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Abstract

Whereas development of mathematical models describing the endocrine system as a whole remains a challenging problem, visible
progress has been demonstrated in modeling its subsystems, or axes. Models of hormonal axes portray only the most essential
interactions between the hormones and can be described by a low-order system of differential equations. This paper analyzes the
properties of a novel model of a hypothalamic-pituitary axis, portraying the interactions in a chain of a release hormone (secreted
by the hypothalamus), a tropic hormone (produced by the pituitary gland) and an effector hormone (secreted by a target gland).
This model, unlike previously published ones, captures two prominent features of neurohormonal regulation systems, namely,
the pulsatile (episodic) production of the release hormone and a complex non-cyclic feedback mechanism that maintains the
involved hormone concentrations within certain biological limits. At the same time, the discussed model is analytically tractable;
in particular, the existence of a so-called 1-cycle featured by a single pulse over one period is proven mathematically.

1. Introduction

Hormones are chemical blood-borne substances produced in
an organism by glands that regulate vital functions such as
metabolism, reproduction, and growth. The endocrine system
of an organism is the collection of glands communicating
through hormone molecules as messengers, see e.g. [1].
The interacting glands can be considered as a dynamical
system with numerous feed-forward and feedback control
mechanisms, corresponding to stimulatory and inhibitory
couplings between the hormones. The operation of endocrine
glands is orchestrated by the brain, in particular the
hypothalamus and the pituitary gland (hypophysis). The former
produces concentration pulses of so-called release hormones
(releasing factors) that communicate control information to
the glands through pulse amplitude and frequency, see e.g.
[2]. The neuroendocrine control loop incorporating the
hypothalamus and the involved endocrine glands gives thus an
example of impulsive (pulse-modulated) control system [3] and
constitutes a special case of hybrid system [4], involving both
continuous-time and discrete-time dynamics.

1.1. Endocrine axes
Given the complexity and multiscale nature of the underlying

biological structure, to devise a mathematical model that
describes the operation of the endocrine system in the extensive
detail is a challenging problem. Tractable mathematical models

∗Corresponding author
Email addresses: taghvafard@gmail.com (Hadi Taghvafard),

alexander.medvedev@it.uu.se (Alexander Medvedev),
anton.p.1982@ieee.org (Anton V. Proskurnikov), m.cao@rug.nl (Ming
Cao)

are usually obtained by decoupling the endocrine system into
subsystems, called axes, capturing only essential characteristics
and interactions [5].

One of the most studied endocrine axes is the one
that regulates the production of testosterone (Te) in
the male, where the Gonadotropin-Releasing Hormone
(GnRH) and the Luteinizing Hormone (LH) play crucial
roles. This axis is called the GnRH-LH-Te (or the
Hypothalamo-Pituitary-Reproductive) axis. GnRH, produced
in the hypothalamus, stimulates the pituitary gland that
responds by the secretion of LH that, in turn, stimulates the
production of Te in the testes. This cascade of stimulation from
GnRH to Te is then closed by two negative feedback loops
from Te to GnRH and LH [5, 6]. The feedback from Te to LH
is a somewhat intricate matter. It is fundamentally enabled by
the presence of Te receptors in the pituitary but its strength
apparently differs between species [7].

The mathematical construction used to portray the
mechanism of Te regulation serves as a benchmark in modeling
of endocrine regulation, because much of the structure is
widely applicable to some other neuroendocrine regulatory
circuits controlled by the hypothalamus and the pituitary gland
[8, 9]. The structure and function of the pulsatile feedback
mechanism from Te to GnRH is similar to the function of some
other releasing hormones, such as in the endocrine axes of
cortisol, growth, adrenal and parathyroid hormones [10, 11].
The schematic diagram of these mechanisms, including two1

negative feedback loops, is shown in Fig. 1.

1Although the third “short” feedback from pituitary to hypothalamus also
exists [9], its effect is much weaker than the influences of the “long” feedbacks
and is often neglected to reduce the models’ complexity [12, 13].
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Cortisol (C) is a hormone involved in the response to stress
and inflammation as well as in metabolism. Similar to the case
of Te regulation, the C regulation loop essentially comprises
two more hormones [14–17]. Corticotropin-releasing hormone
(CRH) is secreted in the hypothalamus in pulses and stimulates
the release of adrenocorticotropic hormone (ACTH) from the
pituitary gland to the bloodstream. Further, ACTH stimulates
the secretion of C from the adrenal glands. Neither the
amplitude nor the frequency of the CRH pulses are constant:
the amplitude increases under stress, and the frequency varies
from one to three CRH release episodes per hour. There are
two feedback loops in the axis. C inhibits the secretion of CRH
in the hypothalamus, both pulse mass and timing, through a
negative “outer” impulsive feedback; C also inhibits the ACTH
secretion through a continuous local feedback [18].

Another clinically important and often studied example of
pulsatile endocrine axis is presented by the regulation of growth
hormone (GH) that is secreted in the pituitary in response
to pulses of growth hormone-releasing hormone (GHRH)
produced in the hypothalamus. The third hormone in the chain
is growth hormone-inhibiting hormone (GHIH), also known
as somatostatin, which is secreted at several locations in the
digestive system. The secretion of GHIH is stimulated by
GH and inhibits the secretion of GHRH, thus closing the
negative regulation loop. GHIH also inhibits GH secretion in
a dose-dependent manner through a local feedback [19].

Figure 1: A hypothalamus-pituitary endocrine axis

1.2. Mathematical modeling
For some endocrine regulation circuits, e.g. the

GnRH-LH-Te axis in the male, very detailed and realistic
models have been constructed [5, 8], taking into account
nonlinear interactions between the hormones, the hybrid
dynamics of the system, and uncertainty of the model
parameters captured by stochastic processes. The high
complexity of these models makes their thorough analysis
challenging; even the proof of solution existence requires
non-trivial mathematical tools [8]. At the same time, visible
progress has been made in analysis of simplified models that
can be divided into several major classes.

The first mathematical models postulated to describe
the hormonal regulation, namely, secretion of thyroid

hormones [20] and Te regulation in the male [21], constitute
special cases of the so-called Goodwin’s oscillator, which has
been proposed in [22] to describe enzymatic control processes
in cells. Goodwin’s model portrays sustained oscillations in
a cyclic feedback system of three chemicals (Fig. 2) that in
e.g. [21] stand for the GnRH, LH and Te hormones. Chemical
A stimulates the production of B, which in turn stimulates
the production of chemical C, which represses the activity
of A thus closing the negative feedback loop. The cascade
of corresponding biochemical interactions is described by a
third-order system of differential equations. In the simplest and
most studied situation [21, 22], the kinetics of each reaction are
described by a linear equation, and the only nonlinear term in
the system represents the negative feedback from C to A.

Figure 2: The scheme of Goodwin’s oscillator as a cyclic feedback system

Models of endocrine regulation that are squarely based
on Goodwin’s model inherit its principal limitations. First,
oscillatory behavior is observed only for special choices of the
model parameters. For instance, if the negative feedback is
parameterized by the Hill nonlinearity, it has been observed that
periodic solutions exist only for the Hill constants greater than2

8, which are usually considered as biologically infeasible [25,
26]. Second, Goodwin’s model does not capture the full
feedback mechanism of a hormonal axis, since it neglects the
“local” feedback from the target gland to the pituitary and
cannot explain pulsatile secretion of the releasing hormone.

The mentioned limitations have given rise to two classes of
models extending conventional Goodwin’s oscillator. Models
of the first type [12, 13, 27–32] abandon the restrictive cyclic
structure of Goodwin’s oscillator and consider more complex
interactions between the hormones that obey nonlinear ordinary
or delay-differential equations. Their continuous dynamics,
inherited from the Goodwin oscillator, enable one to use
well-developed techniques of ordinary differential equations,
from the local stability analysis and Hopf bifurcations to recent
extensions of Poincaré-Bendixson theorems [33].

The second class of models, developed in [10, 34–39]
for Te regulation in the male, preserve the cyclic structure
of Goodwin’s system (Fig. 2) and focus on the pulsatile
mechanism of the release hormone’s secretion, whose existence
is established by numerous experimental studies [5, 40,
41]. To cope with the hybrid (impulsive) dynamics of such
models, special techniques have been developed from theory of
impulsive control systems [3]. Unlike the Goodwin’s oscillator

2For Hill constants less than 8, the equilibrium of the model is known to be
locally stable [21], whereas global stability, suggested by extensive computer
simulations, has been proved only in special situations [23, 24].
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with a continuous nonlinearity, the hybrid model of [35] has
no equilibria and is proved to have periodic trajectories. In
particular, a unique solution with one pulse over the period
(1-cycle) exists [35]; periodic solutions with m ≥ 2 pulses per
period (m-cycles) may also exist [39].

1.3. The model under consideration
Recapitulating the overview of mathematically tractable

models that portray dynamics of the hypothalamus-pituitary
axes, one notices that the effects of multiple feedback
loops and discontinuous feedback mechanisms have been
studied separately. The examples of pulsatile neuroendocrine
regulation loops in Section 1.1 motivate to introduce study a
generic third-order system with a local feedback from the target
gland to pituitary and the outer (intrinsic) pulse-modulated loop
from the gland to hypothalamus. To study the mathematical
properties of such a system is the main objective of this paper.
A natural question arises on whether such a system enjoys
the properties that are established for the impulsive Goodwin’s
oscillator without local feedback, e.g. the existence of cycles.

The local feedback, whose function is supported by
sufficient experimental evidence [5, 8, 9, 12, 29, 40], can
be reasonably assumed to be continuous, as it does not
pass through hypothalamus that applies pulsatile neurally
implemented regulation. There is, however, no consensus on
the mathematical description of the respective feedback control
law. Whereas one could in principle suppose that this feedback
mechanism is nonlinear and can be described by a Hill-type
or other decreasing nonlinear function, this paper considers
a model, where the negative local feedback is represented
by an affine function (first-order polynomial). Similar to the
impulsive Goodwin oscillator [35], the dynamics of such a
system between two consecutive pulses are affine, and this
property is beneficial in two aspects. First, it allows to extend
the theory developed in [35] to the case of non-cyclic endocrine
regulatory circuit with two feedbacks. Second, it enables the
use of efficient identification methods [10, 37] that are still more
developed for systems whose dynamics depend linearly on
unknown parameters (regressor form). From experimental data,
the feedback typically cannot be observed in its full domain
of definition [42]; beyond the saturation intervals of extreme
hormone concentration, the Hill-type nonlinearity can be well
approximated by an affine function.

Unlike the Hill-type nonlinearity, strictly decreasing
polynomial functions cannot remain positive on the positive
semi-axis. In contrast to both the original Goodwin’s oscillator
and its impulsive counterpart, the model considered in this
paper does not enjoy the global positivity property (the
positive orthant is not forward invariant). Whereas a positive
value of each state variable corresponds to the actual serum
concentrations of the respective hormones, a negative value
may be interpreted as the amount of hormone that the system
is lacking for normal functioning. The biologically available
pool of a hormone in a gland is limited at any moment and
can be less than an instantaneous demand for it. In the long
run, lack of releasable hormone is known to lead to endocrine
diseases such as type II diabetes and adrenal depletion. From

a biological viewpoint, negative solutions can thus be feasible,
standing however for pathological behaviors of the system.

Due to the fact that endocrine regulation processes exhibit
self-sustained oscillations, the main concern in securing model
feasibility is the existence of periodic solutions in the system.
The key finding in [35] dealing with the impulsive Goodwin’s
oscillator is the existence and uniqueness of a special periodic
solution (“1-cycle”), having only one pulse over the (minimal)
period. In general, the system may have other periodic
solutions; the clinical data suggest the existence of cycles with
multiple pulses over the period.

For the cyclic model presented in [35], the existence and
uniqueness of 1-cycle solution along with its local stability
are given. In this work, similar results are obtained with
respect to a system with an additional feedback. Note that the
positivity of 1-cycle solutions of the cyclic model in [35] holds
automatically, while it is not true for the extended system. So
another contribution of this paper is the disclosure of sufficient
conditions for positivity of the 1-cycle solution.

The rest of the paper is organized as follows. In Section 2,
the impulsive Goodwin’ oscillator proposed in [35, 43–45] is
recapitulated and an extension to it is introduced, which is the
main contribution of this work. The mathematical properties
of this model are discussed in Section 3. In Section 4, these
results are illustrated by numerical simulations. In Section 5,
conclusions are drawn.

2. Impulsive Goodwin’s oscillator and its extension

In this section, the model of impulsive (or hybrid) Goodwin’s
oscillator, proposed in [35, 43–46] to portray the pulsatile
feedback mechanism of the testosterone regulation in the male,
is extended to include a local continuous feedback. This
extension is supported by biological facts and is also shown to
impact the assumptions that are critical for the use of the readily
available model analysis. For the reader’s convenience, the
original model’s properties are summarized in the next section.

2.1. The impulsive Goodwin’s oscillator

The model in [35] describes the dynamics of three
variables R(t), L(t),T (t), standing, respectively, for the serum
concentrations of the release, tropic and effector hormones.
In the case of Te regulation, these hormones are GnRH,
LH and Te. Similar to the classical (continuous) Goodwin
oscillator [22], the feedforward couplings in Fig. 1 are
described by a chain of linear first-order blocks as follows

L̇(t) = g1R(t) − b2L(t),
Ṫ (t) = g2L(t) − b3T (t),

b2, b3, g1, g2 > 0.
(1)

The release hormone R initiates the chain by stimulating the
production of the tropic hormone L, which in turn drives the
production of the effector hormone T . The model from [35]
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ignores the presence of the local feedback from T to L, whereas
the “long” pulsatile feedback mechanism obeys the equations3

Ṙ(t) = −b1R(t), t ∈ (tn, tn+1]
R(t+n ) = R(tn) + λn, n = 0, 1, . . . .

(2)

The instantaneous jumps in the hormone concentration are
caused by short release hormone pulses. The pulses are fired
by a pulse-modulation mechanism, implementing the “long”
feedback from the effector to the release hormone (Fig. 1). The
sequences of pulse instants tn and amplitudes λn depend on a
specific solution of the model given by (1),(2). An important
assumption, based on experimental evidence [47], is that, in
this feedback mechanism4, the amplitude λn and the inter-pulse
interval (tn+1− tn) depend only on the state of the system at time
tn, but not on the previous trajectory. More precisely,

λn = Ψ(T (tn)), tn+1 = tn + Φ(T (tn)), t0 = 0, (3)

where the functions Φ,Ψ are strictly positive and bounded

Φ : R→ [Φ1,Φ2], Ψ : R→ [Ψ1,Ψ2],
0 < Φ1 < Φ2 < ∞, 0 < Ψ1 < Ψ2 < ∞.

(4)

The assumption t0 = 0 does not reduce generality and means
that the system operation starts with the first pulse.

The amplitude modulation characteristic Ψ is supposed to be
non-increasing, while the frequency modulation characteristic
Φ is assumed to be non-decreasing. In testosterone regulation
mechanism, an increase of Te level decreases the frequency
of GnRH pulses and reduces their amplitudes [6], thus also
suppressing the bursts of LH. This agrees with the inverse
relation between the frequency of GnRH pulses and amplitudes
of (major) LH pulses, documented in the literature [49].

2.2. The main properties of the impulsive Goodwin’s oscillator
Introducing the continuous state vector x(t) =

[R(t), L(t),T (t)]> and the matrices

A =

−b1 0 0
g1 −b2 0
0 g2 −b3

 , B =

100
 , C = [0, 0, 1], (5)

model (1)-(3) can be rewritten as follows

ẋ(t) = Ax(t), y(t) = Cx(t), t ∈ (tn, tn+1],
x(t+n ) = x(tn) + Bλn,

(6)

λn = Ψ(y(tn)), tn+1 = tn + Φ(y(tn)), t0 = 0. (7)

The equations of (6) can be also written as follows

x(t) = etAx(0) +
∑

n: tn<t

e(t−tn)ABλn,

x(t+) = x(t) + B

0, t < {tk}k≥1

λn, t = tn.

(8)

3Given a function f : [0,∞) → R, we use f (t+) to denote the right limit
lim
s↓0

f (t + s). Henceforth all piecewise-continuous functions, without loss of

generality, are supposed to be left continuous, so f (t) = lim
s↓0

f (t − s)∀t > 0.
4Such a feedback mechanism is referred to as a pulse amplitude-frequency

modulator of the first kind [3] or an impulsive self-triggered control [48].

or, using the formalism of Dirac δ-functions

ẋ(t) = Ax(t) + Bξ(t), ξ(t) =

∞∑
n=0

λnδ(t − tn). (9)

Equation (9) resembles the well-known Goodwin’s
oscillator [22, 32] with the only principal difference that
the static nonlinear feedback of the latter is replaced by a
nonlinear pulse modulator of (7). The system (1)-(3) or,
equivalently, (6),(7) is henceforth referred to as the impulsive
(or hybrid) Goodwin oscillator. Due to the persistent pulses,
this system has no equilibria and always has periodic solutions
(possibly, unstable) [35].

Since A is Hurwitz and Metzler,5 the matrix etA has
nonnegative entries and exponentially decays as t → ∞.
Moreover, it can be shown that the vector etAB is strictly
positive for any t ≥ 0. Using (4),(7),(8), it is shown [35] that

0 < Vi ≤ lim
t→+∞

xi(t) ≤ lim
t→+∞

xi(t) ≤ Hi < ∞ ∀i = 1, 2, 3, (10)

where the constants Vi,Hi can be found explicitly and depend
on the bounds Φi,Ψi in (4) and constants bi, gi as follows

V1 =
Ψ1

eb1Φ2 − 1
, V2 =

g1V1

b2
, V3 =

g1g2V1

b2b3

H1 =
Ψ2

1 − e−b1Φ2
, H2 =

g1H1

b2
, H3 =

g1g2H1

b2b3
.

(11)

Note that in view of (8) the system is positive: if the
components of x(0) are non-negative, the same holds for x(t),
t ≥ 0. Inequalities (10) show that the feedback mechanism
adjusts the hormone levels around a normal physiological
pattern that belongs to an attractor, not necessarily a periodic
one, [36]. It is also obvious from (10) that each trajectory is
uniformly positive (after a transient period) and bounded.

As known from [35], the system always has 1-cycle, i.e.
a special periodic solution, such that the (minimal) period
contains only a single pulse. This result is based on the fact
that the sequence Xn = x(tn) obeys the recursion

Xn+1 = Q(Xn), Q(x) := eAΦ(Cx)(x + Ψ(Cx)B), (12)

and the complete inter-sample behavior of the (hybrid)
solutions can be reconstructed from it.

Theorem 1 ([35]). For any non-increasing function Ψ and
non-decreasing function Φ that are C1-smooth and satisfy (4),
the mapping Q has a unique fixed point x0 > 0 corresponding
to the unique 1-cycle solution to impulsive system (6),(7).

It can be shown [35] that (12) is, for the case of 1-cycle,
equivalent to the transcendental equation for y0 = Cx0

y0 = C
(
I − eAΦ(y0)

)−1
eAΦ(y0)Ψ(y0)B, y0 > 0, (13)

5A real square matrix is called Hurwitz if all its eigenvalues λ j have negative
real parts Re λ j < 0 and Metzler if all its off-diagonal elements are nonnegative.
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whose right-hand side appears to be a non-increasing function
of y0 [35]. The inverse matrix exists since A is a Hurwitz matrix
and Φ(·) is uniformly positive.

Notice also that the biology of the system precludes identical
half-life times in an endocrine axis, i.e. bi, i = 1, 2, 3 are all
distinct. In this generic situation, the latter equation can be
further simplified as follows

y0 = g1g2Ψ(y0)
3∑

i=1

αi

ebiΦ(y0) − 1
,

αi =

3∏
j=1
j,i

1
b j − bi

, i = 1, 2, 3.
(14)

In general, the 1-cycle solution can be unstable; its orbital
stability is determined by the eigenvalues of the Jacobian Q′(x0)
(“multipliers”): if these eigenvalues λ1,2,3 ∈ C lie in the open
unit circle |λ j| < 1, the 1-cycle is orbitally stable [35]. Finally,
the hybrid Goodwin oscillator can have other periodic solutions
that correspond to the fixed points of Q with period m ≥ 2, i.e.

Q(m)(x0) = Q ◦ Q ◦ . . . ◦ Q︸             ︷︷             ︸
m times

(x0) = x0,

Q( j)(x0) , x0 ∀ j = 1, . . . ,m − 1,

where ◦ denotes composition of functions, i.e. Q ◦ Q(x) =

Q(Q(x)). Such solutions are referred to as m-cycles [50] and
characterized by m pulses fired during the (minimal) period.

2.3. Model extension with local feedback
This paper primarily addresses an extension of the impulsive

Goodwin’s oscillator that takes into account the local feedback
from the effector hormone T to the tropic hormone L. As
has been discussed in Introduction, there is no consensus in
the literature on what function should be used to describe this
feedback. It is henceforth assumed that the feedback can be
represented by the affine function µ − kT , where µ, k ≥ 0, so
that the linear equations in (1) are replaced by

L̇(t) = g1R(t) − b2L(t) − kT (t) + µ,

Ṫ (t) = g2L(t) − b3T (t),
(15)

where the pulsatile mechanism of release hormone secretion is
given by (2),(3). All other parameters describing the production
and clearing rates of the hormones are supposed to satisfy the
same assumptions as in Section 2.1.

Obviously, equation (1) is a special case of (15) with k =

µ = 0. The constant k ≥ 0 in (15) stands for the control gain,
regulating the dependence between the level of the effector
hormone (e.g. testosterone) and the secretion of the tropic
hormone in the pituitary gland. The constant µ may be
considered as a characteristic of the hormone’s basal level,6 i.e.

6In the case of Te regulation [35], a basal level also appears in the
concentration of Te. This, however, does not need a model modification since a
constant bias in T can be readily incorporated in the modulation functions Φ,Ψ.

the result of the hormone secretion outside the feedback loop.
Note here that removing µ simplifies the model, but then, for
b2 > b3, the system may not have positive solutions. With
µ , 0, the dynamics of (1) are nonlinear (affine), which is
a price to pay for preserving the model positivity in spite of
the local feedback. Naturally, linearity can be recovered by
considering µ as an additional state variable with the trivial
dynamics µ̇ = 0. However, it is more convenient to preserve
the chain structure and consider µ as a constant input.

With the matrices in (5) and introducing

D =

010
 , Ak = A − kD

[
0 0 1

]
, (16)

system (15),(2),(3) is rewritten in a matrix form as

ẋ(t) = Ak x(t) + Dµ, y(t) = Cx(t), t ∈ (tn, tn+1],
x(t+n ) = x(tn) + Bλn,

(17)

λn = Ψ(y(tn)), tn+1 = tn + Φ(y(tn)), t0 = 0. (18)

Similar to (8), one notices that

x(t) = etAk x(0) + A−1
k (etAk − I)Dµ +

∑
n: tn<t

e(t−tn)Ak Bλn

x(t+) = x(t) + B

0, t < {tk}k≥1

λn, t = tn.

(19)

The matrix Ak with the characteristic polynomial∣∣∣∣∣∣∣∣
λ + b1 0 0
−g1 λ + b2 k

0 −g2 λ + b3

∣∣∣∣∣∣∣∣ = (λ + b1)[(λ + b2)(λ + b3) + kg2].

is Hurwitz for any k ≥ 0. The principal difference with the
impulsive Goodwin’s oscillator from Section 2.1 is that Ak

is no longer Metzler, which means that the positive octant
{x ∈ R3 : xi > 0∀i} is not a forward invariant set. Since the
mechanism of the release hormone secretion in (2),(3) is the
same as in the impulsive Goodwin oscillator, inequalities (10)
remain valid for i = 1 with V1,H1 from (11) (recall that x1 = R).
The remaining two variables x2, x3 can become negative, being
however bounded in view of (19).

As has been discussed in Introduction, negative solutions can
be considered as biologically meaningful, standing however for
undesirable system behaviors. A natural question thus arises
on whether the extended impulsive Goodwin model (17),(18)
enjoys the main property of model (6),(7) and possesses
positive periodic solutions. The domain in the space of the
parameters where this can be guaranteed will be specified in
the next section. For the corresponding set of the parameters,
the extended model reduces in fact to a system of the same type
as (6),(7), thus enabling the use of the well-developed theory
for the impulsive Goodwin’s oscillator.

3. Mathematical results

In this section, the main mathematical result of the paper
is proved, extending the key properties of the impulsive

5



Goodwin’s oscillator from Section 2 to a more general system
that is given by (17),(18). Two key assumptions adopted to
obtain this result are, first, a small gain of the local feedback
k and, second, a sufficiently large µ (ensuring the solution’s
ultimate7 positivity)

0 ≤ k < k∗ :=
(b2 − b3)2

4g2
, (20)

µ > −g1V1 + max
(

g1g2ρ(H1 − V1)
b3

, 0
)
,

ρ :=
(b2 − b3) −

√
(b2 − b3)2 − 4kg2

2g2
.

(21)

Here V1,H1 are defined in (11). Under assumption (20), ρ ≤ 0
if and only if b3 ≥ b2; in such a situation, condition (21) holds
for any µ ≥ 0. Obviously, (20) and (21) hold when k = µ =

0. In the latter case, the system boils down to the impulsive
Goodwin’s oscillator, i.e. (6),(7).

Theorem 2. Let the functions Φ and Ψ be non-decreasing
and non-increasing, respectively. If condition (20) holds, then
system (17),(18) has a unique 1-cycle solution that, in general,
does not need to be strictly positive. If, additionally, the
condition (21) is valid, then all solutions of system (17),(18)
are uniformly ultimately positive and bounded

0 < V ′i ≤ lim
t→+∞

xi(t) ≤ lim
t→+∞

xi(t) ≤ H′i < ∞, i = 1, 2, 3, (22)

where V ′i ,H
′
i depend on the bounds Φi,Ψi and the coefficients

bi, gi, k, µ. In particular, the unique 1-cycle and all other
periodic solutions are strictly positive.

Notice that (21) may also hold for µ < 0. Although negative
value of µ does not have a clear biological interpretation (see
the discussion below), the ultimate positivity of solutions can
be guaranteed. Note that, unlike in the impulsive Goodwin’s
oscillator (k = µ = 0), solutions that start in the positive octant
x > 0 may leave it (some hormone’s level can be insufficient
for normal functioning of the system on some time intervals);
inequalities (22) entail however that the levels of hormones
return to the normal (non-negative) physiological pattern after
some transient period. The proof of Theorem 2 is based
on an affine transformation of the coordinates that reduces
system (17),(18) to the impulsive Goodwin’s oscillator (6),(7).
This transformation is introduced in the next subsection. An
alternative direct proof for the special case µ = 0 and b3 > b2
was given in the conference paper [51].

3.1. The state transformation of the system
Consider the following transformation

z1 = R, z2 = L + ρT + α, z3 = T + β, (23)

7A condition on the solution x(t) is said to hold ultimately if it holds for
sufficiently large t ≥ 0. In particular, an ultimately positive solution is a solution
that becomes positive as t → ∞ (yet may be negative for small t > 0).

where ρ is defined in (21) and α, β are two parameters to
be specified. The linear part of the system given by (15) is
transformed into

ż2 = g1z1 − (b2 − ρg2)z2 + (ρb2 − ρb3 − ρ
2g2 − k)z3+

+
[
µ + kβ + b2(α − ρβ) + ρ (g2(ρβ − α) + b3β)

]
,

ż3 = g2z2 − (ρg2 + b3)z3 + (g2(ρβ − α) + b3β) .

Note that ρb2 − ρb3 − ρ
2g2 − k = 0. Choosing α, β in a way that

g2(ρβ − α) + b3β = 0,
µ + kβ + b2(α − ρβ) = 0,

⇐⇒


α = −

µ(b3 + ρg2)
b2b3 + kg2

,

β = −
µg2

b2b3 + kg2
,

(24)

equations (15) reduce to their counterparts (1), where (R, L,T )
is replaced by (z1, z2, z3) and b2, b3 are replaced by

b̃2 = b2 − ρg2 > 0, b̃3 = b3 + ρg2 > 0. (25)

It is easily noticed that the signs of α, β coincide with the sign
of µ. The vector z(t) = (z1(t), z2(t), z3(t))> obeys the equations

ż(t) = Ãz(t), t ∈ (tn, tn+1], z(t+n ) = z(tn) + Bλn,

λn = Ψ̃ (Cz(tn)) , tn+1 = tn + Φ̃ (Cz(tn)) , t0 = 0,
(26)

where B,C are the same as in (5) and

Ã =

−b1 0 0
g1 −b̃2 0
0 g2 −b̃3

 , Φ̃(y) = Φ(y − β), Ψ̃(y) = Ψ(y − β).

Obviously, the nonlinearities Φ̃, Ψ̃ satisfy the inequalities (4)
with the same bounds Φi,Ψi. In view of (25), system (26) is
nothing else than a special case of the impulsive Goodwin’s
oscillator expressed by (6),(7). Hence, any solution x(t) of
(17),(18) corresponds to a solution of (26) and vice versa. The
findings of this subsection are summarized in the following
lemma.

Lemma 1. Assume that the “small gain” condition expressed
by (20) holds. Then mapping (23) establishes one-to-one
correspondence between the solutions of system (17),(18) and
the solutions of (26).

Lemma 1 allows to prove the first part of Theorem 2
since the mappings (z1, z2, z3) 7→ (R, L,T ) and (R, L,T ) 7→
(z1, z2, z3) are both affine, transforming thus periodic solutions
into periodic solutions and m-cycles into m-cycles for any m ≥
1. To compute the (unique) 1-cycle explicitly, one can use
equation (13) (replacing A with Ã) that, for distinct b1,b̃2,b̃3,
reduces to (14). In general, neither the state transformation
in (23) nor its inverse preserve positivity of solutions. Hence
the 1-cycle and other positive trajectories of (26) can be
mapped into solutions that leave the positive octant. To exclude
these “pathological” trajectories, additional restrictions on the
parameters are needed, e.g. (21).
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3.2. Proof of Theorem 2

The first statement follows immediately from Lemma 1
and Theorem 1. There is one-to-one correspondence between
1-cycles of the extended system (17),(18) and the impulsive
Goodwin’s oscillator (26), and the latter system has a unique
1-cycle in view of Theorem 1. To prove the second statement,
recall that the solutions of (26) satisfy inequalities (10),(11),
where b2, b3 have to be replaced by b̃2, b̃3.

To prove the second statement, recall that the solutions
of (26) satisfy inequalities (10), where Vi,Hi can be found
from (11), replacing b2, b3 by b̃2, b̃3 respectively:

V1 =
Ψ1

eb1Φ2 − 1
, Ṽ2 =

g1V1

b̃2
, Ṽ3 =

g1g2V1

b2b3 + kg2
,

H1 =
Ψ2

1 − e−b1Φ2
, H̃2 =

g1H1

b̃2
, H̃3 =

g1g2H1

b2b3 + kg2
.

Note that b̃2b̃3 = b2b3 + kg2 due to (21),(25). Since α, β depend
only on the system parameters, all solutions are uniformly
ultimately bounded in the sense of (22), where V ′i ,H

′
i depend

on the coefficients bi, gi, k, µ and the bounds Φi,Ψi. Obviously,
V ′1 = V1 and H1 = H′1 since x1 = z1. Recalling that T = x3 =

z3 − β, one proves (22) for i = 3, where

V ′3 = Ṽ3 +
µg2

b2b3 + kg2
=

g2(µ + g1V1)
b2b3 + kg2

(21)
> 0,

H′3 = H̃3 +
µg2

b2b3 + kg2
=

g2(µ + g1H1)
b2b3 + kg2

.

Notice now that L = x2 = z2 − ρz3 + (α − ρβ), where α − ρβ =

µb3/(b2b3 + kg2). In the case where b2 ≤ b3 , one has (−ρ) ≥ 0,
entailing (22) for i = 2 with

V ′2 = Ṽ2 − ρṼ3 +
µb3

b2b3 + kg2

(25)
=

b3(µ + g1V1)
b2b3 + kg2

(21)
> 0,

H′2 = H̃2 − ρH̃3 +
µb3

b2b3 + kg2

(25)
=

b3(µ + g1H1)
b2b3 + kg2

.

In the case where b2 > b3 and ρ > 0, (22) holds for i = 2 with

V ′2 = Ṽ2 − ρH̃3 +
µb3

b2b3 + kg2

(25)
=

b3(µ + g1V1) + g1g2(V1 − H1)ρ
b2b3 + kg2

H′2 = H̃2 − ρṼ3 +
µb3

b2b3 + kg2

(25)
=

b3(µ + g1H1) + g1g2(H1 − V1)ρ
b2b3 + kg2

.

In view of (21), one has V ′2 > 0, which completes the proof.

Remark 1. It is obvious from the proof that condition (21)
cannot be fully discarded without losing the positivity property,
e.g. for µ < −g1H1 and b2 ≤ b3 one has H′2,H

′
3 < 0, that

is, all solutions of the system become negative. A numerical
simulation, presented in Section 4 (Example 3) demonstrates
that (20) cannot be dropped either: the system may even have
periodic orbits that leave the positive octant.

3.3. Discussion

It is instructive to seek a control-engineering interpretation
of the endocrine regulation model considered above. For the

sake of simplicity, it is confined to testosterone regulation. The
impulsive endocrine feedback can be assumed to pursue two
goals. First, the loop has to be brought to a certain oscillation
pattern, since both the frequency and amplitude of the GnRH
pulse train communicate biologically significant information
[2, 52]. Second, the concentrations of the involved hormones
have to be kept within biologically feasible bounds. Both goals
are clearly fulfilled in the model at hand.

One can also assume that the local feedback from Te to LH
facilitates the filtering of the pulsatile secretion of GnRH and,
consequently, limits the variation of Te. This is also confirmed
by numerical simulation, reported in Section 4 (Example 2).
The gain of the local feedback has thus to be limited, cf (20),
to allow for sufficient variation of the hormone amplitudes. As
mentioned Section 2.1, both the frequency and amplitude of the
GnRH pulses convey biologically significant information and
the impulsive mode of the endocrine secretion is essential for
the endocrine function.

As has been already discussed, the parameter µ in (17) can
be interpreted in terms of the hormones’ basal levels (for this
reason, it is natural to assume that µ ≥ 0). The basal level of
LH, here related to the value of µ, is known to be involved in
sexual maturation [53] and clinically used as a puberty marker.
Without GnRH stimulation, i.e. for R(t) ≡ 0, system (15) has
equilibrium at (L,T ) = (Lb,Tb), whose coordinates

Lb =
b3µ

b3b2 + kg2
, Tb =

g2µ

b3b2 + kg2
,

constitute the basal levels of LH and Te in the model. These
basal levels decrease when the local feedback gain k increases.
Therefore, to maintain biologically reasonable basal levels, the
gain has to be sufficiently small, cf. (20) and µ sufficiently large
and positive. The choice µ = 0 corresponds to negligible basal
levels of the two hormones and renders the continuous part of
the model at hand linear, in contrast to affine.

The matter of estimating the parameters (system
identification) of the impulsive Goodwin’s oscillator from
experimental Te and LH data without exogenous excitation is
covered in [10, 37]. To account for the hybrid nature of the
system, the identification is performed in two steps. First, the
timing and magnitude of the GnRH pulses is evaluated from the
LH data by sparse estimation relying on the technique proposed
in [54]. Second, linear identification is performed to estimate
the parameters of the continuous part of the model with the
GnRH impulses evaluated in the first step as input and the Te
concentration as the output. Despite some inherent limitations,
this approach apparently produces good data fit. Yet, the
approach of [10, 37] cannot be directly applied to the model
studied in the present paper since the local feedback in (15) is
intrinsic and not identifiable from an input-output experiment.
In order to recover identifiability, exogenous excitation of the
second hormone (LH) is necessary, as well known in classical
closed-loop identification theory [55]. Although feasible, this
is outside the scope of the present paper.
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4. Numerical examples

In this section, some numerical simulations illustrating the
behavior of the model at hand are presented.

Example 1. To start with, a set of parameters, partly
borrowed from the model of Hypothalamic-Pituitary-Adrenal
(HPA) axis in [29] is considered. The state variables L,R,T
stand, respectively, for the concentrations of CRH, ACTH and
cortisol (C) whose clearing rates are b1 = 0.023, b2 = 0.04 and
b3 = 0.0083. The secretion rates of ACTH and C are set as
g1 = 0.032 and g2 = 0.0013, whereas the nonlinear secretion
rate of CRH Ψ(·) and the frequency modulation functions Φ(·)
are chosen to be

Φ(y) = κ1 + κ2
y3

1 + y3 , Ψ(y) = κ3 + κ4
1

1 + y3 , (27)

with κ1 = 60, κ2 = 40, κ3 = 9 and κ4 = 0.045. Obviously,
these nonlinearities satisfy (4) with Φ1 = κ1,Φ2 = κ1 + κ2 and
Ψ1 = κ3,Ψ4 = κ3 + κ4. It can be shown that conditions (20)
and (21) hold when k < 0.1932 and µ > 0.1747. The behavior
of the system for k = 0.1 and µ = 0.11 and the initial condition
(R, L,T )t=0 = (1, 4.5, 1) is shown in Fig. 3. One may see that
the solution converges to a positive 1-cycle, and the patterns of
oscillations are similar to those reported in [29].
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Figure 3: A solution of the system (17)-(18) under the assumptions of
Theorem 2: convergence to the positive 1-cycle.

Example 2. Next simulation illustrates the influence of gain
k on the system’s behavior. Fig. 4 illustrates the behavior
of the system from Example 1 for three different gains:
k = 0 (minimal possible value, ensuring that the feedback is
negative), k = 0.1932 (the maximal value for which positivity
is guaranteed by Theorem 2) and intermediate value k = 0.05.
One can see that an increase in k visibly damps the oscillation
amplitude and also influences the oscillation period.

Example 3. The last example shows that condition (20)
cannot be discarded without losing the ultimate positivity
property, moreover, for large k the system may have
acquire partly negative periodic orbits. The behavior of
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Figure 4: The effect of local feedback gain k on the solution.

system (17) - (18) with parameters b1 = 0.25, b2 = 0.15,
b3 = 0.20, g1 = 2, g2 = 0.5 is simulated with the nonlinearities
Φ,Ψ being the same as in Example 1. The local feedback
parameters are chosen as µ = 0, satisfying thus (21) (note that
ρ < 0) and k = 0.1 > k∗ = 0.0013. Fig. 5 shows that the
unique 1-cycle solution periodically leaves the positive octant,
and hence Theorem 2 does not hold.
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Figure 5: A partly negative periodic orbit, arising due to violation of (20).

5. Conclusions

In this paper, a novel model of hypothalamic-pituitary
hormonal axis is proposed. It is based on the previously studied
model of the impulsive Goodwin’s oscillator and captures the
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structure of the pulse-modulated neuroendocrine regulation
mechanism. This mechanism comprising the pulsatile “outer”
feedback from a target gland to the hypothalamus and
continuous “local” feedback from the gland to the pituitary.
The description of the local feedback remains an open
problem; to simplify analysis of the model and make it
more tractable this feedback is chosen to be affine. It is
demonstrated that the presence of this additional feedback,
under natural assumptions, preserves the key property of
the impulsive Goodwin’s oscillator, namely, the existence of
periodic solutions, in particular, the unique 1-cycle solution
featured by one pulse of the release hormone over the least
period. The presence of an affine negative feedback gives rise,
however, to the problem of solution positivity; in general, the
positive orthant fails to be an invariant set. At the same time,
natural conditions provide positivity of each periodic trajectory
and ultimate positivity of the remaining solutions. The
mathematical results are illustrated by numerical simulations.
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