7, 2019

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

suggest that EUDoptimizer reduces the cognitive effort to
find technologies by ordering the components layout with
logical groups of functional-related elements. In particular,
we found that the majority users were frustrated in using the
IFTTT interface. Without knowing the differences between
the two evaluated interface versions, a participant using the
IFTTT interface said ‘‘I hate this task, it’s very difficult to find
the desired technology, I have already looked over the menu
4 times!’’ Other 4 participants pointed out that technologies
seemed to be displayed in a random order, thus making
impossible to apply any search criterion. One participant said
‘‘I am forced to search the technology by looking sequentially
to all the listed elements, from the top to the end of the grid.’’
On the contrary, EUDoptimizer provided more support for
selecting the desired technologies. 5 participants were happy
of the ‘‘logical’’ groups of technologies showed by EUDop-
timizer. A participant, for example, said: ‘‘in this interface
elements are ordered meaningfully. This helps me to find what
I need.’’ Another participant said ‘‘here the Samsung Washer
is near to other appliances of the same type, it’s easy to
find it.’’ The other participants were instead happy because
the technologies they needed, especially for defining actions,
were displayed towards the top of the grid layout. A partic-
ipant said: ‘‘I like this interface [EUDoptimizer] because it
proposes me the technologies I need in the first positions and
I can immediately select them.’’

IX. DISCUSSION
Trigger-action programming allows end users to customize
their smart devices and web-based services on the basis of
their personal needs, but becomes more andmore challenging
as the number of available technologies and smart environ-
ments increases. We proposed and successfully adopted an
approach to integrate optimization methods in contemporary
EUD interfaces. The EUDoptimizer implementation, in par-
ticular, suggests that the approach is valuable.Off-line results
obtained with 10,000 iterations (∼ 15/20 minutes on a regular
laptop) are promising, and show that satisfactory solutions
can be obtained in a reasonable amount of time. This is
confirmed by the results of the user study, where EUDopti-
mizer performed the optimizations in real-time, by interact-
ing with the participants. By comparing EUDoptimizer with
IFTTT, in particular, we found that trigger-action rules were
composed in less time with the optimized interface. Even
for the most uncommon rules, for which technologies were
not placed on the top of the layouts, EUDoptimizer partially
reduced the time effort needed by participants to complete the
tasks. Furthermore, qualitative data extracted from the user
study suggest that EUDoptimizer reduces the cognitive effort
to compose IF-THEN rules by redesigning the grid layouts of
EUD interfaces with a focus on the final functionality of the
supported technologies.

Despite these advantages should be further studied, inte-
grating optimization methods in EUD interfaces, as in
EUDoptimizer, could help end users better deal with trigger-
action programming. With the continuous spread of new

smart objects and online services, in fact, an optimized EUD
interface could reduce time and cognitive efforts needed by
end users for selecting elements between hundreds of sup-
ported technologies, and could open up new possibilities for
users to program their devices and services.

X. CONCLUSIONS
In this paper we investigated a new approach to interac-
tively assist end users in composing IF-THEN rules with
an optimizer in the loop. The goal was to dynamically
redesign layouts in EUD interfaces in an interactive way,
i.e., by considering the choices made by users. To reach
our goal, we adapted a state-of-the-art predictive model of
user performance in menu search, and we define a novel
model to organize technologies (i.e., various smart devices,
online services, . . .) on the basis of their final functionality.
We used different optimization algorithms to explore the
design space, and we integrated the optimization methods
in EUDoptimizer, an implementation of our approach on top
of IFTTT. The implementation showed that the optimization
can produce satisfactory solutions in a reasonable amount
of time. Moreover, a user study with 12 participants con-
firmed that EUDoptmizer reduces the time and cognitive
efforts needed by end users to compose trigger-action rules.
There are several opportunities to improve the approach. The
models, for example, could be further analyzed: are there any
other criteria, beside the functionality similarity, to refine the
optimization approach? Which criteria has a greater impact
on end user efforts? Such considerations are guiding our
current works.

REFERENCES
[1] G. Desolda, C. Ardito, and M. Matera, ‘‘Empowering end users to cus-

tomize their smart environments: Model, composition paradigms, and
domain-specific tools,’’ ACM Trans. Comput.-Hum. Interact., vol. 24,
no. 2, Apr. 2017, Art. no. 12.

[2] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, ‘‘End-user develop-
ment: An emerging paradigm,’’ in End User Development. Dordrecht,
Netherlands: Springer, 2006, pp. 1–8.

[3] D. Evans, ‘‘The Internet of Things: How the next evolution of the
Internet is changing everything,’’ Cisco Internet Bus. Solutions Group,
San Jose, CA, USA, White Paper, Apr. 2011. [Online]. Available:
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_
0411FINAL.pdf

[4] T.-H. K. Huang, A. Azaria, and J. P. Bigham, ‘‘InstructableCrowd: Cre-
ating IF-THEN rules via conversations with the crowd,’’ in Proc. CHI
Conf. Extended Abstr. Hum. Factors Comput. Syst., New York, NY, USA,
May 2016, pp. 1555–1562.

[5] B. R. Barricelli and S. Valtolina, ‘‘Designing for end-user develop-
ment in the Internet of Things,’’ in Proc. 5th Int. Symp. End-User
Develop. (IS-EUD). Cham, Germany: Springer, May 2015, pp. 9–24.

[6] F. Corno, L. De Russis, and A. M. Roffarello, ‘‘A semantic Web approach
to simplifying trigger-action programming in the IoT,’’ Computer, vol. 50,
no. 11, pp. 18–24, Nov. 2017.

[7] B. Ur et al., ‘‘Trigger-action programming in the wild: An analysis of
200,000 IFTTT recipes,’’ in Proc. CHI Conf. Hum. Factors Comput. Syst.,
New York, NY, USA, May 2016, pp. 3227–3231.

[8] F. Corno, L. De Russis, and A. M. Roffarello, ‘‘A high-level approach
towards end user development in the IoT,’’ in Proc. CHI Conf. Extended
Abstr. Hum. Factors Comput. Syst., New York, NY, USA, May 2017,
pp. 1546–1552.

[9] A. Oulasvirta, ‘‘User interface design with combinatorial optimization,’’
Computer, vol. 50, no. 1, pp. 40–47, Jan. 2017.

VOLUME 7, 2019 37959

F. Corno et al.: EUDoptimizer: Assisting End Users in Composing IF-THEN Rules Through Optimization

[10] S. Zhai, M. Hunter, and B. A. Smith, ‘‘The metropolis keyboard—
An exploration of quantitative techniques for virtual keyboard design,’’
in Proc. 13th Annu. ACM Symp. Interface Softw. Technol., New York,
NY, USA, Nov. 2000, pp. 119–128.

[11] A. Oulasvirta et al., ‘‘Improving two-thumb text entry on touchscreen
devices,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., New York,
NY, USA, Apr. 2013, pp. 2765–2774.

[12] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, ‘‘Improving the performance
of motor-impaired users with automatically-generated, ability-based inter-
faces,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., New York,
NY, USA, Apr. 2008, pp. 1257–1266.

[13] S. Matsui and S. Yamada, ‘‘Genetic algorithm can optimize hierarchical
menus,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., New York,
NY, USA, Apr. 2008, pp. 1385–1388.

[14] G. Bailly, A. Oulasvirta, T. Kötzing, and S. Hoppe, ‘‘MenuOptimizer:
Interactive optimization of menu systems,’’ in Proc. 26th Annu. ACM
Symp. Interface Softw. Technol., New York, NY, USA, Oct. 2013,
pp. 331–342.

[15] K. Todi, D. Weir, and A. Oulasvirta, ‘‘Sketchplore: Sketch and explore
with a layout optimiser,’’ in Proc. ACM Conf. Designing Interact. Syst..
New York, NY, USA, Jun. 2016, pp. 543–555.

[16] P. Salem, ‘‘User interface optimization using genetic programming with
an application to landing pages,’’ in Proc. ACM Hum.-Comput. Interact.,
vol. 1, Jun. 2017, Art. no. 13.

[17] A. Cockburn, C. Gutwin, and S. Greenberg, ‘‘A predictive model of
menu performance,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.,
New York, NY, USA, Apr. 2007, pp. 627–636.

[18] S. S. Rao, Engineering Optimization: Theory and Practice, 4th ed.
Hoboken, NJ, USA: Wiley, 2009.

[19] F. Glover andM. Laguna, Tabu Search. Norwell, MA, USA: Kluwer, 1997.
[20] M. R.Wilhelm and T. L.Ward, ‘‘Solving quadratic assignment problems by

‘simulated annealing,’’’ IIE Trans., vol. 19, no. 1, pp. 107–119, Jul. 1987.
[21] D. T. Connolly, ‘‘An improved annealing scheme for the QAP,’’ Eur. J.

Oper. Res., vol. 46, no. 1, pp. 93–100, May 1990.
[22] M. Dorigo and L. M. Gambardella, ‘‘Ant colony system: A cooperative

learning approach to the traveling salesman problem,’’ IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

FULVIO CORNO has been an Associate Professor
with the Department of Control and Computer
Engineering, Politecnico di Torino, since 2002,
where he is currently the Leader of the e-Lite
Research Group and focuses on ambient intel-
ligence systems by integrating novel interaction
modalities with the IoT architectures. He is amem-
ber of the IEEE, the IEEE Computer Society, and
the ACM.

LUIGI DE RUSSIS has been anAssistant Professor
with the Department of Computer and Control
Engineering, Politecnico di Torino, since 2018.
His current research interest includes human–
computer interaction, with a particular interest on
interaction techniques applied to complex settings
(such as ambient intelligence systems). He is a
member of the IEEE, the IEEE-HKN, the IEEE
Computer Society, and the ACM.

ALBERTO MONGE ROFFARELLO is currently
pursuing the Ph.D. degree with the Department of
Computer and Control Engineering, Politecnico di
Torino, advised by F. Corno. His current research
interests include Semantic Web and human–
computer interaction, with a particular interest on
end user customization of ambient intelligence
systems. He is a Student Member of the IEEE and
the ACM. He is also an IEEE-HKN Member.

37960 VOLUME 7, 2019

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	IMPROVING END-USER DEVELOPMENT
	COMBINATORIAL OPTIMIZATION OF USER INTERFACES

	OPTIMIZING IF-THEN RULES COMPOSITION
	TRIGGER DEFINITION
	ACTION DEFINITION

	PREDICTIVE MODELS FOR TRIGGER-ACTION PROGRAMMING
	SDP: SEARCH DECISION POINTING
	FSM: FUNCTIONALITY SIMILARITY MODEL

	OPTIMIZATION PROBLEM AND METHODS
	PROBLEM FORMULATION
	SOLVING THE OPTIMIZATION PROBLEM

	EUDOPTIMIZER
	DATA AND MODELS
	USER INTERFACE
	OPTIMIZER

	TECHNICAL ASSESSMENT
	TRIGGER DEFINITION
	ACTION DEFINITION

	USER STUDY
	STUDY DESCRIPTION
	DESIGN AND PROCEDURE
	PARTICIPANTS
	TASKS
	MEASURES

	QUANTITATIVE RESULTS
	QUALITATIVE RESULTS

	DISCUSSION
	CONCLUSIONS
	REFERENCES
	Biographies
	FULVIO CORNO
	LUIGI DE RUSSIS
	ALBERTO MONGE ROFFARELLO

