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Electroencephalography Forward Problem

John E. Ortiz G., Axelle Pillain, Lyes Rahmouni, Francesco P. Andriulli∗
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Politecnico di Torino, Turin, Italy

Abstract
The symmetric formulation of the electroencephalography (EEG) forward problem is a well-known and widespread equation thanks
to the high level of accuracy that it delivers. However, this equation is first kind in nature and gives rise to ill-conditioned problems
when the discretization density or the brain conductivity contrast increases, resulting in numerical instabilities and increasingly slow
solutions. This work addresses and solves this problem by proposing a new regularized symmetric formulation. The new scheme is
obtained by leveraging on Calderon identities which allow to introduce a dual symmetric equation that, combined with the standard
one, results in a second kind operator which is both stable and well-conditioned under all the above mentioned conditions. The
new formulation presented here can be easily integrated into existing EEG imaging packages since it can be obtained with the same
computational technology required by the standard symmetric formulation. The performance of the new scheme is substantiated
by both theoretical developments and numerical results which corroborate the theory and show the practical impact of the new
technique.

Keywords: EEG, BEM, Calderon Solvers.

1. Introduction1

Functional brain imaging based on high-resolution scalp Electroencephalographies (EEGs) is characterized by a2

high temporal resolution and, as such, it provides an unmatched overview on the underlying brain activity [1, 2, 3, 4].3

This technique relies on the key task, referred to as the EEG inverse problem, of recovering the brain electric current4

sources responsible for a measured potential at the EEG scalp electrodes [5, 6]. The EEG inverse problem requires5

multiple solutions of the EEG forward problem, i.e. the computation of the scalp potential starting from the source6

currents [7, 8]. It has been widely studied and reported that the accuracy of EEG forward problem solvers has a direct7

impact on EEG inverse solution procedures [9, 10, 11, 12]. For this reason, any advancement of the state of the art in8

EEG forward solution technologies will have a direct impact on the overall high-resolution EEG imaging process.9
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When realistic head models are used [11, 13, 14, 15, 16, 17], the solution of the EEG forward problem can only10

be obtained numerically. Classical strategies to obtain this numerical solution are the Finite Element Method (FEM),11

the Finite Difference Method (FDM) or the Boundary Element Method (BEM) [18]. Both FDM and FEM leverage on12

a volume discretization of the considered head model. This allows these methods to account for the inhomogeneity13

and anisotropy of the head’s conductivity at the cost, however, of a higher computational demand. Previous works14

have shown that by using transfer matrices the computation time of the FEM formulations can be reduced [19, 20].15

The use of these transfer matrices in FEM formulations yield similar computational times as BEM formulations for16

comparable accuracies. [21].17

When the conductivity of the head is modelled as piecewise homogeneous, BEM can be easily used to compute18

the solution of the EEG forward problem. In other words, the main limitation of the BEM formulation resides in its19

inability to model anisotropies. However, this method has the advantage that it requires only the discretization of the20

interface between regions with different conductivities [18, 22]. Several studies (for example [12, 23, 24]) focused21

on the impact of the head model simplifications in recovering the electric brain sources from the measurement of22

scalp potential. In particular, when computing the EEG forward problem, [25, 26, 27] have shown the importance of23

modelling correctly the skull anisotropy. However, when the anisotropic conductivity values are not known, it can be24

preferable to model this region as isotropic, as explained in [25]. Moreover, the anisotropic conductivity of the skull25

is due to its layered structure, a cancellous bone between two compact bones. This means that when those three layers26

are available, the skull can accurately be modelled with three isotropic layers instead of one anisotropic layer as [28]27

shows.28

The relevant computational savings which the use of BEM strategies can lead to, explain the attention the technique29

has received by the community, resulting in a continuous series of advances [18, 29, 30, 31, 32, 33]. Among them30

a method, published in [34] and referred to as the “symmetric formulation”, became quite popular and impacted31

several EEG based imaging tools [35, 36, 37, 38]. The peculiarity of the BEM method proposed in [34] is the quite32

higher level of accuracy that it can achieve when compared to previously existing schemes. However these beneficial33

properties are obtained at the cost of using a first kind formulation (while the majority of standard strategies relies34

on second kind formulations). The computational consequence of this fact is that, when the “symmetric formulation”35

is discretized to be solved numerically, the condition number of the resulting BEM matrix (the ratio of the largest36

over the smallest singular value of the matrix) will grow as a function of the discretization density (the number of37

boundary elements used to discretize the structure) [39]. Similarly, a condition number growth is observed in the38

symmetric formulation also when the conductivity contrast between two regions of the head is increased (a case of39

practical interest given that the conductivity of the skull is often modeled with a much smaller value with respect to the40

conductivity of the brain [11, 40, 41, 42]). In several cases, especially when handling models issued of high resolution41

Magnetic Resonance Imaging (MRI) [43], the solution of the EEG forward problem is obtained iteratively [18, 44].42

A low and stable condition number is desirable since, on the one hand, the number of iterations of an iterative solver43

is growing with the condition numbers [45] and, on the other hand, the condition number controls the amplification44
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in the solution of any initial error in the sources [45]. In other words, the higher the condition number, the longer the45

time needed to compute the solution, and the less correct the solution will be.46

The purpose of this work is to address the ill-conditioning problems of the symmetric formulation. Given the favor47

that the formulation has found in the community and the fact that it is already implemented in several neuroimaging48

packages, a particular attention will be devoted to develop a solution strategy that will be conservative, in the sense49

that will not require the change of previous implementations of the symmetric formulation but will just require the50

addition of some extra steps to it. This will be achieved by developing a purely multiplicative preconditioner based51

on Calderon formulas, i.e. we will design a preconditioning matrix that is spectrally equivalent to the inverse of the52

symmetric formulation. After left multiplication of this matrix with the symmetric formulation matrix, the resulting53

linear system will, on the one hand, keep the accuracy the symmetric formulation is well known for and, on the54

other hand, will provide a stable condition number both when the mesh is refined and when the conductivity contrast55

between two adjacent domains increases. The reader should notice that Calderón strategies have been successfully56

applied to the regularization of other integral operators in the context of full-wave vector electromagnetic problems57

scattered by metallic [46, 47, 48, 49, 50, 51, 52, 53] and penetrable [54, 55, 56, 57] objects. The regularization58

presented here, however, does not automatically follow from none of the strategies above due to the peculiar nature,59

both in terms of frequency and operator structure/properties, of the symmetric formulation under consideration in this60

work. It should also be noted that the problem of simulating high contrast dielectric materials has been addressed61

for high frequency formulations with Calderon strategies both in [55] and [57]. Both of these two clever approaches,62

designed for the vector case, are not applicable in our scalar scenario where the spectral high-contrast scaling expresses63

itself as a block scaling issue due to the decoupling of electric and magnetic quantities characterizing a static problem.64

This paper is organized as follows: Section 2 provides the reader with some necessary background material and65

notation used in the following developments. Section 3 presents the new Calderon preconditioner proposed in this66

work, while Section 4 focuses on its discretization and on the solution of the preconditioned symmetric formulation67

system. Section 5 complements the paper’s theoretical developments with numerical results which will show the68

efficiency and effectiveness of the new approach. Partial results from this work has been presented in the conference69

contribution [58].70

2. Background on the EEG Forward Problem71

This section will briefly review the relevant formulations, currently available in literature, used to solve the EEG72

forward problem. The treatment will be synthetic and for the sole purpose of setting up the notation. The reader73

interested in a more profuse treatment should refer, for example to [34, 59] and to references therein.74

2.1. The EEG Problem75

Let Ω =
⋃N

i=1 Ωi be a nested domain with Lipchitz boundaries ∂Ωi =
(
Ω̄i−1

⋂
Ω̄i

)⋃ (
Ω̄i

⋂
Ω̄i+1

)
as in Fig. 1. We76

denote with ni the outward going normal to the surface Γi, where Γi = Ω̄i
⋂

Ω̄i+1.77
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Figure 1. Geometry under consideration.

Solving the EEG forward problem amounts to computing the potential V at given electrodes’ positions when the78

active brain current sources are known. Under quasi-static assumptions and isotropic conductivity, the EEG forward79

problem reads [60]:80

σ∆V = ∇ · j in each Ωi (1)

where ∆ = ∇ · ∇ is the Laplace operator, σ is the conductivity and j the current sources. The conductivity is assumed81

to be piecewise isotropic and homogeneous: in Ωi, σ = σi. In the exterior domain, the conductivity is assumed to82

be 0. The current sources, as it is customary in literature [61], are assumed to be dipolar in nature. Hence, denoting83

with fi = ∇ · j the electric source in Ωi, we have fi = qi · ∇δri with qi the electric dipole moment and ri its position.84

Furthermore, the symbol [g]i = g− − g+, will refer to the jump of the function g at the interface Γi, with g∓ the inner85

and outer trace of g at Γi respectively. Then, the solvability of (1) is assured under the following boundary conditions86

[60]:87

[V]i = 0 ∀i ≤ N (2a)
88

[σn · ∇V]i = 0 ∀i ≤ N (2b)

that enforce the continuity of the potential and the current between the different layers of the domain Ω.89

The Green’s function associated with (1) reads [39]90

G(r, r′) =
1

4π|r − r′|
(3)

4



Author / Journal of Computational Physics 00 (2018) 1–24 5

for which we can derive Green’s representation theorem using the integral operators [39]

S Ψ(r) =

∫
∂Ω

G(r, r′)Ψ(r′)dr′ (4a)

DΦ(r) = p.v.
∫
∂Ω

∂n′G(r, r′)Φ(r′)dr′ (4b)

D∗Ψ(r) = p.v.
∫
∂Ω

∂nG(r, r′)Ψ(r′)dr′. (4c)

NΦ(r) = f .p.
∫
∂Ω

∂n∂n′G(r, r′)Φ(r′)dr′ (4d)

In the above equation and p.v. and f .p stand for Cauchy principal value and Hadamard finite part respectively. In the91

following, we will denote with Li j the operator L when r ∈ Γi and r′ ∈ Γ j with L = D, S ,N or D∗.92

2.2. The Symmetric Formulation for the EEG Forward Problem93

Several BEM formulations have been proposed to solve the EEG forward problem [18, 34]. Among them, the94

symmetric formulation [34] is quite popular and known for providing high levels of accuracy [36]. In solving the95

EEG forward problem, an efficient strategy is to build the unknown potential V starting from two functions, a function96

u harmonic in R3 and a function v that takes into account the source term. The starting point of the symmetric97

formulation is to build ui in each domain such that ui = V − vi/σi in Ωi and u = −vi/σi in R3 \Ωi, with vi the solution98

of (1) in an unbounded medium: vi(r) =
∫

Ωi
fi(r′)G(r, r′)dr′. In this fashion, ui is harmonic in R3 \ ∂Ω̄i = Γi−1 ∪ Γi.99

Using the boundary conditions (2a) and (2b) as well as the representation theorem [39], two integral equations for the100

potential and its derivative can be obtained [34]. They read:101

σ−1
i+1 (vi+1)Γi

− σ−1
i (vi)Γi

= Di,i−1Vi−1 − 2DiiVi + Di,i+1Vi+1 − σ
−1
i S i,i−1 pi−1 +

(
σ−1

i + σ−1
i+1

)
S ii pi − σ

−1
i+1S i,i+1 pi+1 (5)

102

(∂nvi+1)Γi
− (∂nvi)Γi

= σiNi,i−1Vi−1 − (σi + σi+1) NiiVi + σi+1Ni,i+1Vi+1 − D∗i,i−1 pi−1 + 2D∗ii pi − D∗i,i+1 pi+1 (6)

with Vi the potential on the surface Γi and pi = σi [n · ∇V]i. Equations (5) and (6) are obtained by aplying the103

boundary conditions on the surface Γi. In a nested domain, it only involves the computation of the operators with104

functions defined in the surrounding surfaces Γi−1, Γi and Γi+1.To clarify the ideas, equations (5) and (6) have been105

rewritten in matrix form in equation (7). For a more detailed explanation on the symmetric formulation, the reader is106
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referred to [34].107 

(σ1 + σ2) N11 −2D∗11 −σ2N12 D∗12

−2D11

(
σ−1

1 + σ−1
2

)
S 11 D12 −σ−1

2 S 12

−σ2N21 D∗21 (σ2 + σ3) N22 −2D∗22 · · ·

D21 −σ−1
2 S 21 −2D22

(
σ−1

2 + σ−1
3

)
S 22 · · ·

...
...

. . .

(σN−1 + σN) NN−1,N−1 2D∗N−1,N−1 −σNNN−1,N

−2DN−1,N−1

(
σ−1

N−1 + σ−1
N

)
S N−1,N−1 DN−1,N

−σN NN,N−1 DN,N−1 σN NN,N

︸                                                                                                                                                                                       ︷︷                                                                                                                                                                                       ︸
Z

V1

p1

V2

p2

...

pN−1

VN

︸ ︷︷ ︸
x

=



(∂nv1)Γ1
− (∂nv2)Γ1

σ−1
2 (v2)Γ1

− σ−1
1 (v1)Γ1

(∂nv2)Γ2
− (∂nv3)Γ2

σ−1
3 (v3)Γ2

− σ−1
2 (v2)Γ2

...

σ−1
N (vN)ΓN−1 − σ

−1
N−1 (vN−1)ΓN−1

(∂nvN)ΓN

︸                                     ︷︷                                     ︸
b

(7)

2.3. Discretization of the Operators108

The numerical solution of an integral equation is often obtained by using a Boundary Element Method (BEM).109

Following a well-established strategy, the surface Γ is tessellated into Nt triangular cells tk of area Ak and average110

length h. The set of vertices of the tesselation will be denoted by {vk}
Nv
k=1. Cells and vertices will form a mesh denoted111

by MΓ. The number of triangles (respectively, vertices) of the surface Γi will be denoted Nti (respectively, Nvi ). To112

discretize the unknowns and to test the equations the following standard basis functions will be used. The piecewise113

constant functions in P0 are defined such that, P0k = 1/Ak in tk and 0 elsewhere. The piecewise linear functions are114

the set P1 = span{P1k}
Nv
k=1. The support of P1k, denoted by µP1k , is the set of triangles around vk such that P1k = 1 in115

vk and 0 on all other vertices. P0 and P1 functions are shown Fig. 3a and 3b respectively.116

Following [34], on the surface Γi we respectively discretize the two unknowns Vi and pi with P1 and P0 basis

functions such that Vi =
∑Nv

l akP1l and pi =
∑Nt

l blP0l. In order to obtain the system matrix, the integral equations (5)

6
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and (6) are tested with P0 and P1 basis functions respectively. The operator matrices arising are then given by

[Di j]kl =

∫
tk

Di j(P1l) P0k(r)dr (8a)

[Si j]kl =

∫
tk

S i j(P0l) P0k(r)dr (8b)

[Ni j]kl =

∫
µP1i

Ni j(P1l) P1k(r)dr (8c)

[D∗i j]kl =

∫
µP1i

D∗i j(P0l) P1k(r)dr. (8d)

Consequently, the system to be solved reads Zx = b with Z given by117

Z =

(σ1 + σ2) N11 −2D∗11 −σ2N12 D∗12

−2D11

(
σ−1

1 + σ−1
2

)
S11 D12 −σ−1

2 S12

−σ2N21 D∗21 (σ2 + σ3) N22 −2D∗22 · · ·

D21 −σ−1
2 S21 −2D22

(
σ−1

2 + σ−1
3

)
S22 · · ·

...
...

. . .

(σN−1 + σN) NN−1,N−1 2D∗N−1,N−1 −σNNN−1,N

−2DN−1,N−1

(
σ−1

N−1 + σ−1
N

)
SN−1,N−1 DN−1,N

−σNNN,N−1 DN,N−1 σNNN,N


(9)

where

[x]2l−1 = al (10a)

[x]2l = bl (10b)

and where

[b]2k =

∫
µk

(
σ−1

k+1vk+1 − σ
−1
k vk

)
P0kdr (11a)

[b]2k−1 =

∫
tk

(∂nvk+1 − ∂nvk) P1kdr. (11b)

In the following, the operator associated with the matrix Z (obtained by replacing in (9) D, S, N, and D∗ with D,118

S , N, and D∗) will be denoted by Z.119

3. A Calderon Preconditioner for the Symmetric Formulation120

The high accuracy of the symmetric BEM formulation [34] has made of it a very popular tool for solving the EEG121

forward problem. However its system matrix suffers from ill-conditioning that can lead to the non-convergence of the122

7
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employed iterative solver used to compute the solution [45], which has to be used for high refined meshes where the123

direct methods are impractical. Indeed, the operator S is compact [39]. This means that its spectrum will accumulate124

at zero when the mesh is refined and it will therefore have a condition number increasing inversely proportional to the125

average mesh length h. Moreover, the hypersingular operator N is an unbounded operator [39]. This implies that its126

condition number will also grow with 1/h. Since these operators are the diagonal blocks of the matrix Z in (9) and the127

off-diagonal blocks of the matrix are smoothers [62], it follows that the overall conditioning of Z will increase when128

the mesh discretization will increase (h→ 0).129

By leveraging on the Calderon identities, it is possible to build a preconditioner for the system matrix Z. The

rationale behind our strategy can be understood by considering the continuous operators first. The Calderon identities

that for our approach read [63]

S iiNii =
1
4

I − D2
ii (12a)

NiiS ii =
1
4

I − D∗2ii (12b)

DiiS ii = D∗iiS ii (12c)

D∗iiNii = NiiD∗ii (12d)

where the symbol I stands for the identity operator. The spectral analysis of (12a) and (12b) shows that the operators130

S iiNii and NiiS ii are well conditioned. Indeed, given that D and D∗ are compact operators, then D2
ii and D∗2ii are also131

compact operators as a product of two compact operators. Then the spectrum of D2
ii and D∗2ii is bounded above and132

accumulates at zero. However, the presence of the identity operator in (12a) and (12b) guarantees that the spectrum of133

the operators S iiNii and NiiS ii will be bounded from below by 1/4. In other words, S iiNii and NiiS ii are second kind134

operators whose spectrum accumulates at 1/4. This property can be exploited to build a left preconditioner for the135

symmetric operator Z.136

Before introducing the Calderon preconditioner, we present a regularization matrix for the coefficients of the sym-137

metric operator, which is necessary for the stability of the matrix condition number with respect to the conductivity138

ratio and for the correct behaviour of the subsequent mesh refinement preconditioner. Indeed, the symmetric operator139

is unstable when there is a high conductivity contrast between two adjacent domains ,Ωi and Ω j, due to the con-140

ductivity factors in the diagonal blocks of the matrix. These conductivity factors are given by a2l−1,2l−1 = σl + σl+1141

and a2l,2l = σ−1
l + σ−1

l+1. As a consequence, in the case of high conductivity contrast between two adjacent domains,142

i.e. asymptotically, when σi
σ j
→ ∞, that is

(
σi + σ j

)
→ ∞ when σi → ∞ or

(
σ−1

i + σ−1
j

)
→ ∞ when σ j → 0, the143

condition number of the system matrix will grow as a function of the conductivity ratio CRi j =
max(σi,σ j)
min(σi,σ j)

. Because144

of high conductivity contrast between the brain and the skull [40, 41], this undesirable situation is likely to appear145

when solving the EEG forward problem. To solve this problem, we will rescale with respect to the conductivity the146

8
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symmetric operator Z using a diagonal operator Q given by147

Q =



1
√

max(σ1,σ2)
0 0 0 · · · 0

0
√

min(σ1, σ2) 0 0 · · · 0

0 0 1
√

max(σ2,σ3)
0 · · · 0

0 0 0
√

min(σ2, σ3) · · · 0
...

...
...

...
. . . · · ·

0 0 0 0 0 1
√

N


(13)

We then define a rescaled symmetric operator Zq as148

Zq = QZQ =

(1 + R11)N11 −2
√

R11D∗11 −P2N12
√

R21D∗12

−2
√

R11D11 (1 + R11)S 11
√

R12D12 −P∗2S 12

−P2N21
√

R12D∗21 (1 + R22)N22 −2
√

R22D∗22 · · ·

√
R21D21 −P∗2S 21 −2

√
R22D22 (1 + R22)S 22 · · ·

...
...

. . .

(1 + RN−1,N−1)NN−1,N−1 −2
√

RN−1,N−1D∗N−1,N−1 −PN NN−1,N

−2
√

RN−1,N−1DN−1,N−1 (1 + RN−1,N−1)S N−1,N−1
√

RN−1,N DN−1,N

−PN NN,N−1
√

RN−1,N D∗N,N−1 NN,N


(14)

with149

Ri j =
min(σi, σi+1)
max(σ j, σ j+1)

, Pi =
σi

√
max(σi−1, σi) max(σi, σi+1)

, P∗i =

√
min(σi−1, σi) min(σi, σi+1)

σi
(15)

and Ri j, Pi, P∗i ≤ 1. The asymptotic behaviour of those coefficients is presented in table 1 , from which we can see that150

when CRi j → ∞, none of the blocks of Zq tends to infinity. Furthermore, the diagonal blocks are bounded between 1151

and 2. Therefore the instability with respect to high conductivity ratio of the symmetric operator have been solved.

Coefficient σi → ∞ σi → 0

Ri j 0 0

Pi 1 0

P∗i 0 1

Table 1. Asymptotic behaviour of the different coefficients of Zq.

152
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In order to simplify the notation for the following part, we write the regularized symmetric operator as153

Zq =



c11N11 c12D∗11 c13N12 c14D∗12

c21D11 c22S 11 c23D12 c24S 12

c31N21 c32D∗21 c33N22 c34D∗22 · · ·

c41D21 c42S 21 c43D22 c44S 22 · · ·

...
...

. . .

cN−2,N−2NN−1,N−1 cN−2,N−1D∗N−1,N−1 cN−2,N NN−1,N

cN−1,N−2DN−1,N−1 cN−1,N−1S N−1,N−1 cN−1,N DN−1,N

cN,N−2NN,N−1 cN,N−1DN,N−1 cNN NN,N



(16)

154

where the coefficients ci j have the properties155

ci j = c ji, c2i−1,2i−1 = c2i,2i (17)

156

Now we present the Calderon preconditioner for the regularized symmetric operator Zq which is based on the157

Calderon identites (12). We denote such preconditioning operator by Cq. Its definition is given in (18), where the158

constant coefficients ci j are the same as in (16).159

Cq =



c11S 11 −c12D11 c13S 12 c14D12

−c21D∗11 c22N11 c23D∗12 c24N12

c31S 21 c32D21 c33S 22 −c34D22 · · ·

c41D∗21 c42N21 −c43D∗22 c44N22 · · ·

...
...

. . .

cN−2,N−2S N−1,N−1 −cN−2,N−1DN−1,N−1 cN−2,NS N−1,N

−cN−1,N−2D∗N−1,N−1 cN−1,N−1NN−1,N−1 cN−1,N D∗N−1,N

cN,N−2S N,N−1 cN,N−1DN,N−1 cN,NS N,N



(18)

We highlight the minus signs present in the blocks D∗ii, which are necessary for the compactness of the off diagonal160

blocks when the preconditioner is applied. A minus sign is added in the Dii blocks as well for symmetry.161

Then, as desired, CqZq is a block operator exhibiting the Calderon identities (12a) and (12b) in its diagonal up to162

the multiplicative factor c2
ii as can be seen in (19).163

CqZq =



c2
11S 11N11 + K11 K12 K13 · · ·

K21 c2
22N11S 11 + K22 K23 · · ·

K31 K32 c2
33S 22N22 + K33 · · ·

...
...

...
. . .


(19)
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The terms denoted with Ki j, contain linear combinations of the compact operators Di jD jk, S i jN jk, S i jD∗jk, Di jS jk,

D∗i jN jk, Ni jD jk, Ni jS jk and D∗i jD
∗
jk. They read

K2n−1,2m−1 =

n+1∑
i=n−1

χm(i)(c2n−1,2i−1c2i−1,2m−1S niNim + (−1)δniχic2n−1,2ic2i,2m−1DniDim)

− c2n−1,2m−1S nmNnmδnm

(20a)

K2n,2m =

n+1∑
i=n−1

χm(i)((−1)δni c2n,2i−1c2i−1,2mD∗niD
∗
im + χic2n,2ic2i,2mNniS im)

− c2n,2mNnmS nmδnm

(20b)

K2n−1,2m =

n+1∑
i=n−1

χm(i)(c2n−1,2i−1c2i−1,2mS niD∗im + (−1)δniχic2n−1,2ic2i,2mDniS im) (20c)

K2n,2m−1 =

n+1∑
i=n−1

χm(i)((−1)δni c2n,2i−1c2i−1,2m−1D∗niNim + χic2n,2ic2i,2m−1NniDim) (20d)

where the symbols χi, χm(i) are given by164

χm(i) =

 1 if |i − m| < 2

0 otherwise
, (21)

165

χi =

 1 if i < N

0 otherwise
, (22)

and where δnm is the Kronecker’s delta166

δi j =

 1 if i = j

0 otherwise
. (23)

As shown previously, the terms S iiNii and NiiS ii are well conditioned second kind operator matrices, as a conse-167

quence the terms ciiS iiNii ciiNiiS ii will also be well conditioned with respect to the mesh parameter h since 1 < cii < 2.168

In order to show the compactness of the operators Ki j, we analyze each operator product in them. First, in the diag-169

onal blocks K2n−1,2n−1 and K2n,2n we have the following products: S niNin, NniS in, D∗niD
∗
in, DniDin. The operators D170

and D∗ are compact, therefore the products DniDin and D∗niD
∗
in are compact as well [63]. The products S niNin, NniS in171

are present when i , n, then the operators Nin and Nni have a regular kernel due to the lack of singularity. Hence,172

the products with the compact operators S ni and S in are also compact operators [39, 64, 65]. Overall, in the diagonal173

block we have the sum of compact operators. In the off diagonal blocks K2n−1,2m−1, K2n,2m, when n , m, we have the174

products S niNim, DniDim, D∗niD
∗
im, NniS im. As stated before, the product of the D∗ and D are compact. Moreover, in the175

products S niNim and NniS im at least one of the operators has a regular kernel, since n , m. Hence, these products yield176

compact operators [64, 65]. Finally, for the off diagonal blocks K2n−1,2m, K2n,2m−1 we have the following products:177

S niD∗im , DniS im, D∗niNim, NniDim. The products S niD∗im and DniS im are clearly compact, since all the operators involved178

are compact. The only not-compact terms are present in the products D∗niNim and NniDim when n = i = m. However,179

11
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recalling the Calderon identity (12d) and the properties (17), we have180

−c2n,2n−1c2n−1,2n−1D∗nnNnn + c2n,2nc2n,2n−1NnnD∗nn = 0 (24)

which is true for the continues operators. When the operators are discretized, this cancellation is not exact, however181

the residue tends to zero.182

Then, we can write

CqZq = A + B

with 
[A]2l−1,2l−1 =c2

2l−1,2l−1S llNll

[A]2l,2l =c2
2l,2lNllS ll

[A]i j =0 if i , j

and B such that [B]i j = Ki j, CqZq can be seen as the sum of the well conditioned matrix A and a compact perturbation183

B (as the operators Ki j are compact operators). We can therefore expect the operator CqZq to be well conditioned with184

respect to the mesh parameter.185

For now on, we will refer to the product186

Zc = CqZq, (25)

as the Calderon-Symmetric operator, which is well conditioned for both mesh refinement and conductivity ratio be-187

tween adjacent surfaces.188

4. Discretization of the Calderon Preconditioner and Solution of the Preconditioned Symmetric Formulation189

In order to solve the preconditioned symmetric integral equation, the proposed multiplicative preconditioner Cq190

has to be discretized. This discretization should be carried out with care. In fact, the preconditioned operator in (25)191

will contain operator products which will not directly translate into matrix products in the general case. A suitable192

choice of basis functions should be made to guarantee that this could instead be the case here. To fix the ideas, we193

could consider the discretization of the operator product N11S 11 appearing in the top-left block of Zc. The matrix S11 is194

obtained by using test and trial functions in P0 while the matrix N11 is obtained by using test and trial functions in P1.195

Yet the number of vertices Nt and the number of cells that defines the dimensions of the space P1 and P0 are different.196

As a consequence, the blocks N11 and S11 do not have compatible shapes and cannot be multiplied. Furthermore,197

the basis functions used for discretizing N11 and S 11 must satisfy appropriate inf-sup conditions with respect to the198

duality pairing 〈v,w〉 : H1/2(Γ1) × H−1/2(Γ1) → R (the reader should refer to [66] for further technical details on199

this topic). This condition enables to get a stable condition number for the Gram matrices, necessarily present in200

the discretized system as they orthonormalize the two chosen basis and testing functions sets. To properly take care201

of this fact, we propose to discretize the preconditioner Cq on the dual mesh M∗
Ω

of the standard mesh MΩ and to202

12
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leverage on the dual basis functions introduced in [67] on such a mesh. In the dual mesh, each vertex corresponds to203

a cell of the standard mesh and vice-versa. This means that in M∗
Ω

we can build a discrete space in H1/2(Γ) which has204

the same dimension as the discrete space associated with H−1/2(Γ) in MΩ and vice-versa. Moreover, the dual basis205

functions introduced by [67] abide by the inf-sup conditions required to obtain stable discrete products [66]. As a206

consequence, the discretization of the preconditioner operator Cq by using these basis functions enables to perform207

the matrix multiplication associated with the operator multiplication CqZq in such a way that the spectral bounds208

holding for the continuous operator products will translate in well-conditioned matrix products.209

The dual mesh M∗
Ω

can be obtained by barycentric refinement of the standard mesh MΩ by dividing the triangles tk210

into six smaller triangles tbk whose edges are built by tracing the medians of the standard triangles tk [67]. The cells ck211

of M∗
Ω

are defined as the set of triangle tbk sharing a common vertex vk of MΩ. The vertices of M∗
Ω

are the barycenters212

bk of the triangles tk in MΩ. The reader should refer to Fig. 2 for an example of such a refinement.213

Figure 2. Standard Mesh in bold lines, its barycentric refinement in thin lines. Three cells of the dual mesh are evidenced. The coefficients κ are

the coefficients used in the linear combination of primal P1 functions to build the dual P̃1 functions: κ1 = 1, κi = 1/2 if i ∈ 2, 3, 4 and κi = 1/t if

i ∈ 5, 6, 7, with t the number of triangles in MΩ sharing the corresponding node.

In M∗
Ω

, we define the dual piecewise linear functions P̃1 = span{P̃1k }
Nt
k=1 obtained with a linear combination of214

P1 functions built on the barycentric refined mesh [67]. A dual piecewise linear function is shown Fig. 3d. The215

coefficients of the linear combination are shown Fig. 2. The support of P̃1i is denoted µP̃1i
. The dual piecewise216

constant functions in P̃0, denoted P̃0k, are the constant functions equal to 1/Ack on the cell ck, whose area is Ack , of217

M∗
Ω

and equal to zero elsewhere. A dual piecewise constant function is shown in Fig. 3c. An extended explanation of218

the dual mesh and dual basis functions is given by [67].219

13
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(a) P0 function (b) P1 function

(c) P̃0 function (d) P̃1 function

Figure 3. Basis and testing functions, in the standard mesh (3a, 3b) and in the dual mesh (3c, 3d)

Then the operators matrices used to build Cq are given by:

[D̃i j]kl =

∫
ck

Di j(P̃1l) P̃0k(r)dr (26a)

[S̃i j]kl =

∫
ck

S i j(P̃0l)P̃0k(r)dr (26b)

[Ñi j]kl =

∫
µP̃1k

Ni j(P̃1l)P̃1k(r)dr (26c)

[D̃∗i j]kl =

∫
µP̃1k

D∗i j(P̃0l)P̃1k(r)dr. (26d)

and the discretized preconditioner C̃q is made explicit as220

C̃q =



c11S̃11 c12D̃11 c13S̃12 c14D̃12

c21D̃∗11 c22Ñ11 c23D̃∗12 c24Ñ12

c31S̃21 c32D̃21 c33S̃22 c34D̃22 · · ·

c41D̃∗21 c42Ñ21 c43D̃∗22 c44Ñ22 · · ·

...
...

. . .

cN−1,N−2D̃∗N−1,N−1 cN−1,N−1ÑN−1,N−1 cN−1,ND̃∗N−1,N

cN,N−2S̃N,N−1 cN,N−1D̃N,N−1 cN,NÑN,N



(27)

The final preconditioner is then obtained by introducing the necessary rescaling to obtain a uniform conditioning221

with respect to the conductivity profiles (according to the analysis of the previous section).222

In order to perform the multiplication of matrices with two different discretizations, a Gram matrix G to link

them is necessary. This Gram matrix is computed by taking the scalar product between the trial functions of one
14
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operator and the test functions of the other operator. Hence, the computation of the Gram matrix does not require

the evalulation of any operator. Additionaly, it is almost diagonal, therefore the computational cost is very low. This

matrix is obtained as

[G2i−1]kl =

∫
µP̃1k

˜(P0l) P1k(r)dr (28a)

[G2i]kl =

∫
tk

˜(P1l) P0k(r)dr. (28b)

Finally, the discretization of the Calderon symmetric operator is given by223

Zc = C̃qG−1Zq (29)

where Zq = QZqQ. The solution of the preconditioned symmetric formulation is then obtained by solving the224

following system Zcy = CqG−1Qb and x is obtained with x = Qy.225

Summarizing, the Calderon preconditioning strategy is multiplicative in nature. Its aim is to build a precondition-226

ing operator spectrally equivalent to the inverse of the original operator. Thus, once this operator is built, multiplying227

the ill-conditioned operator with it yields an operator spectrally equivalent to an identity. The preconditioning opera-228

tor is built on a dual mesh in order to allow matrix multiplication and stability. Moreover, regularization matrices are229

added in order to get a condition number independent of the conductivity ratio. In a nutshell, the steps are:230

1. Compute the standard symmetric system matrix Z;231

2. Compute the Calderon preconditioning matrix C̃q on the dual mesh;232

3. Compute the Gram matrices linking the dual and standard discretization, known as Gram matrices G;233

4. Normalize the operator Z with the regularization matrices Q;234

5. Perform the multiplication Zc = C̃qG−1Zq;235

6. The right hand side b must be modified accordingly : compute bc = QC̃QG−1Qb;236

7. Solve the system Zcy = bc;237

8. Get the solution using x = Qy.238

5. Numerical Results239

The new Calderon regularized symmetric formulation proposed in this work has been first tested on the canonical240

scenario of three homogeneous and concentric spheres of radii 0.8, 0.9, and 1 in normalized units respectively. Such241

model is shown in Fig. 4a. Indeed, in the case of homogeneous nested spheres, an analytical solution is available as a242

reference [68, 69], this solution will be denoted with Vre f . In these simulations, a single dipole source is placed in (0,243

0, 0.5) with a dipole moment of (0, 0, 1) and the normalized conductivity of the layers is chosen to be 1, 0.0125 and 1244

starting from the inner domain, which are the conductivity values used in the standard symmetric formulation in [34].245

As a complement to these results, and to validate the new formulation on a real case scenario, the new formulation246

has been tested also on a realistic head model obtained from MRI data , which is presented in Fig. 4b.247
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(a) Three spheres model (b) MRI-obtained model

Figure 4. Head models used for testing the Calderon-Symmetric formulation

5.1. Assessments on accuracy and condition number248

The first test conducted aimed at verifying that applying the proposed preconditioner to the symmetric formulation249

does not modify its accuracy. The assessment parameter is the relative error computed as RE =
||Vnum−Vre f ||

||Vre f ||
where Vnum250

refers to the numerical solution. In Fig. 5a and Fig. 5b it is shown that the Calderon preconditioned symmetric251

formulation and the non preconditioned symmetric formulation provide exactly the same accuracy for different mesh252

refinement levels and different conductivity ratios respectively. This means that the proposed preconditioner does253

not alter the accuracy of the initial formulation. These figures also confirms the higher level of accuracy that the254

symmetric formulation can reach with respect to two others existing BEM formulations, namely the adjoint double255

layer formulation and the double layer formulation.256
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Figure 5. Accuracy of different boundary integral formulations of the EEG forward problem
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In the second test we compared the condition numbers of the preconditioned and the non preconditioned symmetric257

formulation system matrices . The variation of the condition number with respect to the mesh refinement is shown258

in Fig. 6a. We see that the condition number of the symmetric formulation grows rapidly with the mesh refinement259

parameter 1/h while the condition number of the proposed formulation stays constant as expected by the theory.260

In Fig. 6b is presented the condition number when the conductivity ratio increases. Here, we can see that the new261

formulation has a condition number independent of the conductivity contrast.262
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Figure 6. Condition number of the Symmetric Formulation and Calderon-Symmetric formulation.

The third test aimed at showing the efficiency in terms of number of iterations of the proposed preconditioner.263

For different spectral indices 1/h, we present in Fig. 7a the number of iterations needed for a Conjugate Gradient264

Square (CGS) solver to reach a relative residual error of 10−6. In this figure, it is clear that only with the proposed265

Calderon preconditioner this number of iterations stays constant with the mesh refinement. The number of iterations266

for increasing conductivity ratio is shown in Fig. 7b. In this case, all the preconditioners lead to a constant number of267

iterations. Still, the best performance is given by the Calderon preconditioner.268
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Figure 7. Number of iterations for an accuracy of 1e-6 for different preconditioners.
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5.2. Assessments on time269

Since for small numbers of unknowns direct solvers can be used to solve the obtained system of equations, a270

preconditioner is only useful when the number of unknowns becomes too high for direct inversion, that is when it is271

necessary to use iterative solvers. Indeed, if N denotes the number of unknowns, then the complexity of a direct solver272

is O(N3) while the complexity of an iterative solver is O(kN2), where k is the number of iterations needed to reach273

a desired accuracy. However, for high number of unknowns, given that BEM matrices are dense, the time needed274

to compute the system matrix is also increasing. To deal with this issue and to show the benefits of the proposed275

Calderon preconditioner in a high number of unknowns context we coupled it with an Adaptive Cross Approximation276

(ACA) algorithm [70], that provides a compressed version of the system matrix.277

The time necessary to compute the solution for different numbers of unknown is shown Fig.8. In this test, we278

compare the performance of direct and iterative solutions with or without the proposed Calderon preconditioner. It is279

clear that direct inversion (DI) has, as expected, a time complexity that increases rapidly with N. This prevents the use280

of this solver for very detailed models. The iterative solver used is the CGS algorithm. We see that without using any281

preconditioner the time necessary to obtain the solution with this iterative solver is also increasing with the number282

of unknowns even if this choice of solver is faster than DI. This is due to the fact the number of iterations increases283

with the mesh refinement parameter (due to the ill-conditioning of the matrices). However, employing the proposed284

Calderon preconditioner solves this issue.285

The time for computing the dense and compressed Calderon-Symmetric operator is presented in Fig. 9. It can be seen286

that the use of the ACA yields in a linear time complexity287
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5.3. Assessments on a MRI-obtained head model289

Finally, we seek to assess the performance of the proposed preconditioner in a realistic scenario that consists in290

computing a leadfield matrix using a head model obtained from MRI data. This matrix that provides the propagation291

model between known brain electric current sources and electrodes situated at the surface of the head of a patient is292

a key element in distributed inverse solution. For this purpose, we constructed a three layer mesh using [35]. These293

layers model the brain, the skull, and the scalp. They contain 11850, 11616 and 22948 triangular cells respectively.294

The potential generated on the scalp by a single dipole situated in the brain is presented Fig. 10a. This figure also295

shows the position of the 21 electrodes for which we computed the leadfield matrix. The error when the Calderon-296

Symmetric formulation is solved with the ACA compared with the original Symmetric formulation solved with direct297

inversion is displayed Fig. 10b. It can be seen that the error is never greater than 0.05%. To fill-in the leadfield matrix,298

we placed 1500 unitary dipole source in the brain layer, each having an orientation orthogonal to the brain surface.299

Using reciprocity [71], the forward model is then solved at each electrode position. We compared in Table 2, for four300

different cases, the time needed to compute the operator, the time needed to solve the forward system once, and the301

time needed to compute the full leadfield matrix. Hence, the total time needed to get the leadfield matrix is given302

by the sum of the computation for obtaining the operator and the leadfield matrix. It can be seen that even if the303

time necessary to compute the compressed Calderon-Symmetric operator is greater than the compressed Symmetric304

operator, the fast convergence of the new method allows to compute the complete leadfield matrix in 2.56 hours, that is305

almost 10 times faster than without the proposed preconditioner. This compensates largely the computation overload306

in computing the preconditioning operator.307
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(a) Computed potential with a realistic mesh (b) Error of the cCSO compared with DSO

Figure 10. MRI-obtained head model

Method Memory (GB) Operator Time (s) Solution Time (s) Lead Field Time (h)

DI Dense Symmetric 16.234 10845.67 54609.99 18.19

CGS Dense Symmetric 16.234 10845.67 7294.61 45.56

CGS Compressed Symmetric 1.254 1436.63 2322.89 13.95

CGS Compressed Calderon-Symmetric 2.542 7888.86 62.40 2.56

Table 2. Memory and computation time information for computing a lead field matrix using the reciprocity method

6. Conclusion308

In this work, leveraging on Calderon identities, we have proposed a Calderon preconditioned symmetric formu-309

lation for the EEG forward problem. When compared to the standard symmetric equation, the proposed formulation310

has the advantage of showing constant condition numbers both as a function of the mesh refinement and of the con-311

ductivity contrast. Employing this preconditioner does not degrade the accuracy of the symmetric formulation. This312

means that, for a given relative accuracy of the solution, the proposed formulation converges substantially faster than313

the standard one. Moreover, the integration of the proposed approach into existing symmetric formulation implemen-314

tations is achieved only at the cost of computing, on a barycentric refined mesh, the preconditioning operators with315

already existing tools. Numerical results have substantiated the theoretical claims and have shown the practical impact316

of the newly proposed scheme.317

318
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