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Effect of in-plane loadings on the free vibration of plates in nonlinear regime
R. Augello*, E. Carrera®, W. Chen**, M. Filippi*, A. Pagani*, B. Wu*

*MUL?, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
** Department of Engineering Mechanics, Zhejiang University, Hangzhou, PR China

Abstract. This work investigates the free vibration of plate structures subjected to geometric nonlinear equilibrium
states. The proposed method extends 2D (plate) higher-order finite elements based on the Carrera Unified Formulation
(CUF) to deal with large displacements. Hence, full Green-Lagrange strains are employed in a total Lagrangian scenario
along with a path following method for investigating modes and frequency change with no loss of generality. In fact,
according to CUF, the accuracy of the analysis — and thus the computational costs — can be set as input, depending on
the problem complexity. The results demonstrate that refined models are needed for most of the analyses in which stress
states do not meet the hypotheses of classical plate theories.

Introduction

Modal behaviour of structures is evidently a property of the equilibrium state. As a matter of fact, the natu-
ral frequencies can be affected by pre-stress states and large displacements/rotations states in the case of thin
plates, for example. Thin-film solar sails for deep-space propulsion, high-altitude unmanned surveillance air-
craft, lightweight solar-powered high-endurance aircraft, rotorcraft, bridges, pipelines, and towers all possess
structural components subject to a variety of loading conditions which can affect their non-trivial vibration
characteristics [1].

The methodology introduced in this work is based on the Carrera Unified Formulation (CUF) [2, 3], according
to which any theory of structures can degenerate into a generalized kinematics that makes use of an arbitrary
expansion of the generalized viariables. In this manner, the nonlinear governing equations and the related
finite element arrays of the generic geometrically-exact beam theory are written in terms of fundamental nuclei
(FNs). These fundamental nuclei represent the basic building blocks that, when opportunely expanded, allow
for the straightforward generation of low- and high-order finite elements. The formulation has been recently
employed for the static [4] and dynamic [5] geometric nonlinear analysis of beams. This work, in contrast,
further extends CUF for the free vibration analysis of plate structures subjected to in-plane loadings, along
moderate- and large-displacement equilibrium states.

Unified plate element
Consider a plate laying on the xy-plane of a Cartesian coordinate system. According to CUF, the three-
dimensional displacement field u can be expressed as

u(z,y,z) = Fr(2)u-(z,y), T=12,... M (1

where F. are the thickness functions of the coordinate z, u, is the vector of the generalized displacements
on the mid-plane, M stands for the number of the terms used in the expansion, and the repeated subscript
7 indicates summation. The choice of F, determines the class of the 2D CUF model that is required and
subsequently to be adopted. Accordingly, Taylor, Lagrange and Legendre-type polynomials have been used in
the domain of CUF to formulate high-order theories, see [3].

Note that, if the Finite Element Method (FEM) is adopted, the generalized displacements can be further ap-
proximated by discretizing the problem domain on the mid-plane by using classical shape functions N; to give

ur(z,y) = Ni(z,9)q,;  i=1,2,...,p+1 2

where p is the order of the shape functions and 7 stands for summation. q.; is the vector of the FE nodal
parameters.

Free vibration of nonlinear plates

Equations of motion of an elastic body undergoing undamped free vibration can be obtained by imposing the
equality of the virtual variation of the internal energy and the virtual variation of the work of the inertia loads.

5Lint - 5Line =0 (3)

By using CUF, FEM, the Green-Lagrange strain-displacement relations and assuming a linear elastic material,
the virtual variation of the strain energy can be written as [4]

L =< o€’ o >=6qL; KZ ™ qy; (4)



where < (-) >= fv() dv. ng” is the fundamental nucleus (FN) of the second-order nonlinear, secant
stiffness matrix. It is a 3 X 3 matrix that, given the theory approximation order — i.e., given the cross-sectional
functions (F, = Fj, for 7 = s) and the shape functions (/V; = N, for ¢ = j)—, can be expanded by using the
indexes 7,s = 1,..., M and 7,57 = 1, ...,p+ 1 in order to obtain the element stiffness matrices of any arbitrarily
refined plate model. In other words, by opportunely choosing the plate kinematics, classical to higher-order
plate theories and related stiffness array can be implemented in an automatic manner by exploiting the index
notation of CUF. In a similar manner, the FN of the linear mass matrix can be obtained from the virtual variation
of the inertial loadings as follows:

0Line =< 6q" p§ >= 6qL;M"™* §,, 6))

where M%7 is the FN of the mass matrix and p is the material density.

It is fairly obvious that the modal behaviour of any system is a property of the equilibrium. Inherently, free
vibration analysis needs to be made about a linearized equilibrium state along the equilibrium path. For this
purpose, Eq. (3) needs to be properly linearized in order to obtain the modal behaviour of the structure about
given states of the equilibrium path. Assuming as linear the virtual variation of the inertial work, we need to
linearize the virtual variation of the nonlinear, internal strain energy to obtain the rangent stiffness matrix.

8(0Lint) =< 0(0e’0) >=< de" 60 > + < §(6€")o >= dqL K} 6q,; (6)

(2
The FN of the tangent stiffness matrix KZ'TjTS is made of different contributions, including K (linear stiffness)
and K, (geometric stiffness). K, in particular, comes from the linearization of the nonlinear form of the strain-
displacement equations and it takes into account the effect of internal stresses on the nonlinear equilibrium state.
By using Egs. (6) and (5) into the linearization of Eq. (3) and assuming harmonic displacements, the equations

of motion for free vibrations hold the form of a classical eigenvalue problem, which in unified form reads:
(K%ZTS o w2MijTS) qTi =0 (7)
where w is a natural period and q_; the related amplitude eigenvector. In Eq. (7), the tangent stiffness matrix

is evaluated at a given point of the nonlinear equilibrium, see Fig. 1. If linear stiffness matrix is used instead,
Eq. (7) gives the natural frequencies of the system around the trivial equilibrium state.

FA

Equilibrium path

Equilibrium states

A3 K (u,)

ul u2 ui u’

Figure 1: Evaluation of natural frequencies about non-trivial equilibrium states of the nonlinear equilibrium path.
Conclusions

In this paper, higher-order plate elements based on the Carrera Unified Formulation (CUF) have been extended
to deal with large displacement analysis. Numerical results will show that the free vibration (natural frequencies
and modes) of plates can be severely affected as the equilibrium state is far from the trivial solution, in a
geometrically nonlinear sense. Buckling can be found inherently as a particular state in which the tangent
stiffness matrix is singular. Also, the results will demonstrate that classical models are not sufficiently accurate
in the case of complex stress states. The reason is that the geometrical stiffness plays a fundamental role in this
kind of analyses.
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