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Design of local observers for autonomousnonlinear systems

not in observability canonical form ?

Daniele Astolfi a and Corrado Possieri b

aUniv Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007,
43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France.

bDipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, 10129 Torino, Italy

Abstract

The main objective of this paper is to propose a framework for the design of local asymptotic observers, with arbitrarily fast
rate of convergence, for autonomous nonlinear systems that are not in observability canonical form. The proposed methodology
does not require the knowledge of the inverse of the observability map. Such a goal is pursued by coupling a high-gain observer
with a system that is able to locally dynamically invert the observability map.

1 Introduction

The main objective of this paper is to design a state
observer for the autonomous nonlinear system

ẋ = f(x), y = h(x), (1)

where x ∈ Rn is the state, y ∈ R is the output and
f : Rn → Rn, h : Rn → R are smooth functions. A clas-
sical approach to address such a problem (Gauthier and
Kupka, 2001; Besançon, 2007) consists in determining
an injective change of coordinates Φ : Rn → Rk+1, with
k > n−1, that recasts system (1) in the so called canon-
ical observability form (see Theorem 4.1 of Gauthier and
Kupka, 2001):

żi = zi+1, i = 0, . . . , k − 1,

żk = ϕ(z0, . . . , zk),

y = z0.

(2)

Thus, letting ẑ be an estimate of the state z =

[ z0 · · · zk ]> of system (2) (obtained, for instance, by

using the high-gain observer originally introduced in

? This work has been partially prepared when the first au-
thor was working at Université de Lorraine, CRAN, F-54000
Nancy, France, and supported in part by the “Région Grand-
Est” of France.

Email addresses: daniele.astolfi@univ-lyon1.fr
(Daniele Astolfi), corrado.possieri@polito.it (Corrado
Possieri).

Esfandiari and Khalil, 1987; Tornambe, 1992), the cur-
rent state of system (1) can be estimated as x̂ = Φ−1(ẑ).
Note that the knowledge of Φ−1(·) is usually required
also to determine a closed-form expression for the func-
tion ϕ in (2). In practice, the computation in closed form
of Φ−1(·) can be a too demanding task, although some
attempts have been made by using algebraic geometric
tools, e.g. Menini et al. (2016), high-gain approaches,
e.g. Nicosia et al. (1992) Menini et al. (2017), discrete-
time iterative schemes, e.g., Moraal and Grizzle (1995),
or sliding mode tools, e.g. Menini et al. (2018b). An al-
ternative approach, that does not require the knowledge
of Φ−1(·), consists in writing a high-gain observer in the
original coordinates (1) and using the inverse of the Ja-
cobian of Φ(·) in order to guarantee convergence of the
estimation error in the coordinates (2). This technique
has been investigated when Φ is a diffeomorphism (i.e.,
k = n − 1) in Ciccarella et al. (1993); Maggiore and
Passino (2003); Astolfi and Praly (2013), and extended
to systems with multiple outputs in Astolfi and Praly
(2017). Recently, conditions to use the same technique
when k > n − 1 have been studied in Bernard et al.
(2015, 2018) using a coordinate augmentation approach.

The main objective of this work is to propose a simple
and flexible framework to design a (local) asymptotic
observer for system (1) that does not require the knowl-
edge of the inverse of Φ(·), that can be applied for any
k > n − 1, and with a rate of convergence that can be
chosen arbitrarily fast. This is obtained by coupling in a
precise way two different tools: a dynamical system that
estimates the time derivatives of the output of (1) and a
dynamical algorithm able to determine the inverse of a
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nonlinear map. We allow a large flexibility in the design
of the two aforementioned tools. For instance, the first
system can be designed with any technique able to guar-
antee practical estimation of the output derivatives, like
a standard high-gain observer, see e.g. Khalil and Praly
(2014), or any variation of it (see, for instance, the ap-
proaches proposed in Astolfi and Marconi, 2015; Teel,
2016; Astolfi et al., 2018). Similarly, the second system
does not strictly require the use of the inverse of the Jaco-
bian of Φ. For instance, differently from the approaches
proposed in Ciccarella et al. (1993) and Hammouri et al.
(2018), we allow here to use also the transpose of the Ja-
cobian of Φ. Finally, in the proposed observation scheme
we do not need the knowledge of the function ϕ(·) in (2),
which can not be determined, in general, without com-
puting Φ−1(·).

With respect to the other approaches, we highlight the
following differences. Differently from the techniques
given in Ciccarella et al. (1993); Maggiore and Passino
(2003); Astolfi and Praly (2013, 2017), we do not re-
quire the map Φ to be a diffeomorphism, but we allow
the dimension of the system (2) in the canonical ob-
servability form to be larger than the dimension of the
system (1) in the original coordinates, namely k > n−1.
Furthermore, differently from Hammouri et al. (2018),
we do not need any strict convexity assumption on the
function Φ. We believe also that this approach is in
general more simple to apply than the one proposed
in Bernard et al. (2015, 2018), where an injective im-
mersion is needed to be transformed into a surjective
diffeomorphism. On the other hand, as the dynamical
algorithm inverting the map Φ is in general not global,
the convergence properties of the proposed approach
are not semi-global (namely the initial conditions of the
observer cannot be chosen arbitrarily far from the ones
of system (1)), whence only local convergence properties
can be established a priori. We highlight however, that
the design of local asymptotic observer may be of large
interest when combined with global practical observers,
as shown in Astolfi et al. (2017).

The proposed approach, at present, can be viewed as
a true alternative to Extended Kalman Filters (briefly,
EKF), since only local convergence is guaranteed (see
Bonnabel and Slotine, 2015 and references therein).
However, with respect to EKF, a certain number of ad-
vantages are ensured: we do not need extra hypotheses
which may be hard to verify, such as the boundedness
of the solution to a Riccati equation (which is essential
to prove convergence of the EFK); we can apply the
proposed design in case of injective maps Φ, namely
when k > n− 1; the basin of attraction of the proposed
observation scheme can be determined analytically by
using the tools given in Menini et al. (2018a); the rate
of convergence can arbitrarily assigned; the dimension
of the observer is smaller than the one of an EKF (2n
versus n+ n2 for the case k = n− 1).

Finally, differently from the observer given in Menini
et al. (2017), the observation scheme proposed in this
paper guarantees asymptotic (rather than practical) es-
timation of the state of system (1).

The paper is organized as follows. We introduce some
preliminary notations and notions in Section 2. We pro-
vide the main results of this paper in Section 3. A nu-
merical example is shown in Section 4. Conclusions and
future developments are discussed in Section 5.

2 Preliminaries

2.1 Notation

Let R, R>0, R>0, Z, Z>0 and Z>0 be the sets of
real, nonnegative real, positive real, integer, natural
numbers, and strictly positive natural numbers re-
spectively. Let |x| be the Euclidean norm of x ∈ Rn,
‖x‖[0,t] := sups∈[0,t] |x(s)|, and ‖x‖∞ := sups>0 |x(s)|.
Given r ∈ R>0, let satr(·) denote the saturation func-
tion, i.e., satr(x) = max(min(x, r),−r) for each x ∈ R.
Given δ ∈ R>0, let Bδ be the closed ball of radius
δ. Given A ∈ Rn×m, n > m, A† := (A>A)−1A>

is the Moore-Penrose pseudoinverse of A. Given

α = [ α1 · · · αn ]> ∈ Zn>0, let |α| =
∑n
i=1 αi,

xα =
∏n
i=1 x

αi
i , and ∂α

∂xα = ∂|α|

∂x
α1
1 ···∂x

αn
n

.

2.2 Observability of a nonlinear system

The solution of system (1) from x(0) = x0 ∈ Rn is
x(t) := φ(t, x0) and is assumed to exist and to be unique
for all times t ∈ R, t > 0. The observability map of order
k + 1, k ∈ Z>0, k > n− 1, for system (1) is

Ok(x) := [ h(x) · · · Lkfh(x) ]>,

with Li+1
f h(x) = ∂

∂x (Lifh(x))f(x), i = 0, . . . , k − 1, and

L0
fh(x) = h(x). The observability map Ok(·) relates the

solution φ(t, x0) with the time derivatives of the output

y. Namely, by letting z(t) = [ y(t) d
dty(t) · · · dk

dtk
y(t) ]>,

one has

z(t) = Ok(φ(t, x0)), ∀x0 ∈ Rn, ∀t ∈ R>0.

Note that if X ⊂ Rn is compact and positively invariant
for system (1), i.e., x0 ∈ X implies φ(t, x0) ∈ X for all
t ∈ R>0, then x0 ∈ X implies that z(t) is bounded for
all t ∈ R>0 due to the continuity of the map Ok(·). Let
the observability map Ok(·) of order k+ 1, k ∈ Z>0, for
system (1) be given. System (1) is locally k-differentially
observable on X ⊂ Rn if J(x) := ∂

∂xOk(x) is such
that rank(J(x)) = n, ∀x ∈ X (Isidori, 2013). Local k-
differential observability of system (1) implies the exis-
tence of a local inverse O−1

k (·) of Ok(·) in the neighbor-
hood of each x ∈ X (Gauthier and Kupka, 2001). As a
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consequence, by defining Φ(x) = Ok(x) for system (1),

the function ϕ in (2) is defined as ϕ(z) = Lk+1
f h◦Φ−1(z).

3 Main Results

This section is structured as follows. We detail the as-
sumptions that we need and the design of the proposed
observer in Section 3.1. We then discuss the feasibility
of the proposed assumptions in Sections 3.2 and 3.3.

3.1 Observer design

The main objective of this section is to show how to
design a (local) observer for system (1) based on the
time derivatives of the output y without resorting to
the inverse of the observability map. We state now the
following assumptions.
Assumption 1. There exist a compact set X ⊂ Rn, a
continuous function G : X → Rn×(k+1) and δ, λ ∈ R>0,
such that the following statements hold.

1) The set Xδ := {x ∈ X : x + x̃ ∈ X , ∀x̃ ∈ Bδ} is
nonempty.

2) For all (x, x̃) ∈ X × Bδ, we have that

x̃>G(x)(Ok(x+ x̃)−Ok(x)) > λ|x̃|2.

3) The set X0 ⊆ Xδ of admissible initial states of sys-
tem (1) is such that the solutions to (1) satisfy
φ(t, x0) ∈ Xδ for any x ∈ X0 and for all t > 0.

As detailed in the subsequent Section 3.2, if system (1)
is (locally) k-differentially observable in X , then there
exist λ ∈ R>0 and a function G(·) that satisfy item 2)
of Assumption 1. Then, under such an assumption, it is
possible to design a dynamical algorithm able to (locally)
invert the mapping Ok(·). In particular, this is given by

˙̂x = f(x̂) + µG(x̂)(Ok(x)−Ok(x̂)) (3)

with x̂ ∈ Rn and µ ∈ R>0 large enough. Solutions to (3)
guarantee that the estimation error |x̂ − x| converges
exponentially to zero if its initial value is small enough
(see Nicosia et al., 1994). In other words, if the mapping
Ok(·) is known, algorithm (3) allows to (asymptotically)
recover x, i.e., in other words, to invert Ok(·). However,
since the observability map Ok(·) of system (1) is usu-
ally not directly measurable, we cannot implement sys-
tem (3). As a consequence, in the next assumption, we
assume thatOk(·) can be estimated by means of another
dynamical system.
Assumption 2. Let Assumption 1 hold and let z(t) :=
Ok(φ(t, x0)) and y(t) := h(φ(t, x0)) for all t > 0. There
exist functions ϑ`(·), ψ`(·) parametrized by ` ∈ R>0, and
` ∈ R>0, such that, for any ` > `, system

ξ̇ = ϑ`(ξ, x̂, y), ẑ = ψ`(ξ) (4)

satisfies, for any t > 0,

|ẑ(t)− z(t)| 6 min
{
R, a(`) exp(−b`t) + d

` ‖x̂− x‖[0,t]
}

(5)
for any initial condition ξ(0) ∈ Ξ, where Ξ ⊆ Rm, m >
k > n − 1, is a compact set, x̂(t) ∈ Rn is an external
input which is defined for all t > 0, b, d,R ∈ R>0 are
constants independent of `, and a : R → R>0 is a C0

function satisfying

lim
`→∞

a(`) exp(−b`) = 0. (6)

Assumption 2 concerns the existence of a dynamical sys-
tem that provides a practical estimate of the observabil-
ity map Ok(·) of system (1), with an arbitrarily fast con-
vergence rate. Feasibility of this assumption is discussed
in Section 3.3.

In light of Assumptions 1 and 2, we combine sys-
tems (3) and (4) in order to obtain a (local) ob-
server,denoted high-gain observer with dynamical inver-
sion (HGOWDI), for system (1) as follows

ξ̇ = ϑ`(ξ, x̂, y), (7a)

˙̂x = f(x̂) + µG(x̂)(ψ`(ξ)−Ok(x̂)), (7b)

where (ξ, x̂) ∈ Rm × Rn is the state and µ ∈ R>0 is
a parameter to be chosen large enough. The following
statement holds.
Theorem 1. Let Assumptions 1 and 2 hold, and con-
sider system (1) and observer (7). For any c ∈ [0, 1),
there exists µ? ∈ R>0, and for any µ > µ? there exists
`? ∈ R>0, such that for all ` > `?, the set

A :=
{

(x, x̂, ξ) ∈ Xδ ×X × Ξ :

x̂− x = 0, ψ`(ξ)−Ok(x) = 0
}

(8)

is exponentially stable for any ξ(0) ∈ Ξ and x̂(0) ∈ X
satisfying |x(0)− x̂(0)| 6 cδ. Furthermore, it is possible
to make the errors |x̂−x| and |ψ`(ξ)−Ok(x)| arbitrarily
small in an arbitrarily small amount of time by letting
the gains µ and ` be sufficiently large.

Proof. Define the error x̃ := x− x̂, whose dynamics are
given by

˙̃x = f(x)− f(x̂)− µG(x̂)(ẑ −Ok(x̂))

= f(x)− f(x̂)− µG(x̂)(z −Ok(x̂) + ẑ − z)
= f(x̂+ x̃)− f(x̂)

− µG(x̂)(Ok(x̂+ x̃)−Ok(x̂) + ẑ − z), (9)

where, by definition, z = Ok(x) = Ok(x̂ + x̃) and ẑ =
ψ`(ξ). Recall that |x̃(0)| 6 cδ. Define 1

Tm := inf{t ∈ R>0 : x̃ /∈ Bδ},

1 We use the convention inf ∅ = +∞ as customary when
dealing with the set of extended real numbers R ∪ {±∞}.
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In light of item 3) of Assumption 1 and by the absolute
continuity of the solutions to systems (1) and (7), we
have that Tm > 0 and (x(t), x̂(t), x̃(t)) ∈ Xδ×X ×Bδ for
all t ∈ [0, Tm). Recall that f is smooth, X is compact,
and G is continuous. Therefore, there exist L,G ∈ R>0

such that |f(x) − f(x̂)| 6 L|x̃| for all x, x̂ ∈ X and
supx∈X |G(x)| 6 G. Moreover, by substituting x by x̂
in item 2) of Assumption 2, we obtain x̃>G(x̂)(Ok(x̂ +
x̃)−Ok(x̂)) > λ|x̃|2. As a consequence, the derivative of
the function x̃ 7→ |x̃|2 along the solutions to system (9)
satisfies

d

dt
|x̃|2 = 2x̃>

(
f(x̂+ x̃)− f(x̂)

− µG(x̂)(Ok(x̂+ x̃)−Ok(x̂) + ẑ − z)
)

6 2L|x̃|2 − 2µx̃>G(x̂)(Ok(x̂+ x̃)−Ok(x̂))

− 2µx̃>G(x̂)(ẑ − z)
6 −2(µλ− L)|x̃|2 + 2µG|x̃||ẑ − z|, (10)

for all t ∈ [0, Tm). Thus, by integrating (10) and by
recalling |x̃(0)| 6 c δ, we obtain

|x̃(t)| 6 exp(−(λµ− L)t) c δ+

µG
∫ t

0
exp(−(λµ− L)(t− s))|z̃(s)|ds, (11)

for all t ∈ [0, Tm), where we denoted z̃ := ẑ− z. Fix any
µ? > L

λ and let % ∈ R>0 be such that

µG
λµ−L 6 % ∀ µ > µ? . (12)

Such a % exists since the term on the left is strictly de-
creasing for µ ∈ [µ?,∞). Thus, fix µ > µ?. By using (11)
and the previous inequality, we obtain

|x̃(t)| 6 exp(−(λµ− L)t)cδ

+ %(1− exp(−(λµ− L)t)) sup
s∈[0,t]

|z̃(s)|, (13)

for all t ∈ [0, Tm). Recall now that |z̃(t)| 6 R for all
t ∈ R>0 in view of (5). Therefore, let T ∈ R>0 satisfy

%(1− exp(−(λµ− L)T ))R 6 (1−c)δ
2 . (14)

Such a T exists since the term on the left is 0 when T = 0,
and increasing for T > 0. As a consequence, we obtain
that if |x̃(0)| 6 cδ, then |x̃(t)| 6 δ for all t ∈ [0, T ] (i.e.,
Tm > T ). With such a T , let `1 > ` be such that

a(`) exp
(
−b`T2

)
+ d

` δ 6 min{R, (1−c)δ
2% }

for any ` > `1. Such an `1 does always exist in view

of (6). With such choice, we obtain that |z̃(t)| 6 (1−c)δ
2%

for all t ∈ [T2 , Tm). By using again (11) and inequality
(14), we obtain

|x̃(t)| 6 exp(−(λµ− L)t)cδ

+ µG
∫ T

2

0
exp(−(λµ− L)(T2 − s))|z̃(s)|ds

+ µG
∫ t
T
2

exp(−(λµ− L)(t− s))|z̃(s)|ds
6 exp(−(λµ− L)t)cδ + (1−c)δ

2

+ % sups∈[T2 ,t)
|z̃(s)|, (15)

for all t ∈ [0, Tm). Hence, assume that Tm <∞. By (15),
this implies that there exists t ∈ [T2 , Tm) such that

|z̃(t)| > (1−c)δ
2% , that is in contradiction with |z̃(t)| 6

(1−c)δ
2% , for all t ∈ [T2 , Tm). As a consequence, we have

that Tm = +∞ and therefore it results that |x̃(t)| 6 δ

for all t > 0 and |z̃(t)| 6 (1−c)δ
2% for all t ∈ [T2 ,∞). Thus,

by (5) and (13) , there exist functions$1, $2 of classKL
(parametrized by `) such that, if x(0) ∈ X , |x̃(0)| < δ,
and ξ(0) ∈ Ξ, then,

|z̃(t)| 6 max
{
$1(|z̃(0)|, t), d` ‖x̃‖∞

}
,

|x̃(t)| 6 max {$2(|x̃(0)|, t), %‖z̃‖∞} ,

for all t ∈ R>0. Thus, if we further impose ` > `?, with
`? = max{`1, `2} and `2 = d%, the small gain condition
given in Teel (1996) is verified. Thus, the set {z̃ = 0, x̃ =
0} is locally exponentially stable with basin of attraction

including {|z̃| 6 (1−c)δ
2% , |x̃| 6 δ}. This concludes the

first part of the proof.

In order to prove the second part, we need now to show
that for any ε ∈ R>0 and any Tε ∈ R>0, there exists
`, µ ∈ R>0 such that |x̃(t)| + |z̃(t)| 6 ε for all t > Tε.
Hence, first select µ� ∈ R>0 such that

exp (−(λµ− L)Tε) δ 6 ε
4 , (16a)

for any µ > µ�. Fix any µ > max{µ?, µ�}, where µ? is
defined as in the first part of the proof, and pick any
T ∈ (0, Tε] such that

%(1− exp(−(λµ− L)T ))R 6 ε
4 . (16b)

Finally, let `� ∈ R>0 be such that

a(`) exp
(
−b`T

)
+ d

` δ 6 min
{
ε

4% ,
ε
4

}
, (16c)

for all ` > `�. Fix any ` > max{`?, `�}, where `? is
defined as in the first part of the proof. As a consequence,
by recalling (5), the fact that |x̃(t)| 6 δ for all t > 0 and
(16), we obtain |z̃(t)| 6 R for t ∈ [0, T ] and |z̃(t)| 6 ε

4

for all t > T . Furthermore, by using the bounds given in
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(11), and the definition of T in (16) and of % in (12), we
obtain

|x̃(t)| 6 exp(−(λµ− L)t)δ

+ µG
∫ T

0
exp(−(λµ− L)(T − s))|z̃(s)|ds

+ µG
∫ t
T

exp(−(λµ− L)(t− s))|z̃(s)|ds
6 ε

4 + ε
4 + % sups∈[T ,t)|z̃(s)| 6 3

4ε,

for all t > Tε. Hence, for the selected values of the high-
gain parameters ` and µ, we have that |x̃(t)|+ |z̃(t)| 6 ε
for all t > Tε. This concludes the proof. �

3.2 Feasibility of Assumption 1

Consider the following statement that provides verifiable
conditions ensuring that items 1) and 2) of Assumption 1
hold.
Proposition 1. Suppose there exist a compact set X ⊂
Rn and δ? ∈ R>0 such that system (1) is locally k–
differentially observable on X + Bδ? . Then, there exist
X ⊂ Rn, G : X → Rn×(k+1), δ ∈ R>0, and λ ∈ R>0

such that Assumption 1 holds.

Proof. First of all, k–differentially observability implies
rank(J(x)) = n for all x ∈ X + Bδ? . Therefore, there
exists a continuous bounded function G : X + Bδ? →
Rn×(k+1) and λ̄ ∈ R>0 such that G(x)J(x) > λ̄I for
all x ∈ X + Bδ? (see the subsequent Remark 1 for two
possible choices of G satisfying such properties). Fur-
thermore, since the map Ok(·) is smooth, by using the
multivariate version of Taylor’s theorem (Königsberger,
2013), one has that, for all x ∈ X and x̃ ∈ Bδ? ,

Ok(x+ x̃) = Ok(x) + J(x)x̃+
∑
|α|=2

Υα(x+ x̃)x̃α,

where, for all α ∈ Zn such that |α| = 2,

Υα(x+ x̃) :=
2

α!

∫ 1

0

(1− t)∂
2Ok
∂x̃α

(x+ tx̃)dt

In particular, due to the smoothness of Ok(·) and to the
compactness of X and of Bδ? , one has that there exists
H ∈ R>0 such that, for all (x, x̃) ∈ X × Bδ?

|Υα(x+ x̃)| 6 max
|β|=2, x∈X , x̃∈Bδ?

∣∣∣∣ ∂2

∂x̃β
Ok(x+ x̃)

∣∣∣∣ 6 H.
This implies that, for all (x, x̃) ∈ X × Bδ? ,∣∣∣∣∣∣

∑
|α|=2

Υα(x+ x̃)x̃α

∣∣∣∣∣∣ 6
∑
|α|=2

|Υα(x+ x̃) | | x̃α|

6 H
∑
|α|=2

|x̃α| 6 n2H |x̃|2.

Furthermore, by the boundedness of G(·), there exists
G ∈ R>0 such that |G(x)| 6 G for all x ∈ X . Therefore,
we have that, for all (x, x̃) ∈ X × Bδ? ,

x̃>G(x)(Ok(x+ x̃)−Ok(x)) > λ|x̃|2 − n2GH|x̃|3.
Thus, item 2) of Assumption 1 holds with δ <

min
{

λ̄

2n2GH
, δ?
}

, X = X + Bδ, λ = λ̄
2 and the function

G previously defined. Finally, item 1) of Assumption 1
is verified since the set Xδ coincides with X which is
non empty by assumption. �

In view of Proposition 1, we conclude that Assumption 1
allows to take into consideration a large class of au-
tonomous systems, namely all k-differentially observable
systems whose trajectories evolve in some given compact
set. This is the case of systems possessing an equilib-
rium, a limit cycle, or chaotic (bounded) behaviours.

The following remark details how to choose the function
G so that the assumptions of Proposition 1 are met.

Remark 1. By Menini et al. (2017), if the observabil-
ity map Ok : X → Rk+1 is an immersion, whence
rank(J(x)) = n for all x ∈ X and the set X is compact,
the following choices forG : X → Rn×(k+1) can be made
in order to meet the assumptions of Proposition 1:

1) G(x) = J>(x), obtaining a gradient-like algorithm
for the inversion of the observability map;

2) G(x) = J†(x), obtaining a Newton-like algorithm for
the inversion of the observability map.

In the first case, since rank(J(x)) = n for all x ∈ X , one
has that vJ>(x)J(x)v = |J(x)v|2 > 0, for all (x, v) ∈
X ×Rn such that |v| = 1. Therefore, since the eigenval-
ues of a matrix are continuous functions of its entries, by
letting λmin(x) be the smallest eigenvalue of J(x)>J(x),
if X is compact, then there exists λ = minx∈X λmin(x),
λ ∈ R>0, such that J>(x)J(x) > λI. In the second
case, since rank(J(x)) = n for all x ∈ X , one obtains
J†(x)J(x) = I for all x ∈ X . Boundedness of J†(x)
follows again by the compactness of X . In fact, since
J>(x)J(x) > λI for all x ∈ X , J(x)>J(x) is invert-
ible for each x ∈ X , whence J†(x) is continuous in X
and its boundedness follows by the extreme value the-
orem. Note that if both f and h in (1) are known ele-
mentary functions, the matrix J can be easily computed
through any software able to carry out symbolic dif-
ferentiation. Therefore, the main advantage of choosing
G(x) = J>(x) relies on the fact that, in such a case, a
symbolic expression for the map G is usually available,
even though the parameter λ in item 2) of Assumption 1
may be rather small. On the other hand, if one chooses
G(x) = J†(x), the parameter λ in item 2) of Assump-
tion 1 is always equal to 1, but determining a symbolic
expression of J†(x) may be rather challenging, especially
if n and k are large integers. 2
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The following remark provides further details about the
parameter δ that makes Assumption 1 be fulfilled.

Remark 2. In the proof of Proposition 1, it has been as-
sumed that the parameter δ ∈ R>0 is sufficiently small
in order to guarantee that the Taylor approximation
up to the second order of the observability map is suf-
ficiently close to its actual value. However, in practi-
cal applications, such a parameter need not be small
and is essentially related to the positive definiteness of
x̃>G(x̂)(Ok(x̂ + x̃) − Ok(x̂)) for (x̂, x̃) ∈ X × Bδ. Nu-
merical techniques able to determine the greatest value
of δ that makes such an expression be positive definite
with respect to x̃ are given in Ważewski (1948); Zampieri
(1993). On the other hand, in Menini et al. (2018a), an
exact technique, based on algebraic geometry tools, has
been proposed to estimate the largest value of δ that
satisfies the above requirements. 2

3.3 Feasibility of Assumption 2

The main objective of this section is to provide an ob-
server for the time derivatives of the output of system (1)
satisfying Assumption 2. In particular, we will show that
a classical high-gain observer (see Khalil and Praly, 2014
and references therein), or some of its recent variations
(see, e.g., Astolfi and Marconi, 2015; Teel, 2016; Astolfi
et al., 2018), can be used for this purpose, although we
highlight that other design methods can be used to ob-
tain (4).

First, let X be the set claimed in Assumption 1 and
define

ri := supx∈X |Lifh(x)|, i = 0, . . . , k + 1. (17)

The observer (4) satisfying Assumption 2 can be de-
signed as

ξ̇i = ξi+1 + γi`
i+1(y − ξ0), i = 0, . . . , k − 1,

ξ̇k = satrk+1
(Lk+1

f h(x̂)) + γk`
k+1(y − ξ0),

ẑ = [ satr0(ξ0) · · · satrk(ξk) ]>,

(18)

where ξ = (ξ1, . . . , ξn)> ∈ Rn is the state, γ0, . . . , γk ∈
R>0 are coefficients selected such that the polynomial

sk+1 +
∑k
i=0 γis

k−i is Hurwitz, and ` ∈ R>0 is a high-
gain parameter to be chosen large enough. Note that the
observer (18) has been obtained from the classical high-
gain observer (see Khalil and Praly, 2014 and references

therein), by substituting ϕ(ẑ) := Lk+1
f h ◦ O−1

k (ẑ) with

satrk+1
(Lk+1

f h(x̂)) and by saturating its output. The fol-

lowing proposition states that the observer (18) satisfies
Assumption 2.
Proposition 2. Let Assumption 1 hold. Then, Assump-
tion 2 holds with system (4) defined as (18).

Proof. Note that Lk+1
f h(·) is Lipschitz on X and that

Ok+1(X ) is bounded due to the smoothness of f and h
and to the compactness of X . Since the output of sys-
tem (18) is saturated and z ranges in the compact set
Ok(X ), we have that, for all t ∈ R>0,

|z(t)− ẑ(t)| 6
k∑
i=0

|zi(t)− ẑi(t)| 6 R, (19)

withR = 2
∑k
i=0 ri. Define εi = `−i(zi−ξi), i = 0, . . . , k,

and let ε = [ ε0 · · · εk ]>, whose dynamics are

ε̇ = `Akε+ `−kBuk−1, (20)

where Ak is the companion matrix of the Hurwitz poly-

nomial sk+1 +
∑k+1
i=1 γis

k+1−i, B = [ 0 · · · 0 1 ]> and

uk−1 = satrk+1
(Lk+1

f h(x̂)) − Lk+1
f h(x). Since Lk+1

f h(·)
is Lipschitz and bounded on X , in light of the saturation
function, there exists L ∈ R>0 such that

|satrk+1
(Lk+1

f h(x̂))− Lk+1
f h(x)| 6 L|x̂− x|

for all x ∈ X and x̂ ∈ Rn. Therefore, we have that
‖uk−1‖[0,t] 6 L‖x̂−x‖[0,t], and hence, by (20) and since
Ak is Hurwitz, there exist c1, c2 ∈ R>0 such that

|ε(t)| 6 | exp(`Akt)||ε(0)|
+ `−k

∫ t
0
| exp(`Ak(t− τ))||Buk−1(τ)|dτ

6 c1 exp(−c2` t)|ε(0)|+ c1
c2`k+1L‖x̂− x‖[0,t].

Recall that for any ` > 1, we have |ẑ − z| 6 |ξ − z| 6
`k|ε| and |ε(0)| 6 |z(0) − ξ(0)|. As a consequence, by
using previous inequalities and (19), we obtain that the
conditions of Assumption 2 are satisfied with ` = 1,
b = c2, d = Lc1

c2
, and a(`) = 2c1c3`

k, where c3 ∈ R>0 is

such that Ok+1(X ) ⊆ Bc3 and Ξ ⊆ Bc3 . �

A result similar to Proposition 2 can be given also for the
variations of the high-gain observer proposed in Astolfi
and Marconi (2015); Teel (2016); Astolfi et al. (2018).
For instance, the low-power peaking-free high-gain ob-
server given in Astolfi et al. (2018) can be modified as

˙̂zi = ηi + αi`ei, i = 0, . . . , k − 1, (21a)

˙̂zk = satrk+1
(Lk+1

f h(x̂)) + αk`ek, (21b)

η̇i = satri+2(ηi+1) + βi`
2ei, i = 0, . . . , k − 2, (21c)

η̇k−1 = satrk+1
(Lk+1

f h(x̂)) + βk−1`
2ek−1, (21d)

ẑ = [ ẑ0 · · · ẑk ]> (21e)

where ξ = (ẑ, η) ∈ Rk × Rk−1 is the state of the ob-
server, α0, · · · , αk and β0, · · · , βk−1 are coefficients sat-
isfying the low-power strong stability requirement (see
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Definition 2 of Astolfi et al., 2018), ` ∈ R>0, ` > 1, is
the high-gain parameter, and

e0 = y − ẑ0, (21f)

ei = satri(ηi−1)− ẑi, i = 1, . . . , k. (21g)

Proposition 3. Let Assumption 1 hold. Then, Assump-
tion 2 holds with system (4) defined as (21).

Proof. By Proposition 3 of Astolfi et al. (2018), the
trajectories of system (21) are bounded whenever

satrk+1
(Lk+1

f h(x̂)) − Lk+1
f h(x) is bounded and for each

T ∈ R>0, there exists `? ∈ R>0, `? > 1, such that, for
each ` > `? and for all t > T ,

satri+1
(ηi(t)) = ηi(t), i = 0, . . . , k − 1.

Therefore, letting T and `? be as above, if ` > `?, then,

by letting εi = [ 1
`i (ẑi − zi) 1

`i+1 (ηi − zi+1) ]> and εe,k =

[ ε0 · · · εk ]>, the dynamics of εe,k are, for t > T ,

ε̇e,k = `Mkεe,k − `−kB̄uk−1,

where Mk is a Hurwitz matrix, B̄ = [ 0 · · · 0 1 1 ]> and

uk−1 = satrk+1
(Lk+1

f h(x̂))− Lk+1
f h(x). Thus, the proof

follows by the same reasoning used for Proposition 2. �

Note that, in practical applications (as the one reported
in the forthcoming section), the design (21) may be pre-
ferred to (18), due to the fact that the “low-power de-
sign” (21) has better sensitivity properties with respect
to high-frequency noise, see Astolfi et al. (2018).

4 Numerical example

Consider the system (Thomas, 1999)

ẋ1 = sin(x2), ẋ2 = sin(x3), ẋ3 = sin(x1),

y = x1,
(22)

that can be viewed as the dynamics of an undamped
particle moving in a three-dimensional lattice of forces.
These dynamics exhibits anomalous diffusion and has
been described as a form of deterministic Brownian mo-
tion (Rowlands and Sprott, 2008), thus making the state
estimation process particularly challenging. It is worth
noticing that, although system (22) is globally Lipschitz,
the approach based on the solution of LMIs given for
instance in Zemouche and Boutayeb (2013) does not al-
low the design of an observer for such a system. As a
matter of fact, the LMI given in (35) of Zemouche and

Boutayeb (2013) is unfeasible for the considered sys-
tem. Furthermore, note that the linearization of sys-

tem (22) about the point [ π
2

π
2

π
2

]> is not observable.

Hence, even if one allows for time-varying gains, the de-
sign of an observer based on the linearization of sys-
tem (22) may be particularly challenging. Note also that

system (22) is not globally observable since Ljfh(x) =

Ljfh(x+[ 0 2k1π 2k2π ]>) for all j ∈ Z>0 and k1, k2 ∈ Z.

As it has already been noticed in Menini et al. (2017),
the observability map O5(x) of system (22) is locally in-
vertible in the neighborhood of each x ∈ R3, but not
globally. However, as shown in the following, the ob-
server (7), with (7a) selected as in (21), can be used to
determine an asymptotic estimate of the state of sys-
tem (22), provided x̂(0) is sufficiently close to x(0).

A numerical simulation has been carried out to
test the observer (7b), (21) for both the choices
suggested in Remark 1 (i.e., G(x) = J>(x) and
G(x) = J†(x)). For comparative purposes, in all
the simulations the following parameters have been

assumed: x0 = [ 1.5808 1.5408 1.5508 ]>, x̂(0) =

[ 1.6808 1.3408 1.4508 ]>, ẑi(0) = 0, i = 0, . . . , 6,

ηi(0) = 0, i = 0, . . . , 5, α0 = 1, α1 = 2, α2 = 3, α3 = 4,
α4 = 5, α5 = 1, β0 = 1, β1 = 1.3628, β2 = 0.2498,
β3 = 0.3331, β4 = 0.2651 (that have been designed by
using the algorithm given in Appendix A.1 of Astolfi
et al. (2018)), ri = 10, i = 0, . . . , 6, ` = 200 and µ = 0.9.
Figure 1 depicts the results of the simulation.

Several properties of the proposed observers can be no-
ticed from such Figure 1. First of all, we remark that in
light of the low-power peaking-free high-gain observer
design (21), the estimates ẑ are not affected by the peak-
ing phenomenon that is common in classical high-gain
observers (see Khalil and Praly, 2014 for further details).
From Figure 1(b), it can be noticed that the choices
G(x) = J>(x) and G(x) = J†(x) perform similarly,
leading to estimation errors for z(t) and x(t) that go to
0 exponentially.

It is worth noticing that, for both the choices G(x) =
J>(x) and G(x) = J†(x), the basin of attraction of
the proposed observer can be estimated by using the
tools given in Gorni and Zampieri (1994); Menini et al.
(2018a). Namely, in view of Assumption 1, it suffices to
determine the largest δ ∈ R>0 such that x̃>G(x)(Ok(x+
x̃) − Ok(x)) − λ|x̃|2 > 0 for some λ ∈ R>0 and for all
x̃ ∈ Bδ. It turns out that, for λ = 1

2 , the choices G(x) =

J>(x) and G(x) = J†(x) lead to a maximal allowed
norm of the initial error equal to 0.0759 and 1.0808, re-
spectively. Therefore, the selection G(x) = J†(x) leads
to a larger admissible initial error, even though, with
such a choice, the observer given in (7b), (21) has a more

7



−5

0

5

10
y e

,k
(t
)

y0
y1
y2
y3
y4
y5

0 20 40 60 80 100

−5

0

5

t

x
(t
) x1

x2
x3

(a) Time derivatives of y and solution x.

0

5

10

15

20

|z̃
(t
)| G = J>

G = J†

0 20 40 60 80 100
0

0.5

1

1.5

2

t

|x̃
(t
)| G = J>

G = J†

0 2 4 6 8 10
0

5

10

15

20

0 2 4 6 8 10
0

0.5

1

1.5

2

(b) Norm of z̃ = z − ẑ and x̃ = x− x̂.

Fig. 1. Results of the numerical simulation.

cumbersome expression due to the presence of pseudo-
inverse of the matrix J . Note that, by Theorem 1, the
gains µ and ` do not affect the basin of attraction of the
proposed observer, provided they are chosen sufficiently
large in order to guarantee its asymptotic stability.

Finally, it is worth stressing again that the observer given
in (7b), (21) does not require neither the existence of a
global inverse nor a closed-form expression for a local
inverse O−1

k (·). Furthermore, such an observer is gen-
uinely nonlinear, thus allowing to estimate the state of
the system although its linearization is not observable.

5 Conclusions

In this paper, it has been shown that the knowledge of
the inverse of the observability map is not a strict re-
quirement to design local state observers for autonomous
nonlinear systems that are not in observability canoni-
cal form. Namely, it has been shown that, under some
mild regularity assumptions, a local state observer can
be designed by coupling high-gain observers with a sys-
tem that dynamically inverts the observability map. Al-
though only systems with scalar output have been taken
into account, results wholly similar to the ones given in
this paper hold if the output is not scalar, see e.g. Gau-

thier and Bornard (1981).

As shown in Section 3.3, the proposed framework is very
flexible since it does not require the use of a particular
high-gain observer, but it can be employed with any tool
able to estimate the time derivatives of the output with
arbitrarily fast decay rate (thus including the sliding
mode techniques given in Shtessel et al., 2014).

Future works will attempt:to extend the proposed tech-
nique to systems with inputs (Bernard et al., 2017); to
enlarge the domain of attraction of the dynamical in-
verse (7b) through a suitable choice of the function G
and by requiring strong k-differential observability of the
system rather than just local k-differential observabil-
ity; to characterize the effect of measurement noise on
the obtained estimate (Astolfi et al., 2018). Finally, it is
worth stressing that, since the state of the proposed ob-
server converges exponentially to the state of system (1),
by applying classical Lyapunov arguments, it is possible
to show that the convergence is robust with respect to
small perturbation, such as model uncertainties, and to
small measurement noise.
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Ważewski, T. (1948). Sur l’évaluation du domaine
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plexes, Ann. Soc. Po. Math.

Zampieri, G. (1993). Finding domains of invertibility
for smooth functions by means of attraction basins, J.
Differ. Equ. 104(1): 11–19.

Zemouche, A. and Boutayeb, M. (2013). On LMI condi-
tions to design observers for Lipschitz nonlinear sys-
tems, Automatica 49(2): 585–591.

9


