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Evaluation of 4-D Reaction Integrals via Double
Application of the Divergence Theorem

J. Rivero, F. Vipiana, Senior Member, IEEE, D. R. Wilton, Life Fellow, IEEE, W. A. Johnson, Senior Member,
IEEE

Abstract—The use of the Method of Moments to solve surface
integral equations is one of the most popular numerical tech-
niques in electromagnetic modeling and analysis. This method
requires the accurate and efficient numerical evaluation of
iterated surface integrals over both source and testing domains.

In this paper we propose a scheme for evaluating these 4-D
interaction integrals between pairs of arbitrarily positioned and
oriented elements. The approach is based on applying the surface
divergence theorem twice, once on the source and once on the
test domain. When the integrations are reordered as two outer
contour integrals plus two inner radial integrals, the initial radial
integrations provide significant smoothing of the underlying
singular integrands. The method is numerically validated for
static and dynamic kernels arising in the Electric Field Integral
Equation (EFIE), i.e., for kernels with 1/R singularities, and
linear basis functions. The proposed formula to evaluate 4-D
reaction integrals can be extended to different kernels and to
different elements, e.g., to curved or volumetric elements, and to
basis functions of higher order.

Index Terms—integral equations, moment methods, numerical
analysis, singular integrals.

I. INTRODUCTION

Surface integral equations (SIEs) have established them-
selves as the principal technique to model geometrically com-
plex objects such as naval, aerospace, and satellite structures
with unknowns confined to body surfaces. The rigorous solu-
tion of radiation and scattering problems using SIEs requires
the accurate and efficient numerical evaluation of double
surface reaction integrals. Recently, several methods for the
integration of reaction integrals in moment method solutions
have been proposed to handle different kernels on flat and
curved triangular elements [1]. The approach is based on an
interchange of integration order in order to first perform radial
integrations for the source and observation point integrals. The
resulting integrals are evaluated by analytical, numerical, and
hybrid schemes [2]–[5]. However, they have generally been
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limited to the treatment only of self-interacting, edge-adjacent,
or vertex-adjacent elements, and to well-shaped (i.e., nearly
equilateral) triangular element pairs.

In the present paper, we apply the surface divergence theo-
rem twice to the 4-D reaction integrals for arbitrarily located
elements and 1/R singular kernels, where R = |r − r′| and
r and r′ are observation and source points, respectively. The
authors first proposed the double application of the divergence
theorem to 4-D reaction integrals, but only for the case
of co-planar elements [6]. The surface divergence theorem
has previously been used, for example in [7], to evaluate
singular integrals in the source domain, but its application to
the integrals defined over the test domain has been limited
to ad hoc analytical or semi-analytical evaluations for 4-D
static reaction integrals on planar domains [8], [9]. In [10]
an extension of [7] is presented to evaluate term-by-term a
truncated power series for the 4-D reaction integrals for the
EFIE kernel with linear basis functions.

Here, by contrast, the divergence theorem is applied directly
in the physical domains for both the source and observation
point integrations, yielding a novel, general expression for the
reaction between elements with arbitrary location, kernels, and
basis functions. As in [1], the resulting 4-D surface integral is
expressed as two radial integrals in combination with two con-
tour integrals over source and observation point domains. The
radial integrations are well-behaved for polygonal domains
and the integral domains are not parametrically mapped, as
in [1], thus eliminating restrictions to well-shaped, touching
elements. In this sense, the scheme is quite general, i.e., is not
limited to well-shaped elements nor to ad-hoc treatments of
self-terms, or edge- or vertex-adjacent geometries.

The paper is organized as follows. In Sect. II, the proposed
formula for 4-D reaction integrals between arbitrarily located
elements is derived. Morover the section explores two different
projections developed for mapping observation points to a
local origin in the plane of the source points (and vice
versa) for applying the divergence theorem. Sect. III proposes
variable transformations to improve the numerical evaluation
of the inner radial integral and the contour integrals. Numer-
ical results are presented in Sect. IV, and Sect. V contains
conclusions. In [11], some preliminary results related to the
proposed approach were presented.

II. REACTION INTEGRAL FOR AN ELEMENT PAIR

Our goal is to perform accurate and efficient numerical
evaluation of 4-D integrals of the form

IT,T ′ =

∫
T

∫
T ′
F (r, r′) dS′dS. (1)
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Typically, F (r, r′) takes the form

F (r, r′) = t(r)g(r, r′)b(r′), (2)

where t(r) is either a scalar or a vector component of a testing
function, b(r′) is similarly defined for a basis function, g(r, r′)
is either a scalar, or a scalar component of a vector or dyadic
Green’s function, and T and T ′ are the definition domains of
the testing and basis functions respectively.

The most common approach for evaluating (1) is to first
evaluate the inner (singular) integral over T ′, then, treating
the resulting integrand as no longer singular, evaluate the outer
integral over T via a standard Gauss quadrature scheme (see
e.g. [12]–[14]). Here, instead, the surface divergence theorem
is applied in the physical domain to both the test and source
integrals of the 4-D reaction integrals.

Consider first the inner surface integral (on the primed
variables) over the source domain T ′ with unit normal vector
n̂′ and r fixed:

IT ′ =

∫
T ′
F (r, r′) dS′. (3)

Similar to the approach in [6], the surface divergence theorem
is applied to (3), resulting in

IT ′ =

∫
T ′
∇′ ·H dS′ =

∮
C′

H(r, r′C′)·û′ dC ′, (4)

where r′C′ is a point on the boundary C ′ of T ′, û′ is the
external unit normal to C ′ in the plane S′ containing source
domain T ′ (see Fig. 1), and

H(r, r′C′) =
D̂′

D′C′

∫ D′
C′

0

F (r, r′)D′dD′, (5)

with r′ = r0 + D′D̂′, D̂′ = (r′C′ − r0)/D′C′ , 0 < D′ <
D′C′ , D′C′ = |r′C′ − r0|. H(r, r′C′) is assumed to have only
a radial component with respect to r0. The point r0 is an
arbitrarily-located local polar coordinate origin in the plane S′

used to apply the divergence theorem; a different origin may
be associated with each value of r, but should be independent
of r′C′ . We can express this as a mapping, r0 = T −(r), where
the negative sign in T − means that values r in the observation
plane are mapped to the source plane, i.e., in the direction of
decreasing tilt angle β between planes S (containing T ) and
S′ (see Fig. 2).

Next, we integrate over the test domain, yielding the fol-
lowing double surface integral:

IT,T ′ =

∫
T

∫
T ′
F (r, r′)dS′dS

=

∮
C′

û′ ·
∫
T

D̂′

D′C′

∫ D′
C′

0

F (r, r′)D′dD′dS dC ′,

(6)

where the interchange of integration order is permitted by
the independence of the observation and source coordinate
variables and their associated domains. Applying the surface
divergence theorem once more to the inner surface integral of
(6) and reordering the integration order once more, we obtain

Fig. 1. Radial path contributions to integral (5) in the source plane, and
geometrical definitions.

the following general formula:

IT,T ′ =∮
C

∮
C′

û·D̂
DC

∫ DC

0

û′ ·D̂′

D′C′

∫ D′
C′

0

F (r, r′)D′dD′DdD dC ′dC,

(7)

where C is the boundary of T , û is the external unit
normal to C in the test plane S, r = r′0C′ + DD̂, where
D̂=

(
rC − r′0C′

)
/DC and 0≤D≤DC , with DC =

∣∣rC − r′0C′

∣∣
and with rC a point on the boundary of T . The mapping
r′0C′ = T +(r′C′) transforms a point on C ′ to a local polar
coordinate origin r′0C′ in the plane S. Note that Eq. (6) can
also be interpreted as integration in polar coordinates. This
interpretation, however, applies only to the first use of the
divergence theorem but not to the second in Eq. (7).

Fig. 2. Geometrical definitions for source and test triangles (T ′ and T ) with
their corresponding projections onto the test and source planes, respectively.

For general polygonal domains, such as for the two triangles
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T and T ′ illustrated in Fig. 2, the contour integrals can be
evaluated by considering all the contributions resulting from
interacting pairs of source and test edges forming the poly-
gons’ boundaries. Thus evaluation of (7) reduces to evaluating
contributions such as

I∆C,∆C′ =∫ ρU

ρL

∫ ρ′U

ρ′L

û·D̂
DC

∫ DC

0

û′ ·D̂′

D′C′

∫ D′
C′

0

F (r, r′)D′dD′DdD dρ′dρ

(8)

that represent the interaction between segment pairs ∆C and
∆C ′, parameterized by ρ and ρ′ respectively, with ρL and ρU
as lower and upper limits, respectively, of the ∆C integral
and similarly for corresponding primed quantities. Without
loss of generality, in the following we assume that the edges
∆C and ∆C ′ belong to the triangles T and T ′, respectively.
Note that the interaction between edges will vanish if a line
segment’s projection in the other plane is collinear with the
edge in that plane (see Fig. 3) since at least one of the dot
products in (8), û ·D̂ or û′ ·D̂′, vanishes. For non-collinear
projected edges, straightforward Gauss-Legendre quadrature
of sufficiently high order may be able to reach a desired level
of accuracy, but for further accuracy, or simply to improve
the accuracy of low-order quadrature schemes, it is suggested
to transform the integrals (8) into faster converging forms. A
more detailed description of such transforms appears in Sect.
III.

Fig. 3. Example of a pair of edges where the line segment’s projection in
the source plane is collinear with the edge in that plane.

To evaluate the integral in (8), we need to introduce a
projection scheme between the points in the observation
and source planes respectively. Not all projection schemes
are valid, nor are all valid ones unique. Here we propose

two particularly simple and useful schemes. The first is an
orthogonal projection and the second is a rotational projection.

A. Orthogonal projection

One possible orthogonal projection is to project a point
along the unit vector normal to the plane in which the point is
located. That is, we extend a line from the point r in S along
the direction of the unit normal vector n̂ to its intersection with
S′ at the projected point r0. This simple projection, however,
has the drawback that no intersection occurs when the planes
S and S′ are orthogonal. Instead, the general case can be
handled by projecting r along the direction of the unit normal
vector n̂′ to an intersection point r0 in S′, as shown in Fig.
4. Similarly, the point r′C′ ∈ S′ is projected to r′0C′ ∈ S along
the direction of the unit normal vector n̂. In the following, we
refer to this particular projection, in which points in one plane
are projected perpendicularly to the other plane, as simply the
orthogonal projection.

Fig. 4. Orthogonal projection.

Mathematically, we locate the orthogonal projection of a
point in the source plane r′C′ ∈ S′ onto the test plane S with
normal unit vector n̂ as r′0C′ = r′C′ + (rC−r′C′) · n̂n̂, where
rC can be any point in the test plane S, but for definiteness
we choose a point on an edge used for the test edge integral.
Similarly, the projection of a point in the test plane r ∈ S
onto the source plane is r0 =r+(r′C′−r)·n̂′n̂′.

Although it is simple, we will not make extensive use of the
orthogonal projection. Its main disadvantage is its dependence
of the vector D̂′ on D, the outer radial integration variable,
requiring a different source edge transform for each radial test
integration point (see (8)).
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B. Rotational projection

The rotational projection eliminates the main disadvantage
of the orthogonal projection (see Sect. II-A). It has the desir-
able properties of continuity, invertibility, and independence of
the vector D̂′ on the outer radial integral variable D, which
simplifies the derivation of variable transforms to accelerate
the edge integrals (see details in Sect. III-B)

Fig. 5. Rotational Projection.

To perform the rotational projection, we define an angle β,
−π < β < π, between the unit normals n̂′ and n̂, where the
positive direction of β is indicated in Fig. 5. A point rC ∈ S
on the boundary of test triangle T may rotated through the
angle −β to an image point r0

C ∈ S′. A point r′C′ ∈ S′ on
the boundary of source triangle T ′ may be rotated through
the angle β to the point r′0C′ on the test plane S. Indeed, the
image of points of T in the plane S′ and the image of T ′ in
the plane S together with the original triangles form pairs of
coplanar triangles in each plane for which the corresponding
radial path quantities can be defined similar to those for the
case of coplanar triangles [6]. The mathematical description
of this transformation is discussed in detail in Appendix A.

Since vector D̂′ is independent of integration variable D of
the outer radial integral, in the rotational projection case we
can write (8) as

I∆C,∆C′ =∫ ρU

ρL

∫ ρ′U

ρ′L

(û·D̂)(û′·D̂′)
DC

∫ DC

0

1

D′C′

∫ D′
C′

0

F (r, r′)D′dD′DdD dρ′dρ.

(9)

In order to use the simpler form (9), in which the term
involving D̂′ is removed from the radial integrals, we consider
only the rotational projection in the following development.

III. INTEGRAL TRANSFORMATIONS

To improve the convergence of the integrals (9) we next
propose suitable variable transformations on the innermost
radial integral and the two contour integrals.

A. Inner Radial Integral Transformation

We observe that, as in [6] (coplanar case), the integration
domain of the two inner radial integrals of (9) is triangular
(not to be confused with triangles T and T ′) in the D and
D′ variables, but, unlike [6], rapid variations of the factor
D′/ |r− r′| = D′/R are not fully canceled since in the
non-coplanar case R 6= D′. Hence, in this case we cannot
simply implement a surface integral over the triangular radial
integration domain using standard Gauss-triangle integration
when the triangles are within each other’s near field, where the
kernel is strongly influenced by the singular or near-singular
term 1/R. Indeed, R and D′ are related via the law of cosines
as

Fig. 6. Geometry for integrating radial integrals.

R =
√
D′2 + d2 − 2D′d cos γ

=

√
(D′ − d cos γ)2 + d2 sin2 γ,

(10)

where d=d(r)=
∣∣r0 − r

∣∣ is the distance between the point r

and its rotational projection r0, and cos γ=−p̂ · D̂′, with p̂
the unit vector defining the direction to the projection point,
p̂ =

(
r0 − r

)
/d. The second, completed square form of R

in (10) resolves it into orthogonal components parallel and
transverse to D̂′, and it is particularly useful when integrating
terms involving R.
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1) D′/R transform: To accelerate the convergence of the
radial integral, we introduce in the following a transform
(called the D′/R transform) w′(D′) in the inner radial integral
to cancel the factor D′/R in the integrand. With this transform,
the inner integral becomes∫ D′

C′

0

F (r, r′)D′dD′ =

∫ w′(D′
C′ )

w′(0)

F (r, r′)D′
dw′

dw′/dD′
,

(11)
where dw′/dD′ is chosen to cancel the dominant rapidly-
varying term of the inner radial integrand. To estimate the
kernel, we temporarily assume

F (r, r′) ∝ 1

R
. (12)

Substituting (12) into (11) we then have∫ w′(D′
C′ )

w′(0)

D′

R

dw′

dw′/dD′
, (13)

suggesting the choice

dw′

dD′
=
D′

R
. (14)

Using (10), integration of (14) yields

w′(D′) = R+ d cos γ sinh−1

(
D′ − d cos γ

d| sin γ|

)
(15)

and combining (13), (14), and (15) yields∫ w′(D′
C′ )

w′(0)

dw′ = w′(D′C′)− w′(0). (16)

For constant bases and a static kernel, the result (16) is exact,
i.e. since the integrand is constant, the integral can be exactly
evaluated using a single sample point in the w′ variable.
However, when the frequency-dependent kernel phase factor
or non-constant basis functions are introduced, the accuracy
of the transform is significantly reduced (see Sect. IV).

2) 1/R transform: Due to the reduced performance of the
D′/R transform for non-static kernels and non-constant bases,
we propose a second transform, called the 1/R transform in
the following, that cancels only the factor 1/R. If we choose

dw′

dD′
=

1

R
(17)

and make use of (10), integration of (17) yields

w′(D′) = sinh−1

(
D′ − d cos γ

d| sin γ|

)
. (18)

Combining (17) with (18), Eq. (13) becomes∫ w′(D′
C′ )

w′(0)

D′dw′. (19)

Since D′ can be written in terms of w′ as

D′ = d| sin γ| sinhw′ + d cos γ, (20)

the resulting integral (19) is easily integrated; however, the
full integral (11), which may include a kernel phase factor and
basis functions, must be integrated numerically. Nevertheless,

the resulting integrand is sufficiently smooth that to reach ma-
chine precision requires fewer than 20 integration points (see
details in Sect. IV) even when basis functions or higher order
frequency terms are present. Therefore, the 1/R transform will
be used to obtain nearly all the numerical results. For the
inverse mapping, (20) can be explicitly solved for w′ in terms
of D′.

B. Contour Integral Transformations
To improve numerical efficiency in the evaluation of the

contour integrals in (9), we also introduce transformations such
that

I∆C,∆C′ =

∫ ρU

ρL

∫ ρ′U

ρ′L

(û·D̂)(û′ ·D̂′) [ · ] dρ′dρ

=

∫ u(ρU )

u(ρL)

∫ u′(ρ′U )

u′(ρ′L)

(û·D̂)(û′ ·D̂′) [ · ] du′

du′/dρ′
du

du/dρ
,

(21)

where, to write the integral more succinctly, the brackets are
assumed to include all the integrand terms of (9) except the
two rapidly varying dot product factors shown explicitly; we
will chose transforms such that du′/dρ′ cancels variations of
û·D̂ and du/dρ does the same for û′ ·D̂′.

Here, to define the geometrical parameters of the transform
du′/dρ′, it is convenient to (rotationally) project the source
edge onto the test plane or vice versa; either way, angles and
distances in the plane between the (projected) edges in the
plane are preserved under rotational projection. The extended
edges in the same plane then generally intersect at a point,
and the edges are parameterized in terms of the distances ρ
and ρ′ starting at this intersection point. The angle between
the extended lines is indicated by α, and all other relevant
geometry quantities are shown in Fig. 7.

Fig. 7. Geometry definitions for integrating over a line segment pair. The
solid red and blue line segments denote source and test edges ∆C′ and ∆C,
respectively; the dashed red and blue line segments (with labels ∆C′0 and
∆C0, respectively) represent their projections onto the other plane.

Noting from Fig. 7 that

θ = α− θ′, (22)
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and that

û′ ·D̂′ = cos θ′ =
h(ρ)

DCC′
=
ρ sinα

DCC′
= −

û′ ·
(
r0
C − r′C′

)
|r0
C − r′C′ |

,

(23)

û·D̂ = − cos θ = −h
′(ρ′)

DCC′
= −ρ

′ sinα

DCC′
=

û·
(
rC − r′0C′

)
|rC − r′0C′ |

,

(24)
where

DCC′ =
∣∣rC − r′0C′

∣∣ =
∣∣r0
C − r′C′

∣∣
=
√
ρ2 + ρ′2 − 2ρρ′ cosα,

(25)

(21) becomes∫ ρU

ρL

∫ ρ′U

ρ′L

(û·D̂)(û′ ·D̂′) [ · ] dρ′dρ

=

∫ ρU

ρL

∫ ρ′U

ρ′L

(
−ρ
′ sinα

DCC′

)(
ρ sinα

DCC′

)
[ · ] dρ′dρ.

(26)

With the choice
du′

dρ′
=

ρ′ sinα√
ρ2 + ρ′2 − 2ρρ′ cosα

=
h′(ρ)

DCC′
= cos θ (27)

the variation of the factor û·D̂ in the line integral is canceled.
Integration of (27) yields

u′(ρ, ρ′) = sinαDCC′ + h (ρ) cosα sinh−1

(
ρ′ − ρ cosα

|h (ρ)|

)
.

(28)
Similarly, we can choose

du

dρ
=

ρ sinα√
ρ2 + ρ′2 − 2ρρ′ cosα

=
h(ρ)

DCC′
= cos θ′, (29)

where the derivation for u is dual to that for u′ and the result
(30) is obtained by merely exchanging unprimed and primed
quantities, yielding

u(ρ, ρ′) = sinαDCC′ + h′(ρ′) cosα sinh−1

(
ρ− ρ′ cosα

|h′(ρ′)|

)
.

(30)
For mapping the transcendental functions u′ and u back to

ρ′ and ρ, the root-solving procedure described in [12] may
be used. The inverse of the u′ transform exists when the
derivative du′/dρ′ is non-vanishing, which, from (27), is the
case except when ρ′ = 0. However, this critical case occurs
frequently for realistic triangle configurations. More generally,
it happens when source and (rotationally projected) extended
test segments intersect. If ρ′ = 0 (the intersection point) is an
extreme of the source segment, a different treatment of the line
integral is required, as outlined below. If ρ′ = 0 is an interior
point, the domain needs to be divided into two sub-domains
about the point ρ′ = 0. Following the analysis of the behavior
of u′ near ρ′ = 0 in [6], we must deal with a branch point at
ρ′ = 0, that can be removed via the transformation

v′2 = sgn(sinα)(u′ − u′0). (31)

Similarly for u, a branch point at ρ = 0 is removed via the
transformation

v2 = sgn(sinα)(u− u0). (32)

IV. NUMERICAL RESULTS

In this section, the numerical performance of the proposed
approach is reported. We analyze the convergence behaviour
of the contour and radial integrals separately. Hence, to study
the convergence of one integral, we minimize the source
of error due to the other integrals, calculating them with
the highest accuracy we can achieve. The total number of
quadrature points used for the different analysis is equal
to NcombN

2
ENORNIR where Ncomb is the number of non-

vanishing edge pair combinations (Ncomb ≤ 9), NE represents
the number of source/test edge quadrature points, NOR is
the number of quadrature points used for the outer radial
integration, and NIR is the number of quadrature points
used for the inner radial integration. The reference values
are obtained using the highest order Double Exponential
(DE) quadrature scheme (90 points) for all the integrals [15],
using quad precision and root-finding tolerances with precision
comparable with the quadrature data; all reference values are
accurate to no less than 16 significant digits. All displayed
data is obtained using double precision.

In the vector potential reaction integrals, all nine linear
(RWG) vector basis and testing function combinations are
computed; error bars in the figures indicate the range of
significant digits in the results for the nine vector potential
reaction integrals. In the scalar/static potential quantities, the
bases are constant hence a single result is reported. The
maximum triangle edge length is fixed at 0.1λ, and the basis
functions are standard RWG functions [16]. For each type of
reaction integral considered, the number of significant digits
(SD) of the evaluated integral is reported,

SD = − log10(|(Iref − In)/Iref |+ δ), (33)

where In and Iref are the evaluated integrals with n sample
points and with the highest number of sample points (refer-
ence) respectively. The term δ = 1.0E−16 is inserted in (33)
in order to limit the precision to 16 digits (double precision).
Two quadrature schemes, Gauss-Legendre (GL) and double
exponential (DE), are considered to calculate the integrals.

The first analysis is a comparison between the two different
radial integral transforms described in Sect. III-A. Fig. 8
reports the behaviour of scalar potential reaction integrals for
a pair of edge-adjacent triangles having average edge lengths
of 1m and with an angle of 60◦ between them. The common
edge case, with its two pairs of edges with touching endpoints,
typically results in the largest error for non-coplanar triangle
configurations. As previously discussed, the D′/R transform
is able to evaluate the inner radial integral to machine precision
using just one point, but only for static kernels (see Fig.
8.a), while the 1/R transform, though needing more points
to achieve machine precision, nevertheless shows much better
stability with respect to frequency (see Fig. 8.b). We only see
a reduction of accuracy when the triangle edge lengths become
larger than 0.1λ. Hence we only consider the 1/R transform
in subsequent analyses.

To show the validity and applicability of the proposed
method, we consider several triangle pairs configurations and
different triangle shapes. Fig. 9 shows the behaviour of the
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(a)

(b)

Fig. 8. Accuracy comparison between the two developed radial transforms;
(a) static kernel vs. number of sample points; (b) scalar potential vs. triangle
size vs. `/λ where ` is the common edge length over wavelength (NIR = 24
(GL)).

edge integrals for vector potential reactions for the same
triangle configuration as in the previous analysis (see Fig.
9 (inset)). The scalar potential is not shown in the reported
analyses because we verified that the number of correct
significant digits is always 2 to 3 digits more with respect
to the corresponding vector potential integral, as similarly
observed in [6] for the coplanar case.

In order to concentrate on the behaviour of the edge
integrals only, the radial integrals are calculated using a fixed
GL scheme with 40 points for the inner radial integral and
a DE quadrature rule with 90 points for the outer radial
integral. For the inner radial integral the 1/R radial transform
is used. Two quadrature schemes, GL and DE, with or without
the edge transforms, are compared for an increasing number
of quadrature sample points. The figure shows the number
of correct significant digits with respect to the number of
quadrature points per edge, that is the same for both edge
integrals. As is typical of the DE scheme, GL shows bet-

Fig. 9. Number of correct significant digits vs. number of sample points per
edge; vector potential, edge-adjacent case for right isosceles triangle. Gauss-
Legendre (GL) and double exponential (DE) quadrature rules with and without
edge variable transforms are compared. The radial integrals are calculated
with the highest accuracy available: NOR = 90 DE, NIR = 40 GL, and
Ncomb = 6. Error bars indicate the range of significant digits in the results
for the nine vector potential reaction integrals.

ter performance in low-to-medium accuracies, while the DE
scheme is able to achieve very high accuracy. Moreover the
integral accuracy is evaluated applying and not applying the
proposed edge transforms. For the edge-adjacent case, since
four of the interacting edge pairs are involved at each of the
two common vertices, when the edge integral transforms u
and u′ are used, the v and v′ transforms must also be used
for each such edge pair (see Sect. III-B). The effectiveness of
the edge integral transforms is evident: in the GL scheme,
for a specified accuracy, the number of points needed is
considerably reduced using the transforms, and, in the DE
scheme, higher accuracy is achievable.

Figure 10 shows, for the same set of triangles, the behaviour
of the inner radial integral with increasing sample points
both with and without use of the inner radial transform. The
edge integrals and the outer radial integral are calculated with
the highest order DE quadrature rule (NE = NOR = 90
points) to ensure the highest accuracy for these integrals. The
effectiveness of the inner radial integral transforms is evident:
in the GL scheme, without the variable transforms, we cannot
achieve more than 8 significant digits, while, when using the
inner radial transform, we are able to reach machine precision
with fewer than 30 points.

Finally, in Fig. 11 convergence is analyzed for the outer
radial integral for the same set of triangles. A very high order
DE quadrature rule (NE = 90 points) is used for the contour
integrals. For the inner radial integral, a GL quadrature rule
with NIR = 40 points and the inner radial transform is used,
since, as Fig. 10 shows, this is more than enough to reach
machine precision for the inner radial integral. For the outer
radial integral we compare the GL and DE schemes. As might
be expected, the GL scheme appears more efficient at the lower
accuracies, while for high accuracies the DE scheme is more
effective.
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Fig. 10. Number of correct significant digits vs. number of sample points per
inner radial integral; vector potential, edge-adjacent case for right isosceles
triangle. Gauss-Legendre (GL) quadrature rule with and without inner radial
variable transform are compared; the edge integrals and the outer radial
integral are calculated with the highest accuracy available;NOR = 90 DE and
NE = 90 DE, and Ncomb = 6. Error bars indicate the range of significant
digits in the results for the nine vector potential reaction integrals.

Fig. 11. Number of correct significant digits vs. number of sample points per
outer radial integral; vector potential, edge-adjacent case for right isosceles
triangle. Gauss-Legendre (GL), and double exponential (DE) quadrature rule
with all variable transforms are compared; the edge integrals and the outer
radial integral are calculated with the highest accuracy available; NIR = 40
GL and NE = 90 DE, and Ncomb = 6. Error bars indicate the range of
significant digits in the results for the nine vector potential reaction integrals.

In Figs. 12–14 the same analysis is reported for vertex-
adjacent triangles using the same triangles as for the edge-
adjacent case, but positioned as shown in the corresponding
insets. Convergence results for the edge integrals (Fig. 12)
shows that the integrand is sufficiently smooth that GL quadra-
ture rule provides almost 12 significant digits even without
the edge integral transform. For the inner radial integral (Fig.
13), on the other hand, it is necessary to use the inner radial
transform to reach machine precision. For the outer radial
integral (Fig. 14), the GL scheme is more effective at achieving
low accuracies, while the DE scheme is better for very high

Fig. 12. Number of correct significant digits vs. number of sample points per
edge; vector potential, vertex-adjacent case for two identical right isosceles
triangles. Gauss-Legendre (GL) and double exponential (DE) quadrature rules
with and without edge variable transforms are compared; the radial integrals
are calculated with the highest accuracy available; NOR = 90 DE and
NIR = 40 GL, and Ncomb = 6. Error bars indicate the range of significant
digits in the results for the nine vector potential reaction integrals.

Fig. 13. Number of correct significant digits vs. number of sample points
per inner radial integral edge; vector potential, vertex-adjacent case term case
for two identical right isosceles triangles. Gauss-Legendre (GL) quadrature
rule with and without inner radial variable transform are compared; the edge
integrals and the outer radial integral are calculated with the highest accuracy
available; NOR = 90 DE and NE = 90 DE, and Ncomb = 6. Error
bars indicate the range of significant digits in the results for the nine vector
potential reaction integrals.

accuracies, as expected.
In Figs. 15–17, the same analysis is reported for a close but

non-touching triangle pair as shown in the insets. In this case,
high accuracy for the edge integrals (Fig. 15) is easily achieved
using the GL quadrature rule without the need to apply the
proposed edge transform; this result is to be expected since,
with well-separated edge pairs, the integrand is smooth. For
the inner radial integral, it is not even necessary to use the
inner radial transform to reach machine precision with a low
number of quadrature points. For the outer radial integral, the
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Fig. 14. Number of correct significant digits vs.number of sample points
per outer radial integral edge; vector potential, vertex-adjacent case term case
for two identical right isosceles triangles. Gauss-Legendre (GL) and double
exponential (DE) quadrature rule with all variable transforms are compared;
the edge integrals and the outer radial integral are calculated with the highest
accuracy available; NIR = 40 GL and NE = 90 DE, and Ncomb = 6.
Error bars indicate the range of significant digits in the results for the nine
vector potential reaction integrals.

Fig. 15. Number of correct significant digits vs. number of sample points
per edge; vector potential, non touching case term case for two identical
right isosceles triangles. Gauss-Legendre (GL) and double exponential (DE)
quadrature rules with and without edge variable transforms are compared; the
radial integrals are calculated with the highest accuracy available; NOR = 90
DE and NIR = 40 GL, and Ncomb = 6. Error bars indicate the range of
significant digits in the results for the nine vector potential reaction integrals.

GL scheme appears more effective for all accuracy ranges.
The contour plots in Fig. 18 show the number of correct

significant digits for the edge-adjacent term in the case of a
fixed equilateral test triangle whose edge length is λ/10 and
for different-shaped source triangles. Rather than attempt to
report 9 vector potential results for all the test and source
bases, we report only the number of significant digits in scalar
potential. They generally have very similar error character-
istics, except the latter usually has about 2 more significant
digits than the vector potential. The length of the adjacent

Fig. 16. Number of correct significant digits vs. number of sample points
per inner radial integral edge; vector potential, non touching case for right
isosceles triangles. Gauss-Legendre (GL) quadrature rules with and without
inner radial variable transform are compared; the edge integrals and the outer
radial integral are calculated with the highest accuracy available; NOR = 90
DE and NE = 90 DE, and Ncomb = 6. Error bars indicate the range of
significant digits in the results for the nine vector potential reaction integrals.

Fig. 17. Number of correct significant digits vs. number of sample points per
outer radial integral edge; vector potential, non- touching case for two identical
right isosceles triangles. Gauss-Legendre (GL) and double exponential (DE)
quadrature rule with all variable transforms are compared; the edge integrals
and the inner radial integral are calculated with the highest accuracy available;
NIR = 40 GL and NE = 90 DE, and Ncomb = 6. Error bars indicate the
range of significant digits in the results for the nine vector potential reaction
integrals.

edge is λ/10 while the remaining two edges of the source
triangle assume all possible lengths ≤ λ/10 [6]. The plot
region is chosen so that the maximum length of the considered
source triangle is always λ/10. The color of each point (x, y)
represents the number of correct significant digits for a triangle
with its third vertex at that point. For all integrals, the GL
scheme with 16 quadrature points is used. In Fig. 18(a), all
the proposed transforms are applied, whereas in Fig. 18(b), the
reported results are obtained without transforms. As the figure
illustrates, using transforms has the benefit of providing both
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higher accuracy and less sensitivity to shape.

Fig. 18. Significant digits for scalar potential vs. triangle shape for an
edge-adjacent triangle pair, one a fixed equilateral test triangle with vertices
r1 = (0, 0, 0), r2 = (

√
0.75/2, 0.5,−0.75) and r3 = (0, 1, 0) whose edge

lengths are λ/10, and the second, a source triangle placed in the plane z = 0
with vertices at r′1 = r1 and r′3 = r3. The color at any point (x, y, 0) locating
vertex r′2 is keyed to the colorbar which indicates the number of correct
significant digits for that triangle shape with (a) all transforms applied and
(b) no transforms applied. The number of sample points per edge, per inner
radial integral, and per outer radial integral are NE = NIR = N0R = 16
(GL quadrature rule). For all the possible triangle configurations Ncomb ≤ 8.
The plots are symmetric and only the left half of each is shown.

Finally, Fig. 19(a) reports the number of correct significant
digits with respect to the total number of quadrature points
used to evaluate the vector potential integral in the case of a
pair of right isosceles triangles with a common edge and 60◦

angle between them. The scale at the top of Fig. 19(a) shows
the average number of quadrature points along each of the
four dimensions. The proposed scheme (blue line with circles,
all transforms applied) is compared with the Radial-Angular
(RA) singularity cancellation scheme applying the optimized
approach described in [14] for source integration with a test
integration performed using Gauss-Triangle quadrature (GT,
red lines with star or diamond markers). The RA scheme is
currently considered one of the most efficient source integral
schemes [13]. To underscore here that in the RA results the
limiting part is the test integral, its accuracy is also shown
when the source quadrature rule used is increased by one point
(RA opt+1, star markers); as seen, the additional sample points
do not improve the accuracy. Fig. 19(b) presents the same data
normalized with respect to CPU time. The normalized time
reported is the time required to perform 100 evaluations of the
9 vector potential integrals divided by the time required for
the same evaluation applying a simple GT quadrature scheme
with 16 sample points for the traditional surface/surface test
and source integrals.

It is also seen that the efficiency in terms of total number
of points of the proposed method is similar to, but slightly
less than that of the RA scheme. However, the number of
quadrature points used in the RA scheme was optimized
with respect to the subtriangle shape, whereas an optimized
choice of the number of radial quadrature points has yet to

Fig. 19. Number of correct significant digits (a) vs. total no. of sample
points and (b) vs. normalized time. Vector potential, edge-adjacent case for
two identical right isosceles triangles whose perpendicular sides are of length
λ/10 comparing the present scheme to the Radial-Angular (RA) singularity
cancellation scheme [14] for the source triangle (S) using Gauss-Triangle
(GT) quadrature scheme for the test integral (T ). The scale at the top of (a)
shows the average number of sample points along each of the four integration
dimensions.

be developed for the present scheme. It may be possible to
optimize the present scheme by extending the approach of
the coplanar case [6] or perhaps using a quadrature error
estimation approach as recently suggested in [17]. As for CPU
time, despite being a more complex scheme, the proposed
method performs slightly better than the RA scheme, most
likely because our RA scheme first maps all sample points
back to area coordinates and then the integral is evaluated
in area coordinates. In any case, even without radial integral
optimization, the proposed scheme has the advantage that it is
fully compatible with that previously proposed for the coplanar
case [6], which performs much better than competing schemes
for triangle self-term evaluation.

For reference purposes, numerical values for tested scalar
and vector potential integrals are provided in Table I. The
coordinates of the vertices forming a pair of interacting
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TABLE I
REFERENCE POTENTIALS FOR THE TRIANGLE PAIR WITH SOURCE TRIANGLE VERTICES r′1 = (0, 0, 0)m, r′2 = (1, 0, 0)m, r′3 = (0, 1, 0)m AND TEST

TRIANGLE VERTICES r1 = r′1 , r2 = r′3 , r3 = (1/2, 0.0,
√

3/2)m .

Static Potential 0.4544557923931120E-1

Scalar Potential 0.4335390332088512E-1 -j0.1222853370574042E-1

Vector Potential Source Vertex Basis Function

1 2 3

Test
Vertex
Basis

Function

1 0.1614666764741113E-1
-j0.4085167402404187E-2

0.3122307334298600E-2
-j0.1909037675592154E-4

-0.1059860793713104E-1
+j0.2882355758363133E-2

2 -0.1059860793713104E-1
+j0.2882355758363134E-2

-0.1335987667815746E-1
+j0.4067218068873242E-2

0.2029187441021369E-1
-j0.6109683399476997E-2

3 0.3122307334298598E-2
-j0.1909037675592152E-4

0.1801922721479905E-1
-j0.4098681021387152E-2

-0.1335987667815746E-1
+j0.4067218068873240E-2

triangles, T e and T f , members of an assumed element mesh
of triangles T e, e = 1, 2, . . . , E, are, for source triangle T f ,
r′1 = (0, 0, 0)m, r′2 = (1, 0, 0)m, r′3 = (0, 1, 0)m, and for test
triangle T e, r1 = r′1, r2 = r′3, and r3 = (1/2, 0,

√
3/2)m.

The medium is free space and the wavenumber is k = 2π/10
(λ = 10m). RWG [16] functions Λf

j (r′) and Λe
i (r) are chosen

as basis and testing functions b(r) and t(r), respectively. For
scalar potential, the quantity computed in Table I is∫

T e

∫
T f

e−jkR

4πR
dS′ dS, (34)

and for vector potential, the computed quantities are∫
T e

∫
T f

e−jkR

4πR
Λe
i (r)Λf

j (r′)dS′ dS, i, j = 1, 2, 3, (35)

where the testing functions appearing in the vector potential
are defined as

Λe
i (r) =

r− ri
hi

, (36)

and where ri is the vector to the i th vertex of T e and hi is
that vertex’s height above the opposite edge of triangle T e; the
j th basis function Λf

j (r′) on element T f is similarly defined.

V. CONCLUSIONS

We propose a novel general formula for 4-D reaction
integrals based on applying the surface divergence theorem
to both test and source triangles, together with a reordering
of the integration. The 4-D surface integrals are expressed as
two radial integrals plus two contour integrals over source and
observation domain boundaries. The method is numerically
validated for static and dynamic kernels arising in the EFIE
and linear basis functions. Moreover, it is directly applicable
to basis functions of higher order. The method’s efficiency, as
represented by the number of correct significant digits for a
chosen number of quadrature points, is improved by applying
the proposed variable transformations for the edge and inner
radial integrals. Moreover the proposed scheme shows reduced
sensitivity to triangle shape.

The next step is to apply the proposed approach to other
singular kernels. In particular, with suitable modifications,
the scheme can also be applied to kernels with ∇(1/R)
singularities. This objective will be addressed in a future study.

Moreover the proposed approach can be extended to curved
elements and volume integrals.

APPENDIX A
ROTATIONAL PROJECTION

We can describe mathematically the rotational projection,
introduced in Sect. II-B, from an arbitrary axis and angle in
terms of the following dyadic, as seen in [18]:

R(v̂, β) = v̂v̂ + sinβ (v̂ × I) + cosβ(I − v̂v̂), (37)

where v̂ = (v̂x, v̂y, v̂z) is a unit vector along the line
of intersection of the two planes and can be defined as
v̂ = (n̂ × n̂′)/‖n̂ × n̂′‖, where I is the unit dyadic. Using
(37) we can describe the projection of a point in the source
plane r′C′ ∈ S′ onto the test plane using the angle β as
r′0C′ = p0 +R(v̂, β)·(r′C′ −p0), where p0 is the point on the
intersection axis closest to the origin,

p0 =
(rS′ · n̂′)
||n̂× n̂′||

(n̂× v̂)− (rS · n̂)

||n̂× n̂′||
(n̂′ × v̂), (38)

where rS′ is any point in S′ and rS is any point in S. Similarly,
we define the projection of a point in the test plane r ∈ S
onto the source plane as r0 = p0 +RT (v̂, β)·(r−p0), where
RT (v̂, β) is the dyadic transpose, and can be expresed as
RT (v̂, β) = R(v̂,−β) .
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