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Abstract

In this paper, we propose a new method for support detection and estimation of sparse and approximately sparse
signals from compressed measurements. Using a double Laplace mixture model as the parametric representation of
the signal coefficients, the problem is formulated as a weighted �1 minimization. Then, we introduce a new family of
iterative shrinkage-thresholding algorithms based on double Laplace mixture models. They preserve the computational
simplicity of classical ones and improve iterative estimation by incorporating soft support detection. In particular, at
each iteration, by learning the components that are likely to be nonzero from the current MAP signal estimate, the
shrinkage-thresholding step is adaptively tuned and optimized. Unlike other adaptive methods, we are able to prove,
under suitable conditions, the convergence of the proposed methods to a local minimum of the weighted �1
minimization. Moreover, we also provide an upper bound on the reconstruction error. Finally, we show through
numerical experiments that the proposed methods outperform classical shrinkage-thresholding in terms of rate of
convergence, accuracy, and of sparsity-undersampling trade-off.

Keywords: Compressed sensing, Sparse recovery, Gaussian mixture models, MAP estimation, Mixture models,
Reweighted �1 minimization

1 Introduction
In this paper, we consider the standard compressed sens-
ing (CS) setting [1], where we are interested in recovering
high-dimensional signals x� ∈ R

n from few linear mea-
surements y = Ax� + η, where A ∈ R

m×n, m � n, and η

is a Gaussian i.i.d. noise. The problem is underdetermined
and has infinitely many solutions. However, much inter-
est has been focused on finding the sparsest solution, i.e.,
the one with the smallest number of nonzero components
[2]. This involves the minimization of �0 pseudonorm [3],
which is NP-hard.
A practical alternative is to use the �1 regularization,

leading to the basis pursuit (BP, [4]) problem in the
absence of noise, or the least absolute shrinkage and
selection operator (Lasso, [5]) in the presence of noise.
They can be efficiently solved by iterative shrinkage-
thresholding algorithms (ISTA, [6–8]) that are generally
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first-order methods followed by a shrinkage-thresholding
step. Due to its implementation simplicity and suitabil-
ity for high-dimensional problems, a large effort has been
spent to improve their speed of convergence [9–12],
asymptotic performance in the large system limit [13, 14],
and ease of use [15].
In a Bayesian framework, �1 minimization is equivalent

to a maximum a posteriori (MAP) estimate [16] model-
ing the signal coefficients using a Laplace prior, in the
sense that we need to solve the same optimization prob-
lem. Although the Laplace probability density function
does not provide a relevant generative model for sparse
or compressible signals [17], the non-differentiability at
zero of the cost function leads to select a sparse solution,
providing empirical success of �1 regularization.
However, �1 minimization alone does not fully exploit

signal sparsity. In fact, in some cases, a support estimate
[18] could be employed to reduce the number of measure-
ments needed for good reconstruction via BP or Lasso,
e.g., by combining support detection with weighted or
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truncated �1 minimization [19]. The idea of combining
support information and signal estimation has appeared
in CS literature with several assumptions [20–27]. For
example, in [25], the authors employ as prior information
an estimate T of the support of the signal and propose a
truncated �1 minimization problem. Another piece of lit-
erature [28] considers a weighted �1 minimization with
weights wi = − log pi where pi is the probability that
x�i = 0.
In this paper, we propose an iterative soft support detec-

tion and estimation method for CS. It is worth remarking
that in our setting prior information on the support T
or pi is not available. The fundamental idea is to com-
bine the good geometric properties of the �1 cost function
associated to the Laplacian prior with a good generative
model for sparse and compressible vectors [17]. For this
purpose, we use a Laplace mixture model as the paramet-
ric representation of the prior distribution of the signal
coefficients. Because of the partial symmetry of the sig-
nal sparsity, we know that each coefficient should have
one out of only two distributions: a Laplace with small
variance with high probability and a Laplace with large
variance with low probability. We show empirically that
this model fits better with the distribution of the Haar
wavelet coefficients in test images. Then, we cast the esti-
mation problem as a weighted �1 minimization method
that incorporates the parametric representation of the
signal.
We show that the proposed framework is able to

improve a number of existing methods based on
shrinkage-thresholding: by estimating the distribution
of the components that are likely to be nonzero from
signal estimates at each iteration (support detection),
the shrinkage-thresholding step is tuned and optimized,
thereby yielding better estimation. As opposed to other
adaptive methods [10], we are able to prove, under
suitable conditions, the convergence of the proposed
tuned method. Moreover, we derive an upper bound on
the reconstruction error. We apply this method to sev-
eral algorithms, showing by numerical simulation that it
improves recovery in terms of both speed of convergence
and sparsity-undersampling trade-off, while preserving
the implementation simplicity.
Compared to the literature on reconstruction methods

that combine iterative support detection and weighted
�1 minimization, the identification of the support is
not nested or incremental over time as in [29–31].
Moreover, the choice of weights in �1 minimization
is based on the Bayesian rules and a probabilis-
tic model and not on greedy rules as in [19, 32].
This feature also marks the difference with respect to
reweighted �1/�2 minimization, where the weights are
chosen with the aim of approximating the �τ norm with
τ ∈ (0, 1] .

1.1 Outline
The paper is organized as follows. In Section 2, the
basic CS theory and the classical methods based on �1
minimization for sparse recovery are reviewed. The pro-
posed parametric model for sparse or highly compress-
ible signals is described in Section 3 and compared with
the related literature. In Section 4, the estimation prob-
lem based on Laplace mixture models is introduced and
recast as a weighted �1 minimization problem. Then, in
Section 5, the proposed approach is used to improve
a number of existing methods based on shrinkage-
thresholding. Numerical experiments are presented in
Section 6 and some concluding remarks (Section 7) com-
plete the paper. The theoretical results are rigorously
proved in Appendices 1, 2, 3, and 4.

1.2 Notation
We conclude this introduction with some notation. We
denote column vectors with small letters and matrices
with capital letters. If x ∈ R

n, we denote its jth element
with xj and, given S ∈[ n] := {1, . . . , n}, by x|S the subvec-
tor of x corresponding to the indexes in S. The support
set of x is defined by supp(x) = {i ∈[ n] : xi �= 0},
and we use ‖x‖0 = |supp(x)|. Finally, the symbol ‖x‖
with no subscript is to be understood as the Euclidean
norm of the vector x. We denote as r(x) the nonincreasing
rearrangement of x

r(x) = (|xi1 |, |xi2 |, . . . , |xin |
)� ,

where

|xi� | ≥ |xi�+1 |, ∀� = 1, . . . , n − 1.

We denote with �s = {x ∈ R
n : |supp(x)| ≤ s} and

define

σs(x) = arg min
z∈�s

‖x − z‖.

It should be checked that

σs(x)i =
{
xi if |xi| > r(x)s+1
0 otherwise.

Given a matrix A, AT denotes its transpose.

2 Mathematical formulation
2.1 Sparse signal recovery from compressed

measurements
Compressive sensing aims to recover a sparse signal x� ∈
R
n fromm ≤ n random projections of the form

y = Ax� + η (1)

where y ∈ R
m is the observation vector, A ∈ R

m×n

is the measurement matrix, and η is an additive noise.
For example, in the transform domain compressive sig-
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nal reconstruction [1], A = �	 , where 	 ∈ R
n×n is

the sparsifying basis (i.e., multiplying by 	 corresponds
to performing inverse transform), the entries of x� is the
transform coefficient vector that has k nonzero entries,
and � ∈ R

m×n is the sensing matrix, whose rows are
incoherent with the columns of 	 .
Conventional reconstruction methods involve �1 regu-

larization [4]. In particular, it has been shown that, in the
absence of noise and under suitable assumptions on the
matrix A, the basis pursuit problem (BP)

min
x∈Rn

‖x‖1 s.t. Ax = y (2)

can exactly recover a k-sparse signal (i.e., with a num-
ber of nonzero coefficients not larger than k) from
m = O(k log(n/k)) measurements with high probability
[33, 34]. In the presence of noise, one of the most popular
convex relaxation methods is the least absolute shrinkage
and selection operator (Lasso, [5]), which requires to solve
the following unconstrained problem

min
x∈Rn

[
λ‖x‖1 + 1

2
‖Ax − y‖22

]
(3)

where λ is a positive regularization parameter.
Even when the vector is not exactly sparse, under com-

pressibility assumptions of the signals to be recovered,
the �1 regularization provides estimates with a con-
trolled error [33]. More formally, we recall the following
definition [17].

Definition 1 (Compressible vectors) A vector x ∈ R
n

is compressible if, denoted �k(x) := inf‖z‖0≤k ‖z − x‖,
the relative best k-term approximation error is �k(x) :=
�k(x)/‖x‖ << 1 for some k << n.

If x ∈ R
n is not exactly sparse but compressible, the

support is intended as the set of significant components
supp(�k(x)).
One drawback of classical �1 minimization is that it

fails to penalize the coefficients in different ways. In this
paper, we propose a new family of methods that incor-
porate two tasks: iterative support detection and signal
recovery.

3 Discussion: learning sparsity models
3.1 A Bayesian view
In a Bayesian framework, if the noise in (1) is whiteGaussian
(we suppose for simplicity unitary standard deviation), BP
and Lasso may be interpreted as a BayesianMAP estimate
[16]. In fact, imposing the �1 norm as penalty in the cost
function is equivalent to modeling the signal coefficients
x�i as independent and identically distributed as a Laplace
distribution, namely

x̂∗(y) = arg max
x∈Rn

log f ∗
x|y(x|y)

where, using the Bayes rule, fx|y(x|y) is given by

f BPx|y (x|y) = 1
Z

n∏

i=1
exp(−λ|xi|)

m∏

j=1
δyj=(Ax)j ,

in case of BP, and for Lasso by

f Lassox|y (x|y) = 1
Z

n∏

i=1
exp(−λ|xi|)

×
m∏

j=1
exp

(
−1
2
(
yj − (Ax)j

)2
)
,

and Z is a normalization factor so that
∫
f ∗
x|y(x|y)dx = 1.

Despite the good geometric properties of the �1 cost
function associated to such prior, that allow to select a
sparse solution, the Laplace prior does not provide a rel-
evant generative model for sparse or compressible signals
[17]. In fact, if xn ∈ R

n is distributed as i.i.d. with respect
to Laplace distribution with scale parameter λ, then for
any sequence kn such that limn→∞ kn/n = κ ∈[ 0, 1], it
holds almost surely

ε := lim
n→∞ �kn(xn)

2 a.s.= 1−κ

(
1 + log 1/κ + 1

2
(log 1/κ)2

)
.

Therefore, the vectors generated from i.i.d. Laplace
distribution are not compressible since we cannot have
both κ and ε small at the same time.
Moreover, for a large class of real signals that have

highly non-Gaussian statistics, the Laplace model does
not provide a good fit to the empirical probability den-
sity function. We show this with a simple experiment
(experiment 1) Fig. 1. We calculate a single vertical
wavelet subband coefficients of several real images of
size 256 × 256 pixels, and we compute for each image
the best fitting of the double Laplace density function

Fig. 1 Test images for experiments 1 and 2: Lena, MRI-head, house, cameraman, pattern, Barbara, man, couple, plane (from left to right)
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obtained by maximizing the likelihood of the data under
that assumption. In Fig. 2, the empirical density func-
tion of the Haar wavelet coefficients using 256 bins is
shown in the log domain (solid line) and the dashed line
corresponds to the best fitting instance of the Laplace
density function. It should be noticed that the Laplace
density captures peaks at zero but is less accurate along
the tails.
In [35], Lasso is proved to provide a robust esti-

mation that is invariant to the signal prior. In sharp
contrast, the Bayesian Lasso is able to provide an esti-
mator with minimum mean squared error by incorporat-
ing the signal model in the estimation problem [14, 36],
but the assumption that the signal prior is known
in advance is not reasonable in most practical cases.
Hence, it becomes crucial to incorporate in the recovery

procedure new tools for adaptively learning sparsity
models. Other models have been proposed for compress-
ible signals [37–39] using more accurate probability den-
sity functions than double Laplace distribution. However,
two issues generally appear when an accurate but com-
plex signal prior is used: (1) it can be hard to estimate
the model parameters and (2) the optimal estimators may
not have simple closed form solution and their com-
putation may require high computational work [40]. In
fact, although the double Laplace prior is not the most
accurate model, this is an especially convenient assump-
tion since the MAP estimator has a simple and closed
form [41].
Our goal is to use a compressible distribution as

parametric representation of the signal coefficients, able
to combine support detection and estimation, and to

Fig. 2 Experiment 1: empirical density function in the log domain of a single vertical wavelet subband coefficients of several real images (solid) and
the best fitting of the Laplace density function (dashed) obtained by maximizing the likelihood of the data
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preserve the simplicity and advantages coming from the
Laplace prior assumption.

3.2 Proposed approach: two-component Laplace mixture
for support detection

We consider a two-state mixture model as a prior that
describes our knowledge about the sparsity of the solu-
tion to (1). Because of the partial symmetry of the signal
sparsity, we consider the case in which x is a random
variable with components of the form

xi = ziui + (1 − zi)vi i ∈[ n]
where ui are identically and independently distributed
(i.i.d.) as Laplace(0,α), vi are i.i.d. according to
Laplace(0,β) and zi are i.i.d. Bernoulli random variables
with probability mass function f (zi = 1) = 1 − p, with
p << 1/2, α ≈ 0, and β >> 0, in order to ensure that
we have few large coefficients. We thus consider the
conditional distribution of the data: let� = (α,β)

f (x|y;�) = 1
Z

n∏

i=1

[
(1 − p)f (xi|zi = 1) + pf (xi|zi = 0)

]

×
m∏

j=1
fj(y|x),

(4)

where

f (xi|zi = 1) = 1
2α

exp
(

−|xi|
α

)
(5a)

f (xi|zi = 0) = 1
2β

exp
(

−|xi|
β

)
, (5b)

fj(y|x) = δ{yj=(Ax)j}

in absence of noise or

fj(y|x) = 1√
2π

exp
(

−1
2
(
yj − (Ax)j

)2
)

in presence of noise, and Z is a normalization factor so
that

∫
f (x|y;�)dx = 1.

This mixture model is completely described by three
parameters: the sparsity ratio p << 1/2, α that is expected
to be small, and β > α if the signal is sparse. It should be
noticed that vectors generated from this distribution are
typically compressible according to Definition 1.

Proposition 1 Let xn ∈ R
n be i.i.d. with respect to (4).

Then, for any sequence kn such that limn→∞ kn/n = κ ∈
[ 0, 1], it holds almost surely

ε := lim
n→∞ �kn (xn)

2

a.s.= (1−p)
(
α2−e−t/α (t2/2+αt+α2))+p

(
β2−e−t/β (t2/2+βt+β2))

(1−p)α2+pβ2

where t is the unique solution of

(1 − p)e−t/α + pe−t/β = κ .

The proof is a consequence of proposition 1 in [17] and
is deferred to Appendix 1.
In Fig. 3 (experiment 2), we compare the compress-

ibility parameters (κ , ε) of the Laplace distribution and
of 2-LMM distribution with α = 0.1,β = 10 for sev-
eral values of p. It should be noted that Laplace distri-
bution is not a compressible distribution (we can not
have κ and ε small at the same time), whereas 2-LMM
distribution are compressible if parameter p is suffi-
ciently small, as we can have both κ and ε small at the
same time.
We now compute the empirical probability density func-

tion of the Haar wavelet coefficients of several images
and the best fitting of the mixture of two Laplace den-
sity functions computed by maximizing the likelihood
of the data. The computation has been carried out via
expectation maximization algorithm [16]. In Fig. 4, we
show the results for several images. In order to com-
pare the two parametric representations of sparsity, in
Table 1, the Kullback-Leibler divergence of the best fitting
probability models and the empirical probability density
function are computed for the two models. It can be
noticed that a single Laplace is a poor model for the Haar

Fig. 3 Experiment 2: comparison of compressibility parameters (κ , ε)
for several priors. Laplace distribution is not a compressible distribution,
whereas for 2-LMM distribution if parameter p is small and α << β we
can have both κ and ε small at the same time. In this case α = 0.1,
β = 10, and p ∈ [0.02, 0.1]
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Fig. 4 Experiment 2: empirical density function in the log domain of a single vertical wavelet subband coefficients of natural images (solid). The
dashed line represents the best fitting of the mixture of two Laplace density functions computed by maximizing the likelihood of the data

wavelet coefficients of natural images. The better accu-
racy obtained by the new parametric representation is
evident.

4 Method: support detection and sparse signal
estimation via the 2-LMM

4.1 Estimation using the 2-LMM generative model
Let us consider the logarithm of the conditional dis-
tribution in (4) in absence of noise (although similar
consideration can be done in presence of noise):

L(x;�) := log
[
f (x|y;�)

]
(6)

For convenience, we consider p fixed as a guess of the
degree of signal’s sparsity, whereas � = (α,β) will be
unknown. The choice to keep p fixed does not entail a
significant restriction to our analysis.

Proposition 2 The following optimization problems are
equivalent

Table 1 The Kullback-Leibler divergence of the best fitting probability models and the empirical probability density function are
computed for the two models

Image Lena MRI-head House Cameraman Pattern Barbara Man Couple Plane

Lap 0.1266 0.2109 0.1593 0.4958 0.6756 0.1449 0.0941 0.1793 0.4044

2-LMM 0.0688 0.0339 0.0688 0.0435 0.0818 0.0651 0.0322 0.0558 0.0906
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max
�

max
x∈Rn

L(x;�) (7)

min
�

min
x∈Rn

min
π∈[0,1]n

J(x,π ;�) −
n∑

i=1
H(πi)

︸ ︷︷ ︸
V (x,π ;�)

s.t.Ax = y

(8)

where

J(x,π ;�) =
n∑

i=1

[
πi|xi|
α

+ πi logα − πi log(1 − p)

+ (1−πi)|xi|
β

+(1−πi) logβ−(1−πi) log p
]
,

(9)

and H(t) = −t log t − (1 − t) log(1 − t) is the natural
entropy function with t ∈[ 0, 1] .

Given y,A, instead of solving optimization problem
in (7), we consider the minimization of the following
modified cost function:

min
�

min
x∈Rn

min
π∈�n−K

Jε(x,π ;�) −
n∑

i=1
H(πi), s.t.Ax = y

(10)

where K = �pn�, and

Jε(x,π ;�) := J(x,π ;�) + ε

(
1
α

+ 1
β

)
(11)

=
n∑

i=1

[
πi|xi| + ε/n

α
+ πi logα − πi log(1 − p)

+ (1 − πi)|xi| + ε/n
β

+ (1 − πi) logβ

− (1 − πi) log p
]

Compared to (7), the optimization problem in (10)

1. Introduces the ε parameter, which is a regularization
term used to avoid singularities whenever one of the
Laplace components collapses onto a specific data
point since we expect that α ≈ 0, since we seek a
sparse solution; this fact will be clear later;

2. Introduces the constraint π ∈ �n−K , which enforces
a sparse solution.

Similar computations can be carried out for the case
with noise, leading to

min
�

min
x∈Rn

min
π∈�n−K

V (x,π ,α,β , ε)

V (x,π ,α,β , ε) : = 1
2
‖y − Ax‖22+λJε(x,π ;�)−λ

n∑

i=1
H(πi)

(12)

It should be noted that there is not a closed form
solution to problems (10) and (12).
However, partial minimizations of Vε = V (x,π ,α,β , ε)

with respect to just one of the variables have simple
representation. More precisely, we have the following
expressions (see Lemma 3 in Appendix 3).

Proposition 3 Let

π̂ = π̂(x,α,β , ε) = arg min
ξ∈�n−K

Vε(x, ξ ,α,β)

α̂ = α̂(x,α,β , ε) = arg min
α∈R

Vε(x, ξ ,α,β)

β̂ = β̂(x,α,β , ε) = arg min
β∈R

Vε(x, ξ ,α,β)

then

π̂ = σn−K

(
e− |x|

α
−log(α)+log(1−p)

e− |x|
α

−log(α)+log(1−p) + e− |x|
β

−log(β)+log p

)

(13)

and

α̂ =
∑n

i=1 πi|xi| + ε
∑n

j=1 πj
, β̂ =

∑n
i=1(1 − πi)|xi| + ε
∑n

j=1(1 − πj)

In the following section, we present several iterative
algorithms to approximately solve these optimization
problems.

5 Proposed iterativemethods andmain results
5.1 Iterative shrinkage/thresholding algorithms
The literature describes a large number of approaches
to address minimization of (2) and (3). Popular iterative
methods belong to the class of iterative shrinkage-
thresholding algorithms. These methods can be under-
stood as a special proximal forward backward iterative
scheme [42] and are appealing as they have lower com-
putational complexity per iteration and lower storage
requirements than interior-point methods. In fact, these
types of recursions are a modification of the gradient
method to solve a least square problem, where the domi-
nant computational effort lies in a relatively cheap matrix-
vector multiplication involving A and A� and the only
difference consists in the application of a shrinkage/soft
thresholding operator, which promotes sparsity of the
estimate at each iteration.
More precisely, let

{
τ (t)}

t∈N be a sequence in (0,∞)

such that inft∈N τ (t) > 0 and supt∈N τ (t) < 2‖A‖−2
2 , and

let
{
u(t)}

t∈N be a sequence inR
n. Then, for every t ∈ N let

x(t+1) = ηS
λτ (t)

[
x(t) + τ (t)AT

(
y − Ax(t)

)
+u(t)

]
, (14)
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where ηSγ is a thresholding function to be applied element-
wise defined as

ηSγ [x] =
{
sgn(x)(|x| − γ ) if |x| > γ

0 otherwise. (15)

The simplest form, known as iterative shrinkage-
thresholding algorithms (ISTA, [6]), considers u(t) = 0
and τ (t) = τ < 2‖A‖−2

2 for all t ∈ N. This algorithm is
guaranteed to converge to a minimizer of the Lasso [6].
Moreover, as shown in [43], if A fulfills the so-called finite
basis injectivity condition, the convergence is linear. How-
ever, the factor determining the speed within the class
of linearly convergent algorithms depends on local well
conditioning of the matrix A, meaning that ISTA can con-
verge arbitrarily slowly in some sense, which is also often
observed in practice.
In order to speed up ISTA, alternative algorithms have

exploited preconditioning techniques or adaptivity, com-
bining a decreasing thresholding strategy with adaptive
descent parameter. However, the lack of a model-based
thresholding policy makes this algorithm very sensitive to
the signal statistics and the accuracy is not always guar-
anteed. In [13], the thresholding and descent parameters
are optimally tuned in terms of phase transitions, i.e., they
maximize the number of nonzeros at which the algorithm
can successfully operate. However, preconditioning can be
very expensive and there is no proof of convergence for
adaptive methods.
Finally, other variations update the next iterate using

not only the previous estimation, but two or more pre-
viously computed iterates. Among all the proposed tech-
niques with a significantly better rate of convergence and
phase transitions, we recall (a) fast iterative shrinkage-
thresholding algorithm (FISTA, [9]) obtained by (14)
choosing τ (t) = τ < 2‖A‖−2

2 and

u(t) = ζ (t−1) − 1
ζ (t)

(
I − τATA

) (
x(t) − x(t−1)

)

ζ (0) = 1, ζ (t+1) = 1 +
√
1 + 4

(
ζ (t))2

2

(16)

and (b) approximate message passing (AMP, [14]) with
threshold recursion proposed in [44]

u(t) =
(
1 − τ (t)

)
AT

(
Ax(t) − y

)
+
∥
∥x(t)

∥
∥
0

m
ATr(t−1)

τ (t) = χ

∥
∥r(t)

∥
∥
2√

m
, r(t) = y − Ax(t) + r(t−1).

(17)

In this section, we show how to adapt these numerical
methods to solve the weighted minimization problem via
2-LMM.

5.2 2-LMM-tuned iterative shrinkage-thresholding
Let us consider the problem of minimizing (11). Since
information about the locations of the nonzero coeffi-
cients of the original signal is not available a priori, the
task of selecting the parameters α,β , and π is performed
iteratively.We propose an alternatingmethod for themin-
imization of (11), inspired by the EM algorithm [16]. The
pseudocode of the algorithm is reported in Algorithm 1.
The strategy can be summarized as follows.

1. Let t := 0 and set an initial estimate K for the
sparsity level, p = K/n, a small value α(0) ≈ 0 (e.g.,
α(0) = 0.1), the initial configuration π(0) = 1, and
ε(0) = 1. Since π(0) = 1, β(0) can be arbitrary since it
is not used in the first step of the algorithm.

2. Given the observed data y and current parameters
πi,α, andβ , a new estimation x(t+1) of the signal is
obtained by moving in a minimizing direction of
weighted Lasso

F(x) = 1
2
‖Ax − y‖2 + λ

n∑

i=1
ω
(t+1)
i |xi| (18)

with ω
(t+1)
i = πi/α + (1 − πi)/β ; in other terms

x(t+1) is such that F
(
x(t+1)) ≤ F

(
x(t)

)
.

3. The posterior distribution of the signal coefficients is
evaluated and thresholded by keeping its n − K
biggest elements and setting the others to zero. It is
worth remarking that this step differs from the
E-step of a classical EM algorithms as a thresholding
operator σn−K is applied in order to promote the
sparsity in the probability vector π .

4. Given the probabilities, we use them to re-estimate
the mixture parameters α(t) and β(t).

5. Set t := t + 1 and iterate until the stopping criteria is
satisfied, e.g., until the estimate stops changing
‖x(t+1) − x(t)‖/‖x(t)‖ < tol for some tol > 0.

5.3 Relation to prior literature
As already observed, Algorithm 1 belongs to the more
general class of methods for weighted �1 norm mini-
mization [45–47] (see (18)). Common strategies for iter-
ative reweighting �1 minimization (IRL1, [45]) that have
been explored in literature re-compute weights at every
iteration using the estimate at the previous iteration
ω
(t+1)
i = χ/(|x(t)i | + ε) where χ and ε are appropriate

positive constants. In Algorithm 1, the weights ω
(t)
i are

chosen to jointly fit the signal prior and, consequently,
depend on all components of the signal and not exclu-
sively on the value x(t)i . Our strategy is also related to
threshold-ISD [19] that incorporates support detection in
the weighted �1 minimization and runs as fast as the basis
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Algorithm 1 2-LMM-tuned iterative shrinkage-
thresholding
Require: Data (y,A), set K , p = K/n
1: Initialization: α(0) = α0, π(0) = 1, ε(0) = 1
2: for t = 1, . . . , StopIter do
3: Computation of �1-weights:

ω
(t+1)
i = π

(t)
i

α(t) + 1 − π
(t)
i

β(t)

4: Gradient/Thresholding step:

x(t+1) = ηS
λτ (t)ω(t+1)

(
x(t) + τ (t)A� (y − Ax(t)

)
+ u(t)

)

5: Posterior distribution evaluation:

a(t+1)
i =

(1−p)
α(t) exp

(
−|x(t+1)

i |
α(t)

)

(1−p)
α(t) exp

(
−|x(t+1)

i |
α(t)

)
+ p

β(t) exp
(

−|x(t+1)
i |
β(t)

)

π(t+1) = σn−K
(
a(t+1)

)

6: Regularization parameter:

θ(t+1) = 1
log(t + 1)

+ c
∥
∥
∥x(t+1) − x(t)

∥
∥
∥+ r

(
x(t+1))

K+1
n

ε(t+1) = min
(
ε(t), θ(t+1)

)

where r(x) is the non increasing rearrangement
of x r(x) = (|xi1 |, |xi2 |, . . . , |xin |)�, with |xi� | ≥
|xi�+1 |, ∀� = 1, . . . , n − 1.

7: Parameters estimation:

α(t+1) =
∑

i π
(t+1)
i

∣
∣
∣x(t+1)

i

∣
∣
∣+ ε(t+1)

∥
∥π(t+1)

∥
∥
1

β(t+1) =
∑

i

(
1 − π

(t+1)
i

) ∣∣
∣x(t+1)

i

∣
∣
∣+ ε(t+1)

∥
∥1 − π(t+1)

∥
∥
1

8: end for

pursuit. Given a support estimate, the estimation is per-
formed by solving a truncated basis pursuit problem. Also
in [48], an iterative algorithm, calledWSPGL1, is designed
to solve a sequence of weighted LASSO using a support
estimate, derived from the data, and updated at every
iteration. Compared to threshold-ISD and WSPGL1, 2-
LMM-tuned iterative shrinkage-thresholding does not
use binary weights and is more flexible. Moreover, in
threshold-ISD, like CoSaMP, the identification of the sup-
port is based on greedy rules and not chosen to optimally
fit the prior distribution of the signal.
A prior estimation based on EM was incorporated

within the AMP framework also in [49] where a Gaussian

mixture model is used as the parametric representation
of the signal. The key difference in our approach is that
model fitting is used to estimate the support and to
adaptively select the best thresholding function with the
minimum mean square error. The necessity of select-
ing the best thresholding function is also proposed in
parametric SURE AMP [50] where a class of paramet-
ric denoising functions is used to adaptively choose the
best-in-class denoiser. However, at each iteration, para-
metric SURE AMP needs to solve a linear system and the
number of parameters affects heavily both performance
and complexity.

5.4 Convergence analysis
Under suitable conditions, we are able to guarantee the
convergence of the iterates produced by Algorithm I and
discuss sufficient condition for optimality.

Definition 2 A point (x∗,π∗,α∗,β∗, ε) is called a
τ -stationary point of (12) if it satisfies the following relation

x∗ = ηω∗λτ
(
x∗ + τA�(y − Ax∗)

)
, (19a)

ω∗
i = π∗

i
α∗ + 1 − π∗

i
β∗ , (19b)

a∗
i =

1−p
α∗ exp

(
−|x∗

i |
α∗
)

1−p
α∗ exp

(
−|x∗

i |
α∗
)

+
(

p
β∗ exp

(
−|x∗

i |
β∗
) (19c)

π∗ = σn−K (a), (19d)

α∗ =
n∑

i=1

π∗
i
∣
∣x∗

i
∣
∣+ ε

∑n
j=1 π

∗
j

, β∗ =
n∑

i=1

(
1 − π∗

i
) |x∗

i | + ε
∑n

j=1

(
1 − π∗

j

) .

(19e)

Theorem 1 If (x∗,π∗,α∗,β∗, ε) is a minimizer of (12)
then it is a τ -stationary point of (12) with τ < 2‖A‖−2

2 .
Viceversa, if (x∗,π∗,α∗,β∗, ε) is a τ -stationary point of
(12) with τ < 2‖A‖−2

2 , then it is a local minimizer of (12).

The proof can be obtained with similar techniques,
devised in [51], and we omit the proof for brevity.
This result provides a necessary condition for optimal-
ity and shows that, being the function in (12) not convex,
τ -stationarity points are only local minima. The next
theorem ensures that also the sequence (ζ (t)) converges to
a limit point which is also a τ -stationary point of (12) of
the algorithm and, from Theorem 1, a local minimum for
(12). Moreover, in Theorem 3, we derive an upper bound
on the reconstruction error.

Theorem 2 (2LMM-ISTA convergence) . Let us assume
that for every index set � ⊆ [n] = K, the columns of A
associated with � are linearly independent, τ (t) = τ <

2‖A‖−2
2 , u(t) = 0. Then for any y ∈ R

m, the sequence
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ζ (t) = (
x(t),π(t),α(t),β(t), ε(t)

)
generated by Algorithm 1

converges to (x∞,π∞,α∞,β∞, ε∞) which satisfies rela-
tions in (19).

Definition 3 Let A be anm×nmatrix and let 1 ≤ s ≤ n
be an integer. The matrix A is said to satisfy the s-restricted
isometry property with restricted isometry constant δs ∈
(0, 1) if, for every x with |supp(x)| ≤ s, it holds

(1 − δs)‖x‖22 ≤ ‖Asxs‖22 ≤ (1 + δs)‖x‖22.

Theorem 3 (2LMM-ISTA: upper bound on the error)
Suppose that A is an m×n sampling matrix with restricted
isometry constant δ2K . Let x∞ be the output of Algorithm 1
with τ (t) = τ < 2‖A‖−2

2 , u(t) = 0 and �∞ = supp(x∞).
Let e = x∞ − x�. If r(x∞)K+1 = 0 and ‖σK (A�

(�∞)c

(y − Ax∞))‖ ≤ ‖A�
�∞(y − Ax∞)‖ = c, then

‖e�∞‖ ≤ 1
1 − 2δ2K

(
λ(1 − δ2K )

√
K

β∞ + cδ2K

)

and
∥
∥e(�∞)c∩��

∥
∥ ≤ c

1 − δ2K
+ δ2K

1 − δ2K
‖e�∞‖.

It should be noticed that the result in Theorem 3
implies that the mean square error MSE = ‖e‖2/n =(
c + λ

√
K

β∞
)2

/n + O(δ2K ). In this sense, we have provided
conditions verifiable a posteriori for convergence in a
neighborhood of the solution. This is a common feature in
shrinkage-thresholding methods. In [52], it is shown that,
in the absence of noise, if certain conditions are satisfied,
the error provided by Lasso is O(λ), where λ is the regu-
larization parameter. Since ISTA and FISTA converge to
a minimum of the Lasso, we argue that the same estimate
holds also for the error between the provided estimations
and the true signal.
The proof of Theorems 2 and 3 are postponed to Appen-

dices 3 and 4 and are obtained using arguments of vari-
ational analysis and analysis of τ -stationary point of (12),
respectively.

Example 1 Computing δ2K is hard in practice. However,
for i.i.d Gaussian and Rademacher matrices, the RIP holds
with high probability when m ≥ c0(δ/2)k log(ne/k) where
c0 is a function of isometry constant δ [34]. To give an
example, if n = 10000, m = 8000, and k = 10, then
the RIP property holds with probability 0.98 with isom-
etry constant equal to δ2k = 0.4. Running the proposed
iterative algorithms (ISTA or FISTA) with λ = 10−3, we
can empirically check that the condition ‖σK (A�

(�∞)c(y −
Ax∞))‖ ≤ ‖A�

�∞(y − Ax∞)‖ ≤ c is always satisfied with
c = 1.7176 · 10−4. The error of the provided estimate is
MSE = ‖x�−x‖2/n ≈ 1.47·10−10 and the estimated upper

bound, obtained using Theorem 3, is 5.143 · 10−10. Using
error bounds in [52], we are able to guarantee that the solu-
tions provided by ISTA and FISTA are accurate with an
error only proportional to λ = 10−3.

6 Numerical results, experiments, and discussion
In this section, we compare several first-order methods
with their versions augmented by the support estimation,
in terms of convergence times and empirical probability
of reconstruction in the absence and in the presence of
noise. It is worth remarking that this does not repre-
sent a challenge among all first-order methods for com-
pressed sensing. Our aim is to show that the combination
of support detection and estimation using an iterative
reweighted first-order method can improve several iter-
ative shrinkage methods. In other terms, we want to
show that, given a specific algorithm for CS, the speed
and the performance can be improved via its 2-LMM
counterpart. Moreover, in order to show that the choice
of the weights is important to obtain fast algorithms
and good performance, we have employed an iterative
shrinkage method for iterative reweighted �1 minimiza-
tion algorithm (IRL1). In [45], IRL1 requires to solve at
each step a weighted �1 minimization. This algorithm
has computational complexity which is not comparable
with the iterative shrinkage/thresholding algorithms since
each iteration has complexity of order O(n3). We employ
a shrinkage-thresholding method for IRL1 in the spirit
of [53] and show that the performance are not as good
as in the proposed methods. What we mean as IRL1 is
summarized in Algorithm 2.

Algorithm 2 IRL1 - tuned iterative shrinkage-
thresholding
Require: Data (y,A), set K
1: Initialization: ε(0) = 1
2: for t = 1, . . . , StopIter do
3: Computation of �1-weights:

ω
(t+1)
i = 1

∣
∣
∣x(t+1)

i

∣
∣
∣+ ε(t)

4: Gradient/Thresholding step:

x(t+1) = ηS
λτ (t)ω(t+1)

(
x(t) + τ (t)A� (y − Ax(t)

)
+ u(t)

)

5: Regularization parameter:

θ(t+1) = 1
log(t + 1)

+c
∥∥
∥x(t+1) − x(t)

∥∥
∥+ r

(
x(t+1))

K+1
n

ε(t+1) = min
(
ε(t), θ(t+1)

)

6: end for
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6.1 Reconstruction from noise-free measurements
6.1.1 Rate of convergence
As a first experiment, we consider Bernoulli-Gaussian sig-
nals [54]. More precisely, the signal to be recovered has
length n = 560 with k = 50 nonzero elements drawn
from a N(0, 4), respectively. The sensing matrix A with
m = 280 rows is sampled from the Gaussian ensemble
with zero mean and variance 1/m. We fix λ = 10−3

and τ = 0.19, and the mixture parameters are initialized
α(0) = 1,π(0) = 1, K = k + 10, and p = K/n.
In Fig. 5, we compare the convergence rate of ISTA,

FISTA, IRL1, and AMP with the corresponding meth-
ods with 2-LMM-tuning (2-LMM-ISTA, 2-LMM-FISTA,
and 2-LMM-AMP). In particular, the mean square error
(MSE) of the iterates MSE(t) = ‖x(t+1) − x�‖2/n averaged
over 50 instances is depicted as a function of the iteration
number.
A few comments are in order. The sparsity problem

that ISTA, FISTA, and AMP are intended to approxi-
mately solve is the same (basis pursuit or Lasso problem).
However, the convergence results are different for these
iterative algorithms. More precisely, in the absence of
noise,

• ISTA and FISTA, under certain conditions, are
analytically proved to converge to a minimum of
Lasso. This solution is shown to provide only an
approximation of the sparse solution x� which is
controlled by Lasso parameter λ. More precisely,
‖x� − x̂‖2 ≤ Cλ where C ∈ R and perfect
reconstruction is not guaranteed.

• AMP instead is not proved to converge in a
deterministic sense. In [14], only the average case
performance analysis is carried out. The authors
exploit the randomness of A and instead of

Fig. 5 Convergence rate: evolution of the MSE for classical
thresholding method algorithms and the corresponding versions
with 2-LMM-tuning for sparse Bernoulli-Gaussian signals

calculating the limit of ‖xt − x�‖2, they show the
convergence in the mean square sense
E‖xt − x�‖2 → 0.

In Fig. 5 the accuracy of the solution provided by ISTA,
FISTA, and AMP are different. The difference of AMP
has been already explained. The difference between ISTA
and FISTA is due to the fact that λ = 0.005 for ISTA
(to speed up the algorithm) and λ = 0.001 for FISTA.
As already observed, we are not interested in a challenge
among all first-order methods for CS. Our aim is to show
that the combination of support detection and estima-
tion using an iterative reweighted first-order method can
improve a series of iterative shrinkagemethods.More pre-
cisely, given a specific algorithm for CS, the speed can be
improved via its 2-LMM counterpart.
It should be noted that the proposed algorithms

are much faster than classical iterative shrinkage-
thresholding methods: there is about a 81,37, and 35% of
reduction in the number of iterations needed for the con-
vergence of 2-LMM-ISTA, 2-LMM-FISTA, and 2-LMM-
AMP, respectively.

6.1.2 Effect of the prior distribution
We now show a second experiment: we fix n = 512
and take the fraction of the nonzero coefficients fixed to
ρ = k/n and we study the effect of the nonzero
coefficients distribution on the empirical probability of
reconstruction for different values of k ∈[ 1, 250]. More
precisely, x�i ∼ (1−ρ)δ0(x�i )+ρg(x�i )where g is a probabil-
ity distribution function and δ0 is the Dirac delta function.
In Table 1, the acronyms of the considered distributions
are summarized (see also [55]).
Figures 6, 7, 8, and 9 (left) show the empirical recovery

success rate, averaged over 50 experiments, as a func-
tion of the signal sparsity for different signal priors (see
Table 2). For all recovery algorithms, the convergence tol-
erance has been fixed to 10−4. In this case, the elements of
matrix A withm = 350 are sampled from a normal distri-
bution with variance 1/m. We have fixed a total number of
iterations equal to 1000. The algorithm parameters have
been initialized as in Table 3.
It should be noticed that for ISTA, IRL1, and 2-LMM-

ISTA, we have chosen λ = 0.005, instead of λ = 0.001
as in FISTA and 2-LMM-FISTA, in order to speed up
the convergence. The convergence of ISTA and IRL1 are
extremely slow, and before 1000 iterations, we get only
an approximation with an error of order 10−3 for sparsity
larger than 50 in most of the cases.
It should be noticed that the 2-LMM-tuning improves

the performance of iterative shrinkage-thresholding
methods in terms of sparsity-undersampling trade-off. For
example for 5P1, it turns out that the signal recovery with
2-LMM-tuning is possible with 30%, 63% sparsity level
higher than FISTA, and AMP, respectively.
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Fig. 6 Analysis of performance for L1 signals: empirical probability of successful recovery as a function of the sparsity value k with n = 512 and
m = 350 sparse Bernoulli-Laplace signals (L1)

Figures 6, 7, 8, and 9 (right) show the average run-
ning times (CPU times in seconds) of the algorithms
computed over the successful experiments, and the error
bar represents the standard deviation of uncertainty for
different signal priors. These graphs demonstrate the ben-
efit of 2-LMM-tuning for iterative shrinkage/thresholding
methods. Not only 2-LMM-tuning shows better perfor-
mance in the reconstruction but it also runs much faster
than traditional methods. Despite the additional per iter-
ation computational cost needed to update the mixture
parameters, the gain of the 2-LMM-tuning ranges from 2
to over 6 times, depending on the signal prior. The algo-
rithm efficiency can be attributed to the simple form of
the model used as parametric representation of the signal
and the improved runtime performance comes from the
effective denoising so that fewer iterations are required to
converge.

6.2 Reconstruction in imperfect scenarios
In this section, we compare the first-order methods with
their versions augmented by the support estimation for
recovery of signals in imperfect scenarios where the signal
is not exactly sparse or the measurements are noisy.

6.2.1 Not exactly sparse signals
In this experiment, we investigate the performance of
first-order methods with 2-LMM-tuning for signals that
are not strictly sparse. We consider signals of the form
x� = x0 + ξ where x0 is drawn i.i.d from the ensemble
of Bernoulli-Gaussian signals (see G1 in Table 2) of length
n = 512 with sparsity level k = 56 and ξ ∈ R

n is a vec-
tor whose components are distributed as N

(
0, σ 2) with

σ = 0.01. Here, k can be interpreted as the compressibil-
ity level of the signal x�. The sensing matrix A with m ∈
[160, 360] rows is sampled from the Gaussian ensemble

Fig. 7 Analysis of performance for G1 signals: empirical probability of successful recovery as a function of the sparsity value k with n = 512 and
m = 350 for sparse Bernoulli-Gaussian signals (G1)
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Fig. 8 Analysis of performance for U1 signals: empirical probability of successful recovery as a function of the sparsity value k with n = 512 and
m = 350 for sparse Bernoulli-Uniform signals (U1)

with zero mean and variance 1/m. Then, the reconstruc-
tion is performed using measurements y = Ax�. The
first-order methods are compared with their versions aug-
mented by 2-LMM-tuning: the parameters have been ini-
tialized as follows: λ = 10−3, τ = 0.1,α(0) = 1,π(0) = 1,
K = k + 10, and p = K/n. Figure 10 shows the MSE
achieved by 3000 iterations of the algorithms as a func-
tion of measurements used for the reconstruction. As we
can see, the algorithms with 2-LMM-tuning have similar
reconstruction performance and outperform significantly
their traditional counterpart (for example 2-LMM-AMP
needs 62% of measurements required by AMP to reach
a similar accuracy of MSE = 10−4). In this case the
improved performance comes from the effective denois-
ing so that fewer iterations are required to achieve a better
accuracy.
6.2.2 Reconstruction with noisymeasurements
We now fix n = 512 and we study the performance
of the proposed methods in scenarios with inaccurate

measurements according to (1). In this case, x� is a
random Bernoulli-Uniform signal (see U1 in Table 2) with
sparsity degree k = 56 and the noise η is white Gaussian
noise with standard deviation σ = 0.01. In this case, the
parameters are set as follows: λ = 10−3, τ = 0.1,α(0) =
1,π(0) = 1, K = k + 10, and p = K/n. The MSE achieved
by 3000 iterations is depicted as a function of the num-
ber of measurements used in the reconstruction. Also in
this case, the best results are obtained by methods with 2-
LMM-tuning. The efficiency of the proposed algorithms
allows to reduce the number of measurements required to
achieve a satisfactory level of accuracy. As can be noticed
from Fig. 10 (right), 2-LMM-FISTA and 2-LMM-AMP
need fewer observations (about 180 measurements) than
FISTA and AMP (about 270 measurements) to achieve
MSE = 10−4.
In Fig. 11, we show that the proposed methods are

robust against noise. More precisely, the mean square
error, averaged over 50 runs, and obtained after 3000

Fig. 9 Analysis of performance for 5P1 signals: empirical probability of successful recovery as a function of the sparsity value k with n = 512 and
m = 350 for sparse Bernoulli-Binomial signals (5P1)
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Table 2 Nonzero coefficients distribution

Notation g

L1 Lap(0, 4)

G1 N(0, 4)

U1 U[ 0, 4]

5P1 P(x = −1) = P(x = 1) = 0.3
P(x = −5) = P(x = 5) = 0.2

iterations, is depicted as a function of signal-to-noise ratio
(SNR), defined as follows

SNR = E
[‖Ax‖2]
mσ 2 .

As to be expected, as the SNR increases theMSE goes to
zero. Moreover, the MSE of the proposed algorithms are
smaller than those obtained via classical iterative thresh-
olding algorithms. As already observed, the MSE of ISTA
is very high compared to the other methods. This is due to
the fact that the algorithm is very slow and the number of
iterations are not enough to reach a good recovery error.
In our setup, we have considered only Gaussian Noise

and the robustness against multiplicative noise is out of
our scope. This would require a drastic modification of
the proposed algorithms and will be subject of future
research. For example, when the underlying sparse or
approximately sparse signal is a vector of nonnegative
intensities whose measurements are corrupted by Poisson
noise, standard CS techniques cannot be applied directly,
as the Poisson noise is signal-dependent [56, 57]. In this
case, the rationale of our method can be adapted combin-
ing the use of mixtures models with exponential distribu-
tion instead Laplace distribution with penalized negative
Poisson log-likelihood objective function with nonnega-
tivity constraints. We refer to [58] for more details on
the model and on the implementations of related iterative
thresholding algorithms.
If the multiplicative noise is due to hardware’s ampli-

fication and is not signal-dependent, we can model the
measurements as follows

Table 3 Parameters of several shrinkage-thresholding algorithms

λ τ (t) π(0) α(0) K

ISTA 0.005 0.2 – – –

IRL1 0.005 0.2 – – 66

FISTA 0.001 0.2 – – 66

2-LMM-ISTA 0.005 0.2 1 0.1 66

2-LMM-FISTA 0.001 0.2 1 0.1 66

AMP 0.9 Eq. (17), χ = 0.9 – – –

2-LMM-AMP 0.9 Eq. (17), χ = 0.9 1 0.1 66

y = DAx� + η

where D = diag(exp(N (0, σ 2))), where D is a diago-
nal matrix of noise and σ is the parameter governing the
amplitude of decalibration. To address this problem, the
most standard existing approach is the blind calibration
for compressed sensing [59]. More precisely, the sparse
regularization is exploited considering A as an inaccurate
estimate of the true measurement system A� = DA and
y = Ax�+(Â−A)x�+η ≈ Ax�+ε+η with ε an estimate of
the magnitude of this added noise

∥
∥(Â − A

)
x�
∥
∥. We refer

to [59] for more sophisticated approaches of blind super-
vised calibration and adaptations of classical methods that
perform both calibration and reconstruction.

6.3 Comparison with structured sparsity-based Bayesian
compressive sensing

Many authors have recently developed structured
sparsity-based Bayesian compressive sensing methods
in order to deal with different signals arising in several
applications and adaptively explore the statistical struc-
ture of nonzero pattern. We refer the interested reader
to the repository http://people.ee.duke.edu/~lcarin/BCS.
html for an introduction to Bayesian compressive sensing
(BCS) methods and to structured sparsity-based Bayesian
compressive sensing.
For example, [60] proposes a spatio-temporal sparse

Bayesian method to recover multichannel signals simul-
taneously, not only exploiting temporal correlation within
each channel signal but also exploiting inter-channel cor-
relations among different signals. This method has been
shown to provide several advantages in applications in
brain computer interface and electroencephalography-
based driver’s drowsiness estimation in terms of mea-
surements for reconstruction and computational load. In
[61], using a new bilinear time-frequency representation,
a redesigned BCS approach is developed for the problem
of spectrum estimation of multiple frequency-hopping
signals, arising in various communication and radar appli-
cations in the context of multiple-input multiple-output
(MIMO) operations in the presence of random missing
observations. Another example of structured sparsity-
based Bayesian compressive sensing comes from the con-
text of reconstruction of signals and images that are sparse
in the wavelet basis [62] or in DCT basis with applica-
tions to image compression. More precisely, in [62], the
statistical structure of the wavelet coefficients is exploited
explicitly using a tree-structured Bayesian compressive
sensing approach. This tree structure assumption shows
several advantages in terms of number of measurements
required for reconstruction.
It is worth remarking that in our approach, we do

not use any prior information on the structure of
the sparsity pattern and we expect that structured

http://people.ee.duke.edu/~lcarin/BCS.html
http://people.ee.duke.edu/~lcarin/BCS.html
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Fig. 10 Analysis of performance in imperfect scenarios: MSE versus number of measurements for recovery of not exactly sparse signals (left) and of
exactly sparse signals in presence of noise (right), n = 512, k = 56

sparsity-based methods outperform our approach. A
detailed comparison and an ad hoc adaptation of our
approach to all specific frameworks mentioned above is
out of the scope of this paper. However, in this section,
we propose a numerical comparison of 2-LMM-tuning
FISTA with tree-structured wavelet-based Bayesian com-
pressive sensing (WBCS). The implementation of WBCS
algorithm used for comparison are implemented via a
hierarchical Bayesian framework, with the tree structure

incorporated naturally in the prior setting. See TS-
BCS for wavelet via MCMC in the repository http://
people.ee.duke.edu/~lcarin/BCS.html for a
detailed description of the code.
For the comparison, we consider the setting in [62] with

a signal of length n = 512 that are sparse in the Haar
wavelet basis and whose coefficients are not independent
as in classical compressed sensing framework. Specifi-
cally, under the wavelet basis, if a parent node in a wavelet

Fig. 11 Analysis of robustness against noise: the mean square error is depicted as a function of the SNR

http://people.ee.duke.edu/~lcarin/BCS.html
http://people.ee.duke.edu/~lcarin/BCS.html
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tree is zero or close to zero, with a very large probability,
its children nodes are also zero or close to zero. We refer
to [62] for details on the generation of the signal. The spar-
sity of the considered signal is k = 63. In this case, the
parameters are set as follows: λ = 10−3, τ = 0.05,α(0) =
1,π(0) = 1, K = k + 10, and p = K/n. In Fig. 12
the reconstruction error achieved by 10000 iterations is
depicted as a function of the number of measurements
used in the reconstruction. It is worth remarking that
WBCS explores the statistical structure of the wavelet
coefficients to reduce the number of CS measurements
and goes beyond simply assuming that the data are com-
pressible in a wavelet basis. As to be expected, since more
a priori knowledge is employed, WBCS shows better per-
formance in terms of reconstruction accuracy. However,
the gap is not large and the 2-LMM-FISTA tuning is able
to learn the sparsity model and, as soon as the number of
measurements is larger than 200, we obtain a good recon-
struction accuracy, of order 10−4 for 2-LMM-FISTA and
of order 10−5 for WBCS.

6.4 Deblurring images
In order to show the effectiveness of the 2-LMM-tuning,
in this section, we repeat the same experiment proposed
in [9] for deblurring two test images (Lena and camera-
man). In [9], it has been shown that FISTA significantly
outperforms ISTA and other first-order methods in terms
of the number of iterations required to achieve a given
accuracy. For this reason, we compare the performance of
FISTA with our proposed algorithm 2-LMM-FISTA.
In the considered setting, both images have equal size

256 × 256 and all pixels of the original images are scaled

into the range between 0 and 1. A Gaussian blur of size 9×
9 and standard deviation 4 are applied to both images and
an additive zero mean white Gaussian noise with standard
deviation 10−4 is added. The original and observed images
are given in Figs. 13 and 14, respectively. We then test
FISTA and 2-LMM-FISTA for recovery, where y repre-
sents the (vectorized) observed image, and A = RW ,
where R is the matrix representing the blur operator and
W is the inverse of a three-stage Haar wavelet transform.
The regularization parameter is fixed as in [9] λ = 2·10−5,
and the blurred image is used as initial condition. For 2-
LMM-ITA, the parameters are set as follows: α(0) = 1,
π(0) = 1, K = 10000, and p = K/n.
In Fig. 15, the evolution of the error in dB is depicted as

a function of the number of iterations. In particular, the
images produced by 2-LMM-FISTA exhibit better qual-
ity than those obtained by using the classical version of
FISTA. In Fig. 13 and 14, the reconstructions obtained
by the competing methods are shown for Lena and cam-
eraman, respectively. As can be seen in Figs. 13 and 14,
2-LMM-FISTA achieves significantly better visual quality,
as the amount of noise is minimized and visual arti-
facts are greatly reduced. This is also reflected by the
reconstruction PSNR, which is significantly higher for
2-LMM-FISTA.

7 Conclusions
In this paper, we proposed a new method to per-
form both support detection and sparse signal estima-
tion in compressed sensing. Combining MAP estimation
with the parametric representation of the signal with a
Laplace mixture model, we formulated the problem of

Fig. 12 Comparison between WBCS and 2-LMM: reconstruction error of a signal with n = 512 and k = 63 as a function of number of measurements
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Fig. 13 Analysis of performance for Lena image deblurring: a original image, b acquired image, c FISTA reconstruction MSE (dB) = − 10.718 (after
1000 iterations), d 2-LMM-FISTA reconstruction MSE (dB) = − 13.3958 (after 1000 iterations)

reconstruction as a reweighted �1 minimization. Our con-
tribution includes theoretical derivation of necessary and
sufficient conditions for reconstruction in the absence
of noise. Then, 2-LMM-tuning has been proposed to
improve the performance of several iterative shrinkage-
thresholding algorithms. Iterative procedures have been
designed by combining EM algorithm with classical iter-
ative thresholding methods. Numerical simulations show
that these new algorithms are faster than classical ones
and outperform them in terms of phase transitions. Topics
of our current research is to use similar technique based
on Laplace mixture models for robust compressed sens-
ing, where measurements are corrupted by outliers (see
[63] and reference therein).

8 Appendix 1: proof of Proposition 1
The proof of Proposition 1 is a direct consequence of a
more general result on compressible prior result, formally
stated in Proposition 1 in [17].

Lemma 1 (Proposition 1.1 in [17]) Suppose xn ∈ R
n is

i.i.d. with respect to a distribution p(x). Denote p(x) := 0
for x < 0, and p(x) := p(x) + p(−x) for x ≥ 0 as the prob-
ability density function of |Xn|, and F(t) := P(|X| ≤ t) as
its cumulative density function. Assume that F is contin-
uous and strictly increasing on some interval [ a, b], with
F(a) = 0 and F(b) = 1, where 0 ≤ a ≤ b ≤ ∞. For any
0 < κ ≤ 1, define the following function

G2[ p] (κ) :=
∫ F−1

(1−κ)

0 x2p(x)dx
∫∞
0 x2p(x)dx

.

If E[ |X|q]< ∞ for some q ∈ (0,∞). Then, Gq[ p] (κ) is
also well defined for κ = 0, and for any sequence kn such
that limn→∞ kn/n = κ ∈[ 0, 1] the following holds almost
surely

lim
n→∞ �kn(xn)

2 = G2[ p] (x)

Proof of Proposition 1. For 2-LMM, we have

p(x) = (1 − p)
2α

e−|x|/α + p
2β

e−|x|/β ,

from which we get

F(t) =
∫ t

0
p(x)dx = 1 − (1 − p)e−t/α − pe−t/β .

Then, let t = t(κ) = F−1
(1 − κ), i.e., be the solution

(1 − p)e−t/α + pe−t/β = κ .

We now compute
∫ t

0
x2p(x)dx = (1 − p)

[
α2 −

(
α2 + αt + t2

2

)
e−t/α

]

+ p
[
β2 −

(
β2 + βt + t2

2

)
e−t/β

]

Fig. 14 Analysis of performance for cameraman image deblurring: a original image, b acquired image, c FISTA reconstruction MSE (dB) = − 11.4731
(after 1000 iterations), d 2-LMM-FISTA reconstruction MSE (dB) = − 14.4731 (after 1000 iterations)
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Fig. 15 Analysis of rate of convergence in image deblurring: Lena (left) and cameraman (right): MSE (dB) versus number of iterations

and
∫ ∞

0
x2p(x)dx = (1 − p)α2 + pβ2.

Then, the assertion is proved by applying Lemma 1 and
we obtain

lim
n→∞ �kn (xn)

2

=
(1−p)

[
α2−

(
α2+αt+ t2

2

)
e−t/α

]
+p

[
β2−

(
β2 + βt+ t2

2

)
e−t/β

]

(1−p)α2+pβ2

9 Appendix 2: proof of Proposition 2
Recall that

f (x|y;�) = f (x;�)f (y|x;�)

f (x;�) =
n∏

i=1
f (xi;�)

f (xi;�) = (1 − p)
2α

e−|xi|/α + p
2β

e−|xi|/β

and define

f (x, z;�) =
n∏

i=1
f (xi, zi;�)

f (xi, zi;�) = (1 − p)zi
2α

e−|xi|/α + p(1 − zi)
2β

e−|xi|/β

f (z|x;�) =
n∏

i=1
f (zi|xi;�)

f (zi|xi;�) =
(1−p)zi

2α e−|xi|/α + p(1−zi)
2β e−|xi|/β

(1−p)
2α e−|xi|/α + p

2β e−|xi|/β

Lemma 2 The log-likelihood function defined in (6) is
given by

L(x;�) =
n∑

i=1

∑

zi∈{0,1}
f (zi|xi;�) log

(
f (xi, zi;�)

)

−
n∑

i=1

∑

zi∈{0,1}
f (zi|xi;�) log

(
f (zi|xi;�)

)

+ log(f (y|x;�))

Proof We have the following series of equalities:

L(x;�)−log(f (y|x;�))

= log
[ n∏

i=1
f (xi;�)

]

=
n∑

i=1
log

[
f (xi;�)

]

=
n∑

i=1
log

⎛

⎝
∑

zi∈{0,1}
f (zi|xi;�)

f (xi, zi;�)

f (zi|xi;�)

⎞

⎠

from which we conclude

L(x;�) − log(f (y|x;�)) ≥
n∑

i=1

∑

zi∈{0,1}
f (zi|xi;�)

×
[
log

(
f (xi, zi;�)

f (zi|xi;�)

)]

where the last inequality follows from Jensen’s inequality
(E(φ(x)) ≤ φ(E(x)) and φ(x) = log(x) concave function)
and “Si ∼ f (zi|xi;�)” subscripts above indicate that the
expectations are with respect to S drawn from f (zi|xi;�)

distribution. By noticing that f (xi, zi;�)/f (zi|xi;�) =
f (xi|�), i.e., constant with respect to zi, we notice that the
above inequality is actually an equality. The proof is then
concluded by using the logarithm properties:
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L(x;�) − log(f (y|x;�))

=
n∑

i=1

∑

zi∈{0,1}
f (zi|xi;�) log

(
f (xi, zi;�)

)

−
n∑

i=1

∑

zi∈{0,1}
f (zi|xi;�) log

(
f (zi|xi;�)

)

Proposition 4 Given y,A,�,

−L(x;�) =
{
J(x, π̂ ;�) −∑n

i=1H(π̂i) if y = Ax
+∞ if y �= Ax

(20)

where

J(x, π̂ ;�) =
n∑

i=1

[
π̂i|xi|
α

+ π̂i logα − πi log(1 − p)

+ (1−π̂i)|xi|
β

+(1−π̂i) logβ−(1−π̂i) log p
]
,

(21)

H(t) = −t log t − (1 − t) log(1 − t) is the natural entropy
function with t ∈[ 0, 1] and π̂ = π̂i(xi) = f (zi = 1|xi;�).

Proof From Lemma 2 and defining π̂i = π̂i(xi;�) =
f (zi = 1|xi;�)

−L(x;�)=
n∑

i=1

[
π̂i

|xi|
α

+ π̂i logα − π̂i log (1 − p)

+ (1−π̂i)|xi|
β

+(1−π̂i) logβ−(1−π̂i) log p
]

+n log 2+
n∑

i=1

(−π̂i log(π̂i)−(1− π̂i)log(1− π̂i)
)

+ log δ{y=Ax}
we obtain

L(x;�) = −J(x, π̂ ;�) +
n∑

i=1
H(π̂i) + log δ{y=Ax}

which gives (9).

Proof of Proposition 2 . Let us consider J(x,π ;�) and
minimize with respect to πi by taking x all the other
variable fixed. By imposing the constraint

∂J(x,π ;�)

∂πi
−

n∑

i=1

∂H(πi;�)

∂πi
= 0

we get

log
1 − πi
πi

= |xi|
β

− |xi|
α

− log
(
β

α

1 − p
p

)

and the minimizing value is given by

π̂i = 1

1 + e−|xi|
(
1
α
− 1

β

)
β
α
1−p
p

= f (zi = 1|xi;�)

for which ∂2J(x,π ;�)

∂π2
i

(π̂i) − ∑n
i=1

∂2H(πi;�)

∂π2
i

≥ 0. From last
equality and from Proposition 4, we conclude the thesis.

10 Appendix 3: proof of Theorem 2
In this section, we prove rigorously Theorem 2, which
guarantees the convergence of 2-LMM-ISTA to a limit
point. We start from the following preliminary results.
Let V : Rn × �n−K × R × R × R → R be the function

defined in (12)

V (x,π ,α,β , ε)

= 1
2
‖y − Ax‖22 + λJε(x,π ;�) − λ

n∑

i=1
H(πi)

(22)

where H : [0, 1] → R is the natural entropy function
H(ξ) = −ξ log ξ − (1 − ξ) log(1 − ξ). and Jε is defined in
(11).

Lemma 3 (Partial minimizations)

π̂ = π̂(x,α,β , ε) = arg min
π∈�n−K

V (x,π ,α,β , ε)

α̂ = α̂(x,π ,β , ε) = arg min
α>0

V (x,π ,α,β , ε)

β̂ = β̂(x,π ,α, ε) = arg min
β>0

V (x,π ,α,β , ε)

Then, it holds true that

α̂ =
∑

i πi|xi| + ε

‖π‖1 ,

β̂ =
∑

i(1 − πi)|xi| + ε

‖1 − π‖1 ,

and

π̂ = σn−K (a)

with

ai =
(1−p)

α
exp

(
−|xi|

α

)

(1−p)
α

exp
(
−|xi|

α

)
+ p

β
exp

(
−|xi|

β

)

Proof By differentiatingV (x,π ,α,β , ε)with respect to α

and imposing the first-order condition, we obtain

∂V
∂α

= − ε

α2 −
∑n

i=1 πi|xi|
α2 +

∑n
i=1 πi
α

= 0

from which

α̂ =
∑n

i=1 πi|xi| + ε
∑n

i=1 πi
=
∑

i πi|xi| + ε

‖π‖1 .
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Checking ∂2V
∂α2 (̂α) ≥ 0, we conclude that α̂ is the mini-

mizing value of V (x,π ,α,β , ε).
In analogous way, the expression for β̂ can be derived.
We now show that π̂ = σn−K (a) is the minimizing value

of V (x,π ,α,β , ε) for fixed x,α,β , ε, i.e., V (x, π̂ ,α,β , ε) ≤
V (x,π ,α,β , ε) for all π ∈ �n−K .
Let a be the vector satisfying

∂V
∂πi

= |xi|
(
1
α

− 1
β

+ log
α

β

1 − p
p

)
− log

1 − πi
πi

= 0,

given by

ai =
(1−p)

α
exp

(
−|xi|

α

)

(1−p)
α

exp
(
−|xi|

α

)
+ p

β
exp

(
−|xi|

β

)

and define γ = − log(1 − r(a)n−K+1) where r(a) is the
nonincreasing rearrangement of a. It should be noticed
that

arg min
π∈�n−K

V (x, π̂ ,α,β , ε) = arg min
π∈�n−K

V (x, π̂ ,α,β , ε) + γ ‖π‖0
(23)

being γ ‖π‖0 = (n − K)γ just a constant for π ∈ �n−K .
The minimum of (23) can be calculated by minimizing

with respect to each πi individually and

V (x, π̂ ,α,β , ε) + γ ‖π‖0 = g(πi) + C,

where C is independent of πi and

g(πi)=πi|xi|
(
1
α

− 1
β

)
+πi log

(
α

β

1 − p
p

)
−H(πi)+γ|πi|0.

To derive the minimum, we distinguish two cases, πi =
0 and πi �= 0. In the first case, the element-wise cost
is (ignoring the constant terms) 0. In the second case,
the minimum cost (again ignoring the constant terms) is
attained for πi = ai if πi �= 0. Comparing the cost for both
cases, i.e, g(ai) < 0, we obtain

g(ai) = ai log
(
1 − ai
ai

)
− H(ai) + γ < 0

log(1 − ai) < −γ

ai > 1 − e−γ

By definition of γ , we get

arg min
πi

g(πi) =
{
ai if ai > 1 − e−γ = r(a)n−K+1
0 otherwise.

From this result and the fact that

π̂i = σn−K (a)i =
{
ai if ai ≥ r(a)n−K+1
0 if ai < r(a)n−K+1

∈ �n−K

we conclude that π̂ is the minimizing value of V for fixed
x,α,β , ε.

Lemma 4 Define the surrogate functional

VS(x, a,π ,α,β , ε) = V (x,π ,α,β , ε) + 1
2τ

‖x − a‖22
− 1

2
‖A(x − a)‖22

]
,

(24)

then

ηλτω(a + τA�(y − Aa)) = arg min
x∈Rn

VS(x, a,π ,α,β , ε)

with ωi = πi
α

+ 1−πi
β

.

Proof By developing the least squares in (12) is straight-
forward to show that

VS(x, a,π ,α,β , ε) = 1
2
‖x − (a + τA�(y − Aa))‖22

+
n∑

i=1
ωi|xi| + χ(y,A, a,π , ε,α,β)

where χ is a function independent of x. By differentiating
the function with respect x, we obtain the thesis.

Proposition 5 The function V defined in (22) is not
increasing along the iterates ζ (t)=(

x(t),π(t),α(t),β(t), ε(t)
)
.

Proof From Lemma 3 and 4, it should be noticed that,
for each time t ∈ N, we have

α(t+1) = arg min
α

V
(
x(t+1),π(t+1),α,β(t+1), ε(t+1)

)

β(t+1) = arg min
β

V
(
x(t+1),π(t+1),α(t),β , ε(t+1)

)
.

Then

V
(
ζ (t+1)

)
= V

(
x(t+1),π(t+1),α(t+1),β(t+1), ε(t+1)

)

≤ V
(
x(t+1),π(t+1),α(t),β(t+1), ε(t+1)

)

≤ V
(
x(t+1),π(t+1),α(t),β(t), ε(t+1)

)
.

Since V (x,π ,α,β , ε) is an increasing function in ε and
being ε(t+1) = min{ε(t), θ(t+1)} ≤ ε(t) by definition, we
obtain

V
(
x(t+1),π(t+1),α(t),β(t), ε(t+1)

)

≤ V
(
x(t+1),π(t+1),α(t),β(t), ε(t)

)

and therefore, using

π(t+1) = arg min
π∈�n−K

V
(
x(t+1),π ,α(t),β(t), ε(t+1)

)
.

see Lemma 3, we get

V
(
ζ (t+1)

)
≤ V

(
x(t+1),π(t+1),α(t),β(t), ε(t)

)

≤ V
(
x(t+1),π(t),α(t),β(t), ε(t)

)
.
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It should be noticed that for all x

VS(x, x,π ,α,β , ε) = V (x,π ,α,β , ε)

and

VS(x, a,π ,α,β , ε) ≥ V (x, x,π ,α,β , ε)

for all a �= x. Then, we have

V
(
ζ (t+1)

)
≤ V

(
x(t+1),π(t),α(t),β(t), ε(t)

)

= VS
(
x(t+1), x(t+1),π(t),α(t),β(t), ε(t)

)

≤ VS
(
x(t+1), x(t),π(t),α(t),β(t), ε(t)

)

≤ VS
(
x(t), x(t),π(t),α(t),β(t), ε(t)

)

≤ V
(
x(t),π(t),α(t),β(t), ε(t)

)
≤ V

(
ζ (t)

)
.

The following lemma implies that these algorithms con-
verge numerically when the number of iterations goes to
infinity.

Lemma 5 Let (x(t)) be the sequence generated by
2-LMM-ISTA, then x(t+1) − x(t) → 0 as t → ∞.

Proof If α(t) → 0 or β(t) → 0 as t → ∞, we have ε(t) →
0 and, by definition of ε(t) = min

{
ε(t−1), θ(t)} and θ(t) =

1
log(t+1) + c‖x(t) − x(t−1)‖ + r(x(t))K+1/n, we get

lim
t→∞ c

∥
∥
∥x(t+1) − x(t)

∥
∥
∥
2

= 0

and the assertion is true.
If instead neither α(t) nor β(t) converge to zero, then

there exists a constant τ > 0 and a sequence of inte-
gers {T�} : N → N such that T� → ∞, as � → ∞
and min

{
α(T�),β(T�)

}
> χ for all � ∈ N. It holds true in

general that from Proposition 5, we have

λ

[ n∑

i=1
π

(t)
i logα(t) +

n∑

i=1

(
1 − π

(t)
i

)
logβ(t) − n log 2

]

≤ 1
2

∥
∥
∥y − Ax(t)

∥
∥
∥
2

2
+ λ

[ n∑

i=1
π

(t)
i logα(t)

+
n∑

i=1

(
1 − π

(t)
i

)
logβ(t) −

n∑

i=1
H(πi)

−
n∑

i=1
π

(t)
i log(1 − p) −

n∑

i=1
(1 − π

(t)
i ) log p

]

≤ V
(
x(t),π(t),α(t),β(t), ε(t)

)

≤ V
(
x(1),π(1),α(1),β(1), ε(1)

)
. (25)

Then, we have that also for the subsequence T� it holds

V
(
x(T�),π(T�),α(T�),β(T�), ε(T�)

)

≥λ

[ n∑

i=1
π

(T�)
i logα(T�)+

n∑

i=1

(
1−π

(T�)
i

)
logβ(T�)−n log 2

]

≥ λ(n logχ − n log 2). (26)

Since τ < ‖A‖−2
2 , we have

0 ≤ 1
2τ

(
1 − τ‖A‖2)

∥
∥
∥x(t) − x(t+1)

∥
∥
∥
2

≤ 1
2τ

(
x(t) − x(t+1)

)� (
I − τA�A

) (
x(t) − x(t+1)

)

= VS
(
x(t+1), x(t),π(t),α(t),β(t), ε(t)

)

− V
(
x(t+1),π(t),α(t),β(t), ε(t)

)

(27)

Consider the following sum for all � ∈ N

0 ≤
T�∑

t=1

1
2τ

(
x(t)− x(t+1)

)� (
I − τA�A

) (
x(t) − x(t+1)

)

(a)=
T�∑

t=1

[
VS

(
x(t+1), x(t),π(t),α(t),β(t), ε(t)

)

− V
(
x(t+1),π(t),α(t),β(t), ε(t)

)]

(b)≤
T�∑

t=1

[
VS

(
x(t), x(t),π(t),α(t),β(t), ε(t)

)

− V
(
x(t+1),π(t),α(t),β(t), ε(t)

)]

(c)≤
T�∑

t=1

[
V
(
x(t),π(t),α(t),β(t), ε(t)

)

− V
(
x(t+1),π(t+1),α(t),β(t), ε(t)

)]

(d)≤
T�∑

t=1

[
V
(
x(t),π(t),α(t),β(t), ε(t)

)

− V
(
x(t+1),π(t+1),α(t),β(t), ε(t+1)

)]

(e)≤
T�∑

t=1

[
V
(
x(t),π(t),α(t),β(t), ε(t)

)

− V
(
x(t+1),π(t+1),α(t+1),β(t+1), ε(t+1)

)]

(f )= V
(
x(1),π(1),α(1),β(1), ε(1)

)

− V
(
x(T�+1),π(T�+1),α(T�+1),β(T�+1), ε(T�+1)

)

(g)≤ V
(
x(1),π(1),α(1),β(1), ε(1)

)
− λ(n logχ − n log 2)

= C′
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where

(a) Follows from (25)
(b) Follows from the fact that

x(t+1) = arg min
x∈Rn

VS
(
x, x(t),π(t),α(t),β(t), ε(t)

)

(see Lemma 4)
(c) Is a consequence of the following relations

VS
(
x(t), x(t),π(t),α(t),β(t), ε(t)

)
=V

(
x(t),π(t),α(t),β(t), ε(t)

)

and

π(t+1) = arg min
π∈�n−K

V
(
x(t+1),π ,α(t),β(t), ε(t)

)

(see Lemma 3);
(d) and (e) Are following from

α(t+1) = arg min
α

V
(
x(t+1),π(t+1),α,β(t), ε(t)

)
,

β(t+1) = arg min
β

V
(
x(t+1),π(t+1),α(t+1),β , ε(t)

)

(see Lemma 3) and from the fact that V (x,π ,α,β , ε)
is an increasing function in ε and ε(t+1) ≤ ε(t) by
definition.

We conclude that for all � ∈ N

T�∑

t=1

1
2τ

(
x(t) − x(t+1)

)� (
I − τA�A

) (
x(t) − x(t+1)

)
≤ C′.

By letting � → ∞, we obtain that the series is conver-
gent and, we obtain the necessary condition

0 ≤ 1
2τ

(
x(t) − x(t+1)

)� (
I − τA�A

) (
x(t) − x(t+1)

)
→ 0

as t → ∞ and from inequality in (27) the assertion is
proved.

(f) Follows by noticing that the series is telescopic
(g) Is a direct consequence bound in (26)

Lemma 6 The sequence (x(t))t∈N is bounded

Proof We now prove that both α(t) and β(t) must be
upper bounded. From (25), there exists a constant

C = V
(
x(1),π(1),α(1),β(1), ε(1)

)

λ
+ n log 2

such that
n∑

i=1

(
1 − π

(t)
i

)
logβ(t) +

n∑

i=1
π

(t)
i logα(t) ≤ C. (28)

Suppose ad absurdum that β(t) is unbounded (similar
consideration can be done if α() is unbounded), then there

exists a sequence t� : N → N such that β(t�) → ∞ as � →
∞. By (28), we have α(t�) → 0. In fact, since π t� ∈ �n−K
and β(t�) > 1 definitively (by unboundeness), we have

K logβ(t�) +
∑

i∈supp(π(t�)
)
π

(t�)
i logα(t�)

≤
n∑

i=1

(
1 − π

(t)
i

)
logβ(t) +

n∑

i=1
π

(t)
i logα(t)

≤ C

and the inequality is satisfied if and only if α(t�) → 0.
Consequently, by definition of α(t�), also ε(t�) → 0 and

r
(
x(t

�)
)

K+1
→ 0, (29)

where we recall that r(x(t�)) is the nonincreasing rear-
rangement of x(t�). Let � := {i ∈[ n] : ∃ε > 0 and (t�)q∈N
for which |x(t�)i | > ε}, then from (29), we have |�| ≤ K .
Since |xi| > |xj| for all i ∈ � and j ∈ �c, then

a(t�)i =
⎛

⎝1 + p
1 − p

α(t�−1)

β(t�1−1) e
|x(t�)i |

(
1

α(t�−1) − 1
β(t�−1)

)⎞

⎠

−1

≥ a(t�)j

The application of hard thresholding yields π(t�) =
σn−K

(
a(t�)

)
, and we have π

(t�)
i = 0 and ω

(t�+1)
i = 1/β(t�)

q→∞−→ 0 for all i ∈ �.
If i ∈ �c, then |xt�i | → 0 as � → ∞ and, consequently,

from Lemma 5 also |xt�+1
i | → 0 as � → ∞.

Let now� = supp(x�). We thus have
∥
∥
∥x(t�+1) − x�

∥
∥
∥
2

2
=
∥
∥
∥x(t�+1)

� − x��
∥
∥
∥
2

2
+
∥
∥
∥x(t�+1)

�c − x��c

∥
∥
∥
2

2

≤
∥
∥
∥
(
I − τA�

�A
) (

x(t�) − x�
)∥∥
∥
2

2

+ Kλτ max
i∈� ω

(t�+1)
i +

∥
∥
∥x(t�+1)

�c − x��c

∥
∥
∥
2

2
.

where the last inequality follows from the triangular
inequality.
∥
∥∥x(t�+1) − x�

∥
∥∥
2

2
≤
∥
∥∥I − τA�

�A�

∥
∥∥
2

2

∥
∥∥x(t�)� − x��

∥
∥∥
2

2

+
∥
∥
∥τA�

�A�c

∥
∥
∥
2

2

∥
∥
∥x(t�)�c − x��c

∥
∥
∥
2

2

+ Kλτ max
i∈� ω

(t�+1)
i +

∥
∥
∥x(t�+1)

�c − x��c

∥
∥
∥
2

2
.

Since |�| ≤ K and the columns of A associated with �

are linearly independent, then the matrix A�
�A� is non-

singular and
∥
∥I − τA�

�A�

∥
∥2
2 = γ < 1. As terms ‖x(t�)�c −

x��c‖22, ‖x(t�+1)
�c − x��c‖22, and maxi∈� ω

(t�+1)
i are going to
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zero when � → ∞, there exists t0 ∈ N and a constant
χ ∈ R such that if t > t0 then

∥
∥
∥x(t�+1) − x�

∥
∥
∥
2

≤ γ

∥
∥
∥x(t�) − x�

∥
∥
∥
2
+ χ

Iterating the argument and letting � → ∞,

lim
�→∞

∥
∥
∥x(t�+1) − x�

∥
∥
∥
2

≤ χ

1 − γ

and we conclude that the sequence (x(t�))�∈N is bounded
and so is (β(t�)) from which we get the contradiction.
We conclude that (α(t))t∈N and (β(t))t∈N are both upper
bounded by a constant χ > 0 and so (x(t))t∈N:

0 ≤ 2ε(t)+
∥
∥
∥x(t)

∥
∥
∥
1

=
n∑

i=1
πiα

(t)+
n∑

i=1
(1 − πi)β

(t) ≤ χn

Proposition 6 Any accumulation point is a τ -stationary
point of (12) of the algorithm and satisfies the equalities in
(19a)-(19e).

Proof Suppose that
(
x ,π ,α ,β 

)
is an accumulation

point of the sequence
(
x(t),π(t),α(t),β(t))

t∈N. Then, there
exists a subsequence

(
x(t�),π(t�),α(t�),β(t�)

)
�∈N that con-

verges to
(
x ,π ,α ,β 

)
as � → ∞. We now show (19d)

and we let the reader verify the other conditions by conti-
nuity. Since lim�→∞ π(t�) = π , then there exists �0 such
that, ∀� > �0 and ∀i ∈ supp

(
π 
)
, π(t�)

i �= 0 and

π
(t�)
i = a(t�)i

�→∞→
exp

(
−|x |

α 

)
1−p
α 

1−p
α exp

(
−|x |

α 

)
+ p

β exp
(
−|x |

β 

) = π
 
i .

If i /∈ supp
(
π 
)
we distinguish the following cases.

(a) There exists a sequence
(
�q
)
q∈N such that 0 �= π

(
t�q
)

i =
a
(
t�q
)

i → π
 
i = 0. This means that there exists q0 ∈ N

such that ∀q > q0 we have a
(t�q )
i < a

(
t�q
)

j , ∀j ∈ supp
(
π 
)

and, by letting q → ∞,

exp
(

−|x i |
α 

)
1−p
α 

1−p
α exp

(
−|x i |

α 

)
+ p

β exp
(

−|x i |
β 

)

≤
exp

(
−|x j |

α 

)
1−p
α 

1−p
α exp

(
−|x j |

α 

)
+ p

β exp
(

−|x j |
β 

)

(30)

(b) There exists �0 ∈ N such that ∀� > �0 π
(t�)
i = 0, from

which a(t�)i < a(t�)j , ∀j ∈ supp
(
π 
)
and by letting � → ∞

we get (30).

We conclude that for all i /∈ supp(π∞)

π
 
i = 0 = σn−K

⎛

⎝
exp

(
−|x |

α 

)
1−p
α 

1−p
α exp

(
−|x |

α 

)
+ p

β exp
(
−|x |

β 

)

⎞

⎠

i

.

Proof of Theorem 2: From Lemma 6 the sequence
(
x(t)

)

is bounded and by the Bolzano Weierstrass Theorem,
there exists a subsequence

(
xtj
)
j∈N such that

lim
j→∞ x(tj) = x∞ (31)

limj→∞ ε(tj) = ε∞, limj→∞ α(tj) = α∞, limj→∞ β(tj) =
β∞, and limj→∞ π(tj) = π∞. We thus have

lim
j→∞

∥∥
∥x(tj+1)−x∞

∥∥
∥ ≤ lim

j→∞

∥∥
∥x(tj+1)−x(tj)+x(tj)−x(tj)−x∞

∥∥
∥

≤ lim
j→∞

∥
∥
∥x(tj+1) − x(tj)

∥
∥
∥+

∥
∥
∥x(tj) − x∞

∥
∥
∥

= 0

where the second inequality follows from triangular
inequality and the last equality follows from Lemma 5 and
(31). Since limt→∞ x(tj+1) = limt→∞ x(tj) = x∞, by con-
tinuity, we get limt→∞ a(tj+1) = limt→∞ a(tj) = a∞. This
implies that S := supp

(
π(tj+1)) = supp

(
π(tj)

)
definitely

and we deduce that

lim
j→∞π

(tj+1)
i = 0 = lim

j→∞π
(tj)
i = π∞

i ,∀i /∈ S

and

lim
j→∞π

(tj+1)
i = lim

j→∞ a(tj+1)
i = lim

j→∞ a(tj)i = π∞
i ,∀i ∈ S.

Moreover

lim
j→∞ ε(tj+1) = lim

j→∞ ε(tj) = ε∞

(ε(t) is positive and monotonic). By continuity also
α(tj+1) → α∞ and β(tj+1) → β∞ as j → ∞. We con-
clude by induction that the sequence generated by
Algorithm 1 converges to (x∞,π∞,α∞,β∞), which is also
a τ -stationary point of (12) by Proposition 6.

11 Appendix 4: Proof of Theorem 3:
From Theorem 2, Algorithm 1 converges to (x∞,π∞,
α∞,β∞) which is also a τ -stationary point of (12). Let
�∞ = supp(x∞) and k∞ = |�∞| ≤ K by assumption
r(x∞)K+1 = 0. We thus have

a∞
i : = 1

1 + α∞
β∞

p
1−p exp

(
|x∞

i |
(

1
α∞ − 1

β∞
))

⎧
⎨

⎩

= 1
1+ α∞

β∞ p
1−p

for i ∈ (�∞)c

> 1
1+ α∞

β∞ p
1−p

for i ∈ (�∞)
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Since k∞ ≤ K then from (19d)

π∞
i = σn−K (a∞)i =

{ 1
1+ α∞

β∞ p
1−p

for i ∈ T

0 for i ∈ Tc

for some T ⊇ �∞ with |T | = K . We deduce from (19e)
that

α∞ =
∑

i∈�∞ π∞
i |xi|∑

i∈[n] πi
= 0

and π∞
i = 1 for all i ∈ T and

β∞ =
∑

i∈�∞(1 − π∞
i )|xi|∑

i∈[n](1 − π∞
i )

= ‖x‖1
K

.

Let e := x� − x∞. Since x∞ is a τ -stationary point, it
should be noticed that

‖e�∞‖ ≤
∥
∥∥
∥
(
A�

�∞A�∞
)−1

∥
∥∥
∥

∥
∥∥
∥

λ

β∞ sgn(x∞
�∞)

∥
∥∥
∥

+
∥
∥
∥
∥
(
A�

�∞A�∞
)−1

∥
∥
∥
∥
∥
∥
∥A�

�∞A(�∞)ce(�∞)c

∥
∥
∥

≤
∥
∥∥
∥
(
A�

�∞A�∞
)−1

∥
∥∥
∥
λ
√
K

β∞

+
∥
∥
∥A�

�∞A(�∞)c∩��

∥
∥
∥
∥
∥e(�∞)c∩��

∥
∥

≤ 1
1 − δ2K

(
λ
√
K

β∞ + δ2K
∥
∥e(�∞)c∩��

∥
∥
)

. (32)

We have
∥
∥
∥A�

(�∞)c∩��(y − Ax)
∥
∥
∥ ≤

∥
∥
∥σK

(
A�

(�∞)c(y − Ax)
)∥∥
∥

≤
∥
∥
∥A�

�∞(y − Ax)
∥
∥
∥ = c (33)

where the last inequality follows from hypothesis. More-
over, from the triangular inequality

∥
∥
∥A�

(�∞)c∩��(y − Ax)
∥
∥
∥

≥
∥
∥
∥A�

(�∞)c∩��A(�∞)c∩��e(�∞)c∩��

∥
∥
∥

−
∥
∥
∥A�

(�∞)c∩��A�∞e�∞
∥
∥
∥

≥ (1 − δ2K )
∥
∥e(�∞)c∩��

∥
∥− δ2K ‖e�∞‖ (34)

Combining (33) and (34), we get
∥
∥e(�∞)c∩��

∥
∥ ≤ c

1 − δ2K
+ δ2K

1 − δ2K
‖e�∞‖ .

Using (34) and (32), we obtain

‖e�∞‖ ≤ 1
1 − 2δ2K

(
λ(1 − δ2K )

√
K

β∞ + cδ2K

)

.
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