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Abstract: In the last ten years, different concepts of electric vertical take-off and landing aircrafts
(eVTOLs) have been tested. This article addresses the problem of the choice of the best configuration.
VTOLs built since the fifties are presented and their advantages, disadvantages, and problems are
discussed. Three representative eVTOLs, one for each main configuration, are compared on five main
parameters and three reference missions. The parameters are disk loading, total hover time, cruise
speed, practical range, and flight time. The performance of the eVTOLs on the urban, extra-urban,
and long-range mission is evaluated computing the time and energy required. The results show that
the best configuration depends on the mission. The multirotor is more efficient in hover. The vectored
thrust jet is more efficient in cruise and has a higher range. The lift + cruise is a compromise.

Keywords: electric VTOL configurations; VTOL design; aircraft design

1. Introduction

Electric vertical take-off and landing aircrafts (eVTOLs) are being built and tested, and their
configurations vary from hover bikes to electric ducted fans. In 2010, Moore [1] presented the NASA
Puffin electric tailsitter VTOL concept and highlighted the potential of electric propulsion to enable
cheap, quiet, and reliable short-range VTOLs. That same year the company ZeeAero, now Kitty
Hawk [2], was founded by Kroo with the aim of building an eVTOL flying car. From that moment
on, many researchers, companies, and startups started to work on eVTOLs. Now, most of the major
aircraft companies are directly developing their own electric VTOL or have subsidiaries doing it. More
than 130 electric VTOL concepts have been proposed [3] and venture capitalists have invested more
than 1 billion dollars into promising eVTOL startups [4]. Moore and his colleagues have worked on
the idea of on-demand air mobility [5,6], hybrid eVTOLs [7], the advantages of electric propulsion
compared to internal combustion and gas turbines [8], and the distributed electric propulsion of the
X-57 Sceptor [9]. McDonald has worked on electric propulsion modeling for conceptual design [10]
and developed the OpenVSP design tool.

Most of the research has been conducted by private companies. Uber has hired both Moore and
McDonald and is trying to build, with its program Uber Elevate, the infrastructure for eVTOLs [11].
Kitty Hawk, Lilium, Joby Aviation, and E-Hang are four of the startups developing electric VTOLs.
Kitty Hawk has developed and is now testing two vehicles: Cora, the lift + cruise air taxi and the Flyer,
a hoverbike [12]. Lilium is a German startup that is building an electric ducted fan eVTOL. They have
flown many prototypes including a two-seater jet and are now developing a five-seater air taxi [13].
Joby Aviation has performed tests on electric propulsion and is building an eVTOL prototype [14].
E-Hang is a Chinese company manufacturing quadrotor UAVs that has built and tested, with humans
on board, the E-Hang 184 passenger drone [15].

This article tries to understand which is the best eVTOL design, presenting and discussing all
the different configurations, from the first developed in the fifties and sixties to the present eVTOL
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configurations. Then, the performances of the three main eVTOL configurations are evaluated and
compared using data from existing prototypes.

2. Materials and Methods

During the fifties and sixties, after the development of the helicopter, a great research effort
was put into the development of a machine able to fly as fast as an airplane and able to take off
and land vertically like a helicopter, the VTOL aircraft. Many different configurations were tested,
and the only VTOL put into operation was the Harrier. Years later it was followed by the Yak-38,
the V-22, and the F-35. The power plants available to the designers were piston engines and jets.
The efficiency of these engines grows with their size, this means that having multiple power plants on
the aircraft means a reduction in efficiency and power at a fixed total mass. Instead, electric motors
have negligible variation in efficiency at different dimensions. At that time, choosing between using
the same power plant for hover and cruise, or having two different power plants was the main design
decision. Different configurations were tested by different companies during the span of two decades.
The main configurations are listed following the criteria used by the American Helicopter Society [16]
and the advantages and disadvantages of each configuration [17] are discussed.

The VTOLs that use the same propulsion system for hover and forward flight can rotate the
direction of the thrust in different ways. The tail-sitters rotate the entire aircraft. They are conceptually
simple but difficult and risky to control [17]. The Harrier configuration is called vectored thrust
because it can orientate mechanically the direction of the thrust. In the beginning, vectored thrust
VTOLs, like the first Harrier prototypes and the Bell X-14, suffered from suck-down, engine gyroscopic
effects, and hot gas re-ingestion [17,18]. When these problems were solved, the Harrier became the
first operational VTOL attack aircraft [19]. The deflected-slipstreams use flaps to deflect the slipstream
of the propellers. The Ryan VZ3 achieved excellent STOL performances but no VTOL capabilities [17].
The tilt-jets rotate the entire nacelle of the jet. The tiltrotors like the V-22 Osprey and the Agusta
Westland AW609 tilt the entire rotor. They have hover performances comparable to the ones of a
helicopter with the advantage of not having the retreating blade problem in forward flight. They are
complex machines. The tilt-wings rotate the entire wing, the engines and the propellers as a single
piece. Rotating the wing in hover avoids the impinging of the propeller slipstream on it, a problem
that reduces the thrust in the hover of tiltrotors. The lift produced by the wing is augmented, at high
angles of attack, by the blowing effect of the propellers. Tilt-wings of the fifties and sixties suffered
from control problems due to low pitch control power, were mechanically complex, and the loss of
an engine could cause catastrophic roll upset [17]. NASA’s Greased Lightning new tilt-wing hybrid
diesel-electric VTOL demonstrated that these problems are solvable with electric motors and electronic
control [20]. Tilt-ducts use ducted fans which have the advantage of reducing blade tip loss and
producing higher thrust for the rotor diameter. The Doak VZ-4 and the Bell X-22 proved the feasibility
of the concept but struggled with control problems [17].

Other VTOLs like the Short SC.1, the Dassault Balzac V, and the Mirage III V had an additional
power plant for hover. The Mirage III V is the fastest VTOL on record, reaching Mach 2.04 in September
1966. The VTOL capability was achieved adding vertical jets in the fuselage, which reduced the useful
load fraction [17,21].

The lift + lift/cruise VTOLs use one set of engines for lift only and another set of engines for both
lift and cruise. The Soviet Yak 38 is one of these VTOLs, it vectored the thrust of the main engine
and used two additional engines behind the cockpit for hover. The tip-jets are a kind of compound
autogyros that use a rotor powered by jets at the tip of the blade, propellers for horizontal thrust and a
wing to generate lift. The ejector VTOLs eject high-pressure engine efflux into a channel called the
augmentor causing additional ambient air to accelerate through the channel and mix with the engine
exhaust. The Lockheed XV-4A Hummingbird applied this concept but tests on the prototypes showed
results inferior to laboratory tests, incomplete mixing, and ram drag [17]. The fan VTOLs have one
or more additional fans buried in the wings or fuselage powered by the main engine. The F-35 has
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a fan behind the cockpit which provides, with the nozzle of the main engine swiveled, the thrust
required for hover. The Rayan XV-5A had two fans-in-wing powered by the exhaust gases of its two
turbojets. The two prototypes crashed during transition because of the slow control response and
narrow transition corridor [17]. The last VTOL category is the compound helicopter which uses a rotor
to hover and has a propeller for forward flight.

In recent years many companies and startups have started developing and testing different
electric VTOLs. The website Electric VTOL News [22], published by the Vertical Flight Society,
classifies eVTOLs in the following categories:

- Vectored Thrust
- Lift + Cruise
- Wingless
- Hoverbikes
- eHelos

The vectored thrust eVTOLs have a wing for an efficient cruise and use the same propulsion
system for both hover and cruise. The Lilium Jet, the Aurora LightningStrike, and the Joby S2 and
S4 are in this category (Figure 1). The Lilium Jet is a tilt duct able to increase the lift coefficient of the
wing, during the transition, sucking air from the upper surface of the wing and pushing it down with
the electric jets. The Aurora LightningStrike is a tilt-wing with fans-in-wing. The Joby S2 is a tilt prop.
The main difference between eVTOLs in this category is whether they have fans or propellers.
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Aurora Lightning Strike [23], Joby S2 [24].

The lift + cruise eVTOLs have a wing for an efficient cruise, like vectored thrust eVTOLs, but they
use two different propulsion systems for hover and cruise flight. The ZeeAero Z-P2, the Kitty Hawk
Cora, and the Aurora Flight Sciences eVTOL are in this category (Figure 2).
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Figure 2. Lift + cruise eVTOLs: ZeeAero Z-P2 [25], Aurora Flight Sciences eVTOL [26], Kitty Hawk
Cora [27]:

The wingless eVTOLs are multirotors. They have large disk actuator surface which makes them
efficient in hover, but they do not have a wing for an efficient cruise. These vehicles are suited for
short-range operations in cities where they can fly over traffic jams. Two VTOLs in this class are
already in the certification phase: The E-Hang 184 and the Volocopter 2X (Figure 3).
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Figure 3. Wingless eVTOLs: E-Hang 184 [28], Volocopter 2X [29].

Hoverbikes are multirotors that can be flown like a motorbike. The pilot sits on a saddle or is
standing. An example is the prototype built and flown by Kitty Hawk (Figure 4).
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Figure 5. Aquinea Volta [31].

The E-Hang 184, the Kitty Hawk Cora, and the Lilium Jet have been chosen as the reference for
the comparison of the three main eVTOL categories. Their performances have been computed using
analytical methods [32] such as the disk actuator theory [33] to evaluate hover performances, Breguet’s
equation for electric flight [34] to compute the theoretical range, empirical methods to evaluate the
drag of the eVTOL from the Hoerner’s book [35] and standard drag, power, efficiency considerations.

The comparison has been performed evaluating five parameters and computing the energy and
time required to perform three reference missions. The five parameters are disk loading, total hover
time, cruise speed, practical range, and flight time. The reference missions are:

- 7 km urban mission
- 30 km extra-urban mission
- 100 km long-distance mission

3. Results

3.1. Wingless Multirotor Configuration

To present the performances of the wingless multirotor configuration, the e-Hang 184 data [15]
has been used and its performance has been evaluated. Figure 6 shows the E-Hang 184.
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are in millimeters.

Data of the e-Hang 184 configuration, found in their website [15], is presented in Table 1.

Table 1. E-Hang 184 specifications from E-Hang website [15].

Maximum total power 152 kW
Number of motors 8

Total battery energy 14.4 kWh
Propeller diameter 1.6 m

Net weight 260 kg
Total flight time 25 min

Rated payload weight 100 kg
Average flight speed 100 km/h
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The estimated values of geometry, battery, mass balance, and hover performances are presented
in Table 2.

Table 2. E-Hang 184 data computed with Figure 6 and Table 1 data.

Geometry

Propeller area 2.01 m2 Computed
Total disk actuator area 8.04 m2 Computed

Battery

Energy density 157 Wh/kg Assumed [36]
Specific power 735 W/kg Assumed [36]
Max power 67 kW Computed

Mass balance

Battery mass 92 kg Computed
Empty weight 168 kg Computed
Payload weight 100 kg E-Hang data

Hover performances

Average power consumption 34.6 kW Computed
Power required to hover 47 kW Computed
Energy required for 1 min of hover 0.79 kWh Computed
Total hover time 20.5 min Computed
Disk loading 440 N/m2 Computed

The battery mass has been computed as total energy divided by energy specific density. The energy
specific density and specific power have been assumed equal to the values of the Tesla Model S battery
pack [36]. This assumption has been made because these batteries are used in a consumer product in a
high-power application. They have demonstrated the ability to work after years and hundreds of life
cycles, in harsh environments like Norway. Li-ion batteries for power applications have specific energy
ranging from 100 to 250 Wh/kg [34,37] and specific power from 700 to 1300 W/kg [37]. The assumed
values are at pack level, they consider the additional weight of casing, connections, and thermal
management system. The energy density and specific power of the batteries used for eVTOLs might
be better than the assumed values. This conservative assumption means that the batteries will be
able to provide enough power for takeoff and landing even after years of utilization. As batteries age,
the energy they can store and the maximum power they can provide decrease [37,38]. For electric cars,
this means that the total range decreases. For eVTOLs, designed to be able to take off with maximum
battery power at the beginning of the life of the battery, this might mean not having enough power to
take off after a few years of service.

The average power consumption has been computed dividing the total energy by the total time
of flight. The power required to hover, P, has been computed with the disk actuator theory modified
for coaxial rotors [39]:

P = kint
T

3
2

2
√

ρA
(1)

where T is the thrust or the weight of the vehicle, ρ is the air density at sea level (1.225 kg/m3), A is the
disk actuator area of the vertical thrust system, in this case, the area of the four coaxial rotors, and kint
is the interference factor. kint varies from 1 for zero interference to

√
2 for maximum interference

corresponding to the case of two rotors corotating in the same plane. The value selected is 1.26 for
rotors operated at balanced torque with the lower rotor operating in the fully developed wake of the
upper rotor [39].

The power required to hover, 42.7 kW, is different from the average power consumption specified
by the producer, 34.6 kW (Table 1), because the power required in cruise is less than in hover due to
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the lift produced by the vehicle and to the reduction in induced drag [39–41]. The total hover time
found is 20.5 min.

The electric motors have been sized to ensure the safety of the vehicle in case of failure.
Each coaxial rotor couple is a failure redundant system. The two rotors are driven by two different
motors. When one motor fails, the propeller connected to it stops and the propeller connected to the
undamaged motor of the couple provides the entire thrust normally provided by the coaxial rotor
couple. To evaluate the power required for this contingency scenario, the standard disk actuator theory
has been used [32,33]:

P =

√
T3

2ρA
(2)

where T is the thrust and A is the disk actuator area of the single operative propeller. The thrust
considered is a quarter of the weight of the vehicle multiplied by a 1.3 margin factor for maneuver.
The power found is 17.5 kW per motor, while the maximum power per motor specified by E-Hang’s
website [15] is 19 kW. This value has been found by dividing the total power, 152 kW in Table 1, by 8,
the total number of motors.

3.2. Lift + Cruise Configuration

To present the performances of the lift + cruise configuration, the Kitty Hawk Cora’s data has
been used (Figure 7 and Table 3).
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Figure 7. Kitty Hawk Cora geometry [27].

Table 3. Kitty Hawk Cora specifications from Kitty Hawk’s website [2].

Wingspan 11 m Website data [2]
Wing chord 1 m Estimated from Figure 7

Wing surface 10 m2 Website data [2]
Number of lift fans 12 From Figure 7

Lift propeller diameter (external) 1.3 m Estimated from Figure 7
Lift propeller diameter (hub) 0.5 m Estimated from Figure 7

Cruise propeller diameter 2 m Estimated from Figure 7
Range 100 km Website data [2]

Flight time (with 10 min reserve) 19 min Website data [2]
Speed 180 km/h Website data [2]

Passenger cargo capacity 181 kg Website data [27]
Rear landing gear-tail angle 15.9◦ Estimated from Figure 7

Fuselage-wing angle 12.4◦ Estimated from Figure 7
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Table 3 shows the Kitty Hawk Cora specifications. With this data, the propeller area has been
computed and is presented in Table 4.

Table 4. Kitty Hawk Cora propeller area.

Propeller area (external, single propeller) 1.3 m2 Computed
Propeller area (internal, single propeller) 0.2 m2 Computed
Circular crown area (single propeller) 1.1 m2 Computed
Total disk actuator area 13.6 m2 Computed

The mass and battery data of the Kitty Hawk eVTOL are listed in Table 5. The total mass of the
vehicle is 1224 kg as specified in [42]. The battery mass has been estimated computing the minimum
power required to hover P. This is given by the disk actuator Equation (2), where the thrust, T, is the
weight of the vehicle, ρ is the air density at sea level (1.225 kg/m3), and A is the disk actuator area of
the vertical thrust system.

Table 5. Kitty Hawk Cora mass and battery data.

Total mass 1224 kg Data [27]
Power required to hover 228 kW Computed
Battery energy specific density 157 Wh/kg Assumed [36]
Battery power density 735 W/kg Assumed [36]
Minimum battery mass 310 kg Computed
Battery mass 400 kg Assumed
Total battery energy 63 kWh Computed
Battery mass to total mass ratio 33% Computed

The hover performances are listed in Table 6. The gravity acceleration g = 9.8 m/s2 has been
used. The energy required to hover for one minute is computed multiplying the power required to
hover by 60 s and the total hover time is computed dividing the total energy available by the power
required to hover.

Table 6. Kitty Hawk Cora hover performances.

Energy for 1 min of hover 3.8 kWh Computed
Total hover time 16.5 min Computed
Disk loading 880 N/m2 Computed

Comparing it to the E-Hang 184, the Kitty Hawk Cora requires over four times the energy for
one minute of hover, has double the disk loading, and has a lower total hover time. The aerodynamic
properties of the Cora vehicle have been estimated using the lifting line theory, adding the additional
resistance of the pylons and propellers for the vertical takeoff. For the lifting line procedure, the airfoil’s
lift slope coefficient and zero lift angle have been assumed 5.34 rad−1 and −3.26◦. These values
have been found selecting the airfoil NLF(1)-0115 [43,44] and using the software Xfoil [45] for the
computations. The aerodynamic drag of the wing and the horizontal tail are computed integrating
the airfoil sections contribution. The drag of the other components is estimated using the parameters
listed in Table 7.
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Table 7. Kitty Hawk Cora geometry data used to compute the drag.

Fuselage

Length 4.8 m Estimated from Figure 7
Diameter 1.5 m Estimated from Figure 7
Wet surface 13 m2 Computed

Horizontal tail

Surface 2 m2 Estimated from Figure 7
Thickness to chord ratio 0.12 Assumed
Chord 0.75 m Estimated from Figure 7

Vertical tail

Sweep 10◦ Estimated from Figure 7
Thickness to chord ratio 0.12 Assumed
Height 1 m Estimated from Figure 7
Chord 0.75 m Estimated from Figure 7
Wet surface 1.5 m2 Computed
Number of vertical tails 2 From Figure 7

Pylons

Length 3.5 m Estimated from Figure 7
Width 0.16 m Estimated from Figure 7
Height 0.36 m Estimated from Figure 7
Wet surface 3.76 m2 Computed
Number of pylons 6 From Figure 7

Propellers

Length 1.3 m Estimated from Figure 7
Diameter 0.3 m Estimated from Figure 7
Wet surface 0.8 m2 Computed
Number 12 From Figure 7

Landing gear

Tire width 0.15 m Estimated from Figure 7
Tire height 0.3 m Estimated from Figure 7
Surface 0.045 m2 Computed

The fuselage drag is computed using [46]:

CD0 = ∑ C f FQ
[
Swet/Sre f

]
(3)

where C f is given by:

C f =
0.455

(log Rec)
2.58 (1 + 0.144M2)

0.65 (4)

for turbulent flow, and by:

C f =
1.328√

Rec
(5)

for laminar flow, F is the form factor given by:

F = 1 + 2.2
(

d
l

)1.5
− 0.9

(
d
l

)3
(6)

and Q is the interference factor set at 1. The flow is assumed to be 20% laminar and 80% turbulent.
The same procedure has been followed for the vertical tail, computing the form factor, F, by

F = (F∗ − 1)cos2∆0.5c + 1 (7)



Aerospace 2019, 6, 26 11 of 19

where F∗ = 1 + 3.52(t/c) and ∆0.5c is the sweep angle at 50% of the chord. The interference factor, Q,
is set at 1.2 for the vertical tail.

The drag of the pylons supporting the vertical lift propellers and the drag of the vertical lift
propellers has been computed as the base drag of a 3D body [35] (pp. 3–19). The drag coefficient is
computed as:

CDB =
0.029√

C f

(8)

then it is scaled to the reference surface, corresponding to the wing surface:

CDB0 =
S f ront

Sre f
CDB (9)

Equations (8) and (9) have been applied for both the pylons supporting the vertical lift propellers
and for the vertical lift propellers using their different geometries and different friction coefficients.
The drag of the landing gear is computed supposing a CD0 of 0.25 as suggested in [35] and scaling it
from the wheel surface to the reference surface.

The interference drag between the wing and fuselage has been added using the following
equation [35]:

CD =

(
0.8
(

t
c

)3
− 0.0003

)
c2

Sre f
(10)

The drag polar of the Cora vehicle computed is:

CD = 0.0438 + 0.0294·CL
2

The speed of maximum L/D and the maximum L/D are given by [47]:

Vmax L
D
=

√√√√ 2
ρ∞

√
k

CD0

W
S

(11)

L
D max

=

√
CD0

k
(12)

where CD0 and k are the parameters of the drag polar. This gives a speed of maximum L/D of 145 km/h
and a maximum L/D of 13.9. The theoretical range, given by [32]:

R = E∗·ηtotal ·
1
g
· L
D
·
m battery

m
(13)

is 200 km. Limiting the depth of discharge to 70%, improving the cruise speed to save time to 180 km/h,
and considering takeoff and landing the range decreases to 107 km. The flight time is 36 min. These
results are in accordance with the performances specified by the producer of 180 km/h cruise speed
and 19 min flight time plus 10 min of reserves (Table 3). The depth of discharge of the battery has been
limited to 70% because Li-ion batteries lifetime depends on the depth of discharge at which they are
subjected [37]. A 70% depth of discharge gives a good amount of energy preserving the lifetime of
the battery. The energy required for takeoff, landing, and transition is 6.3 kWh, which corresponds to
1 min and 40 s of hover. The power required for the cruise is given by:

Preq =
D·v

η
(14)
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where D is the aerodynamic drag, D = 1
2 ρ∞ S v2CD, v is the flight speed and η is the total efficiency of

the power electronics and propeller which has been assumed 75%.
The angle of attack in cruise is 8 degrees. This seems reasonable because, as seen in the drawings,

the angle between the wing and the fuselage is 12 degrees. This feature allows a comfortable cruise at
high angles of attack that reduces the required wing surface also reducing the aerodynamic drag of the
wing. Flight at high angles of attack with low induced drag is possible because Cora has a very high
aspect ratio wing. The angle between the wing and the fuselage is also beneficial because turning on
the VTOL propellers in flight produces a thrust which has a component opposed to the flight direction,
allowing a smooth deceleration, and transition between cruise and vertical landing.

3.3. Vectored Thrust

To evaluate the vectored thrust eVTOL category, the Lilium Jet has been selected. The geometric
dimensions have been estimated from the image of the first flight test of the prototype (Figure 8
and Table 8).
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Table 8. Lilium Jet geometry

Fuselage width 1.4 m Estimated from Figure 8
Fuselage length 3.6 m Estimated from Figure 8
Wingspan 6 m Estimated from Figure 8
Root chord 0.78 m Estimated from Figure 8
Tip chord 0.42 m Estimated from Figure 8
Man lying on the tarmac 1.52 m Estimated from Figure 8
Suitcase 0.46 m Estimated from Figure 8
Fans diameter 0.15 m Estimated from Figure 8
Number of fans 36 From Figure 8

The man lying on the tarmac and the suitcase have been measured to crosscheck the validity of
the estimated measures.
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The total mass has been assumed 490 kg because this is less than the maximum takeoff weight for
the ultralight aircraft category in Europe (450 + 45 kg) [48,49]. The battery mass has been estimated at
240 kg, with a battery mass to total mass ratio of 49%. These results are presented in Table 9.

Table 9. Lilium Jet mass and battery data.

Total mass 490 kg Assumed
Power required to hover 187 kW Computed
Battery energy specific density 157 Wh/kg Assumed [36]
Battery power density 735 W/kg Assumed [36]
Battery mass 240 kg Computed
Total battery energy 38 kWh Computed
Battery mass to total mass ratio 49% Computed

The hover performances have been computed using the disk actuator theory modified for ducted
fans [50]. The power required to hover is:

P =

√√√√(
T
Ti

)3

2ρA
(15)

where Ti = 1.26 is the thrust increase for ducted fans, T is the thrust required or the weight of
the vehicle and A is the disk actuator area of the vertical thrust system. The sea level air density
ρ = 1.225 kg/m3 and gravity acceleration g = 9.8 m/s2 have been used. The results are listed in
Table 10. The power required found is 187 kW and the maximum power available with 240 kg of
batteries and a specific power of 735 W/kg is 176 kW. This means that, with the assumptions made,
the Tesla batteries considered are not enough to power the Lilium jet. It requires batteries with a higher
specific power.

Table 10. Lilium Jet hover performances.

Energy for 1 min of hover 3.12 kWh
Total hover time 12.1 min
Disk loading 7500 N/m2

Prandtl’s lifting line theory was used to compute the wing’s lift and drag. The drag produced by
the fuselage and by the forward fans has then been added. The resulting drag polar is:

CD = 0.0163 + 0.058·CL
2

Applying Equations (11) to (14), the speed of maximum L/D is 230 km/h and the maximum L/D
is 16.3. The theoretical range, computed with Equation (13) [32], is 380 km. Limiting the depth of
discharge to 70%, improving the cruise speed to save time to 250 km/h, and considering takeoff and
landing the range decreases to 203 km. The flight time is 48 min.

Lilium is now developing a five-seater version of its eVTOL (Figure 9).
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Performing the same procedure for this vehicle, the estimated values are 12 m wingspan, 0.28 m
fans diameter, 1700 kg total mass, and 900 kg battery mass. The disk loading of this vehicle is the same
as the two-seater jet, the practical range with 70% depth of discharge and a cruise speed of 290 km/h
is 245 km, and the total flight time is 55 min.

3.4. Reference Mission Performance

The time and energy required by the three eVTOLs to perform the three reference missions have
been computed. Each mission consists of:

- 15 s of takeoff at hover power;
- acceleration at 2 m/s2 from zero forward speed to cruise speed at hover power;
- cruise flight;
- deceleration at −2 m/s2 from cruise speed to zero forward speed at hover power;
- 15 s of landing at hover power.

The results are presented in Tables 11–15.

Table 11. Data used in the computations for the reference mission performance.

E-Hang 184 Kitty Hawk Cora Lilium

Cruise power 34.6 kW 63 kW 28 kW
Cruise speed 100 km/h 180 km/h 252 km/h
Takeoff and landing power 42.1 kW 228 kW 187 kW
Total battery energy 14.4 kWh 63 kWh 38 kWh

Table 12. Takeoff, landing, acceleration, and deceleration.

E-Hang 184 Cora Lilium

Takeoff and landing time 30 s 30 s 30 s
Takeoff and landing energy 0.35 kWh 1.9 kWh 1.6 kWh
Acceleration/deceleration 2 m/s2 2 m/s2 2 m/s2

Acceleration time 14 s 25 s 35 s
Acceleration energy 0.16 kWh 1.58 kWh 1.82 kWh
Acceleration/deceleration distance 193 m 625 m 1225 m
Deceleration time 14 s 25 s 35 s
Deceleration energy 0.16 kWh 1.58 kWh 1.82 kWh
Total time for takeoff, landing, acceleration, and deceleration 1 min 1.3 min 1.7 min
Total energy for takeoff, landing, acceleration, and deceleration 0.7 kWh 5.1 kWh 5.2 kWh
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Table 13. Mission 1: 7 km urban mission.

E-Hang 184 Kitty Hawk Cora Lilium

Cruise distance 6.6 km 5.8 km 4.6 km
Cruise time 3.9 min 2.0 min 1.1 min
Cruise energy 2.3 kWh 2.0 kWh 0.5 kWh

Total time 4.9 min 3.3 min 2.8 min
Total energy 3.0 kWh 7.1 kWh 5.7 kWh

Table 14. Mission 2: 30 km extra-urban mission.

E-Hang 184 Kitty Hawk Cora Lilium

Cruise distance 29.6 km 28.8 km 27.6 km
Cruise time 17.7 min 9.6 min 6.6 min
Cruise energy 10.2 kWh 10.1 kWh 3.1 kWh

Total time 18.7 min 10.9 min 8.2 min
Total energy 10.9 kWh 15.2 kWh 8.3 kWh

Table 15. Mission 3: 100 km long-range mission.

E-Hang 184 Kitty Hawk Cora Lilium

Cruise distance - 98.8 km 97.6 km
Cruise time - 33.0 min 23.2 min
Cruise energy - 34.6 kWh 10.9 kWh

Total time - 34.3 min 24.9 min
Total energy - 39.7 kWh 16.1 kWh

4. Discussion

The three configurations examined have been compared. Their hover and cruise flight parameters
are presented in Table 16 and their performances for the three reference missions are presented in
Table 17, Figures 10 and 11.

Table 16. Performances comparison.

E-Hang 184 Kitty Hawk Cora Lilium

Disk loading (N/m2) 440 880 7500
Total hover time (min) 20.5 16.5 12.1
Cruise speed (km/h) 100 180 252
Practical range (km) 42 107 203
Flight time (min) 25 36 48

Table 17. Summary of the energy and time required for the three reference missions.

E-Hang 184 Kitty Hawk Cora Lilium

7 km urban mission time 4.9 min 3.3 min 2.8 min
7 km urban mission energy 3.0 kWh 7.1 kWh 5.7 kWh

30 km extra-urban mission time 18.7 min 10.9 min 8.2 min
30 km extra-urban mission energy 10.9 kWh 15.2 kWh 8.3 kWh

100 km long-range mission time - 34.3 min 24.9 min
100 km long-range mission energy - 39.7 kWh 16.1 kWh



Aerospace 2019, 6, 26 16 of 19

Aerospace 2018, 5, x FOR PEER REVIEW  16 of 19 

 

Flight time (min) 25 36 48 

Table 17. Summary of the energy and time required for the three reference missions. 

 E-Hang 184 Kitty Hawk Cora Lilium 

7 km urban mission time 4.9 min 3.3 min 2.8 min 

7 km urban mission energy 3.0 kWh 7.1 kWh 5.7 kWh 

30 km extra-urban mission time 18.7 min 10.9 min 8.2 min 

30 km extra-urban mission energy 10.9 kWh 15.2 kWh 8.3 kWh 

100 km long-range mission time - 34.3 min 24.9 min 

100 km long-range mission energy - 39.7 kWh 16.1 kWh 

 
Figure 10. Energy required for the three reference missions. 

 
Figure 11: Time required for the three reference missions. 

Figure 10. Energy required for the three reference missions.

Aerospace 2018, 5, x FOR PEER REVIEW  16 of 19 

 

Flight time (min) 25 36 48 

Table 17. Summary of the energy and time required for the three reference missions. 

 E-Hang 184 Kitty Hawk Cora Lilium 

7 km urban mission time 4.9 min 3.3 min 2.8 min 

7 km urban mission energy 3.0 kWh 7.1 kWh 5.7 kWh 

30 km extra-urban mission time 18.7 min 10.9 min 8.2 min 

30 km extra-urban mission energy 10.9 kWh 15.2 kWh 8.3 kWh 

100 km long-range mission time - 34.3 min 24.9 min 

100 km long-range mission energy - 39.7 kWh 16.1 kWh 

 
Figure 10. Energy required for the three reference missions. 

 
Figure 11: Time required for the three reference missions. Figure 11. Time required for the three reference missions.

Table 16 shows that the multirotor configuration represented by the E-Hang 184 is the best suited
to hover flight while Lilium is the best suited to cruise flight. The lift + cruise Cora is a compromise.
It has less range and flight speed than Lilium but good hover performances comparable to the wingless
multirotor configuration.

The 7 km urban mission is completed in 4.9 min by E-Hang, 3.3 min by Cora, and 2.8 min by
Lilium. E-Hang requires 3 kWh, Cora 7.1 kWh, and Lilium 5.7 kWh. The 30 km extra-urban mission is
completed in 18.7 min by E-Hang, 10.9 min by Cora, and 8.2 min by Lilium. E-Hang requires 10.9 kWh,
Cora 15.2 kWh, Lilium 8.3 kWh. The 100 km long-range mission cannot be completed by E-Hang
and is almost Cora’s computed maximum range. It is completed in 34.3 min by Cora and 24.9 min by
Lilium. Cora requires 39.7 kWh and Lilium 16.1.

The urban mission comparison shows that multirotors require less energy for short-range missions.
In the extra-urban mission, the cruise phase is as important as the hover phase, and the energy required
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by the three configurations is comparable. In the long-range mission, cruise efficiency is more important.
E-hang’s range is insufficient to complete it. Cora’s parasitic drag caused by the pylons and vertical
thrust propellers increases the power required in cruise. Its cruise speed is less than Lilium’s and the
energy required is more.

Lilium’s hover is so power demanding that it requires batteries with higher specific power than
the Tesla batteries considered for the computations. This means that the aerodynamic advantages of
this configuration are balanced by higher demands on the batteries and on the power electronics.

More practical reasons might influence which eVTOL configuration will be adopted more rapidly
in the future. The multirotor configuration seems to be closer to the market and less complex than
the lift + cruise and the electric jet. However, the range advantage of the latter two enables missions
impossible to the multirotor configuration.

5. Conclusions

Different configurations of turboshaft powered VTOLs tested in the fifties and sixties have
been discussed in the introduction detailing advantages, disadvantages, and problems of each one.
The recent eVTOL prototypes categories have then been presented under the classification proposed
by the American Helicopter Society. The performances of the three main eVTOL configurations have
been evaluated estimating five main parameters, the energy and the time required to complete three
reference missions. The performances of the E-Hang 184 have been estimated for the multirotor
configuration, the Kitty Hawk Cora was selected for the lift plus cruise configuration and the Lilium
jet represented the electric jet configuration. This analysis showed that the best eVTOL configuration
depends on the mission. Short-range missions are best performed by multirotors because they have
better hover performances. Long-range missions cannot be accomplished by multirotors because their
range is not enough.
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