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Abstract 

This study investigates the effect of vowel context (excerpted from speech versus 

sustained) on two voice quality measures: the cepstral peak prominence smoothed 

(CPPS) and sample entropy (SampEn). Thirty-one dysphonic subjects with different 

types of organic dysphonia and thirty-one controls read a phonetically balanced text 

and phonated sustained [a:] vowels in comfortable pitch and loudness. All the [a:] 

vowels of the read text were excerpted by automatic speech recognition and phonetic 

(forced) alignment. CPPS and SampEn were calculated for all excerpted vowels of 

each subject, forming one distribution of CPPS and SampEn values per subject. The 

sustained vowels were analyzed using a 41 ms window, forming another distribution 

of CPPS and SampEn values per subject. Two speech-language pathologists 

performed a perceptual evaluation of the dysphonic subjects’ voice quality from the 

recorded text. The power of discriminating the dysphonic group from the controls for 

SampEn and CPPS was assessed for the excerpted and sustained vowels with the 

Receiver-Operator Characteristic (ROC) analysis. The best discrimination in terms of 

Area Under Curve (AUC) for CPPS occurred using the mean of the excerpted vowel 

distributions (AUC=0.85) and for SampEn using the 95th percentile of the sustained 

vowel distributions (AUC=0.84). CPPS and SampEn were found to be negatively 

correlated, and the largest correlation was found between the corresponding 95th 

percentiles of their distributions (Pearson, r=-0.83, p < 10-3). A strong correlation was 

also found between the 95th percentile of SampEn distributions and the perceptual 

quality of breathiness (Pearson, r=0.83, p < 10-3). The results suggest that depending 

on the acoustic voice quality measure, sustained vowels can be more effective than 

excerpted vowels for detecting dysphonia. Additionally, when using CPPS or 
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SampEn there is an advantage of using the measures’ distributions rather than their 

average values. 

Introduction 

Laryngeal pathologies often result in irregularities and noise in the voice signal, 

such as aperiodicity, breathiness, and fundamental frequency breaks. There is great 

potential in using objective acoustic measures for quantifying voice quality in clinical 

practice. Such measures can be used to support the diagnostic process, as well as the 

monitoring of the post-therapy (or -surgery) progress of a vocal patient. When there is 

lack of periodicity, conventional metrics of voice quality such as jitter and shimmer 

are difficult, or meaningless to compute for disordered voice signals [1]. Therefore, in 

analyzing pathological voices, it is advantageous to use measures that do not depend 

on detecting glottal cycle boundaries.  

Sustained vowels at comfortable pitch and loudness are often used in the clinic for 

endoscopic examination, perceptual evaluation, and acoustic quantification of voice 

quality. However, sustained vowels do not constitute an appreciable part of everyday 

voice use, at least for non-singers [2]. Running speech on the other hand commonly 

occurs in real life situations, i.e., it is a natural and ecologically valid signal that could 

serve as a basis for perceptual assessment and acoustic analysis [2]. Using running 

speech though is not as straightforward as using sustained vowels, since the voiced 

parts of speech are rather short, and the phonetic context of the vowels can affect 

objective voice quality measures [3]. 

Several earlier studies have investigated how different perceptual or acoustic 

measures depend on the vowel context [3–6]. Gerratt et al. [3] concluded that when 

analyzing or evaluating perceptually either sustained vowels or vowels excerpted 

from continuous speech, the information on deviation from normal voice quality was 

the same. The aim of the present study is to investigate how vowel context (sustained 

versus excerpted) affects the predictive power for dysphonia of two objective voice 

quality measures, i.e., the cepstral peak prominence smoothed (CPPS) and the sample 

entropy (SampEn).  

The cepstral peak prominence smoothed (CPPS) [7], is a measure based on the 

cepstrum [8] that has been used as an indicator of voice quality. The computation of 

the cepstrum of digitized signals relies on the Discrete Fourier Transform, and does 

not require any detection of glottal cycles. CPP is known to be affected by amplitude 

and frequency perturbations of the analyzed signal, as well as the presence of 
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aerodynamic noise [9]. The smoothed version of CPP (CPPS), has been found to 

correlate with breathiness, i.e., the perception of aerodynamic noise in the voice 

signal [7]. A low value for CPPS signifies a lower prominence of the cepstral peak, 

which correlates with degraded voice quality. Previous studies have established that 

CPPS correlates with perceptual measures of the GRBAS (Grade, Roughness, 

Breathiness, Asthenia, Strain) scale in acoustic material from text readings [10,11] or 

sentences [12]. Specifically, Brinca et al. [10] found that in text readings CPPS 

correlated with breathiness (Spearman ρ=-0.43), but none of the other perceptual 

measures. Jannetts et al. [11] used text readings and obtained the highest correlation 

with asthenia (Pearson, r=-0.47), followed by r=-0.38 for breathiness, and r=-0.35 for 

roughness. Heman-Ackah et al. [12] limited their investigation to a sentence 

considering only breathiness and roughness; they found that both perceptual qualities 

correlated with CPPS, with a coefficient of Pearson’s r=-0.71 for breathiness and r=-

0.50 for roughness. 

Signals originating from disordered biological systems are likely to present 

irregularities. These irregularities can be quantified using time-domain based entropy 

measures, such as sample entropy (SampEn) and approximate entropy (ApEn). 

SampEn was introduced by Richman and Moorman [13] as an improved version of 

Pincus’ approximate entropy (ApEn) [14,15]. SampEn and ApEn have been 

extensively used in biomedical signal processing, in a variety of contexts, such as 

heart rate variability [13,16], brain activity in newborns [17], and postural sway [18]. 

A signal that is completely predictable and regular exhibits a lower SampEn value 

than an irregular signal that contains random occurrence of noise bursts, or stationary 

noise [19]. Few studies have explored the utility of ApEn and SampEn for 

pathological voice analysis. ApEn has been used for analyzing electroglottographic 

signals [20–22], and SampEn for both electroglottograms and acoustic signals [23–

25]. Occurrence of noise and other irregularities in pathological voices are expected to 

be reflected in higher SampEn values, as compared to normal voices. Fabris et al. [23] 

computed SampEn for one second long sustained [a:] vowels, and found that SampEn 

differed significantly in pathological voices compared to controls. Londoño et al. [24] 

computed SampEn from sustained [a:] vowels using windows of 200 ms, and used it 

as input feature to a pre-trained Gaussian Mixture Model–based classifier. They also 

reported higher mean SampEn for the pathological group compared to controls. Their 

SampEn-based classifier discriminated pathological from normal voices with an 

accuracy of 87% (sensitivity 94%, specificity 87%).  
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Despite the use of SampEn for quantifying irregularity in voices, its relationship to 

perceptual ratings of voice quality has not been studied before. In addition, it is not 

clear how phonetic context of vowels may affect SampEn and CPPS for their ability 

to discriminate between healthy and pathological subjects.In a previous study [25] it 

was found that for excerpted [a:] vowels, the mean of CPPS distributions had a 

greater predictive power for dysphonia over mean SampEn, and that mean CPPS was 

significantly correlated with mean SampEn (Spearman, ρ = -0.6). The aim of the 

present study is to investigate the effect of vowel context on the predictive power of 

CPPS and SampEn, using both excerpted and sustained vowels of different lengths. 

Based on recent studies [25-27], the individual distributions of the two metrics (CPPS 

and SampEn) are taken into account and their statistics are evaluated as potentially 

more effective descriptors of vocal health than mean values. Additionally, 

correlations of CPPS and SampEn distributions with perceptual assessment of voice 

quality are presented.  

Materials and methods 

Data acquisition and perceptual evaluation 

The data comprised voice samples from 31 voluntary patients (24 females and 7 

males) and 31 controls (17 females and 14 males). All speakers were native Italian 

speakers. All patients were diagnosed by two otolaryngologists with some form of 

organic dysphonia, as documented in Table I. 

Table I: Diagnoses for the patient group. 

Organic dysphonia Number  

Cyst  5 

Edema 9 

Sulcus vocalis 3 

Polyp  4 

Chronic laryngitis  2 

Vocal fold hyposthenia 3 

Vocal fold paresis  2 

Vocal fold nodule  1 

Post-surgery dysphonia  

Overall 

2 

31 

 

Two tasks were performed by both the patient and the control group: 
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(a) The reading of a standardized phonetically balanced Italian text of 300 

words length [28]. 

(b) The production of the sustained vowel [a:], at comfortable pitch and 

loudness. 

The acoustic signal was recorded using an omnidirectional head mounted 

microphone (model MU-55HN, Mipro Electronics, Chiayi, Taiwan) with an 

approximate distance of 2.5 cm from the speaker’s mouth, slightly to the side at about 

20°–45° horizontally, depending on the subject’s face shape. The microphone was 

connected to a bodypack transmitter (model ACT-30T, Mipro Electronics, Chiayi, 

Taiwan), which transmitted the signal to a wireless system (model ACT 311, Mipro 

Electronics, Chiayi, Taiwan). The signal was recorded using a portable recorder 

(model H1 “Handy Recorder”, Zoom Corp., Tokyo, Japan) with a sampling rate of 

44.1 kHz and 16 bit resolution. All voice signals were recorded in a quiet room with 

an A-weighted equivalent background noise level of 50.0 dB (std = 2dB), measured 

with a sound level meter (model XL2, NTi Audio AG, Schaan, Liechtenstein), over a 

period of 5 minutes for each recording session. According to Šrámková et al. [29], the 

softest vowel sounds produced by healthy males and females had A-weighted levels 

of 39 dB (60 dB) and 44 dB (65 dB) respectively at 30 cm (2.5cm). This suggests that 

the background noise level of 50 dB should guarantee at least a 10 dB signal-to-noise 

ratio or more, since the subjects were instructed to read aloud.  

Two expert speech-language pathologists rated the recordings of the text reading 

of each patient. Ratings were discussed, and consensus was reached using the 

perceptual Stockholm Voice Evaluation Approach (SVEA) visual analogue scale [30] 

with ratings for the qualities of aphonia, breathiness, hyperfunction, hypofunction, 

vocal fry or creaky, roughness, high pitch roughness, instability, voice breaks, 

diplophonia. An explanation of the voice quality parameters used for perceptual 

evaluation is adapted from Hammarberg [31] and presented in Table II. 
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Table II. Definition of voice quality parameters used in perceptual evaluation 

according to the Stockholm Voice Evaluation Approach (SVEA). Adapted from 

Hammarberg et al. [31]. 

Voice quality parameter Tentative definition 

Aphonic/intermittent 

aphonic 

voice is constantly or intermittently lacking phonation, 

i.e. there are moments of whisper or loss of voice 

Breathy 

voice is produced with insufficient glottal closure, 

vocal folds are vibrating, but somewhat abducted, 

which creates an audible turbulent noise in the glottis 

Hyperfunctional/tense 

voice sounds strained, due to compression/constriction 

of vocal folds and larynx tube during phonation with 

insufficient airflow 

Hypofunctional/lax 

opposite to hyperfunctional, insufficient vocal fold 

tension and laryngeal muscle activity, resulting in a 

weak and slack voice 

Vocal fry/creaky 

low-frequency aperiodic/periodic vibration, vocal folds 

are very close together and only a section of them is 

free to vibrate; also known as pulse register 

Rough 
low-frequency aperiodicity, presumably related to 

some kind of irregular vocal fold vibrations 

Gratings/‘scrapiness’ 
high-frequency aperiodicity, presumably related to 

some kind of irregular vocal fold vibrations 

Unstable voice quality/pitch 
voice is fluctuating in pitch or in voice quality over 

time 

Voice breaks intermittent breaks between modal and falsetto register 

Diplophonic two different pitches can be perceived simultaneously 
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Data processing 

The following signals were analyzed for each subject: excerpted [a:] vowels from the 

text reading and one sustained, two-seconds-long [a:] vowel, at comfortable pitch and 

loudness. Only [a:] vowels were considered in order to minimize acoustic variability 

due to different articulation, and because SampEn values can depend on the shape of 

the waveform of the signal under study. Therefore, using the [a:] vowel allowed the 

analyzed pattern to remain as consistent as possible. 

Vowel extraction and analysis  

As described in an earlier study [25], the recordings of the read text were 

phonemically annotated using automatic speech recognition. In brief, the orthographic 

transcriptions (prompts) were obtained by means of forced alignment, and the speech 

recognizer was trained on the Italian SpeechDat corpus [32] using the Hidden Markov 

Model Toolkit (HTK) [33] and the RefRec scripts [34]. The transcriptions were used 

to extract all the [a:] vowels for computing CPPS and SampEn. Because only the 

excerpted vowels with a length of at least 50 ms were considered for analysis and the 

number of analyzed vowels was different for each subject, between 111 and 188 

vowels. For one pathological subject the number of excerpted vowels was only 87, 

markedly less than average, therefore that particular subject was excluded from the 

analysis. All analyzed [a:] vowels were downsampled from 44.1 kHz to 25 kHz, and 

their middle 1024 samples (41 ms) were analyzed, to avoid onset and offset transients. 

For each excerpted [a:] vowel, a value for CPPS and a value for SampEn was 

calculated, resulting in one distribution for CPPS and one for SampEn per subject. For 

each of these distributions, descriptive statistics (mean, median, standard deviation 

[std], range, 5th percentile, 95th percentile), and the ROC curve with the corresponding 

AUC were computed.  

For the sustained vowels, the middle 2 seconds were analyzed using a 1024 point 

(41 ms) sliding window with a step size of 2 ms. For each window, CPPS and 

SampEn were calculated, resulting in one distribution for CPPS and one for SampEn, 

for each subject. Similarly to the excerpted vowels, descriptive statistics were 

calculated and the ROC analysis was carried out. Figure 1 provides pseudocode to 

illustrate the calculation procedure for the CPPS and SampEn in sustained and 

excerpted vowels.  
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Figure 1: Pseudocode describing the calculation procedure for CPPS and SampEn 

metrics per subject, in both sustained and excerpted vowels. 
 

Cepstral peak prominence smoothed (CPPS) 

The CPPS in sustained vowels was estimated as described in Castellana et al. [27], 

with two smoothing processes, i.e., a 7-frames smoothing in time and a 7-bin 

smoothing in quefrency. 

The CPPS in excerpted vowels was calculated based on a modified version of the 

definition provided by Hillenbrand et al. [7]. Because the excerpted vowels were not 

long enough for time-smoothing the cepstra, that step was omitted. The algorithm for 

obtaining CPPS consisted of the following steps. First, each vowel was multiplied 

with a hamming window of 1024 points, and the Fast Fourier Transform was 

computed twice: once on the signal in time, and then on the log power spectrum, to 

obtain the cepstrum. The cepstrum was smoothed over quefrency with a seven-point 

averaging window. A regression line was calculated in the quefrency vs cepstral 

magnitude domain, from 1 ms to the maximum quefrency. One millisecond was taken 

as lower limit, because quefrencies below 1 ms are affected more by the spectral 

envelope than by the regularity of the harmonics [35]. CPPS was then calculated as 

the level difference (in dB) between the maximum cepstrum peak, and the value of 

the regression line at the same quefrency. The peak search was limited to the range 

from 3.3 ms to 16.7 ms, corresponding to fundamental frequencies of 300 Hz and 60 

Hz, respectively. For the calculation of CPPS, a custom MATLAB (The MathWorks, 

Inc., Natick, MA) script was used.  
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Sample entropy 

For a time series y of N samples, SampEn is calculated by using the values of the time 

series to define vectors of dimension of m and m+1, where m is a parameter known as 

template length. The components of these vectors are consecutive values of the time 

series, so that each value occupies a different dimension. The total number of defined 

vectors is N-m. Then, the conditional probability is calculated that the Chebyshev 

distance 1  between two vectors of length m+1 is less or equal than a matching 

tolerance r, given that the Chebyshev distance between two vectors of template length 

m is less or equal than the tolerance r. The probability is calculated by counting the 

respective pairs of vectors (excluding self-pairs) of dimension m, and dimension m+1 

that satisfy the tolerance condition, and obtaining the ratio of their count. SampEn(m, 

r) is defined as the negative natural logarithm of this conditional probability as in Eq. 

(1), where d (xi, xj) is the Chebyshev distance of a pair of vectors, and ‘#’ symbolizes 

the number of vector pairs for i ≠ j with d less or equal than r. 

  SampEn(y, 𝑚, 𝑟)=- ln (
# 𝑑(𝑥𝑖

(𝑚+1)
, 𝑥𝑗

(𝑚+1)
)≤𝑟

# 𝑑(𝑥𝑖
(𝑚)

, 𝑥𝑗
(𝑚)

)≤𝑟
)  (1) 

The template length m for the analyzed excerpted and sustained vowels was set to 

be the closest integer to log10(N), where N is the window length used for analysis, as 

suggested by Fabris et al. [23] and Pincus [14,15]. In this study, the window was 1024 

points long, which results in m=3. In the choice of the parameter m there is an implicit 

choice of the time-scale and frequency band for which SampEn is most effective in 

tracing irregularity. Templates of length m=3 have a length of τ=0.12 ms, and the 

corresponding frequency is fc=1/τ=8333 Hz. This high frequency belongs to a 

frequency band where additive noise, such as breathiness, can be stronger than the 

harmonic component of the voice source. Therefore, the choice of m=3 is expected to 

make SampEn sensitive to the presence of aerodynamic noise. SampEn(m=fs/fc, r) is 

proportional to the inverse of the sampling frequency fs; to compare SampEn values 

for signals acquired with different sampling frequencies, SampEn should be 

multiplied by fs
2 . Here however, we will present the values unnormalized. The 

matching tolerance r was set equal to 0.1 times the standard deviation of the analyzed 

excerpted vowel, or window of sustained vowel [14,15,22]. A detailed explanation for 

the calculation algorithm of SampEn can be found in Fabris et al. [23]. SampEn was 

 
1 The Chebyshev distance between two k-dimensional vectors is defined as the largest of the absolute 

values of the k coordinate differences. 
2 If a sampling frequency fs other than 25000 Hz is used, to make the SampEn values comparable with 

those reported in the present study, SampEn(fs/fc, r) should be multiplied by fs/25000. 
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computed using a custom MATLAB (The MathWorks, Inc., Natick, MA) script, based 

on the implementation of the algorithm by Lake et al. [36]. 

Statistical analysis 

The two-tailed Mann-Whitney U-test, a nonparametric test based on independent 

samples [37], was applied on each coupled list of descriptive statistics related to the 

group of patients and the control subjects. The null hypothesis (H0) states that MD = 

0, where MD is the median of the population of the differences between the data 

sample for the two groups of patients and controls. If H0 is accepted, the two lists of 

values seem to come from the same population, i.e., data from healthy and unhealthy 

subjects is not significantly different, thus not allowing a possible discrimination. The 

one-sample Kolmogorov-Smirnov test verified that data in each list did not come 

from a normal distribution. The tests were performed using the MATLAB (The 

MathWorks, Inc., Natick, MA) environment. 

The receiver-operator characteristic (ROC) analysis [38] was carried out for each 

descriptive statistic of CPPS and SampEn distributions from both excerpted and 

sustained vowels. ROC analysis is used to characterize the quality of the binary 

classification (healthy versus dysphonic) based on either CPPS or SampEn. Since 

distributions of the voice quality measures in healthy and dysphonic subjects typically 

overlap, one cannot simply select a threshold value to decide the presence or absence 

of dysphonia. Instead, the ROC curve is constructed, by varying the threshold value 

and plotting the resulting false positive rate (1-specificity) on the x-axis, versus the 

true positive rate (sensitivity) on the y-axis. The area under the ROC curve (AUC) is 

considered a metric of classification accuracy for the given voice quality measure. 

The AUC obtains values between 0.5 and 1, where values higher than 0.9 designate 

outstanding accuracy, values between 0.8 and 0.9 excellent accuracy, values between 

0.7 and 0.8 acceptable accuracy, and values close to 0.5 imply poor accuracy. 

To evaluate the accuracy of separating dysphonic subjects from controls, a leave-

one-out validation scheme was computed using the statistical software R studio 

(version 3.5.0). The leave-one-out procedure is carried out by excluding one subject 

from data set, calculating a threshold based on the ROC curve from the data set of the 

remaining subjects, and classifying the excluded subject based on that threshold, to 

either the dysphonic or the control group. This scheme ensures that the classified data 

is different from the data that was used to establish a threshold belong to different 

groups. The procedure is repeated for all subjects and the percentage of correctly 

classified subjects is reported as the leave-one-out predictive accuracy.  
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Results 

The p-values of the Mann-Whitney U-tests between the dysphonic and control group, 

for different descriptive statistics of the CPPS and SampEn distributions, as well as 

the corresponding AUC are reported in Table III. It can be seen that most descriptive 

statistics of CPPS and SampEn distributions from excerpted and sustained vowels, 

exhibit significant differences between the dysphonic and control groups. The 

smallest p-values occurred most commonly for the mean, median, 5th percentile and 

95th percentile. 

Table III. Results in terms of p-values of the Mann-Whitney test (U-test), AUC 

with its confidence intervals (CI), and leave-one out accuracy (Acc.) for different 

descriptive statistics. The p-values that are significant at the 1% level are 

designated with a star (*).  The highest AUC and Acc. per measure and descriptive 

statistic are designated with boldface. 

  Sustained Excerpted 

Statistics 

CPPS SampEn CPPS SampEn 

U-test 
AUC  

Acc. U-test 
AUC  

Acc. U-test 
AUC  

Acc. U-test 
AUC  

Acc. 
(CI) (CI) (CI) (CI) 

Mean *<10-3 
0.78  

66% *<10-3 
0.80  

 76% *<10-3 
0.85  

 75% *0.003 
0.72  

 66% 
(0.66-0.89) (0.68-0.91) (0.75-0.95) (0.59-0.86) 

Median *<10-3 
0.77 

63% *<10-3 
0.79  

74%  *<10-3 
0.84  

75%  *0.002 
0.73  

 67% 
 (0.65-0.88) (0.66-0.90) (0.73-0.94) (0.60-0.86) 

Std *0.012 
0.68  

65% *<10-3 
0.81  

 68% 0.488 
0.55  

49%  0.090 
0.63 

57%  
(0.55-0.82) (0.71-0.92) (0.40-0.70) (0.49-0.77) 

Range 0.037 
0.66  

57%  *<10-3 
0.83  

 71% *<10-3 
0.78  

71%  0.593 
0.54  

 20% 
(0.52-0.79) (0.72-0.93) (0.66-0.90) (0.39-0.69) 

5prc *<10-3 
0.80  

 68% *<10-3 
0.79  

74%   *<10-3 
0.77  

67%  *0.014 
0.68  

 64% 
(0.69-0.81) (0.67-0.91) (0.65-0.89) (0.55-0.82) 

95prc *<10-3 
0.75 

 63% *<10-3 
0.84  

77%  *<10-3 
0.81 

 75% *0.002 
0.73 

 64%  
 (0.63-0.87) (0.73-0.94)  (0.70-0.93) (0.60-0.86) 

 

As seen in Table III, the AUC of CPPS are larger for the excerpted vowels 

compared to sustained, for most descriptive statistics. The opposite trend is observed 

for the SampEn, with the AUC being larger in sustained compared to the excerpted 

vowels. For the sustained vowels, the highest AUC for CPPS occurs for the 5th 

percentile (0.80), while for SampEn it occurs for the 95th percentile (0.84). For the 

excerpted vowels, the highest AUC value for CPPS is seen for the mean (0.85), while 

SampEn exhibits the highest AUC for the median and the 95th percentile (0.73). 

Figures 2 and 3 depict the ROC curves with the highest AUC for SampEn and CPPS 

in the case of sustained and excerpted vowels, respectively.  The leave-one-out 

accuracy is also reported in Table III, and it can be seen that high AUC values 
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correspond to high accuracies, as expected. The highest accuracies are obtained in 

sustained vowels for the 95th percentile of SampEn, and in excerpted vowels for the 

mean, median and 95th percentiles of CPPS.  

 

 

Figure 2: ROC curves for sustained vowels. The curves with the highest AUC are 

depicted, namely the ROC curve for the 5th percentile of CPPS and the 95th percentile 

of SampEn. The diagonal dashed line is a reference line. 

 

 

Figure 3: ROC curves for excerpted vowels. The curves with the highest AUC are 

depicted: the ROC curve for the mean CPPS and the 95th percentile of SampEn. The 

diagonal dashed line is a reference line. 
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Figures 4 and 5 show the boxplots of the distributions for the descriptive statistics 

that exhibit the highest AUC in CPPS and SampEn, respectively. Figure 4 depicts the 

Figure 4: Boxplot of the mean CPPS (dB) from excerpted vowels for controls and 

dysphonic subjects. The thick horizontal dotted line marks the discrimination 

threshold (14 dB), for which sensitivity and specificity were equal to 78%. 
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Figure 5: Boxplot of the 95th percentile of SampEn from sustained vowels for 

controls and dysphonic subjects. The thick horizontal dotted line marks the 
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boxplot for mean CPPS from excerpted vowels in dysphonic subjects and controls. 

The thick horizontal dotted line denotes a discrimination threshold (14 dB) based on 

the ROC analysis with sensitivity and specificity equal to 78%. Figure 5 depicts the 

boxplot for the 95th percentile of SampEn in sustained vowels in dysphonic subjects 

and controls, and the thick horizontal dotted line marks the threshold from the ROC 

analysis (0.43), with sensitivity and specificity equal to 81%.  

The set of recorded tokens of one subject corresponded to very breathy phonation 

with little voicing. These tokens exhibit the minimum mean CPPS (7.4 dB for 

excerpted, 4.90 dB for sustained) and the largest mean SampEn (1.50 for excerpted, 

1.71 for sustained). The same tokens have the highest perceptual rating for aphonia 

(6.5/10) and breathiness (9.3/10). Despite the extremity of these tokens’ values with 

respect to the rest of the data points, they were regarded as valid data points and were 

taken into account in the correlation analyses. 

Table IV. Pearson’s correlations between descriptive statistics of SampEn and 

CPPS distributions in excerpted vowels, with perceptual voice quality measures. 

Correlations with p-value smaller than 0.01 are denoted with a star. Boldface 

denotes the largest correlation among the descriptive statistics. 

 Breathiness Hyperfunction 
High pitch 

roughness 

CPPS    

Mean -0.77 * -0.13 -0.43  

Median -0.70 * -0.14 -0.44 

Std -0.59 * -0.02 -0.12 

Range -0.58 * -0.15 -0.09 

5prc -0.72 * -0.25 -0.38 

95prc -0.83 * -0.07 -0.32 

SampEn    

Mean 0.79 * 0.11 0.15 

Median 0.75 * 0.06 0.14 

Std 0.72 * 0.19 0.00 

Range 0.42 0.18 -0.12 

5prc 0.78 * 0.10 0.25 

95prc 0.83 * 0.18 0.14 

 

Table IV shows Pearson’s correlations between perceptual voice quality ratings 

and descriptive statistics of CPPS and SampEn from the excerpted vowels. Only those 

perceptual voice quality measures that had non-zero ratings for at least 15 subjects 

were considered; these were breathiness, hyperfunction, and high-pitch roughness. 

From those, only breathiness shows significant correlations with both CPPS and 

SampEn. The highest correlations with breathiness are observed for the 95th percentile 
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of CPPS (Pearson r = -0.83, p < 10-3) and the 95th percentile of SampEn (Pearson r = 

0.83, p < 10-3).  

Table V shows Pearson’s correlation between CPPS and SampEn for different 

descriptive statistics, in sustained and excerpted vowels. For sustained vowels, the 

highest correlation is found for the mean of CPPS with the mean of SampEn (Pearson, 

r=-0.72, p < 10-3). For excerpted vowels the highest correlation occurs for 95th 

percentile of CPPS and SampEn (r=-0.83 p < 10-3).  

Table V. Pearson’s correlations between different descriptive statistics of SampEn 

and CPPS distributions in both sustained and excerpted vowels. Correlations with 

p-value smaller than 0.01 are denoted with a star. Boldface denotes the largest 

correlation among the descriptive statistics. 

Pearson’s r 

(CPPS, 

SampEn) 

Sustained Excerpted 

Mean -0.72 * -0.72 * 

Median -0.70 * -0.67 * 

Std 0.33 * -0.31 

Range 0.20  0.12 

5prc -0.67 * -0.43 * 

95prc -0.72 * -0.83 * 

 

Discussion 

The AUC from the ROC analysis for CPPS and SampEn indicates that both measures 

have good potential for discriminating dysphonic subjects from controls. As expected, 

degraded voice quality results in lower values for SampEn and higher values for 

CPPS, since the first quantifies the grade of disorder of the voice signal in the time 

domain, while the second quantifies the regularity of the harmonic components.  

The highest AUCs were often obtained for descriptive statistics different than the 

mean, i.e., the 5th and 95th percentiles. In particular, the 5th percentile of individual 

distributions had the best discrimination power in the case of CPPS, since it 

corresponds to the lowest values of the distribution, which are associated with 

degraded voice quality. These extreme values are expected to be lower in the 

dysphonic subjects compared to controls. In the case of SampEn, it is the 95th 

percentile of individual distributions that had the best AUC, i.e., the highest values, 

which are associated with degraded voice quality. Therefore, these are expected to be 

higher in dysphonic subjects compared to controls. It follows from these results that 

the extremes of the distributions carry valuable information in discriminating between 



 16 

pathological and normal voices. For that reason, it is useful to conduct distribution-

based analysis, in order to capture a fuller picture of the analyzed voice signal. 

These findings confirm and extend the results by Castellana et al. [27], who 

investigated descriptive statistics for CPPS distributions as possible indicators of 

vocal health status in 5-second long sustained vowels, which were acquired with the 

same experimental setup in the same clinic. The authors [27] found that the 5th 

percentile was the best in discriminating between 41 patients and 35 controls, with an 

AUC of 0.95. Such outstanding discrimination power, which is higher than the one 

obtained in the present study for the 5th percentile in sustained vowels may be linked 

to the use of longer vowels. To investigate whether longer vowels would show 

improved discriminatory power, we calculated CPPS and SampEn for four-second 

long vowels taken from the pathological and control groups. Three of the pathological 

subjects were not able to sustain a vowel for four seconds, and for that reason they 

were excluded from this analysis. The results in terms of accuracy showed an 

improvement of 2% for CPPS (5th percentile) and a decline of 3% for SampEn (95th 

percentile). The corresponding change in AUC for the four-second long compared to 

the two-seconds-long vowels was none for CPPS (5th percentile) and 0.03 lower for 

SampEn (95th percentile). Since this comparison between two-seconds and four-

second long vowels showed relatively small differences, the improved performance in 

[27] is more likely to be due to the larger number of subjects and possibly higher 

grade of dysphonia of the pathological subjects. 

The context of vowels was found to affect the discrimination power of both CPPS 

and SampEn, however in the opposite way. While the performance of CPPS was 

better using excerpted vowels, for SampEn sustained vowels worked best. It has been 

shown in earlier studies that perturbation and other voice quality measures such as 

jitter, shimmer, and harmonics-to-noise ratio (HNR) show improved values (smaller 

for jitter/shimmer, larger for HNR) with higher vocal intensity [38, 39]. For the 

analyzed dataset, the sustained vowels of both pathological subjects and controls had 

on average a higher intensity compared to the excerpted vowels by 2.9 dB (std 5 dB). 

That may explain why CPPS was not as successful in discriminating pathological 

subjects from controls for sustained vowels, since CPPS reflects to some extent 

amplitude and frequency perturbation as well as HNR [9]. On the other hand, SampEn 

is documented to give more reliable results with longer sequences [41], therefore 

sustained vowels may be more appropriate for discriminating regular from 

pathological voices.  
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As mentioned earlier in the Materials and Methods section, the algorithm used for 

calculating CPPS in sustained and excerpted vowels was not the same, since for the 

excerpted vowels it was not possible to apply smoothing in the time dimension. To 

ensure that the differences observed between excerpted and sustained vowels in CPPS 

were not due to the different algorithm used, we calculated CPPS for the sustained 

vowels using the exact same algorithm as for excerpted, i.e., omitting the smoothing-

in-time step. The overall average difference between smoothed and non-smoothed (in 

time) CPPS was 0.5 dB, which indicates that the observed differences between 

excerpted and sustained vowels are not due to the variation of the used algorithm. 

Descriptive statistics of CPPS and SampEn from excerpted vowels were both 

found to be correlated strongly with breathiness. This means that a large part of the 

irregularity that is reflected in higher SampEn values is due to presence of 

aerodynamic noise in the voice source. This result highlights the usability of SampEn 

as another strong correlate of breathiness. The descriptive statistic for both CPPS and 

SampEn with the highest correlation for breathiness was the 95th percentile, which 

demonstrates again the importance of considering the extreme values of the 

distributions.  

Concerning the relationship of CPPS to breathiness this work confirms and extends 

results from previous studies [10–12], which investigated the correlation between 

perceptual ratings and CPPS values obtained from the Hillenbrand software [7]. The 

correlation between CPPS and breathiness reported in these earlier studies ranged 

from -0.38 [11] to -0.71 [12], while in the present study for the mean CPPS the 

correlation was -0.77 and for the 95th percentile of CPPS -0.83. Since both CPPS and 

SampEn seem to be affected by similar aspects of the voice signal, i.e., noise in the 

voice source and amplitude or frequency irregularity, it is expected that they will be 

strongly correlated with each other. In particular, all the distributional statistics of 

central tendency showed significant correlation, with the highest coefficient for 95th 

percentile. The sign of the correlation is negative because as stated earlier, good voice 

quality corresponds to high CPPS but low SampEn. These results confirm and extend 

our preliminary study based on a limited excerpted vowels dataset [25]. 

In this study the perceptual evaluation was done based on the read text. Ideally, the 

evaluation should be done on the excerpted vowels, however due to the multitude of 

the stimuli this was judged impractical. In a future study there should also be 

perceptual evaluation of the sustained vowels, in order to examine if the perceptual 

measures correlate as well with CPPS and SampEn. Lastly, in order to investigate in 

greater detail how CPPS and SampEn depend on different perceptual aspects of 
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pathological voices, synthesized signals using a disordered voice synthesizer [42] 

could be analyzed.  

Conclusion 

The vowel context seems to affect the predictive performance for dysphonia of CPPS 

and SampEn in different ways; for CPPS, excerpted vowels showed better 

performance, while for SampEn sustained vowels worked best. CPPS and SampEn 

are strongly correlated with breathiness and among themselves. 
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