ScuDo

Scuola di Dottorato - Doctoral School
WHAT YOU ARE, TAKES YOU FAR

Doctoral Dissertation
Doctoral Program in Electronic Engineering (31°' cycle)

Low power and high performance
heterogeneous computing on FPGAs

Liang Ma

* %k k% k% %k %

Supervisor
Prof. Luciano Lavagno, Supervisor

Doctoral Examination Committee:
Prof. A.B., Referee,
Prof. C.D., Referee,
Prof. E.F., Referee,

Politecnico di Torino
February 28, 2019

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www. creativecommons. org. The text may
be reproduced for non-commercial purposes, provided that credit is given to the original
author.

I hereby declare that, the contents and organisation of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Liang Ma
Turin, February 28, 2019

www.creativecommons.org

Summary

In the initial decades of the 21st century, we are approaching the ExaScale era in
which computing systems will be able to perform up to 2°°(~ 10'®) FLOPS (i.e. float-
ing point operations per second). It is impossible to reach this impressive performance
with homogeneous architectures, since high-performance general purpose processors
consume too much energy per computation, no matter whether high computational
capabilities are required in data centers or in edge applications. Due to the likely end
of Moore’s law even for scaling, higher and higher demands for low power and high
performance are now satisfied only by heterogeneous computing systems, which are
composed by host devices and a set of co-processors with various of capabilities to
handle particular tasks.

This thesis focus on the design of FPGA-based accelerators, which exploit a recon-
figurable spatial computing architecture to achieve massive parallelism at a very low
power consumption. The predominant design methodologies for an FPGA is still based
on Register Transfer Level (RTL) models, which are entirely diverse from software mod-
els and thus prevent the software and hardware co-design and the principle “Write once,
run anywhere”. In this thesis we propose several system level design methodologies
for FPGAs via high-level synthesis, which enables the portability of software originally
written in C, C++ or OpenCL for CPUs or GPUs to hardware platform.

The performance of an application on a piece of hardware is bounded by two factors:
the peak performance of the processor/accelerator and the bandwidth of the memory.
The roofline model is used to estimate the peak performance of an algorithm according
to its computation-to-communication ratio, to classify the algorithm into computation-
bounded, memory-bounded or somewhere in the middle and to analyze the bottlenecks
of the algorithm for further optimization. Note that the memory bandwidth of FPGAs
has been historically lower than that of GPUs, and FPGAs are typically less efficient than
GPUs at double-precision floating point, while FPGAs shine when it comes to on-chip
memory bandwidth and fine-grained low precision computations.Thus the classifica-
tion depends on both the algorithms and the devices.

This thesis covers both computation-dominated and memory-dominated designs.

First we consider financial models as examples of computation-intensive algorithms,
namely the Black Scholes model and the Heston model of the prices of one vanilla option
(i.e. European vanilla option) and two exotic options (i.e. Asian option and European

III

barrier option) respectively. We optimized and implemented these algorithms on three
platform types (i.e. CPUs, GPUs and FPGAs) and a total of five devices. Obviously both
FPGAs and GPUs outperformed CPUs significantly. Even an embedded FPGA achieved
about 15x better performance than a data center class CPU. The FPGAs achieved 4x to
5x operations per Watt than a GPU fabricated in the same process (e.g. 16nm and 28nm).

Secondly, we proposed to optimize the memory access bandwidth of memory-bounded
algorithms, by using pre-designed C++-based inline caches rather than the tedious on-
chip local memory design approach. The latter requires designers to manually exploit
the memory access patterns and manage the data movements and synchronizations, the
on-chip RAM architecture, the kernel interfaces to access external memory, and func-
tional verification. We applied inline caches with different types and configurations
to three algorithms from very different application areas such as machine learning,
databases, and computer vision respectively. In summary, our cache implementations
improved performance by up to 8x and energy by about 2x with respect to the out-of-
the-box unoptimized code, achieving comparable results to the best available manual
optimizations of the on-chip memory architecture, while requiring a much shorter de-
sign time.

Finally, we explored the design space of several types of machine learning algo-
rithms including convolution neural networks and recurrent neural networks. They are
both memory and compute-bounded. These models were first designed and trained in a
framework such as Tensorflow and then our automation tool generated self-contained
C++ projects that are supported by high level synthesis tools. We proposed a dataflow-
based acceleration methodology by which we could migrate our designs on various tar-
get FPGAs and achieved excellent performance due to the dramatically reduced number
of the external memory accesses. We applied this methodology to two neural networks
that we designed targeting an embedded FPGA (for edge computations). The first one
is a CNN variant named ShiftShuffleNet. The top-1 accuracy is up to 68.5% and top-5
accuracy is up to 88.2% on ImageNet, despite a very heavy quantization with 4-bit ac-
tivations and 1-bit weights. We designed a configurable ShiftShuffle block where the
dataflow paths are configured by the host processors via a set of micro-instructions to
implement the full net on a resource-limited embedded FPGA. We not only achieved a
competitive accuracy, but also improved the actual inference speed in terms of frames
per second (about 96.5 fps). The second is a recurrent neural network based on an LSTM
cell. This network was trained by another project in our lab, and had a very good ac-
curacy compared to other feed-forward neural networks. On the embedded FPGA, it
achieved a comparable performance and about 2x operations per Watt as a datacenter-
class Xeon CPU.

All these experiments prove that high level synthesis is not only mature for both
research and commercial uses, but also excellent in terms of the achieved performance
and power with respect to CPUs and GPUs. Hence FPGAs can readily be exploited in
heterogeneous computing systems for low power and high performance demands in
both data centers and edge applications.

v

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Prof. Luciano
Lavagno for his assistance in my study and research these years, for his patience, mo-
tivation, enthusiasm, and immense knowledge. Not only his guidance helps me to con-
quer plenty of troubles in my research, but also his life philosophy and values affect me
from many aspects.

I would also like to thank my colleges, also my friends, from both the same uni-
versity and other part of the world. In the collaborations with the teams from the Xil-
inx, from the Mentor Graphics and from the UC Berkeley, I not only had my horizon
broadened, but also gained friendships. Without their passionate participation and in-
put, these projects could not have had these remarkable achievements.

Finally, I sincerely give my profound gratitude to my parents, to my family, to my
girlfriend and to my lord for providing me with unfailing support and continuous en-
couragement throughout my years of study and through the process of researching and
writing this thesis. This accomplishment would not have been possible without them.

VI

I would like to dedicate
this thesis to my loving
parents

Contents

List of Tables

List of Figures

1 Introduction

2

1.1

1.2

1.3

Computing System oL oo
1.1.1 Moore’sLaw
1.1.2 Heterogeneous Architecture
1.1.3 High Level Synthesis
Performance Analysis
1.21 Amdahl'sLaw
1.22 Gustafson’slaw
1.23 RooflineModel
1.2.4 OptimizationinHLS
1.25 PowerandEnergy
Thesis Structure L

Acceleration of Financial Algorithms

2.1

2.2

2.3

24
2.5

Financial Options
2.1.1 European VanillaOption
2.1.2 European Barrier Option
213 AmericanOption L L oo
214 AsianOption e
Option pricingmodels L.
2.21 Black ScholesModel
222 HestonModel o oo
Monte Carlo Method
2.3.1 Random Number Generator
Relatedwork
Implementation and Architecture
2.5.1 Optimization
2.5.2 Performance Indicator L

VIII

X1

XII

N N NN N T NN DN

—_
—

4

2.6 Results

RunningonCPUs
Accelerationby GPUs
AWSF1FPGA
Embedded Platform: ZYNQ 7020

Cache-Based Acceleration for Memory Intensive Algorithms
3.1 Background

3.1.1
3.1.2
3.1.3

Memory-intensive algorithms
Cache Related Work
Motivations

3.2 HighLevel CacheDesign

3.2.1
3.2.2
3.2.3

Hardware Design Flow
Inline Cache Types
Inline Cache Implementation

3.3 Applications

3.31
3.3.2
3.33

Matrix Multiplication
Lucas-Kanade Algorithm
Bitonic Sorting L oL o

Acceleration of Machine Learning Algorithms
41 Introduction

4.1.1
4.1.2

4.2 Design,

4.2.1
4.2.2

Convolutional neural network
Neural Network on FPGAs
Training and Inference Automation
Tensorflow
Design Flow and Code Generation

43 Feed-Forward Neural Network

4.3.1
4.3.2
433

Dataflow-Based Acceleration
Hardware Architectures onthe FPGA
ShiftShuffleNet on Embedded FPGA

44 Recurrent Neural Network

4.4.1
4.4.2
4.4.3

Long Short Term Memory
Design and Training
Acceleration on the embedded FPGA

Conclusion and Future Work

5.1 Financial Option Pricing Algorithm
5.2 Inline Application-Specific Caches
5.3 Machine Learning Algorithm

IX

37
38
38
38
39
40
40
42
44
47
48
50
54

61
62
64
67
68
68
69
71
72
73
76
82
82
82
84

A Direct-Mapped Cache
A.1 Code of the inline direct-mapped cache
A.2 Original and modified code of matrix multiplication

Bibliography

List of Tables

1.1
1.2
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
3.1

3.2

3.3

34

35
4.1
4.2

4.3
4.4
4.5

Characteristics of the FPGA platforms 4
Characteristics of the GPU platforms 5
Value of the simulation parameters 31
Performance on various platform 31
Performance on various GPU platforms 32
Resource utilization L L 32
Compute unit vs unroll performance 33
Resource utilizationon AWSF1 33
Performance on AWSF1 34
Performance on PYNQ Z2. 34
Resource utilizationon PYNQ Z2 34
Performance and resource utilization for various implementations of

matrix multiplication (16x16 matrices). 48
Performance and resource utilization for various implementations of

the Lucas-Kanade algorithm. 53

Performance for various implementations of bitonic sorting applied to
arrays with different sizes N, and using a cache line size of 64 bytes.

L., in bytes, is the maximum on-chip memory used (when limited). . 57
Performance and resource utilization of various optimizations on bitonic

sorting applied to arrays with size N =210, 57
Effect of cache sizes on the performance of bitonic sorting 58
Macro-structure of ShiftShuffleNet 79

Quantization Result of the ShiftShuffleNet, “full” stands for single preci-
sion floating point number, “w[xx]” stands for xx-bit weights and “a[xx]”

stands for xx-bit activation, 80
Performance comparison of the ShiftShuffleNet and previous works . . 81
Parameters used to train the network 84
Performance and resource utilization on XC72020 FPGA 87

XI

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
2.1
2.2
2.3
24
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

2.15

3.1
3.2
3.3
3.4
3.5
3.6

Moore’slawin CPUs [52]
Heterogeneous architectures
Example of the roofline model [53]
Example of the loop pipeline
Example of the loopunroll
Example of the dataflowmodel
Design of the top-level structure
Data-path of the MCmethod
Dataflow optimization in cores connected by FIFOs
Critical path in the step simulation
Group path simulation
Path simulations share expensive computation resources, such as square
rootoperator L
Pipeline of group simulation
Data-path of the PRNG algorithm
Data-path of the new PRNG algorithm
Static pipeline
Multiple compute unitso L Lo
Parallelism by dataflow
Implementation of two parallel threads by ‘Dataflow”
Performance ratio between AWS F1 FPGA and Tesla P100 GPU in terms
of execution time, power and energy consumption (log scale)
Performance ratio between ZYNQ Z702 FPGA and GTX 950 GPU in
terms of execution time, power and energy consumption (log scale) . .
Design flow in SDAccel
Inlinecache
Design flow withcaches
Diagram of a direct-mapped cache [54]
Diagram of a 2-way set-associativecache
Miss ratios for different numbers of lines, data sizes and line sizes for
matrix A of matrix multiplication (log scale).

XII

O O 00 1 W W

21
22
22
23
23

25
25
26
28
28
29
29
30

34

3.7

3.8

3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12
4.13

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

Miss ratios for different numbers of lines, data sizes and line sizes for
matrix B of matrix multiplication (log scale).
Miss ratios for different numbers of lines, data sizes and line sizes for
the input image of Lucas-Kanade (log scale).
Miss ratios for different numbers of lines, data sizes and line sizes for
bitonic sorting (log scale). L.
Artificial neural network example L.
Mathematical model of the artificial neuron.
Mathematical model of the artificial neuron.
Example of a sliding window for the convolution operation
Example of the max pooling [55]
Computation graph created by TF for a layer of the neural network . .
Computation graph auto-generated by TF for back-propagation
Design flow of the neural networks on an FPGA via the Tensorflow
framework L
Dimension of the sliding window and data accessing pattern
Sliding window generation
Diagram of the VGG16net
Entire VGG16 on-chip L
VGG16 partitioned and accelerated on multi-nodes. On AWS, F1 FPGAs
can communicate only through the host DRAM control..
Partial layers on the FPGA to accelerate VGG16.
Small hardware architecture onan FPGA
Diagram of the depthwise convolution
Diagram of the ShuffleNet v2block
Diagram of the shiftShuffle block
Diagram of the shift operation
Hardware architecture of the shiftShuffle block
Neural network designed for sensor data processing
Visual output of the neural network

XIII

Chapter 1

Introduction

1 — Introduction

1.1 Computing System

It has been over seven decades since the Turing machine model was invented by
Alan Turing in order to represent algorithms for any computable function [37] to the on-
going competitions to build the exascale computing systems which perform 2%°(~ 10'%)
FLOPS (i.e. floating point operations per second). Recent news tells that China, USA and
Japan are competing to build such computing systems within 2020s. Tianhe-2, one of
the fastest High-Performance Computing (HPC) system in the world relies on thou-
sands of high performance CPUs and co-processors. Evidence shows that the exascale
systems can consume about 1 GW power by extrapolating the results of the Tianhe-2
system[17]. To address these challenges, a novel architecture has to be designed in or-
der to meet both the performance and energy requirements without consuming massive
time to market [29].

1.1.1 Moore’s Law

Moore’s law describes the trend over time of the number of transistors in an inte-
grated circuits. It was first found by Gordon Moore and was published in 1965. Figure 1.1
shows the number of CPU transistor against the dates. It clearly demonstrates that the
number of transistors on the CPU doubles approximately every one to two years. How-
ever, this law almost reaches its end of validity nowadays due to the quantum effects
dominating in the nanometer scale channel size and the difficulties to deal with the
thermal issues (i.e. power wall). For the same reasons, the performance of single-core
CPUs per area has reached its limit.

1.1.2 Heterogeneous Architecture

A homogeneous computing system, composed by a group of CPUs has been the
preferred solution to build HPC systems for a while. However, it is no longer able to
achieve a remarkable performance as demanded in modern data centers at exascale due
to both the above-mentioned stop to the increase of single-CPU performance and power
consumption [14]. The solution to this issue is provided by heterogeneous computing
systems.

They are called heterogeneous because the co-processors are different from the host
device, or they have different instruction set, or the programming languages and en-
vironments are different. The performance and energy efficiency can be achieved by
the co-processors with specialized processing capabilities to handle particular tasks.
The co-processors can be the Graphic Processing Units (GPUs), Field-Programmable
Gate Arrays (FPGAs) and any other Application-Specific Integrated Circuits (ASICs).
A heterogeneous architecture is illustrated in Figure 1.2. The co-processors communi-
cate with the host processors through the Peripheral Component Interconnect Express

1.1 - Computing System

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

20,000,000,000 IBM 213 Storage Controller, ARG 7
10,000,000,000 18ecoreaon HasweliEs N4 @ 22-core Xeon Broadwell-E5

Xbox One main S0Cx,

5,000,000,000 1-core oor by @@ @iz core Yeon by Bridge-£X
’ 7 ’ 2-core POWE
8-core Xeon Nehalanr| EX\‘ g@pc% s“éé {rcore aRMs4 ‘mobile S0
Dok se “Co . QUL aé;:(ﬂns Sorelr Broadnely
Pentium D Presler, uad-core + GPU Core i7 Haswell
1,000,000,000 [N POWERS C?’e ©pple A7 (dual-core ARNIGA "robile SoC')
Gache
500,000,000 tanium 2 adson V0 OAMEQK.‘)ESW“.%;F?M P
Rarium S MKy @ g B @ Cers 8528 woltcale 3
Pentium 4 Prescott-; ZMQ OPCorte 2 DAHgQ‘e"&al‘le
entium 4 Cedar Mil
100,000,000 AMD KSD i 4 Proscott
Penti 4 Northy
= 50,000,000 et 4 itamoted 9. BTN oo
=1 Pentium Il Mobile Dixon, Pt l Tualstin ARM CortoxAe
3 AMD K78 & @Pertium il Coppermine ortex:
\MD K¢
S 10,000,000 AVD K, eyl e
K] Pentium Prog, Peﬁ\uﬁ% MBescities
7} 5,000,000
% Psnnum’ AMI Ks
= &0
Intel 80486, <
1,000,000 A
500,000 LEmRsie s
Intel 803850 In!%° QARM 3
Motorola 68020.
M
100,000 Motoroia el 80286 K3
680004y STOMI
50,000 Ointel 80186
Intel 80864 €pIntel 8088 0AQARM 2 AR%‘ 6
c RM 1
Motorola 65CETs
10,000 THggoo Ziogzeg 6GE o8, e
RCA1802 02
5,000 | 8003, "" 18 me\ EOBS
Mo\oro\a EggTechno\ogy
e A?m
1,000
A G SRS G - SRR\ SIS SR G L NS SRR SRS
LT FFFE LSS FTE TS S S S
Year of introduction
Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under GG-BY-SA by the author Max Roser.

Figure 1.1: Moore’s law in CPUs [52]

< PCI express >

Figure 1.2: Heterogeneous architectures

(PCIe) bus. Each processor has independent memory. The co-processors may commu-
nicate each other via the same PCle bus, or via other dedicated protocols (e.g. Aurora
for Xilinx FPGAs).

1 — Introduction

Field-programmable gate array

An FPGA is a programmable integrated circuit which exploits a reconfigurable spa-
tial computing architecture for a massive parallelism rather than the Instruction Set
Architectures (ISAs). On modern FPGAs, such as the Stratix from Altera and the Ultra-
Scale families from Xilinx, there are up to millions of Configurable Logic Blocks (CLBs)
and Flip-Flops, megabytes of on-chip the Block RAM (BRAMs), hundreds of multiply-
and-accumulate units (DSPs), and many other dedicated hardware blocks, including
ARM Cortex processors [61]. These CLBs can be connected via a hierarchy of reconfig-
urable interconnects (configurable wires) to perform complex combinational functions
and sequential functions. The integration of the DSPs makes the modern FPGAs also
eligible for floating point computing acceleration.

In this thesis, we targeted mostly two FPGA platforms:

1. Datacenter-calss Amazon Web service (AWS) F1 instance FPGAs, which are the
16 nm Xilinx UltraScale+ FPGAs with about 2.5 million logic elements and 6,800
digital signal Processors (DSPs).

2. Embedded-class: PYNQ (i.e. PYthon Productivity for ZyNQ) Z2 with a Xilinx
Zyng SoC which integrates a 650MHz Dual-core ARM Cortex-A9 and a Zynq
7020 FPGA fabricated with 28nm technology and other peripherals such as the
USB, SD card, HDMI, Ethernet and many other resources. The Z07020 FPGA has
13,300 CLBs, 630 KB BRAMs, , 512MB DDR3 DRAM and 220 DSPs on chip.

The characteristic of the two FPGA platforms are listed in Table 1.1. Compared to the
datacenter-class FPGA, the on-chip resource of the ZYNQ Z0702 is approximately 24x
less.

Table 1.1: Characteristics of the FPGA platforms

Device ‘ Process[nm] ‘ Frequency[MHz] ‘ LUTs ‘ FFs ‘ BRAMs ‘ DSPs
ZYNQ 70702 28 100 to 200 53K | 106K 280 220
UltraScale+ FPGA 16 250 1.2M | 24M | 43K 6.8K

Graphic processing unit

GPUs are specifically designed integrated circuits originally used to process graphi-
cal information such as images and videos. Currently they are widely used as the accel-
erators for parallel computations such as training machine learning algorithms. The ar-
chitecture of the GPUs contains many computation cores also named Algorithm-Logic
Units (ALUs) managed by a single control unit.

The GPU can be programmed in CUDA, a proprietary programming languages which
provides a C/C++ syntax rules based language and programming environment, or the

4

1.1 - Computing System

very similar (but open) Open Computing Language (OpenCL) which is a framework to
compile programs for executing on heterogeneous platforms. So the GPU can be easily
used by the software developers.

However, it has been shown that these platforms are not very efficient with respect
to the energy consumption [45] for many kinds of applications including the financial
models and machine learning algorithms that we considered in this thesis. This issue has
been addressed recently by using reconfigurable hardware platforms as accelerators.

The GPU platforms involved in this thesis are:

1. Nvidia GTX 950, chosen becuase it is available on a local server and it is also
fabricated with the same 28nm technology as the Z0702 FPGA on the PYNQ-Z2

2. Nvidia Tesla P100 is an online service provided by Google Cloud Platform. The
reason to choose the Nvidia Tesla P100 GPU is due to the fact that this GPU
is fabricated with the same 16nm process, as the Amazon Web Service F1 FPGA.
Thus we could fairly compare the performances on the two different accelerators.

The characteristic of the two platforms are listed in Table 1.2. Compared to the Nvidia
GTX 950, the Tesla P100 GPU has 5x more parallel CUDA cores and 1.3x faster clock.

Table 1.2: Characteristics of the GPU platforms

Device ‘ Process[nm)] ‘ CUDA cores ‘ Frequency ‘ Max. power[W]
GTX 950 28 640 0.9GHz 75

Tesla P100 16 3584 1.2GHz 250

Application-specific integrated circuit

An ASIC is an integrated circuit customized for a particular tasks rather than in-
tended for general-purpose use. So the ASIC has limited programmability as an acceler-
ator in a heterogeneous computing system. However, a well designed ASIC chip usually
achieves the best performance and energy efficiency for the particular tasks running on
it. For instance, the Google’s Tensor Processing Unit (TPU) was particularly designed
for machine learning inference models. It [28] was reported that the TPU server can
achieve about 15x performance per Watt with respect to a decent GPU (K80) server.

1.1.3 High Level Synthesis

The Register Transfer Level (RTL) models are the predominant starting point for
standard design flows for FPGAs and ASICs. These models are written in a Hardware
Description Language (HDL), and then are synthesized, placed and routed by Electronic
Design Automation (EDA) tools. However, this traditional design flow is losing stream.
On one hand, it is very time-consuming due to the fact that any optimization to the

5

1 — Introduction

RTL model has to be painstakingly modified manually and extensively verified for the
correctness. On the other hand, the standard software development flow, based on the
principle of “write once, run anywhere” is attractive for hardware designers. Both Alter-
a/Intel and Xilinx promise software-like development for applications that are entirely
written in a high-level language and are then compiled and synthesized for heteroge-
neous CPU-FPGA platforms. This software-like design flow is named high-level synthe-
sis (HLS). HLS design flow can dramatically reduced the design and verification costs,
essentially eliminating the need to model the design at RTL.

HLS, on the other hand, promises the high performance and low power consumption
of FPGA hardware, and the flexibility and re-targetability of software. In particular,
parallel languages such as OpenCL that were originally developed to program GPUs
can now be used to program the FPGA platforms.

Furthermore, HLS enables software-hardware co-design which aims at the synergis-
tic design of hardware and software modules of a complex electronic system in order
to achieve the best design point under constraints such as cost, performance, power
consumption and time-to-market [48].

1.2 Performance Analysis

1.2.1 Amdahl’s Law

Amdahl’s law was presented by the computer scientist Gene Amdahl in the AFIPS
Spring Joint Computer Conference in 1967 [4]. Amdahl’s law is used to estimate the
theoretical speedup in the latency of a system to process a fixed-size problem with
respect to the resources involved. It is a formula as shown in (1.1), where p is the portion
of the task that can be executed in parallel, .S is the estimation of the speedup, N is an
indicator of the resource used to accelerate the task, » > 1. In parallel computing, it can
be used to evaluate the theoretical speedup by multiple processors when N represents
the number of the processors. .S is approximately inversely proportional to 1 — p, the
sequential portion of a task.

1

S(N) = ——
M=z

(1.1)

1.2.2 Gustafson’s law

When the problem size is no longer fixed, Amdahl’s Law is no longer valid. Gustafson’s
law [22] named after John L. Gustafson and Edwin H. Barsis depicts another scheme
for the parallel computation when the solvable problem sizes increase, as the computa-
tional power increases. Then multiple tasks can be run on N processors in parallel and
achieve a speedup formulated by (1.2).

S(N)=(1-p)+pN (1.2)
6

1.2 — Performance Analysis

1.2.3 Roofline Model

The Roofline model is a very useful tool for performance estimation of a given ap-
plication or compute kernel running on any processor [56] or accelerator. The roofline
model illustrates the inherent hardware limitations such as the bandwidth, and poten-
tially provides the developer with suggestions for further optimizations. Figure 1.3 is

Performance [GFLOPS]

Bound based on bandwidth ,-
a1 e Bound based on peak performance
2
L]
1 4 . APP,
App,
1/2 4
[]
1/4 APP,
1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational Intensity [FLOPS/byte]

Figure 1.3: Example of the roofline model [53]

an example of the roofline model. In the model, the performance of an application is
bounded by two factors: the peak performance of the processor/accelerator and the
bandwidth of the memory. If the computation to communication ratio of an algorithm
is high such as the App; in the Figure 1.3, the algorithm is called computation-bounded.
In the other case when the computation to communication ratio of an algorithm is low
such as the App, in the Figure 1.3, the algorithm is called memory-bounded. The opti-
mizations are applied to the application according to whether it is a memory-intensive
or a computation-intensive algorithm. In this thesis we will cover both compuattion-
instensive algorithms (e.g. financial algorithms) and memory-intensive ones (e.g. Con-
volutional Neural Networks).

1.2.4 Optimization in HLS

Given an algorithm modeled in a high-level language such as C, C++ or OpenCL,
several optimizations can be applied to improve its performance (and resource utiliza-
tion) on an FPGA.

1. Loop pipelining starts new iterations of a loop before the completion of the pre-
vious ones. It is one of the best options for loop optimization in HLS, since it
usually boosts the performance at a very low cost [15, p. 61]. The amount of
clock cycles between the two successive loop iterations (inversely proportional
to the throughput) is also called the “Initiation Interval (I)” of the pipeline (in the

7

1 — Introduction

best case, it can be one clock cycle). It is fully decoupled from the time it takes
to complete one iteration, the “pipeline latency” or “pipeline depth”. As shown
in the Figure 1.4, each iteration in the loop has L operations. If the loop is not
pipelined and assume each operation costs 1 clock cycle, the entire latency of the
loop is N L clock cycles where N is the number of iterations in the loop. Once
the loop is pipelined as the in the Figure 1.4, the entire latency reduces to (1.3),
where D is the pipeline depth comparable to L.

Latency = I « (N — 1)+ D (1.3)

Usually, memory or data dependencies between successive iterations (“loop-carried
dependencies”) are the bottlenecks that increase the initiation interval. Several
other synthesis techniques, e.g., array partitioning or loop interchange, can be
applied to ameliorate this problem.

OPy | OPq 0P OP3 OPL | OPy | OPq OP; OP3 OPL
OPy | OPq OP> OPj3 OPL
OPg OP4 OP» OP3 OPL

Figure 1.4: Example of the loop pipeline

. Loop unrolling creates multiple copies of the loop body to be executed fully in par-
allel if their is no dependency among the iterations. In some cases it can achieve
even more performance than by means of pipelining, but typically at a huge re-
source (i.e., area) cost. A loop can be fully or partially unrolled and in both cases
the maximum performance can be achieved only by means of array partitioning
and may require arithmetic evaluation restructuring (e.g., adder tree balancing)
[15, p. 51]. In OpenCL (similar to CUDA), the loop over work groups (i.e. units
of computation assigned to a GPU core) can be unrolled arbitrarily by definition.
Taking the example in Figure 1.4, if the loop is unrolled by a factor of two, the
performance will boost by a factor of two if there is no dependency as shown in
Figure 1.5, where the loop is also pipelined.

. Compute unit is another mechanism to increase parallelism that is similar to loop
unrolling, but at a higher level. Languages like OpenCL in which the top-level

8

1.2 — Performance Analysis

OPp | OP4 OP, | OP3 OPL

OPy | OP4 OP, | OP3 OPL
OPg | OP4 OP, | OP3 OPL
OPy | OP4 OP, | OP3 OPL

Figure 1.5: Example of the loop unroll

function (also known as "work item”) is executed in a “doall” sort of parallelism al-
lows one to instantiate multiple copies of a HW module implementing that func-
tion, and achieve a speedup that is only limited by available resources and mem-
ory bandwidth, similar to the multiple SIMD units on a GPU. Note that strictly
speaking this multiple instantiation is only performed at place-and-route time,
and does not affect HLS.

. DATAFLOW. Computational processes in dataflow micro-architectures are con-
trolled by the availability of the input data rather than a centralized finite state
machine (FSM). Vivado HLS “dataflow” synthesis directive creates several inde-
pendent processes connected by FIFO queues from functions in the original se-
quential C++ code. The developer can thus semi-explicitly drive parallelization
from a high level, without the complexity of explicitly modeling threads in Sys-
temC. As shown in Figure 1.6, each instances runs independently from other in-
stances, in a task-level pipelining fashion, and is only driven by the input data
from the FIFO. So this optimization explores task level parallelization, as opposed
to loop-level fine-grained pipelining discussed above.. For each FIFO connecting
two instances, Tl’n =T! , where Tl’n is the average input data throughput into the
i"" FIFO and T, , is the output data throughput to the (i + 1) instance. So the
entire performance is limited to the “slowest” instance in the chain. In order to
maximize the performance, we need carefully optimize each instance to match
the throughputs.

Tiin Tiout

— ~ [., I
. FIFO FIFO
AR ’ &/ / I..+7 - L S N

Figure 1.6: Example of the dataflow model

1 — Introduction

5. Exploiting on-chip memory. As discussed, the modern FPGAs such as the Ultra-
Scale, integrate thousands of independent BRAMs on chip for a total of many
MBs of storage. The accesses to the BRAMs are both faster in terms of latency
and more parallel than those to off-chip memories [58]. Most applications, espe-
cially the memory-bounded ones, achieve the best acceleration only by allocat-
ing frequently-accessed data that reside in off-chip memories into the on-chip
BRAMs (or into LUTRAMs, which are not dedicated memories like BRAMs but
rather a secondary usage of the small memories used to implement reconfigurable
logic, i.e. LUTs). Each on-chip BRAM has two parallel ports which are config-
urable. The allocation of an array into the BRAMs has to be carefully managed
in order to avoid causing bottlenecks for loop pipelining and unrolling. Memory
partitioning or memory reshaping according to the user directives or based on
automated analysis of access patterns of a given algorithm can dramatically in-
crease the memory bandwidth and achieve a much higher level of concurrency.
Unlike the memories on a GPU, where the maximum number of concurrent ac-
cesses to independent addresses is fixed by the GPU architect, on an FPGA it is
configurable by the designers. However, more parallelism often implies a higher
cost.

6. Resource sharing is very important in order to optimize the resource utilization
and power consumption on the FPGA. Some resources are automatically shared
by the the Vivado HLS tool. For instance, consider a loop partially unrolled and
then pipelined. Some fast computation resources such as floating point multipli-
cation unit can be shared by multiple threads (created by the loop unrolling) if the
loop has a large initiation interval due to some slow resources such as the mem-
ory read or write. Vivado HLS also provides some synthesis directives that can
help the designer to force the resource sharing of function cores or computing
units that will consume too many resources.

7. Optimizing kernel interfaces. On a GPU, the global memory interface subsystem
receives memory read or write requests from the threads or work items that are
executing on its compute units, and coalesces these requests whenever possible, in
order to match both the available memory word size and bus burst transfer capa-
bilities. For example, 16 accesses to adjacent properly aligned 32-bit integer array
elements can be grouped automatically at runtime into a single 512-bit memory
read, or to a burst of 4 128-bit memory reads, depending on the DRAM interface
width. This reduces both the number of accesses to the external memory and the
total access time. On an FPGA, these groupings must be performed manually and
at compile time by specifying the kernel interface data-width.

10

1.3 — Thesis Structure

1.2.5 Power and Energy
Power and Energy on chip

The power consumed by a logic gate is composed by the dynamic power and the
static power. The dynamic power is proportional to capacitance and the frequency. Thus
the total power consumed by a device (e.g. FPGA) is P = P;+ P, the sum of the dynamic
power P, consumed by the active transistors and the total static power P; of the device.
P, is given by (1.4), where C is the capacitance of transistors and interconnects that are
switching, V'is the device voltage and f is the operation frequency. The static power
depends on the characteristic of the device and on an FPGA it can typically be treated
as a constant value given a choice of FPGA, since voltage scaling and power gating are
typically not used in these devices.

P,=CV%f (1.4)

The energy consumption by an application is given by (1.5), where # is the execution
time of the application. In any case, the static energy consumption can be reduced only
by reducing the execution time. For an application on an FPGA, we have t = c—;, where

the cc is the number of clock cycles to run the application. So the dynamic energy
E,; = CV?cc mainly depends on the active area and the number of clock cycles.

E=Pit+ Pt (1.5)

Energy for memory access

The energy consumed by each memory access is another important factor for ac-
celerator design. [46] shows that the energy per access to the DRAM is about 200 time
that for the local register files. The energy per access to the on-chip BRAM is much less
than that to the DRAM. So reducing the number of accesses to off-chip DRAM not only
reduces the execution time but also shrinks energy consumption.

1.3 Thesis Structure

The thesis is composed by five chapters, addressing the design and optimization of
low power and high performance FPGA accelerators.

1. This chapter presented the high demands of low power and high performance
computing systems and the heterogeneous hardware architectures designed to
meet both the power and performance requirements.

2. The second chapter discusses the optimizations of computation-intensive algo-
rithms. The application used is the Monte Carlo method applied to financial op-
tion pricing models.

11

1 — Introduction

3. The third chapter proposes a software-defined inline cache to accelerate the memory-
intensive algorithms, such as the matrix multiplications (at the core of Al appli-
cations), image processing algorithms, and database algorithms.

4. The fourth chapter proposes various kinds of hardware architectures and op-
timizations to accelerate several machine learning models such as convolution
neural networks using FPGAs.

5. The fifth chapter summarizes the achievements in this thesis and discusses the
future work.

12

Chapter 2

Acceleration of Financial Algorithms

Everyone in the world is more or less involved in a very complex economy system.
For instance, most people hold one or more financial assets as a portfolio such as the
bank deposits, debits, stocks, directives and etc. The complexity of these products in
the financial market grows faster than ever before. It makes the financial sector one of
the hottest areas in the world. In addition, the growing number of complex financial
derivatives boost the risks to both the participants and the financial system [30]. A
mathematical model that can predict the market behaviors in time would be helpful for
the investors to avoid reckless decisions.

13

2 — Acceleration of Financial Algorithms

2.1 Financial Options

A financial option is a type of contract between two parties in the derivative market.
With this contract, the holders or the buyers have the right but not obligation to buy
(i.e. call option) or to sell (i.e. put option) an instrument at a pre-settled price (i.e. strike
price) at the specified dates or at any time in the valid period of the contract. Taking a
call option as an example, if the stock price at the future date has a higher price than
the strike price, the holder has the right to buy the instrument at the strike price and
then sell it in the financial market to make a profit. Neither gains nor lose nothing
the call option holder from the market if the stock price is lower than the strike price.
Definitely, the right to make a profit without any possibility of loss is not a free product
in the market. The buyers need to pay an amount of money which is also call premium
for this right. The premium is decided by the two parties according to the instruments,
the strike prices and also other assets in the market. As well, the holder of the options
can also transfer this right to others at a certain price. Then, the option price is also a
function of time. Since there is a lot of profits in this zero-sum game, many researchers
and institutions focus on finding a good way to evaluate the option prices.

According to the expectations of the prices of the instruments in the markets, the
speculators choose from the two type of options (i.e. call and put) to make a profit from
it. According to the constrains set to exercise the contract with the strike price, the
options are classified into different styles such as vanilla and exotic options.

2.1.1 European Vanilla Option

The European vanilla option is one of the common and simple options in the deriva-
tive markets. The contract of the European option can only be exercised at the specified
date T which is also known as the option’s maturity date preset in the contract.

For the call option holders, if the prices of the assets (noted as S(¢)) at the future
time T'is higher than the strike price (noted as K), they can expect a profit of S(T) — K
in the market. Otherwise when S(T') <= K, they neither earn nothing from the market
nor lose anything since they have no obligation to exercise the contract. The profile
they can make is called payoff. So, for the European call option, the payoff is evaluated
by (2.1).

Similarly, for the put option holders, the profit is made only when S(T") < K as
opposite to the call option. The payoff for the European put option is given by (2.2).

Pegyp = max{S(T') - K,0} (2.1)
P, = max{K — S(T),0} (2.2)

2.1.2 European Barrier Option

European barrier option has the similar rules as the European vanilla option with
one more constrains. The contract can be only exercised at the maturity date 7"and the

14

2.2 — Option pricing models

asset prices has not to be over the barriers levels (e.g. upper barrier, lower barrier or
both) set in the contract at anytime of the preset time period. For simplicity, we assume
that the contract starts at the time ¢ = 0 and ends at the time t = T.

Ppy = max{S(T)— K0} Vi€ (0,T)=>S,<S01)<S, (2.3)
P, =max{K - S(T),0} Vi€ (0,T)=>S;<S5t) <SS, (2.4)

where S, and .S; are the upper bound and lower bound respectively.

2.1.3 American Option

Compared to the European vanilla option, American option gives the holders more
flexibilities to exercise the contract. The exercise can happen at any date prior to the
maturity date 7. The holders definitely have to think about the strategies to find the
best time to exercise the contract in order to maximize the payoff from the flexibility of
the American options.

2.1.4 Asian Option

The Asian option which is also called average value option. Different from the
vanilla options, the payoff price of the Asian option depends on the average price of
the stock over the time period 7. So this is an exotic option. According the way to cal-
culate the average price, the Asian option is divided into two types. (2.5) and (2.6) define
the first type and the payoff price is calculated by using the arithmetic mean. (2.7) and
(2.8) define the call price and put price respectively by using the geometric mean.

T
Pca” = ma.X{%_'/‘ S(t)dt - K,O} (25)
0
1 /T
Pp,, = max{K — ?/ S()dt,0} (2.6)
0
1T
Pean = max{eT Jo "0 _ g o) (27)
1 rT
Pp,, = max{K — et Jo SO (5 (2.8)

2.2 Option pricing models

2.2.1 Black Scholes Model

In option pricing modeling, one cannot miss the Black-Scholes model also noted as
B-S model. The B-S model is a partial differential equation that describes the prices of
the capital assets by a constant mean variance, also called volatility which is a statis-
tical measure of the standard deviation of the returns [16]. Some assumptions such as

15

2 — Acceleration of Financial Algorithms

the frictionless market, absence of arbitrage and free transactions make the B-S model
simple to analysis, especially to guarantee analytical solutions. One of the basic assump-
tions is that the price of a risky asset is subjected to the geometric Brownian motion,
a stochastic differential equation (SDE) with constant volatility [5] shown in (2.9). And
there is at least one riskless asset such as the saving account in the market with interest
rate r shown in (2.10)

dS(t) = u St)dt + cSHdW (t) (2.9)
dP(t) = rP(t)dt (2.10)

where S(7) is the asset price also called stock price, P(?) is the price of the risk-free
asset, u is the average growth rate of the stock price and it is equal to r, the interest rate
of the risk-free instrument, due to the no-arbitrage assumption [26], ¢ is the constant
volatility measured by the standard deviation of the stock prices and W (¢) is a stochastic
process also known as Wiener process.

The analytical solution is obtained in (2.11) by It&’s lemma [26].

1 2
St + Af) = S(t)e! 17)AoeVA (2.11)

where ¢ ~ N(0,1), the standard normal distribution. From this analytical solution,
one can derive the Black-Scholes equation [26] for the option pricing for the European
options and American options.

The numerical solution (2.12) can be easily derived from 2.11 by the Euler discretiza-
tion method [10] under the condition that A « 1. The numerical solution is extremely
useful when deal with the exotic option problems.

St + Af) = S@)(1 + rAt + ceV/Ar) (2.12)

2.2.2 Heston Model

Instead of a constant variance in the B-S model, a time-dependent variance o(¢) in
(2.9) can make the model more accurate to predict the behaviors of the asset prices. A
series of models had been designed in the last decades like the Leland’s model [5] and
Heston model. The Heston model which was designed in 1993 [24] is widely used in the
option pricing evaluation. It describes the stock prices and the volatilities by a group
of stochastic differential equations. (2.13) models the stock prices with the similar form
in (2.9) and (2.14) models the instantaneous volatilities by a special stochastic process
known as the Cox-Ingersoll-Ross (CIR) process [3].

dS(t) =rS@)dt + A/ V(@)S®)dzy(t) (2.13)
dV(t)=k@ -V ()dt +o,\/V()dz(t) (2.19)

Where zy(t) and z;(f) are two Wiener processes, p is the correlation factor between
them, Couvldzy(t),dz|(t)] = pdt and —1 < p < 1. 6(t) = 4/V(¢) is the volatility of the

16

2.3 — Monte Carlo Method

stock price, so that V' (f) must be positive. In (2.14), 0 is the long-run mean variance, k is
the speed of mean reversion(the rate at which V' (¢) reverts to 6) and o, is the volatility
(Standard deviation) of V().

For a short time At « 1, V' (¢) can be assumed to be constant, so that It6’s Lemma can
be applied to (2.13) as in the B-S model, which is then simplified as in (2.9). The numer-
ical solution for (2.14) is also obtained by Euler discretization[10] with full truncation
scheme avoiding negative values under the square root. The final solutions are shown
in (2.15) and (2.16).

S(t+ A1) = SO + rAt + VYO (pe; + V1 — pReg) VAL (2.15)
V(t+A)=VE)T + K0 - VOHAL+ 0,V (E)Te, VAL (2.16)

where ¢, €, ~ N(0,1) and V()" = max(V (1), 0).

2.3 Monte Carlo Method

The Monte Carlo method (MC method) named from the casino Monte Carlo in
Monaco, is one of the most widely used approaches to simulate stochastic processes,
like the behaviors of multiple electrons/holes in a semiconductor structure or a stock
price modeled with Black-Scholes in this thesis. This is especially true for those physical
and mathematical problems that rely on numerical solutions due to the lack of closed
forms. In most of the solutions, the Monte Carlo method requires a large amount of
random numbers according to certain distribution within certain range.

In this chapter, we adopted the Monte Carlo Method to simulate the stochastic pro-
cess described by the B-S model and Heston model in order to estimate the expectations
of the payoff prices of a given instrument and a given option. By this method, both the
vanilla options and the exotic options can be analyzed in the same framework.

To do so, we need to have to define some terms first.

Path simulation (PS): Since the stock price is a stochastic process over time, we call
the computations from the initial stock price to the final stock price at time T as a path
simulation. We define the number of simulations as Ng. Usually N is a large number
used to compute the expectations of the payoff of the given option in order to guarantee
the results converging to the true expectation.

Step simulation (SS): To do the PS by the numerical solution, it’s necessary to par-
tition the time period of an given option. Given the time interval (0,T), for conve-
nience, we applied a uniformly partition into M steps and these steps were denoted
as ty = 0,11,15,...,t) = T. In order to guarantee 6t = J_T4 « 1, M should be a large
value. We call the computation from S(#;_;) to S(#;) as a step simulation. Each SS needs
one or more normally distributed random numbers. This number is determined by the
option pricing models.

17

2 — Acceleration of Financial Algorithms

Performance indicator (PI): For a given option problem and a given option pricing
models, the computations for each SS is independent from the computation platforms
and the values of Ngand M. So the mean time to do one SS or the average amount of
SS per unit time is suitable for the performance indicator of a platform. In this thesis,
we use the second definition as the performance indicator, which is the number of SS
that the platform can compute per second as shown in (2.17).

PI = #SS/s (2.17)

2.3.1 Random Number Generator

As described, it requires one or more normally distributed random numbers for
each SS in the MC method applied to the option pricing models So the total amount of
random numbers is proportional to the N g¢M. In general, any non-uniform probability
distributed random generator can be realized by the uniform distribution random num-
ber generator and a function that converts the two distributions. The most common
method is named inverse transform sampling.

Mersenne-Twister Algorithm

In order to achieve faster convergence and accurate results at the end of the MC
method, a key aspect is the quality of the random numbers that it uses. In general, the
software random number generation algorithms are Pseudo-Random Number Genera-
tors (PRNG) due to the fact that these algorithms depend on the initial seeds for initial-
ization and the generated sequence of random numbers are periodic. For MC method,
which consumes plenty of random numbers, Mersenne-Twister algorithm is the best
choice for its long periodicity.

Box-Muller Algorithm

After obtaining the independent uniform distributed random numbers, one can get
the normal distribution random numbers by the inverse transform sampling. As shown
in (2.18) [18], it is the transformation function from a uniform probability variable x ~
U (0,1) to Gaussian distribution variable y ~ N(0,1).

y=T" %) = V2erf'2x - 1) (2.18)

However, the accurate computation of inverse error function is very expensive. Most
the algorithms [7] numerically compute the inverse error function by the piece-wise
linear approximation [19] or the polynomials which is usually small and efficient but
insufficient in resolutions [49]. Here, in this thesis, we adopt another method named
Box-Muller transformation, which generates high quality normally distributed numbers
but consumes a large computing resources.

18

2.4 — Related work

So the procedure is to generate two independent random numbers U, and U; from
the uniform distribution on the unit interval (0, 1) by MT algorithm.

Z, =1/—-2InU, cos(2zU,) (2.20)

Then by the (2.19) and (2.20), two standard normal distribution random numbers Z,
and Z| are obtained.

2.4 Related work

The acceleration of the Monte Carlo method applied to the financial algorithms has
been analyzed by many researchers. De Schryver, et al. [de2011energy] accelerated
the Heston model applied to the European barrier option using both the 40 nm Nvidia
Tesla c2050 GPUs and the 65nm Virtex-5 FPGAs. In their experiments, even though
the FPGAs achieved slower performance than the GPUs by about 4x, the power of the
FPGAs was about 8x smaller than the GPUs. The average energy per step simulation of
the FPGAs was about 2x better than the GPUs.

Tse et al. [tse2010efficient] implemented the Black-Scholes model applied to Asian
options on a 65 nm Virtex-5 FPGA by manual RTL design and compared it with a 55 nm
Nvidia Tesla C1060 GPU. In their report, the FPGA achieved 2.2x faster performance
and about 6x less power than the GPU with a better technology node.

Inggs et al. [inggs2014high] designed their accelerators on various FPGAs using
various high level synthesis tools including Altera SDK and Xilinx Vivado HLS, and
proved that the HLS methodology was mature to achieve good results by comparing
the results with multi-core CPUs and GPUs. In addition, they also discussed how to
exploit the parallelism in the Monte Carlo method applied to financial algorithms.

2.5 Implementation and Architecture

The basic implementation is shown in Algorithm 1 and Algorithm 2. For the two al-
gorithms, there are two nested loops over the N g, the number of path simulations and
M, the number of path simulation steps. We modified the Mersenne-Twist algorithm to
generate two random uniformly distributed numbers in order to feed the Box-Muller
algorithm, which takes two values as the inputs and then generates two random nor-
mally distributed numbers. In B-S model, the two random numbers are used for two
simulation steps while in the Heston model, they are used for updating the stock price
and the value of the volatility respectively. In order to reuse the code for different ran-
dom number generation algorithms, option pricing models and options, in this paper,
these algorithms are implemented mainly in six classes with interfaces to communicate
and perform the simulations, shown in Figure 2.1.

19

2 — Acceleration of Financial Algorithms

Algorithm 1 Black-Scholes model

Input: parameters for the stock and option
Output: payoff price
Initialization: Random number generators

1: fori=1to Ngdo
for k = 1to M do

Uy, U, < MersenneT wist()

€y, €1 < BoxMuller(U,, U;)

Si,,, < Price(S; ;€p)

Si,., < Price(S; . €)
k+ =2
end for
P, piionlil < Option(S;l], K)
10: i++
11: end for

12: return Ppayoff = mean(Poption)

Algorithm 2 Heston model

Input: parameters for the stock, volatility and option
Output: payoff price
Initialization: Random number generators
1: fori=1to Ngdo

2: fork=1toMdo

3: Uy, U, < MersenneT wist()
4: €y, €1 < BoxMuller(Uy,U,)
5: S, < Price(S, .V,)

6: Vi, < Volatility(V, ,e;)

7: k++

8: end for

9 Poponli] < Option(S,[], K)

10: I++

11: end for

12: return Ppayoff = mean(Poption)

20

2.5 — Implementation and Architecture

J _ v

Model

P-RNG = oOption Status
+ num_simulation: int -
+mt_state: unsigned int - + valid: bool
+ num_partition: int —
+ pos: unsigned int =P +price: T

+ option_status: pointer + volatility: T

+ init{unsigned int): void _]
.) + update_price(): void | * option_data: pointer
+ extract(): unsigned int

+ box_muller()’ void + update_vol(): void + update_status(): void

+ simulation(P-RNG): void

+ final(): void

+mean(T): T
3

¢ = Option Data
Volatility ¢ + stock_d: pointer
+ volatility: T = Stock +time: T
+theta T + price: T + strikeprice: T
* kappa: T + volatility_d: pointer * market_d: T
+sigma: T

+execute(): T

Figure 2.1: Design of the top-level structure

We use high level synthesis tools, like Xilinx Vivado HLS that can synthesize high-
level C, C++, OpenCL and SystemC programs into register transfer level (RTL) netlists.
We describe next a simple C++-based strategy that both simplifies model management
and improves hardware design.

Both the algorithms 1 and 2 can be translated into micro-architecture on the FPGA
as shown in Figure 2.2. At the initial phase, the controller reads from the memory the
seed to initialize the PRNG and the parameters of the option. Then the simulation engine
starts to update the stock price step by step over. Finally after N g path simulations, the
options’ mean payoff is estimated and written back to the memory.

2.5.1 Optimization
Dataflow

The first optimization we applied is the “Dataflow” as introduced in the first chapter,
it explores the task level parallelization and synthesizes the modular design efficiently.
We applied this optimization and then got the architecture as shown in Figure 2.3.

In this architecture, if any connected modules have mismatched throughput, faster
consumer or faster generator, one of the module has to stall since the FIFO size is limited
and it reduces the overall efficiency. The target is to optimize each module and match

21

2 — Acceleration of Financial Algorithms

Off-chip DRAM
Controller » Option status
| A
h l r
PRNG ,| Option pricing
model

Figure 2.2: Data-path of the MC method

DRAM Memory
seeds Nr M Ns Payoff

[y

Y ¥ h 4 ¥ b4 h 4

-,

MT [_ero | Box Muller [_ro > Path simulation m"/\ Mean payoff
I 1 1

d

Figure 2.3: Dataflow optimization in cores connected by FIFOs

the throughput of each module.

Step simulation optimization

The first optimization applied here is to pipeline the inner most loop of the path
simulation as shown in the two algorithms. However, the identity II is not able to be
achieved due to the critical feedback loop in the data-path in the stock price updating
phase, as shown in Figure 2.4 by the orange line. The slow floating-point multiplier
creates a critical path in the design. The solution to this issue is to share the faster
instance to multiple slow modules as a compromise. In addition, all the path simulations
are independent from each other.

As shown in Figure 2.5, the PRNG continuously generates the independent normal
distributed random numbers and distributes them to multiple path simulations by a
MUX operated by the controller. In this design, the clock frequency can be higher since
the floating-point multipliers has multiple clock cycles to finish the computation. At
the end of the path simulations, the mean payoff price is estimated. The number of the

22

2.5 — Implementation and Architecture

Option Status

S(t) At t

S st boo(s)

- Option pricing
o model

Figure 2.4: Critical path in the step simulation

oVAt

Group Path Simulation
Option Pricing .
\; Model }»4‘ Option Status }—‘

Option Pricing
Model

] Option Pricing . F
» Model Option Status
] Option Pricing .
-‘ Model H Option Status h
=

Figure 2.5: Group path simulation

IS

‘ -‘ Option Status

‘ >

PRNG Payoff

ueapy
I

DEMUX

multiplexed path simulations sharing one PRNG is denoted as Ng. The identity II is
achievable by a proper value of N;.

Note that while these simulations are independent, their implementations can share
some expensive computational resources such as the sgrt, as shown in Figure 2.6. Hence,
an additional level on top of Figure 2.4 uses a counter i to iterate over N, and control
the selection of random numbers and stock prices, where N is the number of path
simulations sharing a PRNG.

Although the latter hardware micro-architecture is much more complex than the
original one in Figure 2.4, by using HLS synthesis directives we minimize the changes
of the software algorithm, as shown in Algorithm 3. Figure 2.7 demonstrates the pipeline
of the modified algorithms with group simulations. In the original algorithm, the stock
price estimation stalls the pipelining while the optimized algorithms has no longer the
issue since the stock price in the successive iteration .S, (?) is independent from the
previous one S;(?).

23

2 — Acceleration of Financial Algorithms

Algorithm 3 Group path simulation

Input: parameters for the stock and option, id, Ng and M
Output: payoff price

—_ =

R A A T o A T

Initialization:
prng(id)
opM(optionData)
fori=1to Ng¢/Ng do
for k =1to M do
for g = 1to N do
this loop is pipelined
€y, €] < prng.generate()
opM.OptionStatusUpdate(optionl[i, gl, €y, €1)
end for
end for

: end for
: return P ayoff = mean(option(].price())

24

2.5 — Implementation and Architecture

jt" Option Status
ith Option Status

S(t) At

0

Option pricing
model

Figure 2.6: Path simulations share expensive computation resources, such as square root
operator

PRNG | Update S(t)
PRNG Update Sq(t+At) |
1}
| PRNG | Update S4(f)
| PRNG [Update Sy(t) [
| PRNG [Update Ss() |
““ | PRNG Update Sq(t+A) |

Figure 2.7: Pipeline of group simulation

PRNG

In the original MT algorithm, there are 624 states which is initialized by the seed and
then updated during the random number generation. The state memory is allocated to
block-RAM (BRAM), which has at maximum two ports on the modern FPGAs. To gen-
erate one random number it requires four distributed states, so there are three reads
and one write from the BRAM, as shown in Figure 2.8. It means that the one random

25

2 — Acceleration of Financial Algorithms

number generation costs two clock cycles. Considering that the pipelined Box Muller
algorithm is able to generate two random numbers in every clock cycle with two ran-
dom numbers as the inputs. In order to match the throughputs of the two modules, we
need to speedup the MT module by 4x. Since the random numbers are out-off order,
the simplest way is to allocate multiple independent MT modules to achieve the desired
performance. However, this method is not able to exploit the parallelism in the MT al-
gorithm. The more efficient way is to partition the state memory into multiple parts to
increase the memory access capability. Each independent BRAM can holds up to 18kb
data (18-bit interface), if the array allocated to the BRAM is small, the unused storage
is wasted. In this thesis, in order to maximize the efficiency of the resource utilization,
we partitioned the state memory into two parts (even and odd index) as shown in the
Figure 2.9. In addition, we duplicated the MT to achieve in total 4x performance.

/MT states \

MT_S]i]

-5

- MT_S[i] | MT_S[i+1] | MT_S[i+m]
®

l l

Twister

Generator |—— Box-Muller

PRNG/

Figure 2.8: Data-path of the PRNG algorithm

Path simulation optimization

Since all the path simulations are independent, it is possible to deploy multiple in-
stances of the micro-architecture shown in Figure 2.5 on the FPGA to maximize the
overall throughput. The number of instances on the FPGAs are denoted as N,. In this
thesis, we provides three approaches to realize this implementation on the FPGAs.

Unroll

In the first approach, we aimed at exploring the parallelization by loop unrolling.
In the software design, the N, copies of the basic modules are programmed to run in
parallel in the inner-most loop, which is unrolled by the HLS tools via directives. The
pseudo-codes are shown in Algorithm 4 Figure 2.5. The arrays in the pseudo-codes have

26

2.5 — Implementation and Architecture

Algorithm 4 Unroll algorithm

1: fori=1to Ng/Ns/N,do

22 fork=1toMdo

3 for g =1to N; do

4 for j=1to N.do

5: €y, €] < PRNG]Jj]

6: St [&]lJ] < Price(S; [j],V;, [g]lj], €)
7 Vi, [8lJ] < Volatility(V, [g]lj],€1)
8 end for

9 end for

10: end for

11: end for

27

2 — Acceleration of Financial Algorithms

‘ MT states 1

K MT states 0

e

‘ MT_S[i] |MT_S[i+1]|MT_S[i+2]||MT_S[i+m

MT_S[i+m+1]

L—l

|

Twister l— l

E Twister
] —
Generator

-

Box-Muller {—»

K Generator

MT algorithm

Figure 2.9: Data-path of the new PRNG algorithm

to be properly partitioned. In this case, all the concurrent threads are controlled by the
same FSM of the step-simulation and the path-simulation as shown in Figure 2.10. One
benefit of this architecture is that all the threads can communicate with each other and
share the resources on chip. The drawback is that the developers have to change the

source codes and the synthesized kernel is very large.

DRAM Memory

L

Mean value

Pavoff ‘

[—
B
=
®

@
o]
S
e
]
=

Pavof] ‘

Controller PRNG ‘ Group Path

= PRNG Group Path Payoff
simulation

FPGA

Figure 2.10: Static pipeline

Compute Units

In the second approach, we instantiate the N, instances on the FPGA as multiple
compute units during the “fabric linking” phase of the SDAccel, instead of the “fabric
compilation” phase. It can be done easily by passing the number of compute units to the
linker as an option in the ’Makefile’. The HLS tool synthesizes a smaller (less heavily
unrolled) version of the architecture shown in Figure 2.10 as one independent compute

28

2.5 — Implementation and Architecture

unit. The N, instances work as completely independent threads, can even implement
different option models, and communicate directly with the host CPU, as shown in
Figure 2.11.

DRAM Memory

[t | o | Lm0 L ot |
B T

Group Path
simulation

Controller PRNG

— Payoff

FPGA

Figure 2.11: Multiple compute units

Dataflow

Since the ‘DATAFLOW’ directive in the VIVADO HLS explores the task level paral-
lelism as mentioned above. We group the modules in Figure 2.3 as a single task. With
the directive, the HLS tool automatically generates multiple identical tasks running in
parallel in a single kernel. As shown in Figure 2.12, this architecture combines the fea-
tures of the two architectures in the Figure 2.10 and the Figure 2.11. All the independent
threads are initialized by the same inputs and the number of simulations are divided by
them. The payoft price are estimated by the average value from each thread and then
is written to the outputs ports. The codes to implement the this parallelism are shown

DRAM Memory

T

Global control Mean payoff

f

v L \
Contro erl»—»‘ PRNG M G’ﬂ”’? i’_a{.‘h }—" Payoff ‘
Control!erH PRNG M Ciriu'?jff] Payoff |

Group Path
simulation

Controller PRNG

— Payoff

FPGA

Figure 2.12: Parallelism by dataflow

29

2 — Acceleration of Financial Algorithms

in the Figure 2.13. In this implementation, there are in total two threads running in
parallel.

float <all0, putO;
heston<NUM SIMS,EuropeanOptionStatus<float>, float> hs0(sd,vol, steps);
float calll, putl;
heston<NUM SIMS,EuropeanOptionStatus<float>, flcat> hsl(sd,vol, steps);

{

launchSimulation (call0, putO, g _id, hs0, each sims*steps<<l, each_sims) ;
launchSimulation(calll, putl, g_id<<1l, hsl, each sims*steps<<l, each_sims) ;

Figure 2.13: Implementation of two parallel threads by "Dataflow’

2.5.2 Performance Indicator

The performance indicator is defined by (2.17) in the previous section. We can give
the formulation of this parameter under the optimizations we applied. If we can obtain
the performance of the hardware architecture we have in Figure 2.3, the overall per-
formance then is given by a multiplication of N,. Since N, is determined by the FPGA
resource, we need also analyze the hardware utilization of such architecture.

As analyzed above, the pipelined “Box Muller” block generates on average two
Gaussian distribution random numbers per clock cycle. It means that the hardware ar-
chitecture can process 2 SSs for B-S model or 1 SS for Heston model in each clock cycle.
Then we obtained (2.21) and (2.22), where f is the device clock frequency. Of course,
the two formulas give the upper bound on performance.

Plyeston = / X N (2.22)

2.6 Results

For the sake of comparison, we use the value of parameters listed in Table 2.1 in all
implementations, where N; = 32 for B-S model and 64 for Heston model. The reason
to choose these values is to guarantee an execution time on the CPU not beyond tens
of seconds. On the accelerators such as GPUs and FPGAs, in order to measure the time
more accurately, we computed the average running time of many repeated executions
with large amount of simulations, and then re-scaled the results to perform the same
amount of computations as the Table 2.1.

30

2.6 — Results

Table 2.1: Value of the simulation parameters

Name‘N N ‘NG‘M

c ‘ s

Value | 8 | 65536 | 32/64 | 1024

2.6.1 Running on CPUs

Since the algorithms are coded in C++, the code is compiled by g++ with -03’
optimization level. The performance of each option on the AWS F1 CPU (i.e. a Intel(R)
Xeon(R) CPU E5-2686 v4 @2.30GHz core) is shown in Table 2.2. The CPU time for the
Heston model of the European barrier option is about 4x less than that for the European
vanilla option, because simulation can be stopped once the stock price goes beyond one
of the barriers (in about 44236 paths out of 65536).

Table 2.2: Performance on various platform

Model Option F1 CPU [s]
B-S | European vanilla 3.56
B-S Asian 3.88

Heston | European vanilla 5.16

Heston | European barrier 1.25

2.6.2 Acceleration by GPUs

We also tested the algorithms on the Nvidia GTX 950 GPU on local server and the
Nvidia Tesla P100 GPU platform on Google cloud platform, by rewriting the models
in CUDA to achieve the best performance on the GPUs. We report the actual power
consumption from the Nvidia System Management Interface rather than the maximum
power of each GPU. Table 2.3 lists the execution time, power and energy consumption
of the four tests on various options. The results shows the Tesla P100 GPU is about 1600x
faster than the F1 CPU for B-S models on the two options and about 1200x faster for
the Heston models on European option and 300x faster on the European barrier option
(since the SIMD model cannot take advantage of early termination).

2.6.3 AWS F1FPGA
Comparison between various optimizations

On AWS, we first compared two optimizations, one acceleration by unrolling the
inner most loop and the other one acceleration by suing multiple compute units. In or-
der to have a fair comparison, we need to control the resource utilization, the number

31

2 — Acceleration of Financial Algorithms

Table 2.3: Performance on various GPU platforms

Model Option GTX 950 | Power | Energy | Tesla P100 | Power | Energy
[ms] (W]] [ms] (W]]
B-S European 11.15 84 0.937 24 170 0.408
B-S Asian 11.17 84 0.938 2.11 170 0.359
Heston European 26.3 91 2.39 4.31 181 0.78
Heston | European Barrier 26.13 87 2.27 4.33 180 0.779

of the PRNG modules, and the number of total computations of the two implemen-
tations. The resource utilization in the Table 2.4 is the approximate value for the two
implementations.

Table 2.4: Resource utilization

Model Option LUT | LUTMem | REG | BRAM | DSP
% % %o % %
B-S European 10 1 6 3 9
B-S Asian 11 1 7 4 10
Heston | European 11 1 9 3 11
Heston | Euro. barrier | 11 1 8 3 11

By the (2.21) and (2.22), we could estimate the lower-bound execution time by the
total SS dividing PI for the test parameters listed in Table 2.1. The frequency of the F1
FPGA is 250MHz, so that the execution time is 16.78ms for B-S and 33.55ms for Heston
model.

Table 2.5 lists the execution times of the two implementations. The performance of
the independent compute unit implementation is close to the estimated lower-bound
execution time while the inner loop unroll is about 1.5x slower.

Full Device Implementation

In order to compare the performance and energy profile with the GPU, we designed
a large implementation on the F1 FPGA. We obtained the actual power consumption
from the AWS F1 power reports provided by the platform.

From Table 2.7, we can conclude that the AWS F1 FPGAs have comparable perfor-
mance to a Tesla P100 GPU, with a significantly (4x) lower energy consumption. These
comparisons are also shown in the Figure 2.14.

2.6.4 Embedded Platform: ZYNQ 7020

Apart from the AWS F1 FPGA, we also tested our design on the embedded platform
PYNQ Z2. By the same method, we could estimate the lower bound of the execution

32

2.6 — Results

Table 2.5: Compute unit vs unroll performance

Model Option F1 FPGA by UNROLL | F1 FPGA by CUs | Speedup CU/UNROLL
B-S European 28.76ms 17.07ms 1.68x
B-S Asian 25.92ms 17.1ms 1.52x

Heston | European 47.5ms 33.84ms 1.4x

Heston | Euro. barrier 46.8ms 33.82ms 1.38x

Table 2.6: Resource utilization on AWS F1

Model Option LUT | LUTMem | REG | BRAM | DSP
% % % % %

39 20 77

B-S European 66 7 38 23 71

B-S Asian 70 8 42 31 80

Heston | European 62 8 37 20 77
9

Heston | Euro. barrier | 63

time, we got 0.112s for B-S models and 0.224s for Heston models under 7ns clock period
and N, = 2. Note that this platform is not realistic for the implementation of financial
applications, which are executed in large data centers, but we would still like to report
it as a reference.

The algorithm execution times that we obtained on the PYNQ Z2 platform are listed
in Table 2.8 and resource utilization are listed in Table 2.9. The execution time is very
close to the estimation. The power information was obtained from the VIVADO power
estimator, which is the best reference for the embedded platform, which unlike the AWS
F1 does not have any mechanism for reporting the power consumption at runtime.

Of course, the performance of the Z7020 FPGA is slower than the F1 FPGA because
it is much smaller (and cheaper). However, the embedded FPGA still has 23x better
performance than the F1 CPU and 1.7x less energy consumption than the P100 GPU
and about 5x less than the GTX950 GPU for the same amount of computation.

These comparison are also shown in the Figure 2.15.

33

2 — Acceleration of Financial Algorithms

Table 2.7: Performance on AWS F1

Model Option Performance [ms] | Power [W] | Energy[]]
B-S European 2.84 41 0.116
B-S Asian 2.81 42 0.118

Heston | European 7.2 41 0.295

Heston | Euro. barrier 6.4 40 0.256

2.000

1.183

1.000

0.500

AWS F1 FPGA vs Tesla P100

1.671
1.478
1.332

Execution time

European vanilla option

Asian option

Power ratio

M European vanilla c

option

Energy ratio

B European barrier option

Figure 2.14: Performance ratio between AWS F1 FPGA and Tesla P100 GPU in terms of
execution time, power and energy consumption (log scale)

Table 2.8: Performance on PYNQ Z2

Model Option Performance [s] | Power [W] | Energy[m]]
B-S European 0.118 2.02 0.24
B-S Asian 0.117 1.84 0.21

Heston | European 0.225 2.1 0.47

Heston | Euro. barrier 0.236 2.06 0.48

Table 2.9: Resource utilization on PYNQ Z2
Model Option LUT | LUTMem | REG | BRAM | DSP
% % % % %
B-S European 45 11 35 10 70
B-S Asian 47 11 36 13 68
Heston | European 49 15 40 10 75
Heston | Euro. barrier | 52 14 38 10 88

34

2.6 — Results

ZYNQ 7702 vs GTX 950

16.00 yp58 10.47

8.56 9.03
8.00
2.00
1.00 e — ——
0.25

0.2561 , -
0.13 0.2239 5 1967 0.2115

0.0240 (5 1314 0.0231 0.0237

Execution time Power ratio Energy ratio

European vanilla option Asian option M European vanilla option M European barrier option

Figure 2.15: Performance ratio between ZYNQ Z702 FPGA and GTX 950 GPU in terms
of execution time, power and energy consumption (log scale)

35

36

Chapter 3

Cache-Based Acceleration for
Memory Intensive Algorithms

In many algorithms such as image classification and video processing, a large amount
of data has to be transferred to and processed on the heterogeneous accelerators. In
the roofline model, since these algorithms have a low computation to communication
ratio, their performance is constrained by the interface bandwidth. For most memory-
bounded algorithms, the data access pattern is not random and/or many of the data are
accessed multiple times. For the first feature, developers can pre-fetch the data on chip
according to the data access pattern in order to reduce the data conflicts and exploit
the burst data access on the interface. For the second feature, local buffers (registers or
block RAMs) can be used for data reusing in order to reduce the number of accesses to
the external DRAM.

We designed an easy-to-use cache to explore these two features (spatial and tem-
poral locality) of an algorithm automatically and help the designers to accelerate their
algorithms on the FPGAs.

37

3 — Cache-Based Acceleration for Memory Intensive Algorithms

3.1 Background

3.1.1 Memory-intensive algorithms

Even though the HLS tool automates most the low-level labor-intensive transforma-
tions from high-level code to RTL, many decisions must still be made by the developers,
and extensive code rewriting, especially for the memory-intensive algorithms, is some-
times needed in order to obtain the best performance on an FPGA.

In the previous chapter, we presented the ways to accelerate a computation-intensive
algorithm mainly by the synthesis directives such as the loop pipeline and memory par-
titioning. Since the latency of memory-intensive applications is particularly significant
in FPGAs due to off-chip memory bandwidth limitations, code rewriting and exploiting
data reuse with on-chip BRAMs are inevitable in order to ameliorate both the perfor-
mance and the energy consumption.

From the roofline model shown in Figure 1.3, the first application has very low com-
putation to communication ratio and its best performance is not able to reach the fully
potential of the device. The reuse of data can significantly enlarge the computation to
communication ratio and then enable one to fully exploit all the computation resources
on chip.

3.1.2 Cache Related Work

Modern CPUs generally include up to three levels of cache in order to reduce both
data access time and energy. As the level increases, both latency and cache size (hence
access power and energy) increase. These caches implement different access, replace-
ment and coherency strategies to achieve the best average performance for all kinds of
algorithms. Research on improving general-purpose caches is abundant.

Many researchers addressed the acceleration of memory-intensive algorithms on
FPGAs by exploiting the highly configurable on-chip memory architecture. For exam-
ple, Cheng et al. [11] developed a trace analysis method to detect relations among all
memory accesses. Performance was greatly improved by caching independent data in
separate local memories. Adler et al. [2] used BRAMs as statically-managed scratchpads
rather than dynamically-managed caches, and described a management system for dif-
ferent levels of local storage. Choi et al. [12] implemented a multi-ported cache based
on the so-called live-value table, aimed at a system architecture where both the host
processor and multiple accelerators are on the same chip. In their approach, both the
processor and the accelerators access the same off-chip memory via a single custom
multi-port cache, which of course may become a performance bottleneck. Putnam et
al. [39] provided a cache-based solution to simultaneously increase performance and
reduce power consumption, since external DRAM accesses require much higher power
than on-chip SRAM. In this design methodology, the CHiMPS HLS tool first compiles
the high-level code (written in C) to an intermediate representation and then the caches

38

3.1 — Background

are optimized according to the memory access patterns. Similarly, Winterstein [57] also
used the LLVM intermediate language to maximize the utilization of BRAMs to accel-
erate a specific algorithm (tree reflection).

Our approach is inspired by some of these works, in particular to reduce access
conflicts by using a separate cache, possibly with a different architecture, for each source
code array mapped to external DRAM.

3.1.3 Motivations

The motivation to design the cache aims at avoiding all the code rewritings that
optimize the access to large arrays of data. Even though the designed caches do not ex-
clude the high level verification, our approach is able to avoid the significant verification
cost of these changes, because caches are guaranteed to always deliver the right data.
In the context of algorithms like those targeted by this research (which have regular
access patterns), they can even “guarantee” good performance, where the guarantee is
as good as the test cases which are used to select the cache parameters and to verify the
performance post-synthesis.

In past work, the caches are usually designed as concurrent HW modules. While
this strategy offers some advantages, such as a better decoupling between the external
memory and the IPs, it also has a significant disadvantage: it requires one to change the
accelerated kernel code to access the caches via dedicated interfaces rather than directly
access the source code arrays. This is incompatible with the strategy of providing a
software-like design environment for FPGA hardware,

This issue motivated us to design the inline caches. In order to define the scope of
this research on accelerating memory-intensive algorithms, we list some requirements
for the caches:

1. Enabling significant performance acceleration with respect to code that was not
written specifically for FPGA, and sometimes not even optimized for a GPU.

2. Improving execution energy consumption by targeting an FPGA platform, by re-
ducing off-chip memory accesses, and by decreasing the execution time.

3. Providing the developers with the high level performance information about for
the specific application and an easy-to-use source-level mechanism to configure
the high level parameters such as the size of the cache

4. Supporting optimized use of external DRAM interfaces (e.g. DDR3 or DDR4) via
advanced on-chip buses (e.g. AXI).

5. Enabling the use of HLS tools and preserving the standard HLS-based verification
flow.

6. Requiring almost no changes to the original algorithms.

39

3 — Cache-Based Acceleration for Memory Intensive Algorithms

7. Not hampering the standard set of optimizations introduced in Chapter 1, and
that are offered by the HLS tools.

3.2 High Level Cache Design

3.2.1 Hardware Design Flow

C/C++ Algorithm |+

]

Testbench SW Emulation

l

HLS

l

Performance
Estimation

HW Emulation

l

Performance
Estimation

l

]

Bitstream

Figure 3.1: Design flow in SDAccel

As shown in Figure 3.1, the general design flow starts from the software (SW) em-
ulation (i.e. C verification), which guarantees the functional correctness of the algo-
rithm using properly designed testbenches. Both the algorithms and testbenches can
be modeled in C, C++ or OpenCL and then are synthesized (i.e. “fabric compilation” in
SDAccel) via Vivado HLS tools with the estimations of the resource utilization and the
performance. According to the information in the estimation reports, the developers can
further direct HLS towards the desired solution by the optimizations at the high level.
During the following hardware (HW) emulation (RTL simulation) phase, SDAccel calls
Vivado to connect (i.e. “fabric linking”) the synthesized kernel IPs with other infrastruc-
ture blocks as shown in Figure 1.2 and launches a co-simulation between the RTL and
the high-level testbench. This phase usually last longer time than the SW emulation,
but it also generates a more accurate report of the performance, which in particular
includes the latency due to the off-chip DRAM accesses.

As shown in Figure 3.2, the caches are directly “inlined” in the algorithms to be ac-
celerated. In this way, the “golden” code that has been functionally verified by SW emula-
tion does not need to be changed for high-performance implementation. Only the top-level
module interface (which is typically much smaller and simpler than its often intricate

40

3.2 — High Level Cache Design

DDR Memory DDR

AXl Interconnects |« —
controller Memory

Arraya

Array b

Read from array a
v_read = Aladdress]

‘ Cache Ala)

HiBE

Array x

Write to arrayb
B[address] = v_write

‘ Cache B(b) ‘ Axl

Interconnects

Access external array
xthrough the cache X

‘ Cache X{x) ‘

Kernel IP

Figure 3.2: Inline cache

algorithmic code) requires some small changes, as illustrated below. In the resulting
RTL, the caches are directly synthesized as part of the kernel IP.

C/C++ Algorithm

}

Memory Access
Analysis

l

Configure Caches

l

SW emulation
and cache info
analyzation

HLS and
performance
estimlation
HW emulation
and performance
analyzation

}

Integration

Figure 3.3: Design flow with caches

The new design flow is shown in Figure 3.3. Before applying the caches, the analysis
of the external memory access traces is necessary to find the best cache configurations

41

3 — Cache-Based Acceleration for Memory Intensive Algorithms

to maximize the reuse of the data and minimize the miss ratio with an acceptable area
cost. It requires the designers to make a few modification to the top-level function in-
terface by replacing the original data types of the global array variables with a template
cache data type. Then the following SW emulation can be used to verify the correctness
of the modification, analyze the external memory accesses and to evaluate the perfor-
mance of the cache by the hit ratio, which is automatically captured and printed by our
cache models. Then the HLS, followed by HW emulation or actual FPGA prototyping to
obtain more detailed external memory performance information, which can potentially
lead to further optimizations.

3.2.2 Inline Cache Types

In this work, we propose and describe several kinds of inline caches, e.g., direct-
mapped and set associative, selected based on the memory-trace pattern of the appli-
cations to be optimized. For each array mapped to global memory, a stand alone cache
is implemented. It means that performance is largely independent of the global memory
addresses at which each array is allocated, and that there are no conflicts between dif-
ferent arrays. Since accelerated kernels typically make fairly regular accesses to each
array, this means that real-time performance of our dedicated caches is much more pre-
dictable than that of traditional shared caches, and can be comparable to that of manually
managed scratchpads.

Direct-Mapped Cache

The direct-mapped cache is the most basic and intuitive cache. As its name indi-
cates, every element in the external memory is mapped to a fixed position in the cache,
according to the bit field of the address. Figure 3.4 illustrates a 256-byte direct-mapped
cache caching the data in a 16K-byte (i.e. 14-bit address) memory. The address are parti-
tioned to three fields according to the cache size and the block size. The bits fields in the
middle of the address determine the line to be mapped in the cache, while the word bits
define the offset within the cache line. The tag bits are used to examine whether a given
address is cached in the corresponding line of the cache (“cache hit”) or not (“cache
miss”). In the latter case, the cache fetches the correct data from external memory and
updates the corresponding cache line and tag.

Even though each line contains multiple data, it is updated by a single AXI bus ac-
cess, possibly using a burst (depending on the line and data bus bit widths). The write
policy for the caches in our research is write-back, i.e., only the cache is updated with
the new data initially, while the external memory is updated only when the cache needs
to be flushed, either due to a read/write miss or due to the completion of the acceler-
ator execution. As mentioned above, a standalone cache for each array in the external
memory, which avoids all kinds of coherency issues for our caches.

In some algorithms, and in particular in the most massively parallel cases written

42

3.2 — High Level Cache Design

Main Memory Memory Size = 16Kbytes
Block 0 Memory Block Size = 4 bytes
I,’I Block 1 Cache Size = 256 bytes
Cach R T Block Size = 4 bytes
ache R ! Associativity = 1
Tag[5:0] Cache Line 0 (-’, ‘,' | Number of Sets = 64
i<l |
\vVOOTsS
Tag[5:0] Cache Line 1 f_,<\ = Block 64
ST Block 65
T Ay T
l \ I
| \\ I
i \ |
I N |
! \
\ \) Block 255
Tag[5:0]] L7 Y Block 256
Cache Line 62 . T
\\ f‘ !
~ |
Tag[5:0] Cache Line 63 ¢ N }
N .
~ ~ |
I
|

. Block 4094

*¥ Block 4095
\ [13:8] | 1721 [ruo1]
T T /_'_/
Tag Index Offset

Figure 3.4: Diagram of a direct-mapped cache [54]

in languages such as OpenCL, the uses of each array argument of a kernel are either
read-only or write-only. Hence, we designed a special cache for these read-only and
write-only memory accesses in order to speed up the synthesis, reduce the cost, and
improve the performance. As usual, we keep valid and dirty bits for each cache line, to
indicate if it contains valid data from memory or data that needs to be written back to
memory.

Set-Associative Cache

In some algorithms (e.g., sorting, FFT), the successive data read to the external mem-
ory are not located at contiguous addresses. In the worst case, the memory accesses with
stride as same as the line size would cause the worst performance, since all accesses
might miss the target in the cache. The set-associative cache is the a good solution for
these algorithms.

Figure 3.5 illustrates an example of a 2-way set-associative cache, which has N sets
and M words in each cache line. The data fetched from main memory can be stored
in any line in a cache set. The replace policy in our example code is the Least Recent
Used (LRU), but other algorithms can be implemented as well. In Figure 3.5, the LRU
field records the request order of last access of each cache line. In this research, we use
as time stamp (i.e., LRU value) the request counter, which was also used for statistical
purposes.

Designers should carefully choose the number of ways and the replace policy of
a set-associative cache when optimizing the performance, because a large number of
ways causes higher resource utilization and the replace policy may form a very long
critical path in the design.

43

3 — Cache-Based Acceleration for Memory Intensive Algorithms

Set number Way number

c 0 valid bit | dirty bit block of M words LRU
0 1 valid bit | dirty bit block of M words LRU
1 0 valid bit | dirty bit block of M words LRU
1 1 valid bit | dirty bit block of M words LRU
N 0 valid bit | dirty bit block of M words LRU
N 1 valid bit | dirty bit block of M words LRU

Figure 3.5: Diagram of a 2-way set-associative cache

Just like in the case of direct mapped caches, also for set-associative caches we have
three variants: read-only, write-only and read-write configurations.

In this work we did not consider fully associative caches due to the high cost of the
Content Addressable Memory.

3.2.3 Inline Cache Implementation

The inline cache in our work was designed in C++ by using a template class as
shown in Listing A.1. The template arguments include the definition of the variable
type of the element, the line size, the way size, the word size, the cache type and other
parameters. The cache uses a multi-dimensional array to store the data fetched from
the external memory and register-files to hold the tags, the valid bit and the dirty bit.
The constructor of the class requires the base address of the corresponding off-chip
memory array (typically the value of a pointer argument of the OpenCL kernel or C++
top-level function) as a mandatory argument to initialize the corresponding member
variable which is used to compute the external memory addresses of each memory
access. In HLS, the constructor is typically executed as part of the reset sequence of
the HW block. The constructor and destructor of the inline cache take care of all the
bookkeeping, from initializing the cache as empty (resetting all valid and dirty bits), to
flushing an output cache and printing the statistics in a simulation context, when the
accelerator completes its operation.

In the C++ or OpenCL algorithmic code to be implemented via HLS, the external
memory is usually accessed by the operator[] or the operator* ona pointer passed
from the interface. Hence, we overloaded the operator[] for the cache type, for uses

44

3.2 — High Level Cache Design

on both the left hand side (write) and the right hand side (read) of an assignment'. This
allows us to change only the interface of the function to be synthesized, not its original
source code, thus dramatically reducing the design time and the likelihood of coding
errors. For instance, we show the modification from the original code of the matrix
multiplication algorithm in Listing A.2.

Note that since the cache access functions (for reading and writing) are inlined into
the high level kernel code, the synthesized kernel takes care of both executing the com-
putation using the cached data, and reading/writing data from/to the main memory in
case of misses. As we mentioned above, this somewhat reduces the achievable perfor-
mance, but it dramatically simplifies the design flow and is consistent with OpenCL
philosophy, where the work items themselves take care of moving the data from global
to local memory. In future work we are planning to experiment with the use of separate
processes to handle the caches.

In order to achieve the best performance, the data width of the AXI interfaces that
are used to transfer a line to and from external DRAM should have the same size as
a cache line, so that a read or write can be completed in one clock cycle (plus global
memory latency in case of reads, of course). The kernel ip interface are automatically
defined once the configuration of the cache is done. If the line length is larger than the
global memory read size, then burst accesses will automatically be used by our design.
This is one of the key advantages that the designer gets for free by using our caches.

Algorithm 5 and Algorithm 6 demonstrate how a direct-mapped cache reads or
writes an address of global memory. The set-associative cache has the similar algo-
rithms with a search function to find the correct line from each set and replace function
to locate the line to be replaced once the cache misses.

The pair of variables request and hit are used as performance counters to enable
cache parameter tuning also when an FPGA is used as a rapid prototyping platform,
and can be accessed via FPGA-provided debugging mechanisms (e.g., via JTAG). The
valid and dirty arrays have Boolean elements. The tags array contain unsigned integers
of the appropriate length. The array array is used to store all the lines of data in the
cache.

The two algorithms share a similar structure. Lines 1-4 handle cache hits. The ad-
dress is split into three pieces, namely tag, line and word, then the value (or values, for
the set-associative case) stored in tags is compared with the tag part of the address. If it
is a hit, the following operation is the read from (or write to) array, on line 16. In both
cases, the actual location of the data within the line depends on the value of word. If
it is not a hit, then a new read from the external memory is necessary (after writing
back the dirty line in case of a write or read/write cache). For special cases, a read-only
cache does not need to check if a line is dirty and has only Algorithm 5 implemented.

"We managed to overload differently the read and write accesses to call a different cache access func-
tion, by exploiting an inner class as an agent [63].

45

3 — Cache-Based Acceleration for Memory Intensive Algorithms

Algorithm 5 Read data from direct-mapped cache
Require: 32-bit addr and Cache with a pointer ptr_mem to external memory
Ensure: data = Cache[addr]

1: tag, line, word < addr

2: request < request + 1

3. if tag = Cache.tags|line] and Cache.valid[line] then
4: hit < hit + 1

5: else

6: if Cache.dirty[line] then

7: location < Cache.tags|line], line

8: ptr_mem|location] < Cache.array|line]
9: Cache.dirty[line] « false

10: endif

11: loc « addr » LINE_BITS

12: Cache.array[line] < ptr_mem|loc]

13: end if

._.
b

Cache.tags[line] « tag
: Cache.valid[line] « true
: return data < Cache.array|line].slice(word)

—_
(o NS,

Algorithm 6 Write data to direct-mapped cache
Require: 32-bit addr and data and Cache with a pointer ptr_mem to external memory
Ensure: Cache[addr] = data
1: tag, line, word < addr
request < request + 1
if tag = Cache.tags|line] and Cache.valid[line] then
hit « hit + 1
else
if Cache.dirty[line] then
location < Cache.tags[line], line
ptr_mem|location] < Cache.array|line]
end if
loc < addr » LINE_BITS
Cache.array|line] < ptr_mem[loc]
. end if
Cache.tags[line] < tag
Cache.valid[line] < true
Cache.dirty[line] < true
: Cache.arrayl|line].slice(word) « data

[S S S T T
BAREUE I S v~

46

3.3 — Applications

The C++ code is listed in Listing A.1.

Cache-dependent HLS Optimizations

Applying the inline caches described in this work to the applications, developers
usually obtain better performance compared to original algorithms. In order to fur-
ther improve the performance, the algorithm- and cache-dependent optimizations are
necessary. As mentioned above, the designed inline caches are compatible with HLS
optimization directives. Application-specific post-optimizations include but not limited
to the pipelining or unrolling a loop, and providing memory dependency directives. For
example, a memory dependency is assumed to exist, if there is an array that is both read
and written. Often, HLS may not be able to detect automatically if this memory depen-
dency is true or not, and directives are required to optimize memory accesses by using
knowledge coming from the programmer.

A very useful optimization provided in our design can be used when some array
accesses in the code will be always hits (e.g., the access to array element i + 1 after
accessing element i, if i is even and the line size is at least 2). When the address analysis
performed by the HLS synthesis tool is not powerful enough to detect this situation due
to complex address computations, this can be done manually or automatically (in the
future work) by using two dedicate designed member functions of the cache class. The
methods retrieve() and modify() can be used instead of the convenient operator “[]” to
directly read or write respectively an element of the array by assuming that it is already
in cache. These functions can dramatically improve the throughput by reducing the
initiation interval of pipelined inner loops, like a convolution operation, which accesses
the same array multiple times in the innermost loops. As shown in Figure 3.3, a SW or
HW emulation must follow every modification to the source code by using retrieve()
and modify(), in order to guarantee its correctness.

3.3 Applications

In this section, we presents how we applied the inline cache to optimize an appli-
cation or an algorithm. The three algorithms * are matrix multiplication, Lucas Kanade
algorithm and bitonic sorting. For each algorithm, we had three groups of implementa-
tions:

1. Implementation without memory optimization. It is called “External memory”
implementation in this thesis.

2. Optimization by loading all data from external memory to on-chip BRAMs and
keeping other optimizations using the same directives as the first group. It is

’In our previous work [35], we have reported more detailed results for many more applications.

47

3 — Cache-Based Acceleration for Memory Intensive Algorithms

called “on-chip memory” implementation in this thesis.

3. Optimization by a well configured and optimized inline cache and keeping other
optimizations using the same directives as the first group. It is called “cache” im-
plementation in this thesis.

We compared the performance and the energy consumption ° of the three group of
implementations in order to present the usefulness of the inline cache for helping ac-
celerating memory intensive algorithms.

3.3.1 Matrix Multiplication

Matrix multiplication is the most basic algorithm in many scenarios such as the
machine learning models. As well, it is also a typical memory-intensive algorithm. Here
we test the multiplication of two matrices A € N®® and B € NR*R The output
matrix is C € N®*R with the same size with A and B. Here we adopted integers as the
data type for the matrices in order to reduce the latency caused by the floating point
operations as presented in Chapter 2. We used two direct-mapped read-only caches for
input matrices A and B, and a direct-mapped write-only cache for output matrix C.

Note that due to a limitation of the Vivado HLS tool, except the cache interface, we
had to slightly modify the code of the “caches” implementations, in order to make the
loop nest perfect — we incorporated the output matrix assignment into the last iteration
of the innermost loop. This manual code change almost doubles the overall performance.
Table 3.1 lists the performance, device power and resource utilization of all three groups

Table 3.1: Performance and resource utilization for various implementations of matrix
multiplication (16x16 matrices).

’ Implementation H Ext. Mem. H On-chip Mem. H Cache ‘
Loop flatten Yes Yes No Yes
Exec. time (ms) 0.241 0.027 0.058 || 0.031
Power (W) 0.507 0471 1.345 1.201
Energy (m]) 0.122 0.013 0.078 || 0.037
BRAM 3 2 38 31
DSP 3 3 3 3
LUT 1792 1462 6588 5699
FF 3051 2237 16186 || 17794

of the implementations for 16x16 matrices. The caches for matrices A and C contained

*Due to the limitations of the Vivado power estimator, we estimated the power of the FPGA without
the power consumption of the external DRAM.

48

3.3 — Applications

one 16-word line each (i.e., one row of the matrix). The cache for matrix B contained 16
16-word lines, which was also the size of matrix B.

1
1 1 00 1 0 W0 0 O
0.25
0.125

0.0625

0.03125

0.015625

0.0078125

0.0039063

0.0019531

0.0009766

0.0004382

0.0002441
1line 2lines 4lines 8lines 16lines 1line 2lines 4lines 8lines 16lines 1line 2lines 4lines 8lines 16lines 1line 2lines 4dlines 8lines 16 lines

16x16 64x64 128x128 1014x1024

m16B m32B 64 B 128B

Figure 3.6: Miss ratios for different numbers of lines, data sizes and line sizes for matrix
A of matrix multiplication (log scale).

1

0.5

0.25
0.125
0.0625
0.03125
0.015625
0.0078125

0.0039062
0.0019531
0.0009766
0.0004883
0.0002441
0.0001221
6.104E-05
4lines 16 lines 32lines 64lines 1024 lines 32 lines 64 lines 256 lines 1024lines 64lines 1024lines 2048 lines 4096 lines 2048 lines 4096 lines 8192 lines 16384 lines

16x16 64x64 128x128 512x512

m16B m32B 64 B 128B

Figure 3.7: Miss ratios for different numbers of lines, data sizes and line sizes for matrix
B of matrix multiplication (log scale).

Note how the cache-based implementation with loop flattening achieves essentially
the same performance as the “ideal” implementation, where all data fits in the on-chip
memory. Of course, the caches have a significant resource cost, which becomes par-
ticularly noticeable for computationally-simple algorithms like matrix multiplication.
Moreover, the energy consumption of the best cache implementation is only 30% of
that of the external memory implementation. This is without considering the energy
consumed by the external memory itself, which would make the cache-based imple-
mentations even more efficient, due to the low miss ratio.

More complete results, for a broad range of matrix and numbers of lines, are reported
in Figure 3.6 and Figure 3.7. As shown in Figure 3.6, the hit ratio of the caches applied
to matrix A is highly dependent on the line size and is not affected by the number of
lines in the cache until the cache can hold all the data in the matrix, when the miss ratio
can be reduced to 0.02%.

The caches applied to matrix B have a different behavior, as discussed above. The
miss ratio can be small only when the cache size is the same the matrix size as shown

49

3 — Cache-Based Acceleration for Memory Intensive Algorithms

in Figure 3.7, thus making caches useful for matrix B only in order to automatically
perform burst accesses to global memory.

3.3.2 Lucas-Kanade Algorithm

The Lucas-Kanade algorithm uses a differential method to implement the optical
flow function in the computer vision domain and it was developed by Bruce D. Lucas
and Takeo Kanade [33]. It has been used to solve the feature tracking problem where
two images taken close in time are analyzed to find small (thanks to time proximity)
pixel displacements due to movements of various objects. J.Y. Bouguet [9] introduced
a method to compute the optical flow velocities (e.g. moving objects in a video) based
on the partial derivatives of images as shown in (3.1) and (3.2), (3.3), (3.4) and (3.5). For
instance, this method can be applied to the videos taken by the traffic cameras on the
road to surveil the status of the cars and the trucks.

_dIm(x,y) Im(x+1,y)—Imx—1,y)

I.(x,y)= e 5 (3.1)
olm(x,y) Im(x,y+1)—Im(x,y—1)
I(x,y) = - 5 : 3.2)
P, Py 2 I
G = 2§=piv—wxzyy=py—ywy [I)} ;Zyl) (3.3)
xty Ay

. DWWy p,tw 511
b= 2xsz—wxZyyzpy—ywy léllxl) (3.4)
y

Vopt = G7'b, (3.5)

Algorithm 7 illustrates the implementation of the equations from (3.1) to (3.5), where
the function Pos() is used to ensure that a pixel is located in the image frame. The
inverse of a matrix and the matrix multiplication in the algorithm are omitted in our
implementation since these operations are not memory intensive and have few impact
on the entire performance. The algorithm contains four loops. The first two are over
all the pixels of the images and the last two are over the computation window. The
bottlenecks are due to the five accesses to external memory in the innermost loop. As
usual, the first implementation simply pipelines the innermost loop and uses separate
interfaces for the input and output arrays.

In Algorithm 7, the five pixels of image, accessed by the innermost loop include the
center pixel (defined by i, j, w;, w;) and four other pixels around the center pixel. When
focusing only on the innermost loop, the center pixel and the right pixel can easily
be reused in the following iteration. In this case, the number of accesses to external
memory reduces to three instead of five.

If the next outer loop is also considered, then one or two lines can be reused by
exploiting a structure known as a “line buffer”, which contains two rows of the current
image. Loop unrolling could also be used in this case to further improve speed. If the

50

3.3 — Applications

Algorithm 7 Lucas-Kanade algorithm

Require: two frames of images image, and image; and other coefficients

Ensure: v,
1: for j = 0to HEIGHT — 1 do

2: fori=0to WIDTH — 1 do

3: G2><2 «~0

4: b2><1 «~0

5: for w; = —w, to w,, do

6: for w;, = —w, to w, do

7: center < Pos(i + w;, j + w;)
8: left < Pos(i + w; — 1, j + w))
9: right < Pos(i + w; + 1, j + w;)
10: up < Pos(i + w;, j+w; — 1)
11: down « Pos(i + w;, j + w; + 1)
12: imga11 « imageg[center]

13: im‘llal « image,[center]

14: 81 < d(im? |, im!)

15: imloeft « imageg|left]

16: im?ight « imagey|right]

17: L < (im}yy, — imy))12

18: imgp < imagey[up]

19: imgOWn « imagey|down]

20: I, < (im) = —im),)/2

21: G < G+ gy, 1)

22: b b+ fo (I, 1, 1))

23: end for

24: end for

25: G « inverse(G)

26: Uoptl/1[i] < G X b

27: end for

28: end for

51

3 — Cache-Based Acceleration for Memory Intensive Algorithms

next outer loop is also considered, a large buffer can be exploited to store even more
lines of the image in the on-chip memory.

For simplicity, we adopted two combined optimizations in the “On-chip memory”
implementation. Firstly, copy all the pixel data located in the external memory to the
on-chip BRAMs for fast access. Secondly, use two variables to store the center and right
pixels as described above, in order to reuse the data and reduce the initiation interval
of the innermost loop.

For the two external read-only images, the caches can be applied are the read-only
caches to accelerate the algorithm. Further acceleration could also be obtained by man-
ual post-optimizations to improve the innermost loop initiation interval, below the ini-
tial value of 5 selected by the synthesis tool. It required moving a pre-fetching operation
before the innermost loop, and then using the direct retrieve() method to access the data
inside the loop. Then, the initiation interval could be reduced to 1. In this case, a large
enough cache behaves pretty much like a line buffer.

While real-life algorithm applications compute the optical flow on relatively large
images (up to several megapixels), in this section we report RTL simulation results for
small images, of 64x36 pixels, each pixel represented on 8 bits. We also report miss
ratios for more realistic image and cache sizes, from functional simulation in C++. As
before, the “Ext. mem.” and the “On-chip mem.” implementations used only off-chip and
on-chip memories.

We then developed several optimized “With caches” implementations. The first one
used a 64-byte one-line write-only direct-mapped cache for the output vector, a 64-byte
one-line read-only direct-mapped cache for the second image (which is read once in
each innermost loop iteration), and a 256-byte four-line read-only direct-mapped cache
for the first image (which is read five times in each iteration). The size of the read-only
direct-mapped cache used for the first image is sufficient to store three lines of the
image. Hence, it acts essentially as a line buffer, but without, as usual, requiring any
manual code change.

The second one doubled the line size of the two read-only direct-mapped caches
with respect to the first one, thus doubling both the burst size and the cache size.

The third one used a post optimization that assumes access to consecutive addresses,
as described in the previous section, with the goal to reduce the initiation interval. Note
that its effectiveness, as before, is reduced by a limitation of the Vivado HLS tool, which
is unable to flatten a loop inside a pipelined loop (as in the matrix multiplication case).

The performance and resource utilization of the four implementations are listed in
Table 3.2. The “Ext. mem.” implementation, which keeps all the images in the external
memory, has a very long execution time because it accesses the external memory 1.6M
times. However, this algorithm (like most computer vision, machine learning and arti-
ficial intelligence algorithms) exhibits very high levels of data reuse. In particular, each
pixel of the first image is accessed many times by this algorithm. Hence, the “On-chip
mem.” implementation that stores all data in the on-chip memory maximizes data reuse
and requires only 4.7k transfers from/to the external memory. In addition, the on-chip

52

3.3 — Applications

Table 3.2: Performance and resource utilization for various implementations of the
Lucas-Kanade algorithm.

Frame size 64x36, window size = 5

Implementation Ext. Mem. || On-chip || Small cache || Large cache || Opt. cache
Hit ratio (%) — — 99.98 99.99 99.7
Execution time (ms) 43.78 5.636 12.01 11.7 9.2
Initiation interval 5 3 5 5 1
Number of transfers 1677312 4680 51136 23990 23702
Ave. bytes per transfer 4 4.9 64 126.5 127
Power (W) 0.689 0.693 1.588 1.759 1.737
Energy (m]) 30.16 3.906 18.58 20.58 15.98
BRAM 2 4 31 45 37
DSP 21 21 21 21 21
LUT 5888 5669 27631 45366 35254
FF 7846 7604 35376 56140 46383

memory can be accessed using two ports, so the initiation interval is reduced from 5 to
3. In summary, this implementation improves performance by about 8.5x.

Two factors improve significantly the performance of the optimizations using our
caches. First of all, as in the case of bitonic sorting, the caches use bursts to increase
the data size of each transfer. Second, the caches exploit the very significant amount of
data reuse of this algorithm. As shown in the table, even a very small cache (comparable
in size to a line buffer, which is a standard implementation for this kind of algorithms)
speeds up kernel execution by 3.6x while consuming only 60% of the energy.

The miss ratio of the most frequently accessed array is only 0.02% and it required
only 50k data transfers of about 64 bytes each (the ideal lower bound is about 5k trans-
fers). The larger cache doubles the transfer size and halves the miss ratio to 0.01%. The
initiation interval is reduced to 1 clock cycle for the last implementation.

The last optimization accelerates the algorithm by 4.8x and reduces energy con-
sumption by 2x compared to the “Ext. mem.” implementation. Although both cache sizes
are Pareto-optimal, the smaller cache probably offers the most effective cost-performance
trade-off. The miss ratios for various frame sizes, window sizes and cache configurations
are reported in Figure 3.8. The lowest miss ratio can be 0.000015, leading to excellent
data reuse. Even for large frames and large windows, relatively small caches can obtain
a low miss ratio (around 0.1%).

53

3 — Cache-Based Acceleration for Memory Intensive Algorithms

1
05
0.25
0.125
00625
0.03125
0.015625
0.0078125
0.0039063
0.0019531
0.0009766
0.0004883
0.0002441
0.0001221
6.104E-05
3.052E-05
1.526E-05

4lines 16lines 64lines 256lines 4lines 16lines 64lines 256lines 4lines 16lines 64lines 256lines 4lines 16lines 64lines 256lines

64x36, window size:5 64x36, window size:8 1280%720, window size:4 1280x720, window size:8

168 328B 64 B 1288

Figure 3.8: Miss ratios for different numbers of lines, data sizes and line sizes for the
input image of Lucas-Kanade (log scale) .

3.3.3 Bitonic Sorting

In computer science, the sorting algorithms are among the most essential and fun-
damental algorithms. Various sorting schemes have been implemented in software or
hardware for a large variety of applications. Bitonic sorting offers an excellent level
of parallelism and it can be modified, as discussed in [41], into several phases, each of
which using read-only and write-only arrays. Hence, it has also been accelerated both
on FPGAs [38] and on GPUs [41].

Algorithm 8 Bitonic sorting algorithm

Require: a the array to be sorted and array size N = 2" and sorting direction dir
Ensure: a; > a;Vi > jfor dir = true or a; < a;Vi > j for dir = false
1: forb=1tondo
22 fors=i—-1to0do
fori=0to N/2—-1do
diry « (i2""H&l1
diry « dir, or dir
step « 2°
pos < 2Xi—(i&(s — 1))
alpos], a[pos + step] < order(a[pos], a[pos + step], diry) {swap two values if
they are not in correct order}
9: end for
10: end for
11: end for

N >YoRw

Algorithm 8 which contains three nested loops, is an implementation of the bitonic
sorting on the CPU. The implementation of the bitonic sorting in the literature on the
GPUs or FPGAs [38] are usually different due to various of optimization. In this work,
we adopted the algorithm shown in Algorithm 8.

Each iteration in the outermost loop sorts blocks of size 2° into the bitonic sequences

54

3.3 — Applications

(i.e., sequences that are first increasing, then decreasing, then possibly increasing once
more). The middle loop is over stride sizes s and is used to merge two adjacent bitonic
sequences into a large sequence. The innermost loop has a constant number of itera-
tions, and swaps the values of two data items at a distance of 2° if they are not in the
correct order.

Also in this case, the first implementation pipelines the innermost loop. Since that
loop performs two read operations and two write operations to the same array in each it-
eration, a loop-carried dependency causes a large initiation interval, i.e., a slow pipeline
throughput.

The second implementation, which is discussed, for example, in [41], divides the
algorithm into two parts. The first one splits the global array into multiple arrays, each
with the size equal to the on-chip memory size, and then it uses Algorithm 8 to sort these
small arrays into bitonic sequences. The second part merges these bitonic sequences into
the fully sorted array.

The third implementation assumes that the array to be sorted can fit in local mem-
ory, and then uses Algorithm 8 to sort it. Of course this is unrealistic for large arrays,
but it has been included to show the best achievable performance.

Our cache-based implementations, due to the read and write stride accesses to ex-
ternal memory shown in Algorithm 8, require 2-way set-associative caches to achieve
the best performance. Note that if the stride size is relatively small (smaller than the
cache line size), one can easily prove * that the two values are stored in the same cache
line after one fetching. Even if the stride size is large, the two values will be mapped to
different cache lines in the same set. This guarantees the two write operations to hit.

The two read and two write operations in the innermost loop would still create a
loop-carried dependency, as discussed above, and require a large pipeline initiation in-
terval. However, one can easily note that the two write operations can never be misses
because they access the same array addresses as the read operations. Thus, in this case
we can use the modify() method to significantly reduce the initiation interval and dra-
matically improve the performance.

In order to further remove the dependency created when the two accesses conflict
with each other, we can consider one more optimization. We exploit the fact that the
iterations in the innermost loop are independent, hence the loop can be unrolled. Mem-
ory traces showed that once the 2-way set associative cache fetched the new data into
the cache line, a number of following iterations would never miss. The number depends
on the cache line size, but if this number of iterations is grouped together via partial
loop unrolling, then only one initial access would need to go through the miss check,
while the following unrolled iterations can just use the retrieve() and modify() meth-
ods to improve performance. This algorithm is memory-dominated and with limited

“Considering that the sequence starts from position 0 and that both the stride size and cache line size
are the powers of 2.

35

3 — Cache-Based Acceleration for Memory Intensive Algorithms

data reuse. Nevertheless, without requiring almost any source code change our caches
improved the performance, mostly by accessing the memory in bursts.

We performed RTL simulation of six total implementations, each sorting arrays with
128, 1024 and 4096 words filled with random integers. For the “Limited on-chip mem.
implementation, which uses the limited on-chip memories to sort sub-arrays, we con-
sidered the maximum on-chip RAM sizes to be L, = 128 bytes and 256 bytes. Note
that we have to use these small sizes, because the RTL simulation is very slow. As usual,
we also report results on miss ratios for larger arrays and caches in Figure 3.9. The last

1

05
0.25
0.125
0.0625
0.03125

0.015625
direct 2way 4way | direct 2way 4way direct 2way 4way diect 2way 4way | direct 2way 4way | direct 2way 4dway

1set 2sets 1set 2 sets 1set 2 sets
1Kintegers 64K integers 1M integers

32B 64 B 1288B

Figure 3.9: Miss ratios for different numbers of lines, data sizes and line sizes for bitonic
sorting (log scale).

three “With caches” implementations were accelerated using various cache types and
configurations. The first cache implementation was 2-way set-associative, with 128 total
bytes and a line of 64 bytes. The second cache implementation used the same config-
uration but with a post-cache manual optimization, namely we replaced some write
accesses with calls to the member function that assumes that the data to be written are
already in cache and does not cause a flush. The third cache implementation added a
manual pre-fetch loop before the array access code in the original implementation, thus
avoiding the external memory loop latency in the main pipelined loop. Two configura-
tions of the 2-way set-associative caches were implemented in order to test the effects
of cache sizes on performance. One implemented a 128-byte 2-way set associative cache
with a line size of 64 bytes, and the other one implemented a cache with a size of 256
bytes and a line size of 128 bytes.

Table 3.3 shows the performance of the implementations discussed above, sorting
arrays with different lengths. As expected, the implementation with all data stored in
external memory is the slowest. Transferring all data to very large on-chip memories
has the best performance, about 20x faster. The other local memory implementation,
with a limited maximum size (L,,,, = 128 and 256 bytes) is much less effective and
achieves a speedup of about 2x. The speedup achieved by a 2-way set-associative cache
without any post optimization is about 1.5x. With the first optimization scheme, the
speedup can reach 2.5x. Finally, pre-fetching achieves 8x speedup and saves about 40%
energy consumption.

56

3.3 — Applications

Table 3.3: Performance for various implementations of bitonic sorting applied to arrays
with different sizes N, and using a cache line size of 64 bytes. L in bytes, is the
maximum on-chip memory used (when limited).

max?>

Array size N =27 N =210 N =22
External Mem. 0.702 11.03 62.98
.. . 0.333 6.353 46.13
Limited on-chip Mem. (L. = 128) (L. = 256) (L. =256)
Full on-chip Mem. 0.04 0.577 3.241
Set-assoc. cache 0.494 7.571 42.93
1st opt. set-assoc. cache 0.287 4.473 25.36
2nd opt. set-assoc. cache 0.0815 1.388 7.865

Power, resource utilization and data transfer statistics for the array with size N =
210 are shown in Table 3.4.

Table 3.4: Performance and resource utilization of various optimizations on bitonic sort-
ing applied to arrays with size N = 2'°.

Implementation Ext. Mem. On-chip Mem. Set-associative cache

L,..=256| Full || Orig. || 1stopt. | 2nd opt.
Initiation interval 20 4 50 28 3
Exec. time (ms) 11.03 6.353 0.577 || 7.571 4.473 1.388
Number of transfers 84136 488414 128 7040 7040 3520
Ave. bytes per transfer 4 4.16 64 64 64 128
Power (W) 0.451 0.683 0.465 || 1.534 1.179 2.155
Energy (m]) 4.975 4.339 0.268 || 11.61 5.274 2.991
BRAM 1 1 2 16 16 31
LUT 1575 11633 1441 12546 8843 22142
FF 2045 10585 1971 22669 16882 31101
DSP 0

The first implementation keeps all data in external memory. It consumes the least

57

3 — Cache-Based Acceleration for Memory Intensive Algorithms

power due to its simple architecture. It performed 85k data transfers, each reading or
writing only 4 bytes, since in this case the HLS tool was not able to automatically infer
burst accesses.

The “On-chip mem.” implementation is much faster and achieves most of its perfor-
mance gains by making only 128 data transfers of 64 bytes each, in burst mode.

The caches are also able to similarly reduce the total number of transfers and in-
crease the burst size of each access. As mentioned above, the bitonic sorting kernels
from which we started had no data reuse, so the caches help only by coalescing ac-
cesses in bursts. The implementation with the 2-way set-associative cache only required
7k memory transfers, each containing 128 bytes. The bottleneck for this implementa-
tion is the initiation interval of the innermost loop, which is 2.5x larger than in the “Ext.
mem.” implementation and 12.5x larger than in the “On-chip mem.” and the best “With
caches” implementations. There are two main reasons for this long initiation interval.
First, there are two read operations and two write operations in each iteration. Even
though the write operations never miss, the synthesis tool is not able to ignore the false
dependencies between the write-back of a dirty line and the read which updates the line,
in case of a read miss. Hence, the first optimization decreases the initiation interval by
around 2x, while keeping the number of transfers essentially identical, thus improving
performance by about 2x.

The second optimization used twice the total cache size, halved the number of trans-
fers and managed to achieve an initiation interval of 3 by pre-fetching the data, and
hence preventing the false memory access dependencies in the main loop.

Table 3.5: Effect of cache sizes on the performance of bitonic sorting

Array size N =2 N =22
Cache line size (byte) 64 128 64 128
Cache size (byte) 128 256 128 256

Exec. time (ms)

0.1288 || 0.0815 || 11.28 || 7.865

Device power (W)
1.263 2.041 1.253 || 2.146

2nd opt. set-assoc.

Energy consumption (mJ)

0.163 0.166 14.13 || 16.88

Table 3.5 shows the execution time and device power required by the implementa-
tions with different line sizes for the two arrays respectively. Doubling the number of
lines improves performance by about 1.5x, but also increases device power by the same
factor. Le., it improves performance and increases resource cost, but keeps total energy
consumption essentially the same. As Figure 3.9 shown, the miss ratio is dramatically

58

3.3 — Applications

reduced with a 2-way associative cache instead of a direct-mapped one. More than 2
ways or more than 1 set have no effect on the miss ratio.

59

60

Chapter 4

Acceleration of Machine Learning
Algorithms

Machine learning sprouted many years ago but suffered a long Al winter. Only in the
recent decade, it started to grow faster and faster. The complexity and cost of both the AI
algorithms and the platforms used to execute them increase exponentially. The success
of the machine learning algorithms relies on the huge amount of training data and the
available high performance computing systems. A key factor of the further success of
the machine learning will be wether the inference systems can meet the performance,
throughput and power requirement of the applications.

61

4 — Acceleration of Machine Learning Algorithms

4.1 Introduction

A machine learning algorithm is programmed in a very different way from a tra-
ditional algorithms. The typical method to design an algorithm depends on the math-
ematical models, data structures and the logics to solve a problem such as the sorting
algorithm. Parallelizing such algorithms, to exploit modern architectures which rely on
massive SIMD-style parallelism to provide ever increasing performance, is a formidable
task. A machine learning algorithm on the other hand “programs” and improves itself by
automated training from existing data. Of course, the machine learning algorithms also
rely on some mathematical models such as the artificial neural networks and the appli-
cation specific designed neural network architectures. But both the algorithms and the
architectures can be designed once, typically to be extremely parallel and hence scalable,
and then used to solve problems (i.e. learn new abilities) in a mostly automated way.
Thus programmer ability is almost completely replaced by data availability. In many
applications such as pattern recognition and image classification, machine learning out
performs traditional algorithms by a significant amount, at equal design effort, since
that effort is needed once, and then shared among a myriad of "learned” application
algorithms..

The inspiration of artificial neural networks came from biological neural networks.
Figure 4.1 is an example of an artificial neural network composed by multiple artificial
neurons which are connected by artificial axons. The number of neurons, the connec-
tions and their weights create infinite possible networks and functionalities. The most

neuron 8
output
euro

Figure 4.1: Artificial neural network example

common mathematical model for the artificial neuron is illustrated in Figure 4.2. The

62

4.1 — Introduction

neuron y gets stimuli from other neurons x; by the linear combination of their stimuli
values and then generates its own stimulus to other neurons by a non-linear function,
a.k.a the rectifier and the activation function. The mathematical model is shown in (4.1),
where w = (wy, wy, ... w,_1), X = (Xg, Xy, ... X,_1) and f, is the activation function
for the output stimulus of the neuron y. The behavior of an artificial neuron is then
simplified as a non-linear function applied to a vector inner product.

AN

Wo
X1\

W+

X0

Figure 4.2: Mathematical model of the artificial neuron

n—1
y= 1,00, wix) = f,(w'x) (4.1)

i=0
A set of artificial neurons can be connected to form an artificial neural network. The
neural network groups the neurons into layers as shown in Figure 4.3. The first layer is
the input layer and the last layer is the output layer. All the other layers between the
input layer and the output layer are called hidden layers. For any neuron of the layer
apart from the input layer, its value is calculated by (4.1). The entire layer turns into a
series of activation functions applied to a matrix-vector multiplication as shown in the

(4.2), where W' = {ng}, al = {ag} and a° = {a?} is the input vector.

a' =fWha'hvie {12, ..} (4.2)
a' = ReluW'a~' +b)yvie {12,...} (4.3)
Relu(x) = max(x, 0) (4.4)

Many deep neural network applications adopt Relu (4.4) (i.e. rectified linear unit) as the
activation function. So (4.2) is simplified as (4.3), where b = {bf } is the bias vector for
the layer /. Apart from Relu, another popular activation function is the sigmoid func-
tion shown in (4.5). The benefit of the sigmoid function is that it generates a smooth
and bounded output for given inputs while its disadvantages includes the computa-
tion complexity of the exponential function and that it can cause vanishing gradient

63

4 — Acceleration of Machine Learning Algorithms

%

Figure 4.3: Mathematical model of the artificial neuron

hidden
layer

output
layer

input
layer

[OHCNON0

o
PUOHORCBORC

problems [6, 20, 13] for deeper neural networks when the networks are trained by the
gradient decending.

(4.5)

4.1.1 Convolutional neural network

Convolutional neural network (CNN) is a particular case of artificial neural network
which became attractive when the AlexNet [31] won in the ImageNet competition by
a large margin in 2012. Compared to its predecessor LeNet5 [32], which had been pub-
lished fifteen years ago, AlexNet was designed much deeper with some special layers,
and trained with more data on a much more powerful machine with GPUs. The success
of the CNN is not only due to the convolution model itself, but also due to the large
amount and high quality data the developers can use to train the network, and the high
performance computing systems.

Convolution layer

The convolution layer is the one of the important layers of the convolution neural
network due to its effectiveness in extracting features from the image data. The convo-
lution operation with activation is modeled by (4.6) where f'=! € R#i-1*Wi-1XCi1 js the

64

4.1 — Introduction

input, which is also called a set of feature maps, of a convolution layer. f' € R#>XWixCi,

the output of the layer is also a set of feature maps. b € RS, is the bias vector ap-
plied to the output feature maps. k' € RXXKXCi-1XCi gre the kernels (i.e. weights) of the
convolution layer. The relation of the input and output feature map sizes are given by
H,=H,_ | —K+1and W, = W,_; — K + 1. K is the kernel size, C, is the number of
the kernels and also the number of the output feature maps. The ReLu in (4.6) can be
replaced by other activation functions.

i — i i-1 i
Fhuwe, = ReLutbl + X fid e Koo o) (4.6)
1,5<K,c;_1<C;_;

Figure 4.4 demonstrates a sliding window in red box on a 7 X 7 feature map and its
convolution (result in green box) with a 3 X 3 kernel. The sliding window starts from
the left top corner then slides from the left to right and from top to bottom. The output
isa 5 x5 feature map.

0

0

2|
2
1

2

oOlo|jlo|jo|lo|O| O
O|lRr|O(FR,r|IN]|O|OC

0|0
02
2 |1
2 |2
| 21"
0|0
0|0

O|lol\NMN|INMNINMNlOO

0
0
0
o |
0
0

2
0

Figure 4.4: Example of a sliding window for the convolution operation

Algorithm 9 is the corresponding algorithm to compute the convolution defined in
(4.6). There are in total six nested loops in the algorithm, which make it very computa-
tionally intensive, but also extremely parallelizable and the main computations are the
Multiplication and ACcumulation (MAC).

Pooling layer

Each pooling layer follows one or some convolution layers aiming at summarizing
information from the feature maps and reducing the sizes of the feature maps. The max
pooling is the most frequently used in the CNN. As the name indicates, the output of
this operation takes the maximum value from a sliding window. Usually the stride size
is identical to the sliding window size. Figure 4.5 illustrates an example of max pooling
layer applied to a 4 X 4 feature map and obtaining a 2 X 2 condensed feature map.

65

4 — Acceleration of Machine Learning Algorithms

Algorithm 9 Convolution layer

Require: input feature maps f'~'[H,_][W,_,][C;_;] and convolution kernel
k[K][K][C;_{][C;] and bias b[C;] and output feature maps fi[Hi][W/i][Ci]
Ensure: Conv(f', f'=! k, b) satisfies (4.6)
1: forh=1to H,do
22 forw=1toW,do

3: forc; =1to C; do

4: tmp « b[c;]

5: fort=1to Kdo

6: for s =1to Kdo

7: forc,_;=1to C;,_; do
8: tmp « tmp + fi_l[h + t][w + s]lc;_;] * k[t][s]lc;_q1[c;]
9; end for

10: end for

11: end for

12: f'[h][wl[c;] < ReLu(tmp)
13: end for

14: end for

15: end for

66

4.1 — Introduction

Single depth slice
1 0o 2 3

4 6 6 8
3 1 1 0
1 2 2 4

v

Y

Figure 4.5: Example of the max pooling [55]

4.1.2 Neural Network on FPGAs

In this chapter, we chose several types of artificial neural networks including feed-
forward neural networks (e.g. CNNs) and recurrent neural networks (e.g. LSTMs) and
accelerated them on FPGAs via HLS. Modern neural networks usually have millions of
weights and billions of “MAC” operations per inference, so that these models are both
computation-intensive and memory-intensive. In order to accelerate neural networks
on FPGAs, we need to apply comprehensive optimizations in order to achieve a good
performance and energy consumption.

From the design of a neural network to its implementation on a hardware, the en-
tire procedure involves multiple tools and programming languages. Generally speaking,
neural networks are modeled and trained in machine learning design frameworks (e.g.
Tensorflow, Pytorch), then optimized in high-level synthesis tools (e.g. Vivado HLS,
Catapult HLS) and finally implemented on an FPGA or FPGAs, as shown in Figure 4.8.
However, Tensorflow currently can generate inference code only for CPUs and GPUs,
and not for HLS. Hence we first designed a tool filling this gap, to save developers from
tedious code rewriting from one language to another, and to avoid mistakes due to mis-
understandings among different developing teams.

Then we propose a dataflow-based acceleration strategy and an efficient implemen-
tation methodology for convolution layers based on it. We discuss several hardware
architectures to accelerate a given neural network based on this methodology accord-
ing to the size of the neural network and the resource limitation of the target FPGA or
FPGA:s.

Finally, we demonstrate the effectiveness of the methodology by applying it to two
neural networks, namely ShiftShuffleNet (a CNN) and CapaNet (a RNN), by accelerating
them using the dataflow-based methodology and implementing them on a PYNQ Z2
platform. The results that we obtained are very competitive with respect to the state of
the art, especially on an embedded platform like the PYNQ.

67

4 — Acceleration of Machine Learning Algorithms

Please note that in this chapter we focus on inferencing, rather than training, be-
cause so far:

« Inferencing is the most energy-intensive phase, since it is typically performed
orders of magnitude more times than processing training data.

« Training requires the use of floating point arithmetic, which, as discussed in
Chapter 2, is much more difficult to implement on FPGAs than integer arithmetic.

While there can be scenarios where on-line training on an FPGA can be advantageous
(or even the only option, due to the lack of a fast connection to the cloud), we are leaving
efficient FPGA implementation of CNN and RNN training to future work.

4.2 Design, Training and Inference Automation

4.2.1 Tensorflow

TensorFlow (denoted as TF) is one of the best known open-source machine learning
frameworks for algorithm design, training and inference. This framework is developed
and maintained by the Google brain team. It works in multiple programming environ-
ments such as python and C++. The python framewrok is the most commonly used
one. TF uses the libraries of arithmetic operations provided by the Numpy package and
provides many useful operations for neural networks such as Conv and Relu.

The typical design flow in TF starts from the construction of the neural network
from the basic operations organized into a unified dataflow graph by the high level
APIs [59]. Figure 4.6 is an example of the dataflow graph in TF for the basic layer of the
neural network described by Figure 4.3 or by (4.3). The vectors and multi-dimension
matrices are called tensors [1] in the TF environment. The weights, also tensors, are
updated in the training phase. The nodes in the graph are functions such as tensor addi-
tion and multiplications. Their inputs are tensors and control signals. The edges indicate
the data flows and communications among the nodes. From the computation dataflow
graph, TF automatically generates the reversed derivative computation graph for back-
propagation as shown in Figure 4.7. Then by specifying the optimizer and the loss func-
tion, TF can train the weights of the networks. Finally, with the trained weights, the
developers can integrate the machine learning models into the applications if the results
are good enough.

TF allows the user to specify the devices to execute the operation of each node in
the computation graph for both training (typically performed on GPUs, which have
fast double precision ALUs) and inference (often performed on FPGAs in order to save
energy, both for embedded and for datacenter applications). The devices can be CPUs,
GPUs or Tensor processing units (TPUs).

68

4.2 — Design, Training and Inference Automation

Relu

MatMul

Figure 4.6: Computation graph created by TF for a layer of the neural network

2

Figure 4.7: Computation graph auto-generated by TF for back-propagation

4.2.2 Design Flow and Code Generation

Tensorflow inference, which is the operation on which we are focusing in this chap-

ter, typically requires the support of the tensorflow library on the target platform. This
is not currently the case for FPGAs or ASICs. Hence in this chapter we discuss the so-
called bare-metal implementation of a TF network, which does not assume the avail-
ability of models for TF nodes. In addition to portability to yet unsupported platforms
(e.g. FPGAs), this also allows cross-layeroptimizations, which go beyond individual TF

nodes and can be applied to a model of the full CNN represented e.g. in C++.
The neural network design and implementation flow is depicted by the Figure 4.8.

The neural network is first designed and trained in TF and then the network prun-
ing [23] and weights quantization are applied if applicable. Once the neural network

69

4 — Acceleration of Machine Learning Algorithms

performance in terms of the model accuracy and the network size is acceptable, we
need a bare-metal model that can be further optimized in any high-level synthesis tools.
Then we could estimate the speed of the hardware accelerator using the high level syn-
thesis tool estimate or from RTL simulation. Finally, we generate bitstream that can be
implemented on the target FPGAs and we measure the performance and the energy
consumption of the hardware accelerators.

Design and train
neural network in «———
Tensorflow
+ l
Tensor! Network pruning
and weight
quantization
I

Bare-metal source
code auto-
generation

l
v Optimization in
& X|’|_]NX high-level ~ «—f—

synthesis tools

Viaco™ HLS Synthesis and
performance
' estimation

Bitstream
/ generation and
\/l\/ADO implementation
|

|

Performance
measurements

Figure 4.8: Design flow of the neural networks on an FPGA via the Tensorflow frame-
work

One part missing in the design flow is the bare-metal source code generation al-
gorithm that can extract both the architecture of the neural network and the trained
weights from the framework automatically. So we designed a tool in python to parse
the neural network, represented as a computation graph in TF, and convert it into a
bare-metal C++ project that can be used in any high-level synthesis tool.

Handling Data Types

The first issue is to determine the form of the tensor expressions. The tensors as
introduced above, can be scalar values, vectors or multi-dimensional arrays. Dynamic
array allocation is not supported by state of the art high-level synthesis tools, because
arrays are mapped to physical memories in the implementation. So the dimension of
any tensor, including the function output, must be known at the compile time. In this
project, we defined a new data type Tensor as a template class in C++ to store the various
kinds of tensors that can be used in a TF network. We use template arguments to define
the number of dimensions and their sizes for each tensor. This makes the object more

70

4.3 — Feed-Forward Neural Network

reusable and modular, simplifies the structure of the generated TF network code, and
reduces possibilities of errors due to the weak typing rules of C++.

For some the neural networks accelerator designs on the FPGAs, the feature maps
(i.e. 3D or 4D tensors) are treated as data streams. In this case, the parse of this particular
tensors has different data types. In some other cases, the all the tensors may be parsed
into 1D arrays rather than multi-dimension arrays. So the data type of the parser can
be configured by the users.

Weight Nodes

Weights are special in the computation graph since they are the leaf nodes and usu-
ally they are extremely numerous (from hundreds of thousands to hundreds of millions
for current CNNs). Given a computation graph as Figure 4.6, the weight nodes are easily
found by depth-first searching. The data in each node are stored as binary bytes and can
be processed by “Numpy” in python. The data type and dimension information can also
parsed from the nodes. In the code generated by our parser, the constant weights are
stored in a text file (to be included in the synthesized source or to be read at runtime,
depending on the size of the network) and the corresponding variables are declared and
initialized in a header file.

Function Nodes

Function nodes hold the type of tensor operations such as the ‘matrix multipli-
cation’, ‘convolution’,tensor reshaping’, etc. From each node, we can parse the node
name, operation name, function arguments, data types and etc. For example, the matrix
multiplication in TF is named as “matmul”. The main information associated to the op-
eration nodes is the output tensors of the function including the number of the outputs,
the types and the dimension information of each tensor.

Other Nodes

There are some special nodes in the computation graph such as the “place holder”
which is parsed as the input and the “identity” function which is parsed as an interface
to load the weights.

4.3 Feed-Forward Neural Network

In this part, we focus on the acceleration of the feed-forward neural networks (e.g.
CNN), where there is no feedback connections among layers and all the data flow in one
direction layer by layer. According to the target device, the designers have to choose to
accelerate the entire neural network or part of the network on each FPGA. Depending

71

4 — Acceleration of Machine Learning Algorithms

on the computational complexity and the number of high-precision FP operations re-
quired, a givemn layer may be more efficiently executed on a CPU, an embedded GPU,
or one of the FPGAs.

4.3.1 Dataflow-Based Acceleration

>

In this thesis, we accelerated the feed-forward neural networks based on the “Dataflow’
optimization introduced in Chapter 1. The cascading of layers of the feed-forward neural
network is very suitable for the dataflow-based optimization [51], especially for small
networks. This type of optimization can dramatically reduce the external memory ac-
cesses, because feature maps are streamed between layers, rather than being written
back and read from DRAM.

In the convolution, each output feature element requires the information of all the
input feature maps located in a window whose size is the same as the kernel size. In
the dataflow scheme, since all the layer blocks are connected by FIFOs with proper size
and the data in the FIFOs can be read only once, we need buffers and also need to adopt
special data accessing pattern of the feature maps to reduce the buffer size.

Figure 4.9 demonstrates a window from the feature maps. The height and width of
window is determined by the kernel size (3 in this example). The depth of the window
is the same as the number of the feature maps or the channels of the images. Hence, the
best data access pattern orders pixels from left to right (along the width) and then from
top to bottom (along the height) for an input with a single feature map. For an input
having multiple feature maps, the access pattern moves first across all the feature maps
(along the channel, e.g. channel-last format) for any position of a feature map in order
to achieve the minimum buffer size. As shown in Figure 4.9, the letters from ‘a’ to ‘h’
denotes the 8 feature maps.

Pl

Cc=8
[00a [oob [ooc [ood [ooe Joof [oog | ooh [o1a [o1b |
1 Data written to (or read from) the FIFO (from the left to right)
H=3 The first datum is at pixel (0, 0, a) where ‘@’ is the channel
index. The following data are from channel ‘b’ to ‘h’ at the (0, 0)
of each feature map.
w=3

Figure 4.9: Dimension of the sliding window and data accessing pattern

Sliding Window Generation

The sliding window generation is based on the most common architecture in com-
puter vision, namely a line buffer and a window buffer [65] as shown in Figure 4.10. The
kernel size in this example is 3 X 3 so we need 3 X 3 windows to do the convolution.
The feature map is shown on the right with different colors for each row. Instead of an

72

4.3 — Feed-Forward Neural Network

multi-dimension array, the feature maps are located in the input stream (FIFO). The line
buffer and the 3x3 window buffer are initialized with zeros. The line buffer is used to
store the pixels in the two most recently visited rows while the 3 X 3 window buffer
stores recently visited pixels to form a 3 X 3 sliding window. On every clock cycle, the
window buffer shifts to left and the right-most column is filled with the data from the
corresponding column in the line buffer. Then a new pixel is read from the input stream
and then it is stored in the line buffer (where the old pixel is no longer used, because
the convolution has moved past it) and is also written in the right bottom corner of the
window buffer. By using these two buffers, the sliding windows are generated with the
minimum cost.

At the beginning X+ XX 1(2|3|4|5|6|7
when line buffer is X<EX<FX 3|14|5(|6|7(8]|9
filled with valid data Xl x<lx
. . 1|23 |4 |5|6|7
Window buffer shift | xdx<t1 | / |52 (34|56 |7
s 314 (5|6 1|7 (819
left, }deated from w3 31lalsl6l7 180
the line buffer and S 516 (7 |8]9]0]1
. X X <
read one new pixel 71819 o112 |3
1«r2+3 | |5|6|7|4|5]67 9|0 |1]2]3|4]5
Repeat to form valid
- . 3«4 «5 3145|617 |8]9
sliding window
5+6+7 34|56 |7 (8|9

Next valid sliding
window

2«f3«t4 [+ [5|6|7 |8 |5]6|7
4415416 3(4(5(6(7]8]9
6+t7+8

Figure 4.10: Sliding window generation

This is an example of a sliding window for a single feature map. Due to the number
of input feature maps for each convolution layer and the data order in the input stream,
both the line buffer and the window buffer are 3-D buffers with one dimension being
as large as the number of input feature maps in use. For instance, the window buffer
should have the same size as the desired sliding window, as shown in Figure 4.10. Using
a set of sliding windows for all the feature maps in this order automatically guarantees
the correct output stream data order.

The sliding window generation algorithm is followed by a vector inner product al-
gorithm to compute the convolution for one output pixel.

4.3.2 Hardware Architectures on the FPGA

For different target FPGA, we need to determine the number of layers that can be
accelerated on the device with the dataflow-based acceleration. The more the layers

73

4 — Acceleration of Machine Learning Algorithms

on the device, the less the data access to the external memory. As well, we also need
to consider where to store the weights on-chip or off-chip. In this section, we use the
VGG16 network [43] which has 16 layers, as an example. The network architecture of
the VGG16 is shown in Figure 4.11. All the layers are classified into 7 clusters. The first
6 clusters are composed by repeating convolution layers and followed by a max pooling
layer.

Conv Clusters t1

Max pooling

FC 4096

FC 4096

FC 1000

Figure 4.11: Diagram of the VGG16 net

Entire Network on Single FPGA

For a large FPGA such as the F1 FPGA, the entire VGG16 can be loaded on-chip. The
best performance can be achieved if all the weights and bias are also located on-chip.
However, due to the size of the weights and biases of VGG16, it is infeasible for them to
be all stored in the on-chip BRAMs. During the runtime, each layer needs to fetch the
weights from the external memory to on-chip BRAMs as shown in Figure 4.12.

Multi-Node System

Large neural networks that do not fit on a single FPGA, can be accelerated on a plat-
form composed by multiple FPGAs. For a multi-node system, the layers of the network
can be partitioned according to the resource and performance of each node. As shown
in Figure 4.13, the 16 layers of the VGG16 are accelerated by 3 FPGAs. On AWS, all the
FPGA nodes are not mutually connected so that the communication must go through
the host CPUs. However, in general multi-node FPGAs potentially can communicate
via an Ethernet or another serial interface. For example, Zhang et al. in [64] designed a
dynamic algorithm to allocate the CNN layers on multi-FPGA system where each FPGA
is connected via Xilinx Aurora protocol.

According to the size of the layers, the weights and bias can be fully-loaded on-chip
or copied on demand from the off-chip memory.

74

4.3 — Feed-Forward Neural Network

Feature maps input: ‘

v
Il

Conv Clusters FIFO
| Weights Conv 3x3
Conv Clusters
fio

| RelLu

Conv Clusters
| Weights Conv 3x3
Conv Clusters T
on-chip

BRAMSs| | ReLu

Conv Clusters

Conv Clusters
| Flﬂo

FC Clusters

T -Output ificati ‘

Al

FIFo

!

DRAMI—

|

FIFo

Max pooling

Figure 4.12: Entire VGG16 on-chip

¥

Conv Clusters

Device on-chip
DRAM BRAM

Conv Clusters

HOST DRAM J_H

Device on-chip|
DRAM BRAM
HOST DRAM @T
Device on-chip|
DRAM BRAM
1

Figure 4.13: VGG16 partitioned and accelerated on multi-nodes. On AWS, F1 FPGAs can
communicate only through the host DRAM control.

Partial Network on Single FPGA

It is still possible to accelerate a large neural network on a single FPGA even if all
the layers do not fit simultaneously. An example hardware architecture is shown in
75

4 — Acceleration of Machine Learning Algorithms

Figure 4.14 which has several modules such as the convolution module and FC module
designed on-chip. Apart from the layer arguments, the host code also sends the config-
uration information to the FPGA to choose the correct datapath to accelerate the layer
computation.

—>{ Conv 3x3
i FC Layer

FIFO
Il

on-chip,__ .| cony 3x3
BRAMSs
FIFO

e]

Max pooling

f L

Figure 4.14: Partial layers on the FPGA to accelerate VGG16.

Sliding ‘

Window
Generator

I

on-chip| | Vector

DRAM = BRrAMs|Multiplication

Figure 4.15: Small hardware architecture on an FPGA

For a smaller target FPGA, the hardware architecture shown in Figure 4.14 can be
further tailored to meet the resource limitations, as shown in Figure 4.15, where the
vector multiplication block can be used to compute the fully-connected layers or the
convolution layers by using the sliding window generator discussed above.

4.3.3 ShiftShuffleNet on Embedded FPGA

ShiftShuffleNet was designed during my visit to U.C. Berkeley, based on a highly
optimized CNN variant called ShiftNet which was introduced by Wu el. [60] in 2017. In

76

4.3 — Feed-Forward Neural Network

these neural networks, the computation-intensive 3x3 convolutions were replaced by
so-called shift layers, which do not require any multiplication (they can be thought of as
a multiplication by a kernel with only one non-zero entry, with value 1) and point-wise
convolutions. The shift-block is based on the depth-wise convolution which is shown in
Figure 4.16 where the kernel is in three-dimension and the output feature maps have the
same number of channels as the input feature maps. Ignoring the activation and biases,
(4.7) models the depthwise convolution. The depthwise convolution was introduced
in [42] and has been adopted in many CNN architectures such as the mobileNet [25]
and the shuffleNet [36].

Figure 4.16: Diagram of the depthwise convolution

f;l,w,ci = Z fllz-_i-i,w+s,c,-k;7s7c,~ (4'7)
t,s<K

The depthwise convolution is not used alone but accompanied with the pointwise
convolutions (i.e. 1 X 1 convolution) which is simply a linear combination of the fea-
ture maps. For instance, ShuffleNet v2 [36] is composed by a series of blocks shown
in Figure 4.17. The ShuffleNet is a very efficient model whose top-1 accuracy is 69.4%
on ImageNet (2% lower than VGG16), but with only 2.3M parameters (60x smaller than
VGG16) and 146M FLOPs (109x smaller than VGG16).

The shiftShuffle bock was achieved by replacing the depthwise convolution layer
with the shift-layer with few modifications as shown in Figure 4.18. The shift operation
introduced in [60] can be treated as a special depthwise convolution with a group of one-
hot 3%3 kernels (i.e. single “1” out of the 9 weights and others “0”, similar as a Dirac Delta
function). In Figure 4.19, the input feature map 5 X 5 with zero-paddings, the kernel has
only single “1” and the output feature map has the same size as the input. By comparing
the input and the output, it turns out that the output feature map is equal to the input
feature map shifted down one line. So there in total 9 possible shifting directions of the
shift operation. The implement of the shift function just requires an address shifting
rather than the “MAC” in the convolution function. It potentially reduces the FLOPs in
the neural network and makes the network efficient without losing accuracy.

77

4 — Acceleration of Machine Learning Algorithms

T

Channel Split

/

Concat & Shuffle

3x3 DWConv

1x1 Conv

1x1 Conv

BN RelLU

BN RelLU

1x1 Conv

3x3 DWConv
Stride=2 BN RelLU

3x3 DWConv
Stride=2

1x1 Conv BN

1x1 Conv

BN RelLU

Figure 4.17: Diagram of the ShuffleNet v2 block

b

Channel Split

/

Concat & Shuffle

O

1x1 Conv

1x1 Conv

ActQuant

ActQuant

BN RelLU
Concat & Shuffle
2x2 Maxpool ActQuant
Stride=2 2x2 Maxpool
Stride=2
ActQuant 1x1 Conv
ActQuant

~

Concat & Shuffle

Figure 4.18: Diagram of the shiftShuffle block

Training and Quantization

The ShiftShuffleNet was designed with a macro-structure summarized in Table 4.1.
This network has in total 2.9M parameters and 244M “MACs”. Then the ShiftShuffleNet
was quantized [62] down to various levels as shown in Table 4.2. Even with such rad-
ical quantization (1-bit for weight and 4-bit for activations), our quantized model still
preserves a very competitive top-5 accuracy of 88.2%.

78

4.3 — Feed-Forward Neural Network

00 (0|0 |0 |0 |O 2 |36 |12
00 (51|02]2)]0 11]1-2|1 (8 |1
02 (3|6 |1]2]0 023 |1 |4
oJ1(-2|1 |8 |1)]0 0 117 |3 (0|2
0Jj0(2 |3 |14]0 0(0|q|O0]|O
oj1(7 |3 |02]0

ololo |dlolola

Figure 4.19: Diagram of the shift operation

Table 4.1: Macro-structure of ShiftShuffleNet

Layer Ou‘tput Ke}r nel Stride #Repeat Output
size size channel
Image 224 3
Convl 224 1 1 1
Maxpool 112 2 2 1 12
shift 112 3 1 1
Conv2 112 1 1 1
Maxpool 56 2 2 1 48
shift 56 3 1 1
28 2 1
Stage 2 28 1 5 116
14 2 1
Stage 3 14 1 . 232
7 2 1
Stage 4 7 1 5 464
Conv5 7 1 1 1 1024
GlobalPool 1 7 1 1024
FC 1 1000

Accelerator Design

During my visit to U.C. Berkeley, we proposed and designed several hardware archi-
tectures to accelerate ShiftShuffleNet. One of them was published in [62]. For the sake
of brevity, in this thesis we present only one of them, which is accelerated based on the
“Dataflow” optimization as discussed in the previous section. The target device is the
XC7Z020 FPGA on the PYNQ-Z2 platform. Since the XC7Z020 FPGA is an embedded
FPGA with very few resources, it cannot load all weights to on-chip BRAMs nor accel-
erate all layers on-chip in a single run. The best choice is to accelerate one shiftShuffle
block (i.e. a set of layers) at any given time, to select its architecture dynamically via

79

4 — Acceleration of Machine Learning Algorithms

Table 4.2: Quantization Result of the ShiftShuffleNet, “full” stands for single precision
floating point number, “w[xx]” stands for xx-bit weights and “a[xx]” stands for xx-bit
activation

‘ full ‘ wl6al6 ‘ w8a8 ‘ wda4d ‘ w2a4 ‘ wla4
69.7% 70.1% 70.3% | 68.3% | 68.5% | 68.5%
89.0% 89.2% 89.3% | 88.1% | 88.1% | 88.2%

Top-1 Acc
Top-5 Acc

some configuration on chip with configuration options and to keep all weights off-chip.

Figure 4.20 is the hardware architecture designed to accelerate the shiftShuffle block.
As shown, there are many branches on the datapath, in order to implement various
kinds of layers via various choices of configuration Muxes. In Figure 4.18, there are two
types of blocks in the ShiftShuffleNet. In addition, there are also several layers such
as the fully connected layer are not part of the shiftShuffle block. So we designed a
configurable hardware architecture on which the connections of the on-chip modules
can be configured by the external controller.

In Figure 4.20, not all the layers designed on chip are equally used. For instance,
the layers in green are used only few times while the blue layers are used 17 times. For
this reason, we used more PEs to accelerate the blue layers. The FIFO connection in red
has to be carefully sized to match the latency of the yellow layers, in order to prevent

deadlocks.

DRAM
[|
v
Dataflow Configuration ‘

1x1 J Max L 1x1

Relu — — Shift — — Relu \

Pool Conv

fmaps
concat
FIFO - shuffle

Max 1x1 Relu /

Pool Conv

Conv Max

or — Relu Pool Shift
FC Y

Figure 4.20: Hardware architecture of the shiftShuffle block

The shift Layer, as introduced above, can be simply performed by address shift-
ing instead of “MACs”. However, in the dataflow-based acceleration, it should generate

30

4.3 — Feed-Forward Neural Network

the data in the correct order. Since the shift function can be treated as a depthwise-
convolution with special kernel configurations. So the acceleration of the shift function
can refer the acceleration of the convolution function. First, generates a series sliding
windows by the algorithm shown in Figure 4.10. Second, the output pixel value for each
input feature map is one of the nine values in the corresponding sliding window. The
value is read from the address according to the shift directions as shown in Figure 4.19.
In our design, the shift direction of each feature maps is fixed. Then for each feature
map, the address to be read from the sliding window is fixed.

The shift function thus avoids the vector inner product that is required to perform a
traditional convolution function, and reduces the demand for computational resources
(DSPs for high-precision and LUTs for low-precision weights and activations).

The ReLu Layer is implemented as a group of comparators [50] since the output
value is 4-bit activation. It can be realized by a step function with 16 intervals that
converts 13-bit partial sum from the convolution layer to 4-bit activation. The threshold
values are different for each feature map in each layer and they are stored in on-chip
BRAMs. The 16 comparators are mapped onto a binary tree structure to reduce the
circuit latency (by loop unroll “directive” as introduced in Chapter 1).

Performance

In Table 4.3, we compare our accelerator against previous work targeting ConvNets
for ImageNet classification with reasonable accuracy. We focused on achieving a com-
petitive accuracy while improving the actual inference speed in terms of frames per
second. The results shows that the ShiftShuffleNet achieves the highest top-1 and top-
5 accuracy for the ImageNet. Compared to the first three embedded accelerators with
top-1 accuracy above 60%, our model achieves the fastest inference speed up to 47 fps.
An implementation with an inference speed up to 96.5 fps on a larger and faster FPGA
Zynq ZU3EQG is reported in [62].

Table 4.3: Performance comparison of the ShiftShuffleNet and previous works

VGG-SVD[40] | VGG16[44] | VGG16 [21] | DoReFa[27] | FINN-R [8] ShiftShuffleNet
Platform Zynq XC7Z045 Stratix-V Zynq 72020 Zynq 72020 | Zynq ZU3EG | Zynq 72020 | Zynq ZU3EG
Frame rate (fps) 4.5 3.8 5.7 106.0 200.0 47 96.5 [62]
FPS per Watt 1.5 0.2 1.9 46 19.6 23.5 17.5
Top-1 Acc 64.64% 66.58% 67.72% 46.10% 50.3% 68.47%
Top-5 Acc 86.66% 87.48% 88.06% 73.10% N/A 88.22%
Precision 16b 8-16b 8b 2b 1-2b 1-4b
Power(W) 3.0 19.1 3.0 2.3 10.2 2.0 5.5
kLUTs 183 120 27 44 36 44 24
DSPs 780 760 198 89 - 117 37
BRAMs 486 1480 15 106 432 140 170
Freq. (MHz) 150 120 214 200 220 100 200

81

4 — Acceleration of Machine Learning Algorithms

4.4 Recurrent Neural Network

Apart from the feed-forward neural networks, there is a kind of neural network
with feedback i.e. a memory. This means that the output of the neural network depends
not only on the current inputs but also on the past inputs and outputs, like in an IIR or
FIR filter. This type of neural networks is called Recurrent Neural Network (RNN) and is
used to extract information from a sequence of data, rather than from an unordered set,
such in speech recognition and text translation. There are many architectures including
fully-recurrent, Long Short-Term Memory (LSTM) and etc. in the RNN world.

4.4.1 Long Short Term Memory

The LSTM is a special recurrent neural network, modeled by (4.8 - 4.12), where x, €
R? is a vector sequence to be processed by the LSTM cell, f, € R” is the forget gate’s
activation vector, i, € R” is the input gate’s activation vector, o, € R” is the output
gate’s activation vector, ¢, € R” is the cell state vector, h, € R" is the output vector of
the LSTM cell and also known as the hidden state vector, W € R"™? U e R"™" and
b € R" are weight matrices and bias vector parameters which has to be trained. o(x)
is the activation function defined in (4.5) and is suitable for the gate functions since its
value ranges from 0 to 1 while the tanh is the activation function for the LSTM output
vector and cell state vector.

[=o(Wpx, +Ush;_) + by) (4.8)
Iy =oWix; +Uih,_ + b)) (4.9)
0; =o(W,x; +U,h,_ +b,) (4.10)
¢, =fle,_y+iltanh(W,x,+Uh,_ +b,) (4.11)
h, = otTtanh(ct) (4.12)

From the equations, one can notice that there are a lot of computations which is related
to both the LSTM cell size h and the input vector d. The algorithm time complexity is
O(h* + h x d) without considering the time complexity of exp(x) in both the ¢(x) and
tanh(x).

4.4.2 Design and Training
Experiment and Data Acquisition

The LSTM was trained in the context of another project in our group, namely, “Room
locating by capacitive sensors”. In this project, we used some capacitive sensors placed
in a room to locate a person in the room. These sensors are assumed to be attached to
any furniture or directly on the wall and are able to achieve low-cost, low-maintenance,
accurate indoor location of people [47]. In the experiment used to generate the training

82

4.4 — Recurrent Neural Network

data for this network, we actually used a simulated set of sensors'. We modeled, there is
a 3mX3m empty room with four sensors attached on the four walls. In order to increase
the detection accuracy, sixteen infrared sensors were also placed on the ceiling of the
room.

The network is used to process the data acquired from the sensors (both capacitive
and infra-red) and reconstruct the location of the person

Network Design and Training

The model is based on the LSTM cell introduced above with an output layer as shown
in Figure 4.21. The corresponding inference algorithm is listed in Algorithm 10. The
input information is the 20 values from the capacitive sensors and the sixteen infrared
sensors. The output of the network are the Cartesian coordinates of the person position
in the room. We built the network in the TF framework by using only basic operations

o>
16 LSTM —>» >
—> 2

2

Figure 4.21: Neural network designed for sensor data processing

(e.g. matrix multiplication) in order to simplify the synthesizable C++ function node
library creation (TF can instantiate also primitive LSTM cells, which we did not use).
We created a Python script with several input arguments, including the LSTM cell size,
the name of the file containing the training data and the corresponding coordinates,
and the name of the file containing the testing data and the reference coordinates. We
can also tune the training batch size, decay factor, dropout rate, and etc. in the file.
The script prints the testing accuracy (mean square error) of the trained network as an
output.

Table 4.4 is an example of a set of parameters used to train networks. The trained
neural network then is verified by the test data set and the corresponding results are
plotted in Figure 4.22. At the first few steps, the error is very high while later on, the
computed path from the network is very close to the target path.

"Experiments to collect real data in sufficient amount are currently being carried out.

33

4 — Acceleration of Machine Learning Algorithms

Table 4.4: Parameters used to train the network

LSTM Size ‘ Batch size ‘ training set size ‘ Dropout rate
16 | 35 | 10501 | 20%

LSTM NN result, test mse=0.0058

3
target
—— output
2.25 §
%
E 15 }
> X
|3
2
0.75)2%
i
o
0
0 225 3

x [m]

Figure 4.22: Visual output of the neural network

4.4.3 Acceleration on the embedded FPGA

Once the LSTM cell and the output layer are trained with an acceptable accuracy,
we can implement the inference system on the FPGA accelerators. The inference algo-
rithm is shown in Algorithm 10, where “matmul” is the matrix-vector multiplication.
The outer-most loop is over the index of the input sequence (time sequence in this ex-
periment). From line 6 to 14, there is the inference of the LSTM cell and line 15 is the
inference of the output layer. The algorithm has multiple nested loops since the matrix-
vector multiplication is realized with two loops (no tiling is needed in this small design).

For this algorithm, we focus on the following issues and optimizations:

1. This network contains about 9kB weights (4 bytes for each single precision float-
ing point weight). Since this network is small, we can load all the weights and the
bias on-chip in order to avoid the latency caused by the external memory.

2. Again, since this network is relatively small, we didn’t quantize the weights. This
network was accelerated on the embedded FPGA PYNQ with the data type of

84

4.4 — Recurrent Neural Network

Algorithm 10 LSTM inference algorithm
Require: Input vector array x[N][/], LSTM size D, input array size N, input vector
size I and output vector size O
Ensure: Compute output vector array y[N][O] according to (4.12)
1: The trained LSTM cell weights W[4 D][I] and U [4 D][D], bias b[D]

2: The trained output layer weights Wf[O][D] and bias b f[O]
3: LSTM state vector ¢[D] < 0O
4: Hidden state vector h[O] < 0
5: fort=1to N do
6: Gate vector G <« matmul(W, x[t]) + matmul(U, h) + b
7. ford =1to D do
8: Forget gate G, « G[d]
9: Input gate G; < G[D + d]
10: Output gate G, < G[2D + d]
11: State gate G, « G[3D + d]
12: cld] < o(Gpeld] + o(G))tanh(G,)
13: hld] < o(G,)tanh(c[d])
14: end for
15: y[t] < matmul(Wf, h)+ b
16: end for

85

4 — Acceleration of Machine Learning Algorithms

single-precision floating point numbers. In the future, we plan to design and im-
plement a larger network with quantized weights.

. Even though there is feedback (the hidden state of the LSTM cell) in the network
rather than purely layers as in the feed-forward neural network, we can still apply
the dataflow-based optimization to it. In this case, the LSTM cell is considered as
a single layer and the feedback is an internal memory, within a dataflow process.

For the matrix multiplication, we simply applied loop pipelining for output iter-
ations and loop unrolling for input vector iterations respectively. Since the com-
putations for each output value are independent, the pipeline could in principle
achieve II=1. However, unrolling over the input vector iteration should form a
balanced adder tree to minimize latency. Since the LSTM cell size can be very
large, partial unroll may be used instead of full unroll. In order to limit the re-
source utilization in this optimization, we use a variable in the template to limit
top-level parallelism, i.e. the number of PEs. In future work, when we will apply
quantization, more PEs can be implemented to boost the performance.

There are two possible implementation macro-architectures, which must be ob-
tained from one another by code rewriting, rather than by applying HLS direc-
tives:

« In the first one, the input vector is partitioned and the corresponding loop
is unrolled. Then the outer loop can be merged with the state update loop
(line 5 in the Algorithm 10). To merge the loops, we need a new array to
store the new value of /4 and then update A in a new loop.

« In the second one, the two matrix multiplication are synthesized as two
independent processes running in parallel and driving the state update loop.

For this particular network, both implementations achieved similar results (while
this may not be the case in general, hence both need to be mentioned).

. One important issue is the exponential function e* which consumes a lot of DSP
resources, since it needs to be fully unrolled to enable pipelining of the loops that
call it, within both o(x) and tanh(x). In theory, to achieve the 1 LSB accuracy of
both o(x) and tanh(x) according to their definition, we should implement exp(x)
using double precision. However, we checked and even using single-precision
exp(x) does not lose too much accuracy with respect to the reference C++ code
(using double precision), while requiring much fewer resources than the double-
precision version. In the future, we plan to use some approximation of the o(x)
and tanh(x) functions in the network, and re-train it with the quantized weights.

In order to reduce the resource utilization, we can also apply the directive that
limits the number of the computing instances in order to force the HLS tool to
share all the uses of the exp(x).

86

4.4 — Recurrent Neural Network

The exp(x) function can also be implemented in hardware purely by using LUTs
and FFs. Vivado HLS provides directives to guide the synthesizer to implement
a mathematical function with LUTs or DSPs. This type of directives was used
to balance the resource utilization among DSPs, LUTs and FFs and to improve
performance.

Once we completed our Design Space Exploration for this network, we were able to
process all the 393 testing samples in 0.72 ms on the AWS F1 CPU. The execution time is
measured by running the inference of this network 10,000 times, in order to improve the
precision of the measurement. Each CPU core consumes about 8W, as reported by the
AWS website. So the energy consumption is about 5.76mJ. On the embedded XC7Z020
FPGA, we used 36 PEs (with single precision floating point) to accelerate the matrix
multiplication in the LSTM cell and 1 PE for the output layer. Thus in total there are 37
PEs for the network. In addition, we used 1 exp(x) instance. We achieved essentially the
same performance (10%slower) than a single AWS F1 CPU. Again, this was measured
by repeatedly running the 393 samples 1,000 times. The overall performance and the
resource utilization on the ZYNQ board are listed in Table 4.5.

Table 4.5: Performance and resource utilization on XC7Z020 FPGA

Clock period | Execution time | Power | Energy | LUT | LUTMem | REG | BRAM | DSP
ns ms W m]J % % % % %
6 | 0.66 267 | 176 | 39 | 4 | 32| 27 |73

The relatively low performance on the FPGA accelerator (apart from the fact that it
is an embedded board, while the AWS F1 CPU is a high-end Xeon processor) is due to
the network size . As discussed in Chapter 1, the latency of a pipelined loop is computed
by (1.3). In this example, the number of iterations of the pipelined loop is the LSTM cell
size 16, i.e. it is very small compared with the pipeline depth, which is several hundreds
of clock cycles due to the exp(x) function. Thus pipeline latency dominates the overall
execution time, because the pipeline startup and flushing are so long that their costs
are not amortized in just 16 iterations.

87

88

Chapter 5

Conclusion and Future Work

5.1 Financial Option Pricing Algorithm

Chapter 2 targets FPGA acceleration of financial option pricing models, which are
computation intensive algorithms. In this chapter, we not only optimized them for im-
plementation on both a high-end FPGA and an embedded FPGA, but also compared
performance and energy consumption for three types of hardware platforms, namely,
CPU, FPGA and GPU.

We explored the directive-based optimizations and the corresponding hardware ar-
chitectures. We showed that high level synthesis methodologies can help the designers
to obtain the desired hardware architecture easily through high level optimizations ap-
plied to a software algorithm originally implemented for CPUs or GPUs instead of time
consuming RTL remodeling and optimizations.

Finally we designed a very retargetable and flexible model that can be implemented
on various FPGAs such as the F1 FPGA and Z7020 FPGA. By comparing the AWS F1
FPGA and the NVIDIA P100 GPU, both are fabricated with a 16nm technology, we
found that the F1 FPGA achieves about the same performance and about 4x operations
per Watt than the P100 GPU. On the small embedded FPGA which is fabricated in 28nm,
we achieved 23x speedup compared with the F1 CPU and about 5x operations per Watt
than the GTX950 GPU which is also fabricated in 28 nm.

In our previous work [34], we also compared our results with the previous imple-
mentations both using high level and RTL designs. For the Black-Scholes model of the
Asian option problem, 2.4x performance and 41.7% of energy consumption are obtained
compared to a previous manual RTL design. For the Heston model of the European bar-
rier option, this paper has achieved 2.56x of the performance and 78.1% of energy con-
sumption of a previous implementation designed via HLS. Overall, it shows that HLS
not only reduces the effort in system design, but also achieves higher performance and
lower energy consumption than the traditional RTL design approach.

Since the random number generation algorithm is the bottleneck for this project
due to the performance and the resource utilization of the Box Muller method, we have

89

5 — Conclusion and Future Work

several plans to replace the random number generation algorithm in the future work.
For instance, the we can replace single-precision floating point data type with a fixed
point one.

The Mersenne Twister algorithm also has a 64-bit implementation which is more
efficient than the 32-bit version which was implemented in this project.

In the future, we also plan to implement more options such as the American option
and to design a tool or script that can generate all the C++ source code for a given
option pricing models with proper parameters according to the target FPGA resources
and user directives.

5.2 Inline Application-Specific Caches

Chapter 3 proposed to optimize the memory-intensive algorithms by using a pre-
designed C++-based inline cache rather than the tedious on-chip local memory design
approach by which the designers have to care about the memory access patterns, the
data synchronizations, the organizations of the BRAMs, the kernel interfaces to access
the external memory and the functionality verification.

The caches designed in this project can be supported by most high-level synthesis
tools and are easy to use by designers since they follow traditional cache design con-
cept and categories such as the direct-mapped cache. We also designed several variants
that can be adapted to different use contexts (e.g., read-only, write-only, etc.). They also
include design aids (e.g., memory access tracing capabilities, miss ratio reporting) that
can be used to ease cache size and architecture optimization.

In this thesis, we applied the cache to three algorithms from very different appli-
cation areas such as machine learning, databases, and computer vision. The original
algorithms with a few basic optimizations, such as loop pipelining, were used as a per-
formance, resource usage and energy consumption reference. We also considered an
ideal “best case” implementation, in which all data could fit on-chip. We then showed
how using our caches, with different parameters and some further optimizations, could
significantly improve performance without requiring the extensive code changes that
are typically required to manually optimize on-chip memory usage. In order to fairly
compare these implementations, all of them keep the same computation architecture
(loop pipelining, unrolling, etc.), only changing the memory architecture. From the per-
formance comparison results, we can conclude that the use of our caches can accelerate
most memory-intensive algorithms. In summary, our cache implementations improved
performance by up to 8x energy by about 2x, achieving comparable results to the best
available manual optimizations of the on-chip memory architecture, while requiring a
much shorter design time.

As discussed in the cache design section, the use of these inline cache has to modify
the interface of the original kernel and manually configure the line size, block size and

90

5.3 — Machine Learning Algorithm

etc. In our current work we propose a tool that is able to analyze the array access pat-
terns, to choose a proper cache with proper configurations and to optimize the cache
architectures automatically.

In the future, we will further optimize the cache to improve the performance and
reduce the resource utilization. In addition, we will provide more freedoms to the users
to configure the cache.

5.3 Machine Learning Algorithm

In chapter 4, we chose various machine learning algorithms as comprehensive ex-
amples to which we could applied the different types of optimization techniques for
both computation-intensive and memory-intensive algorithms. This is because there is
plenty of parallelism in the the machine learning algorithms especially the CNN models
so that we could explore many different design points in the design space.

We first introduced a design automation tools that we developed as an HLS-oriented
bare-metal code generator for the Google TensorFlow framework. With this tool, we
filled the gap between TF framework where the neural network is trained and the high
level synthesis tools where the neural network is optimized and synthesized for hard-
ware in the design flow depicted in Figure 4.8. And then we used the tool to generate the
bare-metal implementation of the YOLO net and we optimized the convolution layers by
loop tiling. In the future, we could enhanse the tool to generate source code with more
options around data types, e.g. the stream interfaces in the dataflow-based optimiza-
tion. It could also be extended to generate the OpenCL code for X86-based platforms
like the AWS F1.

Second, by exploiting the cascading architecture of the feed-forward neural net-
works such as the CNNs, we proposed a dataflow-based acceleration scheme which is
able to reduce the external memory accesses and which can be implemented on a sin-
gle FPGA or on multi-FPGA systems. According to the sizes of a given network and the
resources on the target FPGAs, designers can choose one of the architectures that we
propose to accelerate their neural networks.

With the dataflow-based optimization, all the layers of a network are connected
by FIFOs with proper sizes. Based on the data ordering constraints, we presented an
efficient sliding window generation algorithm to accelerate the key module of a CNN,
namely the convolution function.

Then, we designed a neural network, called ShiftShuffleNet, which is based on the
ShuffleNet and ShiftNet that were proposed in the literature, and which combines the
advantages of the two networks. Our network is finally quantized with 4-bit activa-
tions and 1-bit weights, while the top-1 accuracy is still up to 68.5% and top-5 accuracy
is up to 88.2%. The network accuracy is higher than those in previous work for similar
(or higher) resource occupation and performance. Due to the limited resources on the
target embedded FPGA, we implemented a configurable ShiftShuffle block in hardware

91

5 — Conclusion and Future Work

and then the specific dataflow paths for each layer are configured by the host processor
one after the other, via a set of micro-instructions. In the end, we not only achieved a
competitive accuracy but also improved the actual inference speed in terms of frames
per second. In future work, on one side we can further optimize the hardware mod-
ules on the FPGA and their connections, on the other side we can redesign the neural
network architecture to make it even more suitable to be accelerated in hardware.

In the last part of this chapter, we implemented a recurrent neural network, based on
the LSTM model, that had been designed in the context of another project in our lab, and
we used it to illustrate the methods that can be applied to accelerate recurrent neural
networks. By treating the LSTM cell as a single layer, the dataflow-based optimization
can also be applied to this network. In this design, we used the original datatype, single
precision floating point numbers, since recurrent (i.e. cyclic) networks typically need
more precision than acyclic ones. The hardware resource utilization, especially for the
DSPs, is dominated by (1) the number of PEs used to accelerate the matrix multiplica-
tion and (2) the number of the exponential exp(x) instances used to compute the o(x)
and tanh(x) functions. Finally we achieved a comparable hardware performance com-
pared to the F1 CPU, which is much larger and much more expensive than the XC7Z020
embedded FPGA that we targeted. One important reason why the FPGA does not have
much better performance than the CPU implementation is the fact that the LSTM cell
size is too small compared to the pipeline depth. In the future work, we plan to imple-
ment a neural network with a larger LSTM cell, quantize the trained weights in order
to avoid floating point calculations and save resources, and adopt other activation func-
tions which are more hardware-friendly to further boost the performance and reduce
the device power.

92

Appendix A

Direct-Mapped Cache

A.1 Code of the inline direct-mapped cache

The most significant fragments of the code of the template class of the inline direct-
mapped cache are illustrated here. The operator[] method is overloaded and an inner
class is used to differentiate between the methods to be called when the operator is used
in a left-hand-side or right-hand-side context.

Listing A.1: Definition and implementation of the inline cache

template <typename T, int ADDR_BITS, int SET_BITS,int LINE_BITS>
class Cache {
private:

static const int CACHE SETS = 1 << SET_BITS;
static const int LINE SIZE 1 <<LINE BITS;
static const int DATA_BITS = sizeof(T) « 8;
typedef ap_uint <DATA_BITS> LocalType;

class inner {
public:
inner (Cache =cache, const int addr):cache(cache),addr(addr) {}
operator T() const{
return cache—>get(addr);
}
void operator= (T data){
cache—>set (addr, data);
}
private:
Cache =cache;
const int addr;

93

A — Direct-Mapped Cache

}s

public:
typedef ap_uint <DATA_BITS«LINE_SIZE > DataType;
Cache (DataType + mem):ptr_mem (mem){...}
inner operator[](const int addr) {
return inner (this, addr);

}
~Cache (){ /+« writeback code=/ ...}

private:

int requests, hits;

DataType = const ptr_mem;

DataType array [CACHE_SETS];

ap_uint <ADDR_BITS—SET_BITS—LINE_BITS >

tags [CACHE_SETS |;

bool valid [CACHE_SETS], dirty [CACHE_SETS];

T get(const int addr) {
const ap_uint <ADDR_BITS — SET_BITS—LINE_BITS > tag
= addr >> (SET_BITS+LINE BITS);
const ap_uint<SET_BITS> set_i = (addr >> LINE_BITS);
const ap_uint <LINE_BITS> block = addr;
requests ++;
bool match = tags[set_i] == tag;

DataType dt;
if (valid[set_i] && match) {
hits ++;
dt = array[set_i];
} else {
dt = ptr_mem/[addr >> LINE_BITS];
array[set_i] = dt;

}
tags[set_i] = tag;
valid[set_i] = true;

LocalType data = Im_data :: GetData<DATA_BITS,
DATA_BITS « LINE_SIZE,

LINE_BITS >:: get(dt, block);

return «(T+)& data;

94

A.2 - Original and modified code of matrix multiplication

void set(const int addr, const T& data) {
const ap_uint <ADDR_BITS — SET_BITS—LINE_BITS> tag =
addr >> (SET_BITS+LINE BITS);
const ap_uint<SET_BITS> set_i = (addr >> LINE_BITS);
const ap_uint<LINE_BITS> block = addr;
requests ++;
bool match = tags[set_i] ==
if (valid[set_i] && match) {
hits ++;
} else {
if (dirty[set_i]) {
ap_uint <ADDR_BITS> paddr=tags[set_i];
ptr_mem [paddr <<SET_BITS | set_i]=array[set_i];

tag;

}
array[set_i] = ptr_mem[addr >> LINE_BITS];

}

LocalType ldata = «(LocalTypex)&data;
array[set_i] = Im_data:: SetData<DATA_BITS,
DATA_BITS « LINE_SIZE ,

LINE_ BITS >::

set (array[set_i], ldata, block);
tags[set_i] = tag;

valid[set_i] true;

dirty [set_i] true;

1BE

A.2 Original and modified code of matrix multiplica-
tion

The basic matrix multiplication code contains three nested loops over rows, columns
and inner product iteration. The innermost loop can be pipelined or unrolled as desired,
by setting tool-specific directives.

Listing A.2: Matrix multiplication algorithm
void mat_mult(int +a, int «b, int sc) {
for (int row=0;row<rank ;row++){
for (int col=0;col<rank;col++){
int tmp=0;
for (int index=0;index<rank;index++) {
#pragma HLS pipeline

95

A — Direct-Mapped Cache

int alndex

rows=rank + index;

int bIndex = indexsrank + col;
tmp += a[alndex] » b[bIndex];
}
c[rowsrank + col] = tmp;

I8

Listing A.3: Use CACHE in the algorithm

typedef Cache<int, 16, 0, a0> CacheTypeA;
typedef Cache<int, 16, b0, bl> CacheTypeB;
typedef Cache<int, 16, 0, c0> CacheTypeC;

void mat_mult(CacheTypeA :: DataType =a_orig,
CacheTypeB :: DataType «b_orig,

CacheTypeC :: DataType =c_orig) {

CacheTypeA a(a_orig);

CacheTypeB b(b_orig);

CacheTypeC c(c_orig);

for (int row=0;row<rank ;row++){
for (int col=0;col<rank;col++){
int tmp = 0;
for (int index=0;index<rank;index++) {
#pragma HLS PIPELINE

int alndex = rowsrank + index;
int bIndex = indexsrank + col;
tmp += a[alndex] » b[bIndex];
}
c[rowsrank+col] = tmp;

H

96

Bibliography

[1]

3]
[4]

Martin Abadi, Michael Isard, and Derek G Murray. “A computational model for
TensorFlow: an introduction”. In: Proceedings of the 1st ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming Languages. ACM. 2017,

pp- 1-7.
Michael Adler et al. “Leap scratchpads: automatic memory and cache manage-

ment for reconfigurable logic”. In: Proceedings of the 19th ACM/SIGDA interna-
tional symposium on Field programmable gate arrays. ACM. 2011, pp. 25-28.

Hansjorg Albrecher et al. “The little Heston trap”. In: Wilmott 1 (2007), pp. 83-92.

Gene M Amdahl. “Validity of the single processor approach to achieving large
scale computing capabilities”. In: Proceedings of the April 18-20, 1967, spring joint
computer conference. ACM. 1967, pp. 483-485.

Julia Ankudinova and Matthias Ehrhardt. “On the numerical solution of non-
linear Black-Scholes equations”. In: Computers & Mathematics with Applications
56.3 (2008), pp. 799-812.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term depen-
dencies with gradient descent is difficult”. In: IEEE transactions on neural networks
5.2 (1994), pp. 157-166.

JM Blair, CA Edwards, and JH Johnson. “Rational Chebyshev approximations for
the inverse of the error function”. In: Mathematics of Computation 30.136 (1976),
pp. 827-830.

Michaela Blott et al. “FINN-R: An End-to-End Deep-Learning Framework for Fast
Exploration of Quantized Neural Networks”. In: ACM Transactions on Reconfig-
urable Technology and Systems (TRETS) 11.3 (2018), p. 16.

Jean-Yves Bouguet. “Pyramidal implementation of the affine lucas kanade feature
tracker description of the algorithm”. In: Intel Corporation 5.1-10 (2001), p. 4.

Mark Broadie and Ozgiir Kaya. “Exact simulation of stochastic volatility and
other affine jump diffusion processes”. In: Operations research 54.2 (2006), pp. 217-
231.

97

BIBLIOGRAPHY

[11] Shaoyi Cheng et al. “Exploiting memory-level parallelism in reconfigurable accel-
erators”. In: Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE
20th Annual International Symposium on. IEEE. 2012, pp. 157-160.

[12] Jongsok Choi et al. “Impact of cache architecture and interface on performance
and area of FPGA-based processor/parallel-accelerator systems”. In: Field-Programmable
Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Sym-
posium on. IEEE. 2012, pp. 17-24.

[13] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accu-
rate deep network learning by exponential linear units (elus)”. In: arXiv preprint
arXiv:1511.07289 (2015).

[14] Hadi Esmaeilzadeh et al. “Power challenges may end the multicore era”. In: Com-
munications of the ACM 56.2 (2013), pp. 93-102.

[15] Michael Fingeroff. High-level synthesis: blue book. Xlibris Corporation, 2010.

[16] Mark B Garman and Michael J Klass. “On the estimation of security price volatil-
ities from historical data”. In: Journal of business (1980), pp. 67-78.

[17] Konstantinos Georgopoulos et al. “Energy-Efficient Heterogeneous Computing
at exaSCALE—ECOSCALE”. In: Hardware Accelerators in Data Centers. Springer,
2019, pp. 199-213.

[18] Mike Giles. “Approximating the erfinv function”. In: GPU Computing Gems Jade
Edition. Elsevier, 2011, pp. 109-116.

[19] Paul Glasserman. Monte Carlo methods in financial engineering. Vol. 53. Springer
Science & Business Media, 2013.

[20] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks”. In: Proceedings of the fourteenth international conference on artificial
intelligence and statistics. 2011, pp. 315-323.

[21] Kaiyuan Guo et al. “Software-Hardware Codesign for Efficient Neural Network
Acceleration”. In: IEEE Micro 37.2 (2017), pp. 18-25.

[22] John L Gustafson. “Reevaluating Amdahl’s law”. In: Communications of the ACM
31.5 (1988), pp. 532-533.

[23] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding”.
In: arXiv preprint arXiv:1510.00149 (2015).

[24] Steven L Heston. “A closed-form solution for options with stochastic volatility
with applications to bond and currency options”. In: The review of financial studies
6.2 (1993), pp. 327-343.

[25] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

98

BIBLIOGRAPHY

[26] John C Hull. Options futures and other derivatives. Pearson Education India, 2003.

[27] Li Jiao et al. “Accelerating low bit-width convolutional neural networks with
embedded FPGA”. In: Field Programmable Logic and Applications (FPL), 2017 27th
International Conference on. IEEE. 2017, pp. 1-4.

[28] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor process-
ing unit”. In: Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual Interna-
tional Symposium on. IEEE. 2017, pp. 1-12.

[29] Christoforos Kachris et al. “Energy-Efficient Acceleration of Spark Machine Learn-
ing Applications on FPGAs”. In: Hardware Accelerators in Data Centers. Springer,
2019, pp. 87-107.

[30] Christian Koehler. “The Relationship between the Complexity of Financial Deriva-
tives and Systemic Risk”. In: (2011).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097-1105.

[32] Yann LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

[33] Bruce D Lucas, Takeo Kanade, et al. “An iterative image registration technique
with an application to stereo vision”. In: (1981).

[34] Liang Ma, Fahad Bin Muslim, and Luciano Lavagno. “High performance and low
power Monte Carlo methods to option pricing models via high level design and
synthesis”. In: Modelling Symposium (EMS), 2016, European. IEEE. 2016, pp. 157-
162.

[35] Liang Ma et al. “Acceleration by Inline Cache for Memory-Intensive Algorithms
on FPGA via High-Level Synthesis”. In: IEEE Access 5 (2017), pp. 18953-18974.

[36] Ningning Ma et al. “Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design”. In: arXiv preprint arXiv:1807.11164 5 (2018).

[37] Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,
1967.

[38] Fahad Bin Muslim et al. “Efficient FPGA implementation of OpenCL high-performance
computing applications via high-level synthesis”. In: IEEE Access 5 (2017), pp. 2747—
2762.

[39] Andrew Putnam et al. “Performance and power of cache-based reconfigurable
computing”. In: ACM SIGARCH Computer Architecture News. Vol. 37. 3. ACM.
2009, pp. 395-405

[40] Jiantao Qiu et al. “Going deeper with embedded fpga platform for convolutional
neural network”. In: Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 2016, pp. 26-35.

99

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

Nadathur Satish, Mark Harris, and Michael Garland. “Designing efficient sorting
algorithms for manycore GPUs”. In: Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on. IEEE. 2009, pp. 1-10.

Laurent Sifre and Stéphane Mallat. “Rigid-motion scattering for image classifica-
tion”. PhD thesis. Citeseer, 2014.

Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

Naveen Suda et al. “Throughput-optimized opencl-based fpga accelerator for large-
scale convolutional neural networks”. In: Proceedings of the 2016 International
Symposium on Field-Programmable Gate Arrays. ACM. 2016, pp. 16-25.

Prasanna Sundararajan. “High performance computing using FPGAs”. In: Xilinx
white paper: FPGAs (2010), pp. 1-15.

Vivienne Sze et al. “Efficient processing of deep neural networks: A tutorial and
survey’. In: Proceedings of the IEEE 105.12 (2017), pp. 2295-2329.

Osama Bin Tariq et al. “Performance of Machine Learning Classifiers for Indoor
Person Localization With Capacitive Sensors”. In: IEEE Access 5 (2017), pp. 12913—
12926.

Jirgen Teich. “Hardware/software codesign: The past, the present, and predict-
ing the future”. In: Proceedings of the IEEE 100.Special Centennial Issue (2012),
pp.- 1411-1430.

David Barrie Thomas, Lee Howes, and Wayne Luk. “A comparison of CPUs,
GPUs, FPGAs, and massively parallel processor arrays for random number gen-
eration”. In: Proceedings of the ACM/SIGDA international symposium on Field pro-
grammable gate arrays. ACM. 2009, pp. 63-72.

Yaman Umuroglu et al. “Finn: A framework for fast, scalable binarized neural net-
work inference”. In: Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM. 2017, pp. 65-74.

Stylianos I Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. “Toolflows
for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Di-
rections”. In: ACM Computing Surveys (CSUR) 51.3 (2018), p. 56.

Wikipedia, the free encyclopedia. A plot of CPU transistor counts against dates
of introduction. 2018. URL: https: //en.wikipedia . org/wiki/Moore%
27s _law#/media/File :Moore%27s_ Law_Transistor Count 1971-
2016 .png.

100

https://en.wikipedia.org/wiki/Moore%27s_law#/media/File:Moore%27s_Law_Transistor_Count_1971-2016.png
https://en.wikipedia.org/wiki/Moore%27s_law#/media/File:Moore%27s_Law_Transistor_Count_1971-2016.png
https://en.wikipedia.org/wiki/Moore%27s_law#/media/File:Moore%27s_Law_Transistor_Count_1971-2016.png

BIBLIOGRAPHY

[53]

Wikipedia, the free encyclopedia. An example of a Roofline model in its basic form.
As the image shows, the curve consists of two platform-specific performance ceilings:
the processor’s peak performance and a ceiling derived from the memory bandwidth.
Both axes are in logarithmic scale. 2016. URL: https://en.wikipedia.org/
wiki /Roofline _model # /media/File : Example _of _a_Roofline _
model.svg.

Wikipedia, the free encyclopedia. Direct-Mapped Cache. 2016. URL: https: //
en . wikipedia . org/wiki /Cache _placement _policies # /media/
File:Direct-Mapped_Cache_Snehal_ Img.png.

Wikipedia, the free encyclopedia. Max pooling with a 2x2 filter and stride = 2.
2015. urRL: https://en.wikipedia.org/wiki/Convolutional neural_
network#/media/File:Max_pooling.png.

Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: an insight-
ful visual performance model for multicore architectures”. In: Communications of
the ACM 52.4 (2009), pp. 65-76.

Felix Winterstein et al. “Custom-sized caches in application-specific memory hi-
erarchies”. In: Field Programmable Technology (FPT), 2015 International Conference
on. IEEE. 2015, pp. 144-151.

Felix Winterstein et al. “MATCHUP: memory abstractions for heap manipulating
programs’. In: Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM. 2015, pp. 136—145.

Kanit Wongsuphasawat et al. “Visualizing dataflow graphs of deep learning mod-
els in TensorFlow”. In: IEEE transactions on visualization and computer graphics
24.1 (2018), pp. 1-12.

Bichen Wu et al. “Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Con-
volutions”. In: arXiv preprint arXiv:1711.08141 (2017).

Ding Xie, Jimmei Lai, and Jiarong Tong. “A high utilization rate routing algorithm
for modern FPGA”. In: Solid-State and Integrated-Circuit Technology, 2008. ICSICT
2008. 9th International Conference on. IEEE. 2008, pp. 2333-2336.

Yifan Yang et al. “Synetgy: Algorithm-hardware co-design for convnet accelera-
tors on embedded fpgas”. In: arXiv preprint arXiv:1811.08634 (2018).

Yu. Overload the Brackets Operator to Perform Complex Operations. Nov. 2014. URL:
https://argcv.com/articles/3228.c.

Chen Zhang et al. “Energy-efficient CNN implementation on a deeply pipelined
FPGA cluster”. In: Proceedings of the 2016 International Symposium on Low Power
Electronics and Design. ACM. 2016, pp. 326-331.

101

https://en.wikipedia.org/wiki/Roofline_model#/media/File:Example_of_a_Roofline_model.svg
https://en.wikipedia.org/wiki/Roofline_model#/media/File:Example_of_a_Roofline_model.svg
https://en.wikipedia.org/wiki/Roofline_model#/media/File:Example_of_a_Roofline_model.svg
https://en.wikipedia.org/wiki/Cache_placement_policies#/media/File:Direct-Mapped_Cache_Snehal_Img.png
https://en.wikipedia.org/wiki/Cache_placement_policies#/media/File:Direct-Mapped_Cache_Snehal_Img.png
https://en.wikipedia.org/wiki/Cache_placement_policies#/media/File:Direct-Mapped_Cache_Snehal_Img.png
https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Max_pooling.png
https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Max_pooling.png
https://argcv.com/articles/3228.c

BIBLIOGRAPHY

[65] Yuan Zhou et al. “Rosetta: A Realistic High-Level Synthesis Benchmark Suite for
Software Programmable FPGAs”. In: Proceedings of the 2018 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM. 2018, pp. 269-278.

102

This Ph.D. thesis has been typeset by
means of the TgX-system facilities. The
typesetting engine was LualdTEX. The
document class was toptesi, by Clau-
dio Beccari, with option tipotesi
=scudo. This class is available in every
up-to-date and complete TgX-system
installation.

	List of Tables
	List of Figures
	Introduction
	Computing System
	Moore's Law
	Heterogeneous Architecture
	High Level Synthesis

	Performance Analysis
	Amdahl's Law
	Gustafson's law
	Roofline Model
	Optimization in HLS
	Power and Energy

	Thesis Structure

	Acceleration of Financial Algorithms
	Financial Options
	European Vanilla Option
	European Barrier Option
	American Option
	Asian Option

	Option pricing models
	Black Scholes Model
	Heston Model

	Monte Carlo Method
	Random Number Generator

	Related work
	Implementation and Architecture
	Optimization
	Performance Indicator

	Results
	Running on CPUs
	Acceleration by GPUs
	AWS F1 FPGA
	Embedded Platform: ZYNQ 7020

	Cache-Based Acceleration for Memory Intensive Algorithms
	Background
	Memory-intensive algorithms
	Cache Related Work
	Motivations

	High Level Cache Design
	Hardware Design Flow
	Inline Cache Types
	Inline Cache Implementation

	Applications
	Matrix Multiplication
	Lucas-Kanade Algorithm
	Bitonic Sorting

	Acceleration of Machine Learning Algorithms
	Introduction
	Convolutional neural network
	Neural Network on FPGAs

	Design, Training and Inference Automation
	Tensorflow
	Design Flow and Code Generation

	Feed-Forward Neural Network
	Dataflow-Based Acceleration
	Hardware Architectures on the FPGA
	ShiftShuffleNet on Embedded FPGA

	Recurrent Neural Network
	Long Short Term Memory
	Design and Training
	Acceleration on the embedded FPGA

	Conclusion and Future Work
	Financial Option Pricing Algorithm
	Inline Application-Specific Caches
	Machine Learning Algorithm

	Direct-Mapped Cache
	Code of the inline direct-mapped cache
	Original and modified code of matrix multiplication

	Bibliography

