
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(31st cycle)

Big Data for Traffic Monitoring and
Management

Martino Trevisan
* * * * * *

Supervisors
Prof. Marco Mellia, Supervisor
Dr. Idilio Drago, Co-supervisor

Doctoral Examination Committee:
Prof. Anna Brunstrom, Referee, Karlstad University
Prof. Steve Uhlig, Referee, Queen Mary, University of London
Prof. Ana Paula Couto Da Silva, Universidade Federal de Minas Gerais
Prof. Sanjay Rao, Purdue University
Dr. Marco Fiore, Consiglio Nazionale delle Ricerche

Politecnico di Torino
February 27, 2019

I hereby declare that, the contents and organisation of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

. .
Martino Trevisan

Turin, February 27, 2019

Acknowledgements

The three main chapters of this thesis are named What, Awesome and Pain, respec-
tively. There is no particular reason behind this, as these acronyms where invented at
the time the respective papers were submitted. However, if you read them together, you
come upwith the sentenceWhat awesome pain. After three years as a PhD student, I can
say that this is a good definition for PhD. Hard work, rewarded by great satisfaction. As
such, I really must thank all people around me over the last years. My parents deserve
a great thank, as well as my girlfriend Francesca. I must thank my friends Matteo, An-
drea, Leonardo and Giorgio for these last years of youth, and my flatmates that are still
young. Finally, thank you to my collegues for the great times in the experts’ lab, to my
supervisor Marco and to Idilio and Maurizio.

iii

Abstract

The last two decades witnessed tremendous advances in the Information and Com-
munications Technologies. Beside improvements in computational power and storage
capacity, communication networks carry nowadays an amount of data which was not
envisaged only few years ago. Together with their pervasiveness, network complexity
increased at the same pace, leaving operators and researchers with few instruments to
understand what happens in the networks, and, on the global scale, on the Internet.

Fortunately, recent advances in data science and machine learning come to the res-
cue of network analysts, and allow analyses with a level of complexity and spatial/tem-
poral scope not possible only 10 years ago. In my thesis, I take the perspective of an In-
ternet Service Provider (ISP), and illustrate challenges and possibilities of analyzing the
traffic coming from modern operational networks. I make use of big data and machine
learning algorithms, and apply them to datasets coming from passive measurements of
ISP and University Campus networks. The marriage between data science and network
measurements is complicated by the complexity of machine learning algorithms, and
by the intrinsic multi-dimensionality and variability of this kind of data. As such, my
work proposes and evaluates novel techniques, inspired from popular machine learning
approaches, but carefully tailored to operate with network traffic.

In this thesis, I first provide a thorough characterization of the Internet traffic from
2013 to 2018. I show the most important trends in the composition of traffic and users’
habits across the last 5 years, and describe how the network infrastructure of Internet
big players changed in order to support faster and larger traffic. Then, I show the chal-
lenges in classifying network traffic, with particular attention to encryption and to the
convergence of Internet around few big players. To overcome the limitations of classical
approaches, I propose novel algorithms for traffic classification and management lever-
aging machine learning techniques, and, in particular, big data approaches. Exploiting
temporal correlation among network events, and benefiting from large datasets of op-
erational traffic, my algorithms learn common traffic patterns of web services, and use
them for (i) traffic classification and (ii) fine-grained traffic management. My proposals
are always validated in experimental environments, and, then, deployed in real opera-
tional networks, from which I report the most interesting findings I obtain. I also focus
on the Quality of Experience (QoE) of web users, as their satisfaction represents the
final objective of computer networks. Again, I show that using big data approaches, the
network can achieve visibility on the quality of web browsing of users. In general, the
algorithms I propose help ISPs have a detailed view of traffic that flows in their network,
allowing fine-grained traffic classification and management, and real-time monitoring
of users QoE.

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Measurements and data collection 5

3 Five Years at the Edge: Watching Internet from the ISP Network 9
3.1 Introduction . 9
3.2 Measurement methodology . 11

3.2.1 Measurement architecture . 11
3.2.2 Challenges in long-term measurements 12

3.3 The cost of a user . 12
3.3.1 How much you eat: Consumption per day 13
3.3.2 Eager and Eager: Trends on traffic consumption 14

3.4 The cost of services . 15
3.4.1 Give me that: Service popularity 15
3.4.2 The downfall of Peer-To-Peer - finally 17
3.4.3 The usual suspects: YouTube and Netflix 18
3.4.4 The new elephants in the room: Social messaging applications . 18

3.5 Web trends, and surprises . 19
3.6 Where are my servers? . 22

3.6.1 The birth of the sub-millisecond Internet 22
3.6.2 The Internet of few giants . 23

3.7 Related Work . 25
3.8 Conclusion . 27

4 Towards Web Service Classification using Addresses and DNS 29
4.1 Introduction . 29
4.2 Datasets and Methodology . 31

4.2.1 Datasets . 31

ii

4.2.2 Methodology . 32
4.3 Enumerating Names and Addresses of Services 32
4.4 Classification Using IP Addresses . 34
4.5 Classification Using Bags of Domains 35
4.6 Use Cases . 36

4.6.1 A Deeper Look into Popular Services 36
4.6.2 Names and Addresses over Time 38

4.7 Traffic in Ambiguous Names . 39
4.8 Conclusions . 40

5 WHAT: Automatic Accounting of Modern Web Services 43
5.1 Introduction . 43
5.2 Scenario & Problem Statement . 45

5.2.1 Examples . 46
5.3 The WHAT System . 47

5.3.1 Architecture Overview . 47
5.3.2 Input Data . 48
5.3.3 Core Domains Discoverer . 48
5.3.4 BoD Learner . 49
5.3.5 Traffic Classifier . 53

5.4 Datasets . 55
5.4.1 ISP Flow Traces . 55
5.4.2 Synthetic Traces . 56

5.5 WHAT Validation . 59
5.5.1 Core Domain Discovery . 59
5.5.2 Classification Performance . 60
5.5.3 Parameter Tuning . 61
5.5.4 Stability of Learning . 64

5.6 Case Study . 65
5.6.1 Ranking Domains and Services 65
5.6.2 Support Domains Pervasiveness 68

5.7 Related Work . 68
5.8 Conclusions . 69

6 AWESoME: Big Data for Automatic Web Service Management in SDN 71
6.1 Introduction . 71
6.2 Definitions and Architecture . 74

6.2.1 Per service management approach 74
6.2.2 Core and support domains . 75
6.2.3 SDN as enabling technology . 75
6.2.4 AWESoME architecture . 78

6.3 How Service Association Works . 81

iii

6.3.1 Automatic BoD training . 81
6.3.2 Domain-To-Service classification module 82

6.4 Datasets . 84
6.4.1 Ground-truth traces . 84
6.4.2 Operational network traces . 85

6.5 AWESoME Performance . 87
6.5.1 Flow-to-Domain evaluation . 87
6.5.2 Domain-to-Service accuracy . 88
6.5.3 Training set size and location 89
6.5.4 Per service performance . 91
6.5.5 Is AWESoME scalable? . 92
6.5.6 Limitations and future work . 94

6.6 Related work . 95
6.6.1 Web service traffic identification 95
6.6.2 Service-awareness in SDNs . 96

6.7 Conclusions . 97

7 PAIN: A Passive Web Performance Indicator for ISPs 99
7.1 Introduction . 99
7.2 The complexity of QoE estimation . 101

7.2.1 Objective QoE-related metrics 101
7.2.2 Challenges for estimating QoE from network traffic 101

7.3 Related Work . 103
7.4 The PAIN system . 104

7.4.1 Input data . 105
7.4.2 Model learning . 105
7.4.3 PAIN index computation . 107
7.4.4 Design decisions, caveats and limitations 108

7.5 Datasets . 109
7.5.1 Synthetic traces . 109
7.5.2 Support domains at a glance . 111
7.5.3 ISP flow traces . 112

7.6 Validation . 113
7.6.1 Tuning of parameters Δ𝑇 and 𝑛 113
7.6.2 Effects of network conditions 114
7.6.3 Comparison to objective metrics 116
7.6.4 Comparison to alternative approaches 117
7.6.5 Learning duration and periodicity 119

7.7 Case studies . 120
7.7.1 Performance per ADSL capacity 121
7.7.2 Impairments due to server-side events 121

7.8 Conclusions . 123

iv

8 Conclusions 125

A List of Publications 127

Bibliography 131

v

List of Tables

2.1 Overview of the datasets. 7
3.1 Examples of domain-to-service associations. 12
4.1 Overview of the datasets. 31
4.2 Popular services and classification precision. 36
5.1 Features extracted for a domain and used for classifying core and sup-

port domains. 50
5.2 Best choices of parameters. 62
6.1 Traffic generated by visiting 10 popular services. 76
6.2 Rules to be installed on the SDN switches across the network. 77
6.3 Traces collected from operational networks. A detailed description of

ADSL and FTTH can be found in Section 2. 86
6.4 Fraction of flows classified by AWESoME when varying training and

testing locations. The Alexa top-100 websites are core domains in this
analysis. 91

7.1 Description of datasets. 109
7.2 Browsers and emulated devices in the testbed. 110
7.3 Settings in the SynthTypical dataset. Native corresponds to a sce-

nario with no traffic shaping. 110
7.4 Support domains for websites in SynthTypical dataset, together with

the probability they appear after onLoad. 111
7.5 Support domain persistence across different devices and subpages (SynthTypical

dataset). 112

vi

List of Figures

2.1 Measurement infrastructure and processing steps for a single probe. I
deployed three probes collecting data for (i) ADSL subscribers, (ii) FTTH
subscribers, (iii) University Campus users. 6

3.1 CCDF of per active subscriber daily traffic for April 2014 and 2017. . . . 13
3.2 Average per-subscription daily traffic. 14
3.3 Ratio of traffic consumption between April 2017 and April 2014 for

download. 15
3.4 Popularity and percentage of downloaded bytes for selected services

over time. 17
3.5 Popularity (top) and volumes (bottom) for P2P and 2 popular video stream-

ing services. 17
3.6 Popularity (top) and volumes (bottom) for 3 popular social messaging

services. 19
3.7 Web protocol breakdown over 5 years. Sudden changes and custom pro-

tocols deployment in the wild are highlighted. 20
3.8 Facebook average daily per-user traffic before and after automatic video

play. 21
3.9 CDF of Round Trip time. 22
3.10 Facebook (left), Instagram (center) and YouTube (right) infrastructure

evolution over time. 24
4.1 IP addresses and hostnames of Whatsapp. Most IP addresses are exclu-

sively used by the service. 33
4.2 Hostnames sharing IP addresses with Facebook. 33
4.3 Distribution of names per IP address. Campus-DNS. 34
4.4 Distribution of the traffic related to IP addresses with different numbers

of hostnames. Campus. 35
4.5 Persistence of addresses of popular services. 38
4.6 Top sub-domains hosted by Amazon and Akamai. 39
5.1 Examples of entries (flows) in network traces and how WHAT behaves

when labeling them. 46
5.2 Architecture of WHAT to classify interactive web flows. 47

vii

5.3 BoD Learning: a flow to a core domain triggers a new observation win-
dow if client was idle for more than Δ𝑇𝑖𝑑𝑙𝑒. 51

5.4 Characteristics of the flow traces for the ADSL dataset. Most traffic is
due to 10,000 domains. The probe suffered two outages during August
and October 2015. 56

5.5 Share of volume per domains in synthetic traces. 58
5.6 Core domain discovery accuracy per BoD learning period. 60
5.7 Accuracy vs. learning dataset size. BoDs learning starts on March 1𝑠𝑡,

2016. 61
5.8 Accuracy of benchmarks in NAT scenarios. 62
5.9 Accuracy vs. evaluation window. 63
5.10 Accuracy vs. 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 threshold. 64
5.11 Delta of domains in time. 65
5.12 Ranking traffic: Domain rankings highlight support sites. WHAT high-

lights important services. 66
5.13 Traffic of popular support domains according to core domains. 67
6.1 Flows opened when visiting two websites. I search flexible mechanisms

to independently manage all traffic triggered by each site – e.g., for traf-
fic engineering and policing. 72

6.2 Typical corporate SDN deployment. 74
6.3 Support domains shared across different categories of sites. Analytics

and advertisement domains are always present. 76
6.4 AWESoME architecture. Databases with arrows are maintained in real-

time. 79
6.5 Domain-to-Service: Blue and red services are active at the same time;

the EWs are extended as new flows are associated to the core domain. . 82
6.6 Time between TCP flows and their associated DNS query. AWESoME

needs to cache information about 1-hour of DNS traffic to annotate flows. 87
6.7 Accuracy when varying the 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 threshold. AWESoME accuracy

surpasses 93% in the Simple-Browsing trace, and 85% in extreme scenarios. 89
6.8 Accuracy vs. training dataset size. BoDs learned with ADSL, accuracy

calculated with Simple-Browsing trace – 1-month training window is
sufficient. 90

6.9 Precision and recall for popular services. 92
6.10 Processing speed of AWESoME for each packet arriving at the controller

in a single-core of a commodity server. 93
6.11 Packet arrival rate at the controller. Even for large numbers of clients,

the number of packets handled by the controller is limited. 93
6.12 Active rules assuming that the top-𝑛 clients are connected to a bottleneck-

switch and all services are managed. The number of installed rules is
limited. 94

viii

7.1 Sample of flows in a visit to 𝑤𝑤𝑤.𝑛𝑦𝑡𝑖𝑚𝑒𝑠.𝑐𝑜𝑚. I use the time to contact
support domains to monitor performance. 102

7.2 Support domain flows for a visit to www.bbc.co.uk. The browser con-
tacted 94 support domains (𝑦-axis) during 6 seconds (𝑥-axis). Notable
browser events are reported as vertical lines. 103

7.3 Architecture of PAIN. It learns and clusters support domains using flow
records and a list of target core domains. The resulting groups are used
to estimate performance. 104

7.4 SpearmanCorrelation of 𝑃3 with onLoad and SpeedIndexwhen vary-
ing Δ𝑇 (SynthTypical dataset). 113

7.5 Correlation of PAIN index with onLoad and SpeedIndex when vary-
ing the number of groups 𝑛 (SynthTypical dataset). 114

7.6 Median time of PAIN indexwhen varying delay and bandwidth (SynthDegraded
dataset). 115

7.7 www.repubblica.it onLoad, SpeedIndex and𝑃3 for various setups (SynthTypical
and SynthDegraded datasets). 116

7.8 Correlation of PAIN, BestCheckpoint and BeaconCheckpoint with
objective metrics (SynthTypical dataset). 118

7.9 Support domains learned with increasing number of observations per
core domain, compared to those learnedwith 10,000 observations (ADSL
dataset). 119

7.10 Persistence of support domains over themonths of a year (ADSL dataset).
. 120

7.11 Distribution of PAIN 𝑃3 index according to the access-link capacity for
all visits in ADSL dataset. 121

7.12 PAIN index for www.poste.it over 1 month (ADSL dataset). 122
7.13 PAIN index trend forwww.repubblica.it before and afterwebsite restruc-

turing (ADSL dataset). 123

ix

Chapter 1

Introduction

In the last two decades Internet has become a fundamental infrastructure for the
industry and the preferred means for entertainment. Born to interconnect universities
and research laboratories, Internet nowadays permeates the globe, and allows billions
of people to communicate and access multimedia content. The amount of traffic carried
by Internet has become huge, and it is indeed expected to keep increasing in the next
decade. According to the Cisco Visual Networking Index [55] the annual global IP traffic
will reach 3.3 ZB per year by 2021 growing from the 1.2 ZB per year registered in 2016.

In this scenario, network measurements are a fundamental instrument to under-
stand how the Internet evolves and to identify potential issues, like anomalous be-
havior of users, impairment of network devices or malfunctions of servers and con-
tent providers. Network devices, user equipments and monitoring systems produce a
deluge of data that contain unique knowledge about both mere technological aspects
and anthropological issues. However, data alone is not sufficient to achieve knowledge,
as useful information is typically buried among endless sequences of uninteresting
records. Moreover, the recent trend towards encryption makes the life of network an-
alysts harder, as a significant fraction of information is now carried by the network in
an encrypted form, and, thus, not available to network operators. In this picture, the so
called data science becomes necessary to analyze an always bigger amount of data in
which knowledge is more and more hidden, and often can be obtained only when large
datasets are processed in an aggregated fashion.

In this thesis, I describe my work in extracting knowledge from network data. In
particular, I focus on passive measurements, a technique in which a monitoring infras-
tructure collects data regarding the activity of a population of users connected to the
Internet. To this end, particular devices called network probes are deployed in an op-
erational network, and run a suitable software to collect the desired statistics as the
network packets flow. This approach is opposite to the so-called active measurements,
in which network traffic is generated in a controlled environment. The latter allows
larger freedom, as the observed network traffic is (almost) under the control of the ex-
perimenter. Nevertheless, active measurements pose some limitations when studying

1

1 – Introduction

the behavior of network devices and users on the large Internet, where a bigger effort
is required to mimic a real scenario. As such, passive measurement are considered a
useful means to understand what happens on real networks, where real users utilize
in-operation network devices. However, measurements are only the first step of the
complicated processes behind data science applications. My thesis focuses on such pro-
cesses, and proposes methodologies to obtain valuable knowledge from raw collected
measurements. Most of the chapters are taken from papers already published in inter-
national conferences and journals, and, at the beginning of each, I report the venue in
which the content has been presented.

In Chapter 2, I first describe the employed datasets and the methodology I followed
to gather them. I make use of 3 datasets coming from passivemonitoring ISP subscribers
and campus users for a period of 5 years. As they are used throughout this thesis, I
summarize datasets here, and specify on each chapter which (and which part) I employ.

The first work presented in this thesis is contained in Chapter 3, and focuses on In-
ternet traffic characterization. Indeed, knowing traffic is crucial for operating the net-
work, understanding users’ need, and ultimately improving applications. In the chapter,
I provide an in-depth longitudinal view of Internet traffic. I take the point of the view
of a national-wide ISP and analyze 5 years of flow-level measurements to pinpoint and
quantify trends. I show that an ordinary broadband subscriber nowadays downloads
more than twice as much as they used to do 5 years ago. Bandwidth hungry video
services drive this change, while social messaging applications boom (and vanish) at
incredible pace. I study how protocols and service infrastructures evolve over time,
highlighting unpredictable events that may hamper traffic management policies.

Next, in Chapter 4 I illustrate the challenges of passive monitoring in the current In-
ternet, with particular attention to traffic classification. The widespread deployment of
encryption and the convergence of the web services towards HTTP/HTTPS challenge
traditional classification techniques. Algorithms to classify traffic are left with little in-
formation, such as server IP addresses, flow characteristics and queries performed at the
DNS. Moreover, due to the usage of Content Delivery Networks and cloud infrastruc-
ture, it is unclear whether such coarse metadata is sufficient to differentiate the traffic.
In this chapter, I study to what extent basic information visible at flow-level measure-
ments is useful for traffic classification on the web. By analyzing a large dataset of flow
measurements, I quantify how often the same server IP address is used by different
services, and how services use hostnames. A very simple classifier that relies only on
server IP addresses and on lists of hostnames can distinguish up to 55% of the traffic
volume. This testifies the challenges behind passive measurements, and calls for more
sophisticated techniques able to extract meaningful information. I the next chapters, I
will explore such challenges and show how passive measurements become meaningful
only when aggregating large datasets and processing them with suitable Data Science
techniques.

Motivated by the aforementioned reasons, in Chapter 5 I propose new algorithms
for traffic analysis and classification, with particular attention to web services. Indeed,

2

1 – Introduction

nowadays HTTP(S) is the main means to access the Internet, but traditional solutions
for traffic classification and metering fall short in providing visibility in users’ activi-
ties. In the chapter, I present the Web Helper Accounting Tool (WHAT) that overcomes
these challenges by (i) identifying the main domain name representative of the service
being accessed, and (ii) grouping together traffic due to the access to such main service.
WHAT is a completely unsupervised system, that relies only on passive measurements,
assuming that the domain names associated to network flows is still visible.1 The group-
ing of all flows enables accurate accountability per service. I provide an extensive eval-
uation and case studies to demonstrate WHAT effectiveness, thus enabling an accurate
accounting of the traffic associated to each user action.

Then, my thesis focuses on traffic management. In Chapter 6, I show that the algo-
rithms I propose for traffic classification can be successfully used for trafficmanagement
too, where classification is only one of the building blocks that allow innovative traf-
fic routing. The most promising technique for traffic management is called Software
Defined Network (SDN), which enables programmable management in computer net-
works, and aims at providing a homogeneous paradigm to provide all network devices.
However, the complexity of modern Internet traffic challenges the standard SDN ap-
proach, based on simple per-flow management. I propose a new approach based on a
“per service” management concept, which allows to identify and prioritize all traffic
of important web services, while segregating others, even if they are running on the
same cloud platform, or served by the same CDN. In this chapter, I design and evalu-
ate AWESoME, Automatic WEb Service Manager, a novel SDN application to address
the above problem. On the one hand, it leverages big data algorithms to automatically
build models describing the traffic of thousands of web services. On the other hand, it
uses the models to install rules in SDN devices to steer all flows related to the originat-
ing services. It correctly disambiguates those cases in which the same CDN is used by
multiple services by taking into account the sequence of servers contacted by the client.

Finally, Chapter 7 addresses the issue of Quality of Experience (QoE) of users that
access web services. Indeed, understanding QoE of web browsing is key to optimize
services and keep users’ loyalty. This is crucial for both Content Providers and Internet
Service Providers (ISPs). However, quality is intrinsically subjective, and the complex-
ity of today’s pages challenges its measurement. In this chapter, I propose PAIN (PAs-
sive INdicator), an automatic system to monitor the performance of web pages from
passive measurements. With unsupervised learning, PAIN automatically creates a ma-
chine learning model from the timeline of events generated by browsers to render web
pages, and uses it to measure web performance in real-time. I compare PAIN to objec-
tive metrics based on in-browser instrumentation and find strong correlations between
the approaches. I let PAIN run on an operational ISP network, and find that it is able to
pinpoint performance variations across time and groups of users.

1It can still be retrieved from DNS traffic and TLS handshake.

3

4

Chapter 2

Measurements and data collection

In this chapter, I describe the datasets I use throughout the thesis and the measure-
ment methodology at the basis of their collection. In this thesis, I build my analysis on
data collected by the passive monitoring infrastructure of two operational networks in
Italy. The measurement infrastructure captures and analyses in real-time traffic from
vantage points located at the edge of the network. A schematic view of the infras-
tructure is depicted in Figure 2.1. It processes traffic directly in the Point-of-Presences
(POPs). Exploiting router span ports or optical splitters (depending on the link rates), it
mirrors the traffic to the monitoring probes. Both uplink and downlink streams gener-
ated by the users are exposed to the probes. Since probes are deployed in the first level
of aggregation, no traffic sampling is performed. Users are assigned fixed IP addresses,
that the probes immediately anonymize in a consistent way to keep users’ privacy.

Each probe is equipped with multiple high-end network interfaces. Packets are cap-
tured using the Intel Data Plane Development Kit (DPDK) [56] that allows line-rate
capture even for multiple 10Gbit/s links. Traffic is then processed by a custom-made
passive traffic analyzer, called Tstat [107].

Each probe exports only flow records, i.e., a single entry for each TCP/UDP stream
with per-flow statistics.1 Each record contains classical fields on flow monitoring [51],
such as IP addresses, port numbers, timestamps, packet-wise and byte-wise counters.
Advanced analyzers extract some fields from packet payloads, such as information seen
in the Application-Layer Protocol Negotiation (ALPN) fields of TLS handshakes, which
allows to identify HTTP/2 and SPDY flows, and fields from QUIC public headers. Tstat
also exports the domain name of the contacted servers, exchanged in clear in HTTP
Host: headers, or requested in the TLS Server Name Indication (SNI) within TLS Client
Hello messages. For flows missing such information, Tstat exports the host name the

1Streams are expired either by the observation of particular packets (e.g., TCP packets with RST flag
set) or by timeouts. See http://tstat.polito.it/measure.shtml.

5

http://tstat.polito.it/measure.shtml

2 – Measurements and data collection

Data Center

PoP

Passive Probe

Users

Backbone

Internet

Aggregation

Analytics

Figure 2.1: Measurement infrastructure and processing steps for a single probe. I de-
ployed three probes collecting data for (i) ADSL subscribers, (ii) FTTH subscribers, (iii)
University Campus users.

client resolved via DNS queries prior to open the flow.2 This mechanism, called DN-
Hunter, is explained in details in [7]. DN-Hunter correlates DNS traffic to TCP flows as
follows. Consider a client having IP address 1.1.1.1 accessing www.acme.com. The
client first contacts the DNS server to resolve the server hostname into a list of IP ad-
dresses, i.e., 2.2.2.2 and 3.3.3.3. Then, the client might contact one of the retrieved
IP addresses. Tstat keeps a circular buffer in memory with all DNS responses and, when
seeing a flow from the client 1.1.1.1 going to the server 2.2.2.2, it assigns the
domain www.acme.com to the flow.

In the following chapters, I also perform more sophisticated analysis, relying on the
estimation of RTT provided by Tstat for TCP flows [75]: It searches for acknowledged
TCP segments, registering the time from the observation of the TCP segment and its ac-
knowledgment. For each flow, Tstat exports the minimum, average and maximum RTT
estimation, as well as the number of RTT samples. Notice that this metric represents
only the RTT from the probe to servers, missing the delay from clients to the probes.
In this deployment I miss thus the access delay, since probes are deployed at the first
aggregation level (BRAS or edge router).

2The vantage points observe all DNS traffic directed to local resolvers.

6

2 – Measurements and data collection

Table 2.1: Overview of the datasets.

Name Flows Users Access Technology Duration
ADSL 141 G 10 k ADSL 5 Years
FTTH 44 G 5 k Fiber-To-The-Home 5 Years
Campus 163 G 20 k Wired and WiFi 5 Years

In this monitoring infrastructure, Tstat is installed in two distinct networks: (i) a
University campus in Italy where ≈ 15 000 users are connected; and (ii) two PoPs of
a nation-wide Internet Service Provider. The campus dataset includes traffic generated
by students and professors using wired and WiFi networks during 5 years, from 2013
in 2018. I refer to this dataset with Campus. Regarding the ISP dataset, I consider the
traffic of two PoPs, covering more than 10 000 ADSL and 5 000 Fiber-To-The-Home
(FTTH) subscribers, all located in the same city in Italy, and active since 2013. I refer
to these datasets with ADSL and FTTH. ADSL downlink capacity varies from 4Mbit/s
up to 20Mbit/s, with uplink limited to 1Mb/s. FTTH users enjoy 100Mb/s downlink,
and 10Mbit/s uplink. Each subscription refers to an installation, where users’ devices
(PCs, smartphones, tablets, smart TVs etc) connect via WiFi and Ethernet through a
home gateway. ADSL customers are almost totally residential customers (i.e., house-
holds), whereas a small but significant number of business customers exist among the
FTTH customers. During the years of measurements, I observed a steady reduction
on the number of active ADSL users and an increase in FTTH installations. The ISP
has confirmed these trends are due to churning and technology upgrades. Datasets are
summarized in Table 2.1.

Flow records are created, anonymized and stored on the local probe disks. Daily,
logs are copied into a long-term storage in a centralized data center and discarded from
the probes. Our data center has enough capacity to preserve historical data.

By the time of writing this thesis, the considered datasets covers 5 years of measure-
ments, totaling 63.9 TB of compressed and anonymized flow logs (around 348 billion
flow records). To process this deluge of data, I use a Hadoop-based cluster running
Apache Spark. This structure allows both to update predefined analytics continuously,
as well as to run specific queries on historical collections.

7

8

Chapter 3

Five Years at the Edge: Watching
Internet from the ISP Network

The work I present in this chapter is mostly taken from my paper “Five Years at the
Edge: Watching Internet from the ISP Network” presented in the 14th International Con-
ference on emerging Networking EXperiments and Technologies (CoNEXT 2018) [105].

3.1 Introduction
Measurements have always been among the best ways to understand complex sys-

tems. Not surprisingly, measurements are the key means to gather information about
the overall status of the Internet, identify eventual issues, and ultimately improve its de-
sign [116, 76, 96]. The Internet being an evolving system, novel measurement systems
are continuously devised to extract information about applications, protocols, deploy-
ments, etc. However, having a long-term picture on how the Internet is evolving is a
rather challenging task. Researchers often design new tools and approaches that focus
on specific phenomena, which are observed and described in details for limited time
intervals. It is rare to find works that offer a longitudinal view on systems over time.

In this chapter, I offer a view of the Internet in the past 5 years as seen from an
operational network. I rely on a humongous amount of data collected from a nation-
wide Internet Service Provider (ISP) infrastructure. I focus on broadband Internet access
via ADSL and FTTH technologies. I instrument some of the ISP aggregation links with
passive monitoring probes. By observing packets flowing on the links, the probes ex-
tract detailed per flow information, that I collect and store on a centralized data lake.
Keeping the pace with Internet evolution during 5 years is per se a challenging task.
I rely on custom designed software probes that have been constantly updated during
the monitoring period to account for and report information about new protocols and
services.

Technically, I follow awell-established approach. Passivemeasurements are popular

9

3 – Five Years at the Edge: Watching Internet from the ISP Network

among researchers since early 2000 [5, 24], with current tools able to process several
tens of Gb/s on commodity hardware [77, 107]. Extracting information from packets is
possible thanks to Deep Packet Inspection (DPI) techniques [1], while the availability
of big data solutions [28, 119] makes it possible to store and process large volumes of
traffic with unprecedented parallelism.

Here, I dig into this data, depicting trends, highlighting sudden changes and ob-
serving sudden infrastructure upgrades. Instead of focusing on a specific angle, I aim
at offering examples of general trends on the Internet evolution. The Internet indeed
rapidly evolves: Services get popular and other get abandoned; Users change habits;
New protocols change the way information is carried. Observing such trends is vital to
understand the Internet, the users, and the systems.

First I give an overview of users’ habits over 5 years, assessing the costs of broadband
customers to the ISP in terms of traffic consumption. I observe for example that the
traffic per broadband customer has increased at a constant rate over the years, with a
growth of heavy users, i.e., those who exchange tens of GB per day. When comparing
service usage between ADSL and FTTH customers, I see that the larger capacity offered
to FTTH customers has a moderate impact on per customer data consumption.

Next, I turn my attention to the traffic loads imposed by web services to the ISP. I
quantify the rise (and death) of services in terms of traffic volumes as well as popularity
among customers. Here I confirm and precisely quantify some well-known trends, typ-
ically stated by content provided, but rarely measured from the network point of view:
video content – no longer accessed via peer-to-peer systems – drives the bandwidth
demand. Yet, users of modern social messaging systems such as Instagram (accessed
from mobile phones) consume more and more traffic. Indeed, the traffic of each Insta-
gram user is already comparable to the traffic per user of popular video-on-demand
platforms, such as Netflix or YouTube.

Finally I study how changes in the infrastructure and protocols have impacted the
ISP network. For example, I detail the (slow) migration of services to HTTPS and several
(sudden) deployments of custom protocols by large companies that may hamper traffic
engineering and troubleshooting of ISP networks. I testify the growth in the infrastruc-
ture of popular services, and show how services are more and more deployed close to
users, with caches deployed at the first aggregation point at the ISP, in an effort to cut
off the latency to reach the Internet contents.

Despite the dataset is limited to one country and focused on broadband Internet
(thus missing mobile networks), I believe the information I offer is key to understand
trends and inform researchers and practitioners about recent changes on Internet in-
frastructure and users’ behavior. Our dataset includes traffic from more than 15,000
users, and it is collected in a central area of Europe. Even if we generally miss the traffic
of mobile network, we catch smart-phone traffic of users that connect through WiFi
when at home.

The chapter is organized as follows: Section 3.2 presents the monitoring infrastruc-
ture and the analyzed dataset. Section 3.3 investigates traffic demand of ISP customers,

10

3.2 – Measurement methodology

while Section 3.4 illustrates trends of services in terms of traffic volume and popular-
ity. Section 3.5 analyses protocol usage and episodes of unpredictable traffic variations,
whereas Section 3.6 shows notable trends in Big Players’ infrastructure. Section 3.7
summarizes the related work. Finally, Section 3.8 concludes the chapter.

3.2 Measurement methodology
In this section, I now describe the measurement methodology and tools used to

collect the data.

3.2.1 Measurement architecture
In this chapter, I build on data collected from a nation-wide ISP. Data collection

methodology is described in Section. 2, and I make use of the ADSL and FTTH datasets.
In short, I have instrumented a Point-of-Presence of the ISP to collect passive mea-
surements by means of passive meter running Tstat [107], a tool that exports rich flow
level logs containing hundreds of statistics. The dataset includes 5 years of anonymized
traces, coming from monitoring of more than 10 000 ADSL and 5 000 Fiber-To-The-
Home (FTTH) subscribers.

My analytics methodology follows a two-stage approach: firstly data is aggregated
on a per day basis, secondly, advanced analytics and visualizations are computed. In the
aggregation stage, queries compute per-day and per-subscription aggregates about traf-
fic consumption, protocol usage, and contacted services.This round requires processing
of millions of raw flow records.

Special attention is needed for identifying the services used by subscribers. Content
providers are known to rely on large infrastructure and/or Content Delivery Networks
(CDNs), which make the association between flow records and services tricky. For this
step, I rely mostly on the server domain names. Examples of the association domain-
service are provided in Table 3.1. Flexible matching based on regular expressions is al-
lowed.1 Along the years, my team and I have continuously monitored the most common
server domain names seen in the network, maintaining the list of domains associated
with the services of interest. For ambiguous cases [106], e.g., domains used by multiple
services, I rely on heuristics, mostly based on traffic volumes, to decide whether a sub-
scriber actually contacted a particular service (see Section 3.4.1).This methodology thus
allows on-the-fly and historical classification of services. Once such aggregated dataset
is available, flexible analytics perform the analysis and visualization of the data.

1The full list of rules to classify services can be found in https://smartdata.polito.it/
five-years-at-the-edge-watching-internet-from-the-isp-network/.

11

https://smartdata.polito.it/five-years-at-the-edge-watching-internet-from-the-isp-network/
https://smartdata.polito.it/five-years-at-the-edge-watching-internet-from-the-isp-network/

3 – Five Years at the Edge: Watching Internet from the ISP Network

Table 3.1: Examples of domain-to-service associations.

Domain Service

facebook.com Facebook
fbcdn.com Facebook
^fbstatic-[a-z].akamaihd.net$ (RegExp) Facebook
netflix.com Netflix
nflxvideo.net Netflix

3.2.2 Challenges in long-term measurements
Several challenges arise when handling a large-scale measurement infrastructure.

Network probes are the most likely point of failure, as they are subjected to a contin-
uous and high workload. During the period considered in this chapter, probes suffered
few outages, lasting from few hours up to some months (when severe hardware issues
arose). As such, the results I present have missing data for those periods. The data is
not available for clear privacy reasons, but I’m developing, as a follow-up of this work,
a online graphical toolkit to visualize and play with aggregated statistics.

A second issue arises from the evolution of network protocols and service infras-
tructure. Large content providers have the power of suddenly deploying new protocols
leaving passive monitors and ISPs with few or no documentation to handle them. I
incurred several cases, and report the experience in addressing them.

Third, the domain-to-service associations definition needs to be continuously up-
dated. Also in this case, there is no public information to support this operation, so
that my team and I have to manually define and update rules, often by running active
experiments to observe patterns.

At last, users’ privacy must be preserved. For this, I carefully limit the collected in-
formation and always consider only aggregated statistics. Customers’ IP addresses and
server names are the most privacy-sensitive information being collected. The former
gets immediately anonymized by probes, while the latter is used to derive aggregate
statistics on per-service basis. Importantly, all data collection is approved and super-
vised by the responsible teams in the ISP.

3.3 The cost of a user
I first characterize the traffic consumed by subscribers in the last 5 years. This anal-

ysis is instrumental to understand costs of ISPs in terms of capacity and forecasting
trends.

For the results that follow, I consider only active subscribers. A subscriber is consid-
ered active if she/he has generated at least 10 flows, downloaded more than 15 kB and

12

3.3 – The cost of a user

0.01

0.10

1.00

10
 kB

10
0 k

B
1 M

B
10

 M
B

10
0 M

B
1 G

B
10

 G
B

10
0 G

B

C
C

D
F

ADSL, 2014

ADSL, 2017

FTTH, 2014

FTTH, 2017

(a) Download volumes

0.01

0.10

1.00

10
 kB

10
0 k

B
1 M

B
10

 M
B

10
0 M

B
1 G

B
10

 G
B

10
0 G

B

C
C

D
F

ADSL, 2014

ADSL, 2017

FTTH, 2014

FTTH, 2017

(b) Upload volumes

Figure 3.1: CCDF of per active subscriber daily traffic for April 2014 and 2017.

uploaded more than 5 kB.2 This simple criterion lets me filter those cases where only
background traffic is present, e.g., generated by the access gateway, or by incoming
traffic (due to, e.g., port scans). On average I observe about 80% subscribers active each
day, with respect to the total number of subscribers observed in the whole trace. Less
than 0.01% of data, in terms of flow records, is discarded at this step.

Notice that these percentages are actually a lower-bound given churning (see Sec-
tion 3.2.1). Notice also that smartphones contribute to make subscribers active in more
days.

3.3.1 How much you eat: Consumption per day
Figure 3.1 depicts the empirical Complementary Cumulative Distribution Function

(CCDF) of daily traffic consumption of active subscribers in the ISP. In other words, for
each day, I compute the overall traffic each active subscriber exchanges. I report the
CCDF of all measurements as seen in April 2014 and 2017. Figure 3.1 depicts CCDFs
separately per access-link technology and down/up links. Log scales are used.

Observe the bimodal shape of the distribution. In about 50% of days, subscribers
download (upload) less than 100MB (10MB) – i.e., days of light usage. However, a heavy
tail is present. For more than 10% of the days, subscribers download (upload) more than
1GB (100MB) – i.e., days of heavy usage. Manual inspection shows that many different
subscribers present days of heavy usage, often alternating between days of light and
heavy usage.

Comparing 2014 (dashed lines) with 2017 (solid lines), I notice an increase in daily
traffic consumption. The median values have increased by a factor 2 for both ADSL

2These thresholds have been determined by visually inspecting knee points in the distributions of
daily traffic per user.

13

3 – Five Years at the Edge: Watching Internet from the ISP Network

 0

 200

 400

 600

 800

 1000

 1200

201
3/0

7

201
4/0

1

201
4/0

7

201
5/0

1

201
5/0

7

201
6/0

1

201
6/0

7

201
7/0

1

201
7/0

7

V
ol

u
m

e
[M

B
] ADSL

FTTH

(a) Download volume

 0

 25

 50

 75

 100

 125

201
3/0

7

201
4/0

1

201
4/0

7

201
5/0

1

201
5/0

7

201
6/0

1

201
6/0

7

201
7/0

1

201
7/0

7

V
ol

u
m

e
[M

B
]

(b) Upload volume

Figure 3.2: Average per-subscription daily traffic.

and FTTH installations, and for both upload and download. This behavior highlights an
increasing trend in average per-subscriber traffic volume, that I examine more in depth
later in this section.

I observe no differences for the days of light usage when contrasting ADSL (blue
curves) and FTTH installations (red curves). Instead, during heavy usage days, FTTH
users download about 25% more data than ADSL users – a moderate increase given
they enjoy 5-20 times higher capacity. The differences are higher considering upload
traffic: ADSL users are indeed bottlenecked by the 1Mb/s uplink, thus FTTH subscribers
upload twice as much per day.

At last, I witness an interesting effect in uploaded traffic: Even if traffic volume in-
creased in median between 2014 and 2017, the tail of the distributions in Figure 3.1b
decreased. Notice the clearly visible bump in the tails present in 2014, which disap-
peared in 2017. This trend is rooted in the decline of Peer-To-Peer (P2P) traffic, both in
volume and popularity, as I will show in Section 3.4.

3.3.2 Eager and Eager: Trends on traffic consumption
Figure 3.2 illustrates subscribers’ traffic consumption over time. The 𝑥-axis spans

over the 54 months of the dataset, 𝑦-axis shows the average byte consumption over
monitored subscriptions, separately per access technology and down/up link. Curves
in the figure contain interruptions caused by outages in monitoring probes, without
affecting trends.3

Considering the average amount of data downloaded daily, illustrated in Figure 3.2a,
a clear increasing trend emerges. For ADSL subscribers, average daily traffic increased
at a constant rate – from 300MB in 2013 up to 700MB in late 2017. FTTH subscribers
consume on average 25% more traffic as previously noticed, topping to 1GB per day on

3FTTH figures are noisier than the ADSL ones due to the smaller numbers of FTTH customers. Some
drops in FTTH curves are visible during summer and holiday breaks, thanks to the low number of cus-
tomers and their profiles (e.g., business customers).

14

3.4 – The cost of services

 1

 1.5

 2

 2.5

 3

 3.5

00
:0

0
02

:0
0
04

:0
0
06

:0
0
08

:0
0
10

:0
0
12

:0
0
14

:0
0
16

:0
0
18

:0
0
20

:0
0
22

:0
0

R
a
t
io

Hour

ADSL FTTH

Figure 3.3: Ratio of traffic consumption betweenApril 2017 andApril 2014 for download.

average in 2017. Interesting, very similar slow increasing trends have been reported 10
years ago [20].

When considering uploads (Figure 3.2b), I confirm that the higher uplink capacity
lets FTTH users to upload more with respect to ADSL. The latter has been bottlenecked
during the captures and thus the average amount of data remains constant. FTTH sub-
scribers show a modest increase in average uploaded traffic over time. This modest in-
crease is due to two factors. At the one hand, P2P uploads have decreased significantly
in recent years. On the other hand, this decrease has been compensated by a significant
increase in the upload of user-generated content to the cloud, including to cloud stor-
age services (e.g., iCloud or Dropbox) as well as to social networks and video providers
(e.g., YouTube and Instagram).

To check whether the increase observed in Figure 3.2 is homogeneous during the
hours of the day, I consider the downloaded volume in each 10 minute-long time inter-
val. I then average all values seen for the same time bin in all days of a month. At last I
compute the ratio between April 2017 and April 2014. Figure 3.3 shows results (curves
are smoothed using a Bezier interpolation). It confirms that the average amount of traf-
fic consumed in 2017 is more than 2 times larger than 2014. Interestingly, the increase is
higher during late night hours. Manual inspections reveals that this is due to software
updates of operating systems (mainly Windows and Mac OS/iOS updates). FTTH users
exhibit also a higher increase during prime time, which I confirm to be associated to
the consumption of video streaming content.

3.4 The cost of services

3.4.1 Give me that: Service popularity
The changes in the per-subscriber traffic volume can be due to changes in the users’

habits (e.g., people using different services), or changes in the services (e.g., high defini-
tion videos being automatically served). In this section, I analyse in details how popular

15

3 – Five Years at the Edge: Watching Internet from the ISP Network

and bandwidth demanding services evolved throughout years. I again focus on active
subscribers, observing the fraction of them that accessed a given service on a daily basis.

Notice that selecting subscribers that contacted a service is not trivial. Indeed popu-
lar services may be unintentionally contacted by users. Consider for example Facebook.
Its social buttons are embedded in websites and generate traffic to the same Facebook
domains as an access to facebook.com services. To coarsely distinguish these cases,
I have inspected the distribution of daily traffic per subscriber for each considered ser-
vice. Not reported here for brevity, I manually set per-service thresholds to separate (i)
subscribers with at least one visit to main services (moderate to large traffic volumes),
and (ii) subscriberswhich unintentional contacted domains due third party objects (neg-
ligible volumes).

I start by providing a coarse picture about service popularity over time.4 Figure 3.4a
shows per-day percentage of active users that access popular services. I depict the
ADSL data only, since FTTH results in similar figures.Themulti-color palette highlights
changes in the popularity of services, which are coarsely sorted by type. For instance,
Google search engine is accessed regularly by about 60% of active users on a daily basis,
and this pattern is rather constant over time.5 On the contrary, Bing shows a constant
growth, moving from less than 15% to about 45% of active users that contacted it at
least one time per day in 2017. This pattern is likely a consequence of Windows teleme-
try which uses bing.com domains. Interestingly, DuckDuckGo, a privacy respecting
search engine, is used only by few tens of users (less than 0.3% of population), unveiling
a scarce interest for privacy in the monitored subscribers.

Figure 3.4b depicts a similar picture for the percentage of downloaded bytes for
each service in the ISP traffic mix. The multi-color palette is limited to 10% to improve
the visualization, since only YouTube is over this percentage in the studied ISP. One
can observe how services have changed their contributions to the traffic mix during
the monitored period. Notice, for instance, how services such as Facebook, Instagram,
WhatsApp and Netflix have increased traffic share throughout the years. Others, such
as SnapChat have gained momentum only during a limited period.

Overall, I observe a continuously changing picture, with services showing an in-
crease in popularity and traffic share, some of which with remarkable growth, while
others that struggle to gain grounds. Next, I dive into some interesting use cases.

4Data tables used to generate these figures, including popularity of services and
bytes per user per day, can be downloaded from https://smartdata.polito.it/
five-years-at-the-edge-watching-internet-from-the-isp-network/.

5Some fluctuations are due to changes in Google domains that have taken time to be identified and
updated in probes.

16

https://smartdata.polito.it/five-years-at-the-edge-watching-internet-from-the-isp-network/
https://smartdata.polito.it/five-years-at-the-edge-watching-internet-from-the-isp-network/

3.4 – The cost of services

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
Peer-To-Peer

Ebay
Amazon

SnapChat
Telegram

WhatsApp
Skype

Spotify
Adult

Netflix
YouTube
LinkedIn
Twitter

Instagram
Facebook

DuckDuckGo
Bing

Google

0
10
20
30
40
50
60
70
80
90
100

P
op

u
la

ri
ty

[%
]

(a) Popularity

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
Peer-To-Peer

Ebay
Amazon

SnapChat
Telegram

WhatsApp
Skype

Spotify
Adult

Netflix
YouTube
LinkedIn
Twitter

Instagram
Facebook

DuckDuckGo
Bing

Google

0
1
2
3
4
5
6
7
8
9
≥ 10

P
er

ce
nt

ag
e

of
G

lo
b

al
T

ra
ffi

c
[%

]

(b) Downloaded bytes

Figure 3.4: Popularity and percentage of downloaded bytes for selected services over
time.

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

2

4

6

8

10

P
op

u
la

ri
ty

[%
]

ADSL FTTH

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

200

400

600

T
ra

ffi
c

[M
B

]

ADSL FTTH

(a) Peer-To-Peer

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

5

10

15

P
op

u
la

ri
ty

[%
]

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

200

400

600

800

1000

T
ra

ffi
c

[M
B

]

(b) Netflix

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

20

40

60

P
op

u
la

ri
ty

[%
]

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

200

400

600

T
ra

ffi
c

[M
B

]

(c) YouTube

Figure 3.5: Popularity (top) and volumes (bottom) for P2P and 2 popular video streaming
services.

3.4.2 The downfall of Peer-To-Peer - finally
It is no news that P2P is no longer among the preferred means to download content.

Here I quantify this phenomenon showing the popularity of P2P applications over the
years. Figure 3.5a details the percentage of active users using a P2P service (Bittorrent,
eMule and variants) (top plot) and the average P2P traffic volume per user (bottom
plot). I still observe a hardcore group of users that exchange about 400MB of P2P data
daily. At end of 2016 the traffic volume they generate starts to decrease. Interestingly,
FTTH subscribers start abandoning P2P applications earlier in terms of volume. Based

17

3 – Five Years at the Edge: Watching Internet from the ISP Network

on findings of previous studies [40, 71], a conjecture to explain this decline is that the
availability of cheap, easy and legal platforms to access content is finally contributing
to the downfall of P2P. In the following I explore this conjecture.

3.4.3 The usual suspects: YouTube and Netflix
I now consider popular video streaming services. Figure 3.5b shows the percentage

of active users accessing Netflix (top) and the average per-user daily traffic (bottom).
Netflix has gained momentum since the day it started operating in Italy. FTTH sub-
scribers have been eager to adopt it, with about 10% of the active users using it on a
daily basis at the end of 2017. Considering weekly statistics, I see that more than 18%
(12%) of FTTH (ADSL) subscribers access Netflix at least once in 2017. Considering the
amount of traffic they consume (bottom plot), I see no major differences between ADSL
and FTTH subscribers up to end of 2016. Since October 2016, Netflix started offering
Ultra HD content. This is reflected into each active FTTH subscriber downloading close
to 1GB of content on average per day. ADSL subscribers instead cannot enjoy it, or are
not willing to pay the extra fee.

Next, I evaluate YouTube (Figure 3.5c). The figure shows a consolidated service, that
is accessed regularly by users, who are consuming more and more content: more than
40% of active subscribers access it daily, and download more than 400MB (about half
of Netflix volume per subscriber). Interestingly, no differences are observed between
ADSL and FTTH subscribers – hinting that YouTube video works similarly on FTTH
and ADSL.

3.4.4 The new elephants in the room: Social messaging applica-
tions

I now study usage patterns for social messaging applications, namely SnapChat,
WhatsApp and Instagram. All are popular applications accessedmostly on smartphones,
whose traffic I observe once connected via WiFi from home. As before, I consider popu-
larity and daily traffic consumption per active subscriber (recall Section 3.4.1), depicted
in top and bottom plots in Figure 3.6.

Interesting trends emerge in the rise and fall of social networking apps. Observe
first Snapchat (Figure 3.6a). It enjoyed a period of notoriety starting from 2015, topping
in 2016 when it was adopted by around 10% of subscribers. Each active subscriber used
to exchange up to 100MB of data daily! Starting from 2017, the volume of data starts
to decrease, with active subscribers that nowadays exchange less than 20MB per day.
Popularity is mostly unaffected, suggesting that people keep having the Snapchat app,
but hardly use it.

The decline of SnapChat coincides with the growth of other social apps. See What-
sApp in Figure 3.6b: Its popularity is indisputable, with a steady growth in adopters that
has almost reached saturation. Observe instead the growth in daily volume per active

18

3.5 – Web trends, and surprises

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

5

10

15

20

P
op

u
la

ri
ty

[%
]

ADSL FTTH

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

20

40

60

80

100

T
ra

ffi
c

[M
B

]

ADSL

FTTH

(a) SnapChat

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

20

40

60

P
op

u
la

ri
ty

[%
]

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

5

10

15

20

T
ra

ffi
c

[M
B

]

(b) WhatsApp

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

20

40

60

P
op

u
la

ri
ty

[%
]

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

50

100

150

200

T
ra

ffi
c

[M
B

]

(c) Instagram

Figure 3.6: Popularity (top) and volumes (bottom) for 3 popular social messaging ser-
vices.

subscriber. Each subscriber exchanges around 10 MB daily, pointing to the intensive
use of the app for sharing multimedia content. Note also the large peaks in the figure,
corresponding to Christmas and New Year’s Eve, when people exchange wishes using
WhatsApp.

Finally, considering Figure 3.6c (Instagram), I see a constant growth in popularity
and, more impressive, a massive growth in traffic volumes. Each active subscriber ex-
changes on average 200MB and 120MB per day, for FTTH and ADSL respectively. This
is almost a quarter of the traffic of the active customers contacting Netflix! Recalling
that Instagram, Snapchat and WhatsApp are predominantly used from mobile termi-
nals, these figures point to a shift on traffic of broadband users, with mobile terminals
taking a predominant role even when people are at home.

3.5 Web trends, and surprises
In this section, I study how web protocols usage varied across the last 5 years. I

show in particular events associated with the slowmigration of services towards newer
standard web protocols, and sudden relevant changes on the traffic matrix caused by
experiments of big players with custom protocols.

In its early life, the Web was predominantly plain Hyper Text Transfer Protocol
(HTTP) traffic. It is by now known thatmost of theweb traffic is running encrypted [80],
first with the deployment of HTTPS, followed by the push towards HTTP/2 [6] (for
which practical deployments rely on TLS) and more recently QUIC [68]. I here want

19

3 – Five Years at the Edge: Watching Internet from the ISP Network

201
3/0

4

201
3/0

7

201
3/1

0

201
4/0

1

201
4/0

4

201
4/0

7

201
4/1

0

201
5/0

1

201
5/0

4

201
5/0

7

201
5/1

0

201
6/0

1

201
6/0

4

201
6/0

7

201
6/1

0

201
7/0

1

201
7/0

4

201
7/0

7

201
7/1

0
0
10
20
30
40
50
60
70
80
90
100

S
h
ar
e
[%

]

FB-ZERO

SPDY

HTTP/2

TLS

QUIC

HTTP

A B C D E F

Figure 3.7:Web protocol breakdown over 5 years. Sudden changes and custom protocols
deployment in the wild are highlighted.

to document to what extent these protocols have been used by the monitored ISP sub-
scribers.

Figure 3.7 answers this question. It shows the traffic share of the several Web pro-
tocols observed in the network over time. Five years ago, in 2013, only the two “classic”
web protocols were observed, with the majority of traffic served by clear-text HTTP,
and only around 13% of theweb traffic due to TLS/HTTPS.Then, several notable changes
happened, which are marked with letters in the figure:6

A) January 2014: YouTube starts serving video streams over HTTPS. The migration
has taken Google several months in 2014, in which one can see a steady change
in the mix of HTTP and HTTPS traffic. HTTPS share tops to 40% at the end of
2014 already, and it is mainly driven by YouTube traffic.

B) October 2014: After announcing it in 2013, Google starts testing QUIC in the wild
deploying its Chrome Web browser. Web traffic carried by QUIC (carried over
UDP) starts growing steadily.

C) June 2015: I update the probes to explicitly report SPDY protocol (previously
generically labeled as HTTPS). I discover 10% of traffic carried by an experimental
protocol, reaching mainly Akamai and Google web servers.

D) December 2015: Google disables QUIC for security issues [68]. Suddenly 8% of
the traffic falls back to TCP and HTTPS/SPDY. Around a month after, the bug is
fixed and QUIC is suddenly back.

E) February 2016: Google migrates traffic from SPDY to HTTP/2, slowly followed by
other players.

6These events have been confirmed manually throughout the years while upgrading the software of
the probes to keep-up with protocols evolution.

20

3.5 – Web trends, and surprises

20
14
/0
1

20
14
/0
2

20
14
/0
3

20
14
/0
4

20
14
/0
5

20
14
/0
6

20
14
/0
7

20
14
/0
8

20
14
/0
9

20
14
/1
0

20
14
/1
1

20
14
/1
2

0

20

40

60

80

100

T
ra
ffi
c
[M

B
]

Figure 3.8: Facebook average daily per-user traffic before and after automatic video play.

F) November 2016: Facebook suddenly deploys “FB-Zero”, a protocol with a custom
0-RTT modification of TLS used from the Facebook mobile app only.7 Suddenly,
8% of web traffic moves to this new protocol. More than a half of Facebook traffic
is now carried by Zero, showing that mobile app traffic surpassed website, even
for fixed ADSL installations.

At the end of 2017, HTTP is down to 25%, with HTTP/2 that is slowly gaining mo-
mentum. QUIC and Zero together carry 20–25% of web traffic. Both are yet to be stan-
dardized protocols, showing how giants like Google and Facebook are free to deploy
experiments on the web, since they own both server and client applications. Such exper-
iments may create issues on ISP networks, e.g., making network proxies and firewalls
suddenly inefficient, or creating issues with home gateway.

Finally, I illustrate in Figure 3.8 another interesting episode of sudden traffic changes.
Around March/April 2014, Facebook started enabling video auto-play for its applica-
tions. The immediate effect on ISP traffic is striking. Figure 3.8 illustrates the daily aver-
age traffic per subscriber towards Facebook. Starting inMarch 2014 the average per-day
traffic of a subscriber towards Facebook has grown from around 35 MB to around 70
MB in a month. After an apparent pause in the deployment of the feature during May,
the service enabled video auto-play again. In July, the daily traffic per subscriber was
around 90 MB on average, 2.5 times higher than the rate observed in March 2014!

This figure illustrate once more how the big players controlling key client software
and servers can perform impactful changes in the Internet, complicating the planning
and management of ISP networks.

7Zero protocol would be announced only in January 2017 – https://goo.gl/vuQ1Jy

21

3 – Five Years at the Edge: Watching Internet from the ISP Network

0.0

0.2

0.4

0.6

0.8

1.0

 0.1 1 10 100

C
D

F

RTT [ms]

Facebook, 2014
Facebook, 2017
Instagram, 2014
Instagram, 2017

(a) CDF of RTT in 2014 and 2017 for Facebook
and Instagram.

0.0

0.2

0.4

0.6

0.8

1.0

 0.1 1 10 100

C
D

F

RTT [ms]

YouTube, 2014
YouTube, 2017

Google, 2014
Google, 2017

(b) CDF of RTT in 2014 and 2017 for YouTube
and Google.

Figure 3.9: CDF of Round Trip time.

3.6 Where are my servers?
In the previous section I have shown both slow and sudden changes due to overall

trends, and big players migration policies. Here I go deeper into showing the impact of
big players infrastructure changes over the years.

3.6.1 The birth of the sub-millisecond Internet
CDNs were born in the ’90s to reduce both the load on centralized server and the

delay to access the content. Nowadays shared and private CDNs are making it possi-
ble to scale Internet content distribution, allowing users to fetch content from nearby
surrogate servers. Being delay one of the main parameters affecting users’ Quality of
Experience, I focus my attention on how it changed over years.

I consider the Round Trip Time (RTT) as performance index. Remind that probes
measure RTT bymatching TCP segments sent by clients with corresponding TCPACKs
sent by servers. It represents the RTT from the probe to the server – excluding the access
network delay. For all TCP connections to a given service, I extract the minimum per-
flow RTT, and plot the corresponding CDF. By doing so for a long time interval and
large sample of users, I can spot how the RTT distribution is composed. Thus, I focus
on the body of the distribution of minimum per-flow RTT, ignoring samples in the tails
of the distribution, which may be caused by queuing and processing delays.

Figure 3.9 shows the results contrasting measurements seen in April 2014 versus
April 2017. I focus on Facebook and Google services as notable examples of big players
that pay particular attention to speed up content delivery. Consider Instagram traffic
(red curves) on Figure 3.9a. Dashed line refers to 2014 figures. At those time, there were
already CDN surrogate nodes at just 3ms RTT from the ISP PoP. However it served
only 10% of flows. Other traffic was served by far away CDN nodes, with RTT of 10, 20

22

3.6 – Where are my servers?

and 30ms.8 About 7% of flows was served by servers with RTT higher than 100ms – a
clear sign of intercontinental path. Facebook caches (blue curves) follows a very similar
placement – with different share of traffic being served by different caches.

Consider now the 2017 CDF (solid lines). Results clearly show that many more re-
quests are now served by close servers, with 80 % of both Instagram and Facebook traffic
that is served by the 3ms far CDN nodes. As I will show later, this change is due to two
factors: i) Facebook that deployed its own CDN; And ii) Instagram infrastructure being
integrated into Facebook one.

Look now at Figure 3.9b which depicts the RTT CDF for Google web search servers
and YouTube streaming servers. In 2014, 80 % of YouTube traffic (blue curves) was al-
ready being served by nodes that were just 3ms far away from the ISP PoP. This is to
guarantee the high volume due to video traffic. In 2017, this already marginal figure
decreased even more – with the YouTube video cache now breaking the sub millisec-
ond RTT. That is, YouTube now directly places video servers inside the PoP, at the first
level of aggregation, toward a very distributed and pervasive infrastructure. Interest-
ingly, Google search engine web servers (red curves) have not yet reached such a fine
grained penetration. This is because they have to handle less traffic, and perform more
complicated processing than YouTube video caches.

I have confirmed these findings by directly contacting the ISP staff, who reported
the deployment of third-party CDN and cache nodes at the ISP first aggregation point.

I repeated the analysis for other services – not reported for the sake of brevity. With
the only notable exception of WhatsApp, whose servers are still following a centralized
approach with RTT in the 100ms range, all services are exhibiting the same trend, with
more and more CDN surrogate servers being placed closer and closer to the edge of the
network.

On the one hand, this proliferation of edge caches, and the delay of modern FTTH
access network is leading us to the sub-millisecond Internet [97]. On the other hand,
this poses new burdens on the ISPs, which have to host (and in some cases manage)
infrastructure of different content and CDN providers inside their network. Network
Function Virtualisation (NFV) would possibly help in reducing this burden [48], allow-
ing ISPs to host virtual CDN surrogates into their infrastructure.

3.6.2 The Internet of few giants
I now analyse the infrastructure of large content providers. Indeed, during the last 5

years most web services incurred restructuring, replacing servers, deploying their own
CDN, etc.

Figure 3.10 depicts the evolution over time of the infrastructure of Facebook (left
plots), Instagram (center plots), and YouTube (right plots). Top plots show the server IP

8Fraction changes by hour. Figures refer to statistics collected on the whole month.

23

3 – Five Years at the Edge: Watching Internet from the ISP Network

(a) Server IP addresses (b) Server IP addresses (c) Server IP addresses

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

20

40

60

80

100

T
ra

ffi
c

[%
]

GTT

FACEBOOK

AKAMAI

ISP

OTHER

(d) Destination AS

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

20

40

60

80

100

T
ra

ffi
c

[%
]

TELIANET

GTT

FACEBOOK

AKAMAI

OTHER

(e) Destination AS

2013/07

2014/01

2014/07

2015/01

2015/07

2016/01

2016/07

2017/01

2017/07
0

20

40

60

80

100

T
ra

ffi
c

[%
]

YOUTUBE

GOOGLE

ISP

OTHER

(f) Destination AS

facebook.com

akamaihd.net

fbcdn.net

201
3/0

7

201
4/0

1

201
4/0

7

201
5/0

1

201
5/0

7

201
6/0

1

201
6/0

7

201
7/0

1

201
7/0

7

D
om

ai
n

(g) Domain names

instagram.com

cdninstagram.com

201
3/0

7

201
4/0

1

201
4/0

7

201
5/0

1

201
5/0

7

201
6/0

1

201
6/0

7

201
7/0

1

201
7/0

7

D
om

ai
n

(h) Domain names

googlevideo.com

youtube.com

gvt1.com

201
3/0

7

201
4/0

1

201
4/0

7

201
5/0

1

201
5/0

7

201
6/0

1

201
6/0

7

201
7/0

1

201
7/0

7

D
om

ai
n

(i) Domain names

Figure 3.10: Facebook (left), Instagram (center) and YouTube (right) infrastructure evo-
lution over time.

addresses being active in each day, for the considered service. The 𝑦-axis represents a
single server IP address, sorted in order of appearance. A red dot is present if for that
day, that IP address was being used only and only for traffic of the considered service.
A blue dot is present if that IP addresses served also content for other services. Finally,
no dot is present if for that day that IP address did not serve any content.

In all cases, I see that new IP addresses keep appearing over time, counting several
tens of thousands unique IP addresses. Compare Facebook and Instagram in Figure 3.10a
and Figure 3.10b, respectively. During 2013 and 2014, a good fraction of addresses were
shared with other services. During the second half of 2015, I notice that both started
having major changes, with i) a decrease in the number of servers being contacted, and
ii) a specialization of servers that are not shared with any other services. In details, the
total number of IP addresses used daily by Facebook dropped from 3 800 to less than
1 000, out of which 700 are still shared. Since July 2016, shared IP addresses drop to very
few.

To better understand the reason behind this major change, I analyse to which Au-
tonomous System Number (ASN) each IP addresses belonged.9 Middle plots in Fig-
ure 3.10 show the breakdown of the per-day contacted IP addresses over major ASNs.

9I use the Routing Information Base (RIB) for each month from a major vantage point in the Route
Views project to map IP addresses to ASNs

24

3.7 – Related Work

Figure 3.10d and Figure 3.10e show a migration from generic CDNs to the Facebook pri-
vate CDN. In 2013, both services used third party CDNs, whose IP addresses where thus
shared with other services. For Facebook, the migration started before 2013, and was
completed by the end of 2015. For Instagram, the integration with Facebook infrastruc-
ture started in 2014 (Facebook acquired Instagram in April 2012), and was completed by
end of 2015. This migration has two major effects: i) IP addresses are now dedicated to
either Facebook, or Instagram; ii) the number of IP addresses contacted per day reduces.
Indeed since 2016 only 1 000 IP addresses are used to serve Facebook traffic, and only
300 for Instagram. Contrasting these figures with Figure 3.9a, I notice that this change
also benefited the RTT, which reduced significantly.

To better describe these changes, bottom plots in Figure 3.10 detail the traffic share
served by most important second level domain names.The thicker is the line, the higher
is the fraction of traffic served. For instance, Figure 3.10g confirms the migration from
generic Akamai CDN to Facebook proprietary infrastructure. Even more evident is the
migration for Instagram in Figure 3.10h.

Finally, I study the YouTube infrastructure evolution as a case of study of a very
popular service with a massive infrastructure. From Figure 3.10c, it is already possible
to see how different YouTube is with respect to the previous two cases. Indeed, YouTube
always used a totally dedicated infrastructure to serve videos. Its infrastructure keeps
growing until now, where 40 000 IP addresses are used daily. By looking at Figure 3.10f,
I observe that starting from the end of 2015, the caches deployed in the ISP start serving
most of YouTube traffic. This benefited RTT as previously shown. Regarding to the
Domain names used by YouTube, Figure 3.10i shows three main changes: until January
2014, all the traffic was served by the youtube.com domain; In 2014 the googlevideo.com
domain suddenly appeared, and immediately handled the majority of traffic; Finally, in
2015 YouTube introduced gvt1.com.

These results confirm the trend toward a consolidation of large services, which de-
ploy their own infrastructure, in a more and more capillary way, reaching several tens
of thousands of IP addresses. Furthermore, these infrastructure undergo sudden and
undocumented changes that have impact on the traffic monitoring and management of
IPSs and corporate networks.

3.7 Related Work
Several works measured Internet traffic from different points of views. Gebert et

al. [41] characterized the observed traffic mixtures in an ISP network during 14 days.
Liu et al. [69] designed a large scale measurement infrastructure and deployed it in
the core network of a cellular operator. Their focus is on the architecture, not on mea-
surements. Authors of [39] reported their experience on operating a monitoring in-
frastructure in ISP networks during 20 months in 2013, describing how protocols and
services are typically consumed from such networks. Muhammad et al. [94] analyzed a

25

3 – Five Years at the Edge: Watching Internet from the ISP Network

week-long traffic trace collected from a tier-1 cellular network, showing how machine-
to-machine traffic is different from human-generated traffic. All these works cover a
relatively short period, which prevent them to evaluate how the identified phenomena
have evolved over time.

Some works provided longitudinal views on Internet evolution. The authors of [29]
analyzed a dataset of BGP measurements that covers 12 years, showing how the BGP
ecosystem has evolved. Authors of [36] presented one of the first longitudinal studies
of Internet traffic, covering the period of 1998–2003. Authors of [13] evaluated 7 years
of MAWI traces, summarizing the evolution of Internet traffic in Japan. In [9] authors
evaluated 23 months of data collected from 53 k broadband installations, highlighting
for instance the relation between capacity and demand.

My work is similar to those efforts in terms of the employed methodology and gen-
eral goals. Similar to [13, 36, 29, 9] I focus on long-term trends instead of exploring
details of a measurement snapshot. I report statistics and trends about users’ habits, us-
age of services and protocols, while also focusing on the infrastructure changes. More
important, I show figures from a recent period, thus updating the knowledge about
Internet usage.

Also in terms of methodology, I monitor close to end-users (e.g., similar to [38, 71,
13]) and not in the core (e.g., as in [90, 67]). This allows to provide a comprehensive
picture of users’ data consumption, which is particularly relevant for ISPs.

Regardingmy conclusions, I highlightmany interesting facts about the Internet traf-
fic mix. A number of recent studies also reported on Internet traffic mix using different
vantage points. Authors of [90] reported the traffic observed in an IXP in 2013, com-
paring their findings to other vantage points [71, 41]. Labovitz et al. [67] analyzed two
years of network measurements collected from several Internet backbones, illustrating
how core Internet traffic is converging around few big players.

My work updates these studies showing trends from 2013 onward. Similar to [43]
and others, I present traffic mix focusing on services and the most popular application-
layer protocols. Whereas my data would allow to drill down on per-protocol break-
downs (e.g., as in [26]), these details are left out for the sake of brevity.

As said above, many ofmy conclusions validate results already identified in previous
works. Examples of known results that are confirmed or extended by mymeasurements
include: (i) the slow increasing trend on traffic per user [20]; (ii) the predominance of
video traffic [1, 33]; (iii) the fast increase in HTTPS deployment [34]; (iv) the decline
of P2P [40, 71]; (v) the concentration of Internet traffic around few big players [67];
(vi) the deployment of experimental protocols resulting in sudden changes in the traffic
mix due to bugs and private tests by large companies [91, 61, 68].

In some other cases, my results add more data points to complement previous find-
ings. For example, I could not find a clear general relation between the capacity cus-
tomers and their demands as in [9]. However, for customers relying on particular ser-
vices (like Netflix) these conclusions seem to hold true. Besides that, I also shed light
on new aspects of the Internet evolution, such as the costs of services to providers, the

26

3.8 – Conclusion

usage dynamics of new social network services such as Instagram and Snapchat, among
others.

Finally, some companies suchCisco periodically report traffic trends and forecasts [23],
including predictions on connected devices, Internet usage and traffic nature. By report-
ing detailed statistics from measurements collected in operational networks, my work
complements such studies and can contribute in gaining a better understanding of In-
ternet traffic.

3.8 Conclusion
In this chapter, I evaluated the evolution of the traffic during 5 years (2013–2017)

for a large ISP network. By processing large scale and longitudinal measurements from
a national ISP in Italy, I characterized the traffic consumption of broadband subscribers,
and the infrastructure web services deploy to reach customers. I observed subscribers’
daily traffic that more than doubled in the analyzed period. I studied the typical loads
imposed by popular and bandwidth hungry services. I testified the death of P2P in ex-
change for legal, cheap and easy to use video providers, and the quick rise and death
of social messaging applications typically accessed via mobile phones, able to generate
massive amount of data.

I observed the concentration of services within few big Internet providers, each de-
ploying its own infrastructure, unrolling custom protocols, and penetrating more and
more network boundaries. In the rush to bring server closer and closer to users, I wit-
nessed the birth of the sub-millisecond CDNs, where Internet giants like Google or
Facebook are placing caches directly in the ISP PoPs. All such changes, and the un-
predictability they are appearing, complicate the planning and management of the net-
works, possibly calling for closer integration between content providers and operators.

I believe the figures I presented in this chapter are vital to researchers, ISPs and
even web service provider to better understand the liveliness of the Internet, which
continuously changes, mixing slow and unpredictable changes.

27

28

Chapter 4

Towards Web Service Classification
using Addresses and DNS

Thework I present in this chapter is mostly taken frommy paper “Towards Web Ser-
vice Classification using Addresses andDNS” presented in the 7th InternationalWorkshop
on TRaffic Analysis and Characterization (TRAC 2016) [106].

4.1 Introduction
Monitoring how web services are used and how they consume network resources

is key to Internet Service Providers (ISP) when operating and planing the network.
Similarly, companies have a vital need of monitoring their enterprise networks – e.g.,
to ensure usage of accredited services, or to control the access to unauthorized ones.
Traffic classification has always taken a key role, and a variety of methods has been de-
veloped throughout the years. Initially focusing on protocol classification, e.g., HTTP
vs FTP vs P2P, classification goals must now target the identification of “web services”,
e.g., YouTube vs Facebook vs Whatsapp. Indeed, HTTP is becoming the de-facto appli-
cation layer protocol over which people access the large majority of Internet applica-
tions. Deep Packet Inspection (DPI), behavioral techniques [65, 15], have been used for
traffic classification. These methods have been recognized so far as effective for several
monitoring needs [109].

The convergence ofweb toward proprietary and encrypted protocols, however, chal-
lenges classification algorithms again. Indeed, I already observe a clear trend towards
moving Internet services to protocols such HTTPS [80], with HTTP 2.0 behind the cor-
ner and TLS encryption by default. While this trend is well-justified by the urgency in
improving end-users’ privacy, it renders many traffic classification algorithms useless,
since packet payload cannot be accessed anymore.

In addition, a handful of big players [42] is taking a prominent role in the Inter-
net, where content is more and more being served from shared infrastructure, such

29

4 – Towards Web Service Classification using Addresses and DNS

as in Content Delivery Networks (CDNs) and cloud computing platforms. This further
challenges behavioral classifiers [64], which rely on host profiling to determine the ap-
plications running on servers.

This chapter revisits the question of whether basic traffic features can be used to
differentiate traffic of major web services. The ambitious goal is to understand how fea-
sible would be the classification of web services traffic based only on server IP addresses
and queries to the DNS, i.e., the few features that are likely going to remain visible. By
relying on a large dataset containing flow-level measurements of user activity anno-
tated with DNS queries, I first investigate to what extent server IP addresses provide
enough evidences of the services used by people. I then evaluate the amount of traffic
that can be distinguished by combining server hostname and addresses to create rules.1
Finally, I discuss how stable such rules are in time.

Previous works have studied the importance of different features for traffic classi-
fication. In particular, a comprehensive survey on classification methods for encrypted
traffic is presented in [110]. The authors of [60, 100] found that IP addresses are among
the most informative features. I perform similar analysis to quantify how traffic of mod-
ern services can be classified using only addresses and hostnames. Authors of [85] are
the first to claim the use of DNS to classify traffic. In contrast to the method proposed
by authors of [85], I neglect well-known protocols (e.g., FTP or P2P). Instead, I fo-
cus on typical services that make the majority of encrypted web traffic nowadays, and
characterize when hostnames are needed, and when only addresses would be sufficient
for classification. More recently, authors of [101, 37] used Server Name Indication (SNI)
strings found in TLS handshakes and DNS queries for classification. While authors con-
cluded that hostnames alone are insufficient, they targeted protocol classification (e.g.,
SIP, HTTP, etc.), thus missing fine-grained identification of single web services. Other
authors [7, 78] argue the usefulness of DNS for classifiers, but mostly focusing on how
to label flows, missing a study of classification accuracy.

My work is a preliminary evaluation of web service classifiers in the modern Inter-
net. My analysis provides the following main findings:

• Up to 65% of the IP addresses are associated to a single hostname. Those servers
however are responsible for less than 15% of web traffic volume.

• Despite the simplicity, classification based solely on (group of equivalent) IP ad-
dresses can discern up to 55% of the web traffic. This can be achieved by uncov-
ering and aggregating the various hostnames related to a given service, and then
enumerating corresponding IP addresses.

• Lifetime of classification rules varies strongly, with some services requiringweekly
updates and others showing stable names and addresses even after a year.

1In the remaining of the chapter, I omit the word “server” unless necessary.

30

4.2 – Datasets and Methodology

Table 4.1: Overview of the datasets.

Name Flows Server IPs Period
ADSL 13.25G 49.25M 1 year
Campus 1.12G 2.55M 2 months

Campus-DNS – 1.13M 2 weeks

• Even when tagging flows with hostnames on-line using all DNS queries of each
client (e.g., as in [7]), there can be complex scenarios when facing big cloud com-
puting platforms (e.g., Amazon AWS)

These results are a first step towards classification algorithms that are able to work
with minimal metadata. While these data will certainly not solve some identification
problems (e.g., for network forensics and intrusion detection), I believe they represent
a set of non-intrusive features to tackle common monitoring tasks, such as traffic ac-
counting and engineering.

4.2 Datasets and Methodology
The aim of this chapter is to investigate whether IP addresses and DNS traffic pro-

vide enough information to design web service classifiers, targeting in particular those
prominent services which adopt encryption, such as HTTPS, QUIC or SPDY. I take a
data driven approach and look into real traces to run a feasibility check in this chapter,
before going through a complete system design.

4.2.1 Datasets
I use two data sources in my analysis. First, I rely on the datasets described in Chap-

ter 2. In short, I use Tstat [35] to perform passive measurements and collect data related
to users’ activity. I use two datasets coming from a University Campus and an ISP net-
work both located in Italy, namely Campus and ADSL. The analysis of this chapter is
limited to a shorter period, as the duration of datasets reaches 5 years: For ADSL, I con-
sider one full year, while for Campus, I use a period of 2 months.

Second, in parallel to Tstat, I deploy PDNS2 in one of the monitored links to get a
deeper insight into the association between hostnames and server IP addresses. PDNS
logs all DNS activity in the network independently from the resolver the client employs,
including queries and responses with the returned addresses and the time-to-live found.

Table 4.1 summarizes the datasets employed in this chapter. The data from campus
includes traffic generated by wired and WiFi networks during 2 months in 2015. PDNS

2https://github.com/gamelinux/passivedns

31

4 – Towards Web Service Classification using Addresses and DNS

was deployed in the campus for 2 weeks in Nov 2015. The residential dataset includes
traffic of users’ devices connected via Ethernet and/or WiFi at home during a full year
(2015). In total, my datasets include statistics about more than 14 billion flows, and
around 790 million records in DNS requests/responses.

4.2.2 Methodology
I study the association between IP addresses and hostnames to understand the role

of addresses in modern traffic classification. I first assume hostnames provide sufficient
means to distinguish services – i.e., different services use different hostnames. I will
discuss later to what extent this assumption holds in practice. Hostnames coming ei-
ther from SNIs or from DNS queries are the ground-truth in this scenario. I characterize
how the relation between names and addresses evolves over time. In particular, I look
for those IP addresses that serve only a single hostname, i.e., only one hostname is as-
sociated to a given IP address. I call this singleton IP addresses, or singleton in brief. I
then quantify the percentage of traffic exchanged with singletons, to obtain an indica-
tion of the classification coverage that could be achieved using only the IP addresses as
features.

Motivated by the low volume of traffic that could be discerned by such an approach,
I study how to improve classification by enumerating the different hostnames (and ad-
dresses) used by services. I call the list of names of a service its bag of domains. I inter-
actively build the bag of domains for a list of services by relying on SNIs and hostnames
exported by Tstat. A graphical framework allows one to inspect names linked to IP ad-
dresses. I illustrate this procedure with examples in the next section. I focus on popular
services running over HTTPS – e.g., Facebook, Google Video, Dropbox, Apple iCloud,
Twitter etc. – since those services cause the greatest part of the encrypted traffic in the
monitored networks.

4.3 Enumerating Names and Addresses of Services
In this section, I visually explore how hostnames and addresses are associated. I

represent the associations as a graph, in which nodes are IP addresses and hostnames,
and edges exist if a hostname has been resolved to an address. I initially search for
hostnames containing terms of interest. For example, by searching for whatsapp in
the data, I discover that Whatsapp services are offered from at least two second-level
domains – i.e., whatsapp.com and whatsapp.net. I call those the core domains, and
from them I explore linked IP addresses, and correlated hostnames.3

3Terms of interested could be obtained by active experimentation with target services in a testbed
such as in [11].

32

4.3 – Enumerating Names and Addresses of Services

whatsapp.net

eD.whatsapp.net

mms.whatsapp.net

mmiD.whatsapp.net

mmf.cdn.whatsapp.net

mmx.cdn.whatsapp.net

web.whatsapp.com

*-crashlog.whatsapp.net

Figure 4.1: IP addresses and hostnames of Whatsapp. Most IP addresses are exclusively
used by the service.

facebook.com

akamai.net

14.7%

akamaihd.net

12.8%

edgesuite.net

6.6%

fbcdn.net

5.9%

akamaiedge.net

4.4%

liverail.com
3.3%

instagram.com
2.9%

adnxs.com

2.9%

edgekey.net

2.6%

 others

19.4%

Figure 4.2: Hostnames sharing IP addresses with Facebook.

Figure 4.1 and Figure 4.2 provide examples. Figure 4.1 depicts how second-level do-
mains are associated with whatsapp.net. For simplicity, the figure is built using a
5-minute sample of Campus-DNS trace. The core domain is shown as a central node;
IP addresses are nodes colored either green (singletons, i.e., edge links them to only
one whatsapp.net sub-domain), or red (not singletons, with multiple edges to mul-
tiple domains); and yellow nodes represent whatsapp.net sub-domains sharing IP
addresses with each others.

I notice that Whatsapp IP addresses are not shared with other services. Therefore,
once all addresses are enumerated, Whatsapp traffic can be identified without further

33

4 – Towards Web Service Classification using Addresses and DNS

 0.5

 0.6

 0.7

 0.8

 0.9

1.0

 1 10 100 1000

C
D

F

Number of names

Hostname

Third-level

Second-level

Figure 4.3: Distribution of names per IP address. Campus-DNS.

information.
Figure 4.2 shows more complicated scenarios emerging from facebook.com. To

improve visualization, nodes representing IP addresses are replaced by edges labeled
with the percentage of addresses connected to pairs of hostnames – e.g., 3.3% of the ad-
dresses seen as facebook.com are also seen as liverail.com. Besides sharing ad-
dresseswith Facebook’s affiliated services (e.g., Instagram), Facebook’s usage of Akamai
CDN results in thousands of hostnames unrelated to Facebook appearing in the graph
as time progresses.

In summary, the association between IP addresses and hostnames brings informa-
tion, but the presence of CDNs create conflicts and ambiguity. Next, I quantify how
much traffic could be classified despite such ambiguities.

4.4 Classification Using IP Addresses
I first provide an overview on all IP addresses and hostnames in the 2-week long

dataset of DNS traffic (i.e.,Campus-DNS). I perform this analysis focusing onDNSA records.
For each IP address returned in a DNS response, I collect all hostnames requested by
clients.

Using Campus-DNS dataset, I count how many hostnames are linked to each IP ad-
dress.Three levels of granularity are considered: (i) complete hostnames, e.g.,img.www.ex-
ample.com; (ii) third-level domains, e.g., www.example.com; (iii) second-level do-
mains, e.g., example.com. Figure 4.3 reports the empirical Cumulative Distribution
Function (CDF) of the number of names associated with each IP address.

34

4.5 – Classification Using Bags of Domains

0.0

 0.2

 0.4

 0.6

 0.8

1.0

 1 10 100 1000 10000

C
D

F

Number of names

Hostname
Third-level

Second-level
Bags of domains

Figure 4.4: Distribution of the traffic related to IP addresses with different numbers of
hostnames. Campus.

On the leftmost part, I notice that more than the 65% of the IP addresses are sin-
gletons. This percentage grows to 70% when considering third-level domains, and to
80% when considering second-level domains. Those results confirm previous observa-
tions (e.g., see [7, 16]) and, at first, suggest that a great part of the traffic could be easily
classified by simply using server IP addresses.

A completely different picture however emerges when taking traffic volume into ac-
count. Although most IP addresses are singletons, such addresses are responsible for a
small fraction of the traffic. I quantify this effect in Figure 4.4 using the Campus dataset.
For each IP address, I count the amount of bytes it handles, and compute then the han-
dled fraction. Figure 4.4 shows the resulting CDF. Remind that I include only HTTP
and HTTPS traffic here. Less than 15% of the traffic is owing to singletons, even if those
cases are 65% of the addresses.The picture does not change considerably when third- or
second-level domains are used: Percentages are 25% and 33%, respectively. In a nutshell,
a classifier that takes only IP addresses as input would identify up to 33% of the traffic
without mistakes. Part of the remaining traffic would necessarily be misclassified, since
many hostnames (and thus services) possibly run over the same address. I conclude that
server IP addresses alone provide a very poor classification coverage for the web traffic.

4.5 Classification Using Bags of Domains
I repeat the analysis after creating bags of domains. A bag represents the set of do-

mains a service uses to handle its content. I consider 25 coarsely defined groups of
services, including e.g., Google, Facebook and Dropbox. For example, Facebook bag of

35

4 – Towards Web Service Classification using Addresses and DNS

Table 4.2: Popular services and classification precision.

Core Domain facebook.com google.com googlevideo.com whatsapp.net twitter.com dropbox.com
Number of Addresses 3,196 7,286 13,133 851 279 2,227

Singletons (%) 29.8 58.7 79.9 99.8 83.9 59.9
Traffic to singl. (%) 85.8 38.5 1.2 100.0 78.7 91.3

Precision (%) 59.1 33.8 77.2 100.0 96.1 99.1

domains includes facebook.com as well as Facebook’s domains pointing to CDNs,
such as fbcdn.net and fbstatic-a.akamaihd.net. So far, I manually group do-
main names that belong to a given service, since I observe that bags of domains are
rather stable in the datasets.

Given a bag of domains, I extract IP addresses corresponding to any name in the
bag. I next check if those addresses have been resolved also for hostnames not in the
bag. Those IP addresses that create ambiguity are discarded. Those that correspond to
hostnames in the bag only are singletons for the service and thus provide a good classi-
fication, i.e., traffic is uniquely linked to the targeted service.

Figure 4.4 reports the CDF of traffic according to singletons for the services. The
bags of domains substantially increases the fraction of traffic that can be discerned.
Three regions are visible in the figure. First, close to 55% of the traffic is related to IP
addresses that are connected to a single bag of domains. Second, up to 10% of the traffic
is caused by IP addresses shared by at most 10 names or bags. Part of these cases seems
to occur because I have created bags only for few popular services, and thus names could
be aggregated further. Third, about 20% of the traffic volume is caused by IP addresses
shared by hundreds or thousands of names. Those cases are mostly servers in CDNs,
and it is hard to discern services without full information about hostnames queried by
clients. The intuition suggests that the bag of domains approach would be ineffective
for this latter group. I will investigate these cases further in coming sections. I perform
a similar calculation accounting flows instead of bytes, obtaining very similar results,
not reported here for lack of space.

I conclude that a very simple classifier that relies on server IP addresses only could
discern up to 55% of the web traffic. However, this is achievable only if service host-
names are aggregated, and their addresses are enumerated. Important, IP addresses in
bags of domains can be learned by inspecting logs in DNS servers, or by actively query-
ing the DNS system. Finally, the development of a methodology to automatically create
bags of domains and to enumerate IP addresses is explored in the next chapters.

4.6 Use Cases

4.6.1 A Deeper Look into Popular Services
I now focus on six popular services and study in details how hostnames and ad-

dresses are used. I further estimate the precision of different classification approaches

36

4.6 – Use Cases

when applied to these services. Table 4.2 reports statistics about 6 services over two
weeks of observations. I calculate statistics using the period in which Campus and
Campus-DNS datasets are coincident. I focus on the most popular web services cat-
egories such as Social Networks, Search Engines and Cloud Storage. Thus, I take into
account Facebook, Google, Whatsapp, Dropbox and Twitter, considering all traffic to
their bags of domains.

Table 4.2 shows that the number of IP addresses hosting each service (2nd row)
varies considerably,4 as it varies the percentage of those addresses that are fully dedi-
cated to the services (3rd row - singletons). For instance, while 99.8% of the IP addresses
servingWhatsapp are singletons,more than 40% of the addresses of Google are observed
in DNS queries related to non-google.com bag of domains. No address has been seen
in more than one of the considered bags, except for Google and Googlevideo: all non-
singletons of Google Video appear within Google’s bag, and the 89.9% of Google’s are
in Google Video’s, unveiling a shared infrastructure.

Next, I quantify the traffic related to singletons (4th row): Using the Campus trace,
and using the DN-Hunter or SNI as ground truth to identify the service associated to a
flow, I sum up all traffic for all hostnames in each bag of domains. I then compute the
fraction of traffic that is associated with singletons for the same service. This number
gives an estimation of the coverage if one relies only on the singletons to classify – i.e.,
the coverage when the classification provides 100% precision.

I can see that the percentage of traffic going to singletons is quite low for some
services. Note for instance that only 1.2% of Google Video traffic goes to singletons,
despite these being almost 80% of IP addresses of googlevideo.com. This happens
since the traffic balance among the thousands of GoogleVideo servers is highly skewed
toward a small subset of them, i.e., the most popular ones. Those addresses are also the
ones for which hostnames of other bags of domains are found, and thus they are not
singletons. For other services, singletons provide very high coverage: 100% ofWhatsapp
traffic goes to singletons (cfr. Figure 4.1), whereas percentages are relatively high also
for Facebook (85%), Twitter (78%) and Dropbox (91%).

Finally, I estimate the precision of a classifier that marks all traffic related to ad-
dresses in the bags as belonging to the given services, being those singletons or not.
That is, I estimate the precision of a classifier that have maximum coverage for the se-
lected services. Since not all addresses are singletons (see 2nd row in Table 4.2), I expect
to make classification mistakes.

The last row in Table 4.2 quantifies such mistakes. I can see that for three examples
in the table – Whatsapp (100%), Twitter (96%) and Dropbox (99%) – the precision would
be indeed very high. This means that only a minor amount of traffic not belonging to
the services is mixed in their bags of domains. Google Video also presents a very high

4The total number of addresses serving each service is likely higher since only contacted addresses
are counted.

37

4 – Towards Web Service Classification using Addresses and DNS

 0

 25

 50

 75

 100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

IP
s

st
il

l
v

al
id

 [
%

]

Months

Facebook
Google

Googlevideo

Whatsapp
Twitter

Dropbox

Figure 4.5: Persistence of addresses of popular services.

precision thanks to high traffic volume of the YouTube video service. Services that are
mixed up with Google Video produce a low volume, even if they reach addresses in
the Google Video bag. For Facebook, the classification precision is rather low, and this
questions the applicability of the approach for such cases.This is because Facebook uses
Akamai CDN, which hosts a multitude of alien services, which generate overall a large
amount of traffic.

All in all, the classification based solely on addresses and bags of domains shows
interesting potential. It enables the classification of a high share of traffic, with high
coverage and precision for many popular services, while requiring minimal collection
of data. Yet, a per-service assessment of precision and coverage is needed.

4.6.2 Names and Addresses over Time
In this section, I analyze how the associations between names and addresses evolve

over time. In particular, I’m interested in knowing how stable the rules based on IP
addresses and bags of domains are for popular services. I investigate such aspects using
ADSL dataset, which covers a full year of a residential network. For each month of
data, I create lists with all addresses used by popular services considering their bags of
domains. I then track how the lists change throughout the year.

Figure 4.5 summarizes results by showing the percentage of addresses that is still
on the lists, when compared to the first month of observation. One can see that all
services present changes after Jan 2015, which is used as reference in the figure. Similar
shapes emerge if othermonths are taken as reference. However, it is interesting to notice
differences among services.Whereas the list of addresses for Google Video, for instance,
is rather stable, as little as 15% of the Dropbox addresses seen in Jan 2015 remain in the
list. Manual inspection suggests that addresses are passing for migration from US data-
centers to EU data-centers; clients are now diverted to different data-centers than in

38

4.7 – Traffic in Ambiguous Names

 0.1

 1

 10

 100

fbcdn-video-X
-a

fbcdn-creative-a

fbstatic-a

fbexternal-a

fbcdn-vthum
b-a

pdlvim
eocdn-a

fbcdn-sphotos-X
-a

skyfiregcs-a

tedcdnpb-a

fbcdn-dragon-a

igcdn-photos-X
-a

progressivem
lx-a

prezi-a

a248.e

T
ra

ff
ic

 s
h
ar

e
[%

] Specific name
Generic name

(a) Akamai

 0.01

 0.1

 1

 10

 100

eu-irl-00001.s3

w
etransfer-eu1.s3

us-ore-00001.s3

zdub-1m
.s3-eu-w

est-1

s3 us-std-00001.s3-external-1

github-cloud.s3

s3-eu-w
est-1

bbuseruploads.s3

ap-sin-00001.s3

soundcloud-upload.s3

quay-registry.s3

s3-us-w
est-2

lh-content.s3

T
ra

ff
ic

 s
h
ar

e
[%

] Specific name
Generic name

(b) AWS

Figure 4.6: Top sub-domains hosted by Amazon and Akamai.

previous months 5. In several cases, such as for Twitter, almost 50% of the addresses
already disappeared after a single month of observation.

Overall, I conclude that while the lists of addresses are stable in short intervals,
they radically change in medium to long periods (Figure 4.5). Such intervals strongly
depend on services and location of the monitored network. Classifiers relying on lists
of addresses must deploy a methodology to constantly check and update their lists.

4.7 Traffic in Ambiguous Names
In the previous sections I evaluated the traffic related to IP addresses using the an-

notated hostnames as ground-truth. Now I investigate to what extent annotated traffic
is reliable to the classification problem. I evaluate the case where each flow is associated

5See also https://www.dropbox.com/help/9063

39

4 – Towards Web Service Classification using Addresses and DNS

to a hostname directly at the vantage point, as done by DN-Hunter or by extracting the
SNI via DPI. Thus, the question is whether hostnames are unique to bags of domains of
different services. I thus quantify how often hostnames are used by different services.

I focus on two examples, Amazon Web Services (AWS) and Akamai, and enumer-
ate all sub-domains of amazonaws.com and akamaihd.net contacted by clients in
the datasets. Then, I manually try to identify the services relying on each sub-domain.
In some case, hostnames give a clear hint about services – e.g., fbcdn-sphotos-c-
a.akamaihd.net is used by Facebook, although generic names of the infra-structure
providers are often observed as well – e.g., eu-irl-00001.s3.amazonaws.com is
used by many services outsourcing to AWS.

Figure 4.6 highlights the top sub-domains of the providers according to their traf-
fic share. Sub-domains are split into two groups: specific and generic. The first con-
tains sub-domains that can be definitively associated to a service, whereas all other
sub-domains are marked as generic.

When summing up all bytes related to specific sub-domains, I notice that 98% of
the traffic related to Akamai can be distinguished. Therefore, classifiers can reach high
coverage and precision when handling Akamai traffic, provided that information about
hostnames requested by clients is available.

The scenario is different for AWS. Only 23% of the traffic related to Amazon has an
informative sub-domain. One can see in Figure 4.6 that only 3 among the top-14 AWS
sub-domains in the datasets provide hints on the service generating the traffic. Such
cases without informative names are indeed hard to be discerned and will require a
much more elaborated classification methodology. I explore in the next chapters clas-
sifiers that correlate names of distinct flows, including both temporal and spacial cor-
relations among flows.

4.8 Conclusions
This chapter provided a first look into traffic classification for modern web services.

I visually explored how hostnames and addresses are associated, and studied the role of
IP addresses in classification. My results show that up to 55% of web traffic can be iden-
tified relying solely on addresses. This coverage is however achieved only if the several
hostnames used by services are uncovered, and the respective addresses are enumer-
ated. For some specific services, IP addresses can classify most of the traffic. Those re-
sults call for the development of novel classification methods, which will operate with
minimal information collected from the network, thus respecting users’ privacy.

Nevertheless, I also pointed out that the association between hostnames and ad-
dresses changes frequently. For instance, for a selection of services, more than half of
the addresses were changed during one year of observations.

This chapter identified several directions for further work. Firstly, I showed that a

40

4.8 – Conclusions

number of services shares hostnames, in particular those services hosted at cloud envi-
ronments. The identification of services is not possible in such cases, even when flows
are tagged with client-requested hostnames. Methods to classify this traffic are needed,
and I will pursue that in the future. This motivates the design and implementation of
algorithms to automatically retrieve the list of hostnames associated to services (i.e.,
the bags of domains) as well as to detect changes and to update the list over time. This
scenarios are explored in the following chapters.

41

42

Chapter 5

WHAT: Automatic Accounting of
Modern Web Services

The work I present in this chapter is mostly taken from my paper “WHAT: A Big
Data Approach for Accounting of Modern Web Services” presented in the 2016 IEEE In-
ternational Conference on Big Data (Big Data 2016) [108].

5.1 Introduction
Monitoring how web services are used and how they consume network resources

is key to Internet Service Providers (ISP) when operating and planing the network.
Similarly, companies have a vital need of monitoring their enterprise traffic – e.g., to
limit the consumption of bandwidth, to spot sudden growth in usage of services, and
to enforce corporate polices on allowed applications and services. With as much as
40% [19] of traffic generated by a corporation that is directed to webservices offering
“shadow IT” services, i.e., cloud or SaaS applications, network managers lack of tools
to understand and control network usage.

Monitoring is the key to understand, and traffic classification plays a fundamental
role in knowing what applications and services are being accessed by observing what
protocols and servers are being used. A variety of methods have been developed in the
past [65, 15]. Today a large and growing fraction of information exchanges happening
over the Internet is based on the HTTP(S) protocol, i.e., in the Web. Whether users are
browsing the web, accessing business or leisure applications, using mobile or desktop
applications, sharing or accessing content, chances are HTTP(S) is used to support the
communication. The clear trend towards encryption by default [80] leaves in-network
monitors with mostly layer-3 and layer-4 information, eventually augmented with the
name of the server as obtained via DNS [7] or TLS handshake parsing. As illustrated in
the previous chapter, even the identity of the server to which traffic is directed cannot
be leveraged to associate traffic to specific user activities because (i) Content Delivery

43

5 – WHAT: Automatic Accounting of Modern Web Services

Networks (CDNs) and cloud computing platforms co-locate multiple services and ap-
plications and (ii) websites, services and mobile applications generate HTTP(S) flows
to different servers because of dynamic content, ads, plugins, and trackers, etc.

In this chapter, I address the challenge of accounting traffic to web-services. Specif-
ically, I answer the questions of what is the service a user intends to visit? and what is the
traffic associated to such visit?

WHAT (Web Helper Accounting Tool), the system presented in this chapter, starts
from a simple flow level trace annotated with the domain name of the servers. It ad-
dresses the first question by automatically singling out core domains as representative
of the web services that users originally intended to visit. The second question is ad-
dressed by identifying the support domains that are subordinate to each core domain
as a result of downloading pictures, plugins, videos, ads, and then triggering traffic to
hosts that serve it, e.g., servers of CDNs, clouds, etc. At this point WHAT is able to tally
the overall volume of traffic associated to user intentions.

The novel approach introduced by WHAT is based upon the following steps:

• Automatic identification of core domains, based on a machine learning classifier
that, as demonstrated from the results presented in this chapter, achieves excel-
lent accuracy (higher than 96% in our evaluation).

• Bag of Domains (BoDs) creation: the BoD provides a model of the traffic gener-
ated by accessing a web service that is based on the unordered set of all possible
support domains that may be triggered by the core domain visit. Ingenuity is re-
quired to weight support domains and avoid background traffic to pollute BoDs.
WHAT successfully adopts text processing approaches to obtain representative
BoDs.

• Classification: newly observed traffic flows are uniquely associated to a specific
BoD, as core or support domains. This task is not trivial since some domains can
be core in a BoD and support in others. For example, the same YouTube video can
be accessed from the YouTube page or embedded in any web page.

The final output is the set of flows annotated with the core domain of the BoD they
were associated to. Analytics can then be run to present statistics on the corresponding
traffic. My contributions are:

• A novel technique to identify the web services users intend to access, and model
to associate traffic to them;

• A fully working system implementing such technique and capable of applying it
on simple flow level traces;

• A thorough performance evaluation, done considering both a 1.5 year long dataset
collected from a live ISP network, and synthetic traces generated from actual
browsing history of 30 volunteers;

44

5.2 – Scenario & Problem Statement

• The application of WHAT to case studies, investigating how people consume
YouTube videos embedded in other webpages, or how CDN or tracking services
traffic is split among services.

The remaining of the chapter is organized as follows: Section 5.2 explains the prob-
lem in detail by posing examples of possible scenarios. Section 5.3 describes WHAT
internals while Section 5.4 introduces and characterizes the datasets. Section 5.5 then
presents results of evaluation and parameter tuning, while Section 5.6 reports my exp-
lerience in deploying WHAT in a real operational network. Section 5.7 presents related
work on traffic classification and user activity discovery. I conclude in Section 5.8.

5.2 Scenario & Problem Statement
I assume that a passive network monitoring infrastructure is in place and exposes

per-flow information records. Beside traditional information such as flow identifier,
client identifier, volume, timestamp etc., I assume each flow is annotated with the do-
main name of the server being contacted.1 WHAT aims at classifying traffic flows ac-
cording to the website that triggers them. It targets primarily accounting applications.

Consider a user browsing the web and visiting two services C1 and C2, as sketched
on the top plot of Figure 5.1. Her browser opens dozens of TCP connections (arrows in
the timeline) to issue HTTP/HTTPS requests to tens of servers in different domains to
retrieve elements of the page such as images, CSS files, third-party objects, or scripts
that, once run, may generate even more requests.2 Some of these domain names may
be completely different from the one of the originally visited service. I am interested in
accounting all such traffic as triggered by the original service.

I call the originally requested domain the core domain, and those automatically trig-
gered by core domains the support domains. The top plot in Figure 5.1 shows a sequence
of flows generated by the user visting C1 and C2, over time. The plot consists in a time-
line with arrows marking the instant of time flows to a server are started. Taller arrows
are the core domains, while arrows with the same color are flows triggered by the core
domain. The terminal the user is using may be running background applications that
in turn may generate traffic flows which are not linked to the actual web services she
is accessing to. I call those background domains.

The goal ofWHAT is to account all traffic generated by a user visiting a core domain.
For this, it relies on the list of possible support domains that may serve objects that are
part of the main service. I call this list the Bag of Domains (BoD) for the given core
domain.

1Annotation can be done using DNS traffic or TLS handshake, as I describe later in 5.3.2.
2I use the term “domain” informally throughout the chapter, meaning Fully Qualified Domain Name

(FQDN).

45

5 – WHAT: Automatic Accounting of Modern Web Services

Time

𝐶1
Support C 1

𝐶2
Support C 2

(a) Core Domains 1 and 2, background flows in gray

Time

𝐶1 𝐶2

(b) Parallel navigation – distinct sets of domains

Time

𝐶1 𝐶2 Ambiguous Domains

(c) Parallel navigation – ambiguity (black arrows)

Figure 5.1: Examples of entries (flows) in network traces and howWHAT behaves when
labeling them.

5.2.1 Examples
Figure 5.1a depicts a simple case in which a user contacts two websites in two differ-

ent moments, while some applications are generating background traffic – see red, blue
and gray arrows. Flows to each core domain are seen first, followed by flows to support
domains. In the hypothetical case of Figure 5.1a, there is no ambiguity among BoDs, and
domains associated with background traffic. Every domain seen in the network belongs
to exactly one BoD, while background domains are not part of any BoDs. Thus, WHAT
annotates each flow whose domain is in the BoD of the core domain closest in time. I
call these best BoD.

Figure 5.1b shows a scenario where parallel navigation takes place. For instance,
the user may use multiple browsers or tabs to navigate through pages at the same time.
Or multiple devices may share the same connection via, e.g., NAT. In these cases, the
flow id information may not allow to identify which user/terminal/application/tab, i.e.,
client, is generating the traffic. Yet, if the BoDs of C1 and C2 have no common domain,
WHAT can correctly associate flow to C1 and C2 by checking in which BoD they belong
to.

Figure 5.1c depicts a scenario where flows with ambiguous names appear in the
trace. Those are ambiguous domains (black arrows), and ingenuity must be used to link
them to the correct core domain. I envision threemajor situations generating such cases,
which are solved via heuristics.

• The ambiguous domain is a support domain, but it appears in several BoDs.WHAT
assumes that the closest core domain is the right one – i.e., 𝐶2 is this example.The

46

5.3 – The WHAT System

Core Domain Discovery BoD Learner Traffic ClassifierCore Domains BoDs

Traffic Traces

Domains
Ranking

Core Domains
Classification
(Active Probe)

Domain-Annotated
Flows

BoDs Creation
𝑡𝑓, 𝑡𝑓_𝑖𝑑𝑓 Computation

abc.de.com

fgh.ij.com

lmn.op.com

...

Live Traffic

Per-Flow
Classification

Domain-Annotated
Flows

core: fgh.ij.com
opq.rs.com 1.24 0.89

tuv.xz.com 0.57 0.75

abc.de.com 0.34 0.42

...

Labeled Flows
(Core + Support)

Unlabeled Flows
(Unknown)

Domain-Annotated
Flows

Figure 5.2: Architecture of WHAT to classify interactive web flows.

accuracy of this assumption when increasing the number of parallel navigations
is evaluated later in this chapter.

• A support domain is also a core domain. For instance www.facebook.com can
be accessed directly by the user (as core domain), or as third-party service (e.g., a
website embedding a www.facebook.com plugin). To disambiguate those cases,
WHAT examines flows coming before and after the ambiguous entry. It calculates
the chance for that flow to be a core domain that triggers a new independent
navigation, or rather to be a support domain for the previous core domain.

• A domain is used by background and core services. This is the case of a back-
ground application accessing e.g., www.dropbox.com, or the user accessing it
on the web. As before, WHAT compute a score to consider it support or back-
ground domain.

These simple examples clearly show how tangled the picture can be. Next, I describe
the system design and how WHAT handles all these cases.

5.3 The WHAT System

5.3.1 Architecture Overview
WHAT is a supervised system. It first builds a model based on labeled data traces,

and then uses the model to classify traffic online. It aims at defining models in an as
much as possible automatic way, minimizing user intervention, and naturally adapting
them to the usage scenario. Flow records exported by passive network measurement
devices are the entities to be classified by WHAT (e.g., NetFlow, or logs collected by

47

5 – WHAT: Automatic Accounting of Modern Web Services

proxies). WHAT then assigns flows to the service (identified by its domain name) that
most likely triggered them – i.e., with the mostly likely core domain.

Figure 5.2 summarizes WHAT architecture. It is composed of three modules: The
Core Domains Discoverer, the BoD Learner and the Traffic Classifier. The former two
modules use archived traces to train the system, whereas the latter module is deployed
in the network to classify new flows from live networks. I next describe the expected
input data format, followed by the working internals of each module in WHAT .

5.3.2 Input Data
WHAT is designed to receive ordinary flow records, such as exported by netflow.

Given a flow 𝑓 (e.g., client and server IP addresses, ports and transport protocol), let
𝑡𝑠𝑓, 𝑡𝑒𝑓 be the start and end timestamp, i.e., the time of the first and last packet. I as-
sume that the initiator of the flow is the client, and the other end-point is the server.The
knowledge of the network topologymay ease this step if the direction of traffic is known
a priori – i.e., all clients belong to known subnets. I assume that the flow record is en-
riched with information about the server FQDNs 𝑑𝑓 used by clients when obtaining the
server IP address. Flowmeters typically export information from the network and trans-
port layers, missing the association between server IP addresses and FQDNs. Different
methods can be used to annotate flow records with FQDNs. For example, DNS logs can
be employed to extract queries/responses and annotate records in a post-processing
phase. Equally, some flow meters export such information on-the-fly directly from the
measurement point for popular protocols [51]. For instance, Deep Packet Inspection
allows one to extract Server Name Identification (SNI) from encrypted TLS flows, or
server Host: from plain HTTP flows.

In this chapter, I rely on Tstat [107] to collect data summarizing flows, using the
monitoring infrastructure described in Section 2.

5.3.3 Core Domains Discoverer
The first task for trainingWHAT is to identify core domains, i.e., those domains 𝐶 =

{𝑐1,… , 𝑐𝑘} that the users directly access to, and support domains, i.e., those domains
𝑆 = {𝑠1,… , 𝑠𝑗} which the application generates to fetch all objects that are part of the
page. This is a classic classification problem, i.e., given a domain 𝑑, return if it is a core
or support domain.

Instead of building a custom heuristic to solve the problem, WHAT classifies do-
mains by means of a decision tree classifier [47]. The training of the decision tree is
performed using a labeled dataset, in which a list of core and support domains is given,
and features are extracted to characterize each of them. During training, the classifier
builds an internal model (a decision tree in this case) and later uses it to classify a do-
main based on the sole knowledge of features.

48

5.3 – The WHAT System

The engineering of the decision tree requires ingenuity. First, I need to define the
set of features to use. I opt for an extensive list guided by domain knowledge, and then
let the classifier to choose which are those that better allow to separate core and sup-
port domains. Given domain 𝑑 = 𝑤𝑤𝑤.𝑎𝑐𝑚𝑒.𝑐𝑜𝑚, the system visits the main page at
http://www.acme.com/ by using the Selenium automatic browser, and automati-
cally extract features [93]. Table 5.1 summarizes the list of features, giving a brief de-
scription and the expected behavior. For instance, for core domains, I expect the length
of the main HTML response to be quite long, and to include large number of objects,
possibly hosted in different domains, with the overall page resulting quite sizable. I ex-
pect the domain to start with www, and eventually accept a redirect to the same domain,
i.e., HTTP response code can be 2xx or 3xx, but not 4xx. I expect the server to be a
well-known solution, and serve a HTML page. Finally, core domain flows should ap-
pear separated in time from previous flows due to user think time. In practice, however,
I expect the separation between core and support domains to be much blurred.

Given the list of core and support domains, I build a labeled dataset that I use for
training and testing. I opt for the J48 implementation of the C4.5 algorithm offered by
Weka [47]. Interestingly, the final decision tree results in a very simple, efficient, and
intuitive model which I report below:

if (HTML resp. length <= 3375B) then Support
else

if (redirect to == other) then Support
else Core

Despite its simplicity, performance shows that overall accuracy is higher than 96%when
tested against 1000 domains. Details are provided in Section 5.5, along with parameter
sensitivity. Notice the high number of classes, making this result particularly remark-
able, where traffic classifiers typically chose among few classes representing L7 proto-
cols (e.g., HTTP, Peer-To-Peer, etc.).

Aiming at a self-configuration, during bootstrapping phase WHAT automatically
builds the list of the most popular domains from the vantage point. Then it runs an
active crawling phase to extract features and uses the classifier to select the set of core
domains 𝐶.

5.3.4 BoD Learner

Evaluation Window and BoDs:

Given the set of core domains 𝐶, WHAT needs to learn the BoD 𝐵𝑐 for each 𝑐 ∈ 𝐶.3

3I process domains to keep only stems: I replace numbers by a constant (e.g., 123-edge.acme.com
becomes D-edge.acme.com) and isolated characters by constants (e.g., acme-a.cdn.net becomes
acme-C.cdn.net).

49

5 – WHAT: Automatic Accounting of Modern Web Services

Table 5.1: Features extracted for a domain and used for classifying core and support
domains.

Feature Core Support
HTML resp. length long short
Object number large small
Domains in page large small
page size large small
www. in 𝑑 likely unlikely
Redirect to same domain other domain
HTTP resp. code 2xx, 3xx 1xx, 4xx, 5xx
Server Apache, ISS ngix, custom
Content-Type text/html application/xml, other
Δ𝑇 from previous long short

WHAT considers the flow trace generated by each client, e.g., all flows generated by the
same client IP address. Intuitively, after a client requests a web page, support domains
are contacted, and I see flows annotatedwith domains in the traces (see Figure 5.1).Thus,
the BoD can be learned by inspecting domain names of flows initiated immediately af-
ter the core domain flow. For this, I could rely on active experiments, e.g., randomly
visiting pages in 𝑐, and then extracting names. While active experiments would gen-
erate a clean and reliable dataset, they suffer from limited (i) temporal and (ii) spatial
scope, which questions the representativeness of the data. For instance, different pages
in 𝑐 may present different content, with possibly user authentication complicating the
access to internal pages. Similarly, the browser, device, or application being used may
change the content being served.

An intuitive solution is to letWHAT extract the BoD from the passive traces directly
at the vantage point, i.e., learning (and updating) the BoDs from the data the system is
exposed to. Passive traces naturally factor all the above issues. WHAT considers valid
triggers those flows directed to 𝑐 that appear after a idle period Δ𝑇𝑖𝑑𝑙𝑒, i.e., likely due to
a new user visit. When a trigger is observed, WHAT extracts all domains found in the
time window following it. I call this the Observation Window, 𝑂𝑊, of duration Δ𝑇𝑂𝑊. A
domain 𝑑 appearing in the OW becomes part of the BoD of 𝑐 (𝐵𝑐) as support domain. In
Figure 5.3, this is represented by coloring flows with the same color of the core domain.
The longer Δ𝑇𝑂𝑊, the more information is collected, with the chance to pollute the
𝐵𝑜𝐷𝑐 with false support domains. Algorithm 1 shows a pseudocode for the BoD update
function. Traces from each client contribute to learn 𝐵𝑐.

There are however two aspects to be taken into account when learning the BoDs.
First, support domains may appear immediately after visits to core domains, but also
quite separate in time (e.g., a page reload, or a video being displayed after an ads, etc.).
The time period Δ𝑇𝑂𝑊 WHAT searches for support domains needs to be carefully cho-
sen. I will discuss parameter settings in Section 5.5.

50

5.3 – The WHAT System

T OW

T idle

T OW

T idle

Ignored Core
Domain

Time

Figure 5.3: BoD Learning: a flow to a core domain triggers a new observation window
if client was idle for more than Δ𝑇𝑖𝑑𝑙𝑒.

Algorithm 1 𝐵𝑜𝐷_𝑢𝑝𝑑𝑎𝑡𝑒(𝑓,𝐶,𝐵𝑜𝐷𝑠)
Input:

𝑓 ▷ The current flow
𝐶 = {𝑐1, ..., 𝑐𝑘} ▷ Core Domains
𝐵𝑜𝐷𝑠 = {𝐵𝑜𝐷𝑐1

, ...,𝐵𝑜𝐷𝑐𝑘
} ▷ BoDs of core domains in 𝐶

1: 𝑡 = 𝐺𝑒𝑡𝑇 𝑖𝑚𝑒() ▷ Get current time
2: 𝑑𝑓 ← 𝑝𝑎𝑟𝑠𝑒(𝑓) ▷ Get the domain of 𝑓
3: (𝑡𝑐, 𝑐) ← Δ𝑂𝑊 ▷ Retrieve current OW if any
4: if 𝑂𝑊 ≠ ∅ ∧ 𝑡 − 𝑡𝑐 ≥ 𝑇𝑂𝑊 then
5: 𝑂𝑊 ← ∅ ▷ Remove the OW if expired
6: // Put domains in the Bag if OW exists
7: if 𝑂𝑊 ≠ ∅ then
8: 𝐵𝑜𝐷𝑐(𝑑𝑓) + = 1
9: else

10: if 𝑑𝑓 ∈ 𝐶 ∧ 𝑡 − 𝑡𝑙𝑎𝑠𝑡 > Δ𝑇𝑖𝑑𝑙𝑒 then
11: 𝑂𝑊 ← (𝑡, 𝑑𝑓) ▷ Open a new OW
12: 𝑓𝑟𝑒𝑞𝑑𝑓

+ = 1 ▷ Update CD frequency

13: 𝑡𝑙𝑎𝑠𝑡 ← 𝑡 ▷ Update last flow time

Second, not all support domains appear after every request to a website. More dan-
gerous, background traffic and support domains triggered by other core domains may
appear nearby 𝑐 by chance, poisoning 𝐵𝑐 with false support domains. WHAT needs then
to observe a large number of OWs to accumulate support domains, and select those that
are actual support domains. The assumption is that support domains emerge, whereas
the irrelevant ones (including background and false domains) can be filtered out by
means of thresholds and domains scores.

Domains Score:

The key idea is that domains that are triggered by a core domain should appear
more frequently in observation windows than other domains. I leverage text processing
methodology to implement a filtering process based on this idea. Even if text processing
and traffic classification lie on different domains, in both cases we face the problem of

51

5 – WHAT: Automatic Accounting of Modern Web Services

information retrieval. I will show that text processing can be successfully used (with
some modifications) for traffic classification too. Here, I rely on the 𝑡𝑓 − 𝑖𝑑𝑓 (term
frequency – inverse document frequency) of domains in bags to represent the scores.
The 𝑡𝑓 − 𝑖𝑑𝑓 is used in information retrieval to evaluate the importance of a word
to a document in a collection. A word is more important when it appears often in a
document (captured by the 𝑡𝑓), but its importance is reduced by a factor representing
how frequent the word appears in other documents in the collection (captured by the
𝑖𝑑𝑓).

In this problem, a document is a BoD 𝐵𝑐 for the core domain 𝑐, a word is a domain
name 𝑑 ∈ 𝐷 and the collection of documents is the set of all bag of domains 𝐵𝑜𝐷𝑠.
Domains triggered by a single core domain should have high 𝑡𝑓 and high 𝑖𝑑𝑓, domains
that are triggered by many core domains (e.g., advertisements) should have high 𝑡𝑓 but
low 𝑖𝑑𝑓, while domains related to background traffic should have low 𝑡𝑓 and low 𝑖𝑑𝑓:

𝑡𝑓 (𝑑,𝐵𝑐) =
∑𝑊 ∈𝑂𝑊𝑐

|𝑑 ∈ 𝑊 |

|𝑂𝑊𝑐|
(5.1)

𝑖𝑑𝑓(𝑑,𝐵𝑜𝐷𝑠) = log
|𝐵𝑜𝐷𝑠|

|𝐵𝑐 ∈ 𝐵𝑜𝐷𝑠 ∶ 𝑑 ∈ 𝐵𝑐|
(5.2)

𝑆(𝑑,𝐵𝑐) = 𝑡𝑓(𝑑,𝐵𝑐) × 𝑖𝑑𝑓(𝑑,𝐵𝑜𝐷𝑠) (5.3)

where 𝑡𝑓 (𝑑,𝐵𝑐) is the number of times 𝑑 appears in any observation window 𝑊 for the
core domain 𝑐, normalized by the number of observation windows. Note that 𝑡𝑓 (𝑑,𝐵𝑐)
can be greater than 1, since a support domain 𝑑 can appear multiple times in the same
observation window. 𝑖𝑑𝑓(𝑑,𝐵𝑜𝐷𝑠) is the logarithm of the ratio between the number
of BoDs in the collection and the number of BoDs containing 𝑑. Thus, the more BoDs a
domain appears into, the closer to zero 𝑖𝑑𝑓(𝑑,𝐵𝑜𝐷𝑠) is, and thus the smaller 𝑆(𝑑,𝐵𝑐)
is.

The outcome of the training phase is the creation of a BoDs for each core domain
𝑐 ∈ 𝐶. Each domain 𝑑 ∈ 𝐵𝑐 is associated two scores, namely

𝐵𝑐 = {(𝑑, 𝑡𝑓 (𝑑,𝐵𝑐),𝑆(𝑑,𝐵𝑐))|𝑑 ∈ 𝐷}. (5.4)

If 𝑑 appears in all BoDs, then 𝑖𝑑𝑓(𝑑,𝐵𝑜𝐷𝑠) = 0 and 𝑆(𝑑,𝐵𝑐) = 0, suggesting its
presence is insignificant to characterize the document. Similarly, if 𝑑 does not appear
in any observation window in 𝑂𝑊𝑐, 𝑡𝑓 (𝑑,𝐵𝑐) = 0 and 𝑆(𝑑,𝐵𝑐) = 0. WHAT uses
the 𝑡𝑓 (𝑑,𝐵𝑐) score to filter out those core domains which appear too infrequently, i.e.,
𝑡𝑓 (𝑑,𝐵𝑐) < 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞, since those are likely to be background or false support domains,
i.e., domains appearing in the BoD by chance. Trade-offs are explored in Section 5.5.The
score 𝑆𝑑,𝐵𝑐

allows WHAT to assign ambiguous domains that appear into two BoDs (cfr.
Figure 5.1c) during classification. In the following section I give details.

52

5.3 – The WHAT System

5.3.5 Traffic Classifier
Once core domains are identified, and their respective BoDs are built, WHAT pro-

cesses traces to assign flows to the most likely core domain. It gets as input the set of
flows 𝐹 generated by a single client, and processes them according to their generation
time. Being designed for accounting, real time processing is not a main constraint, even
if scalability is easy to obtain given WHAT operates on a per-flow and per-client basis.

WHAT uses Algorithm 2 to classify each flow 𝑓. It receives the core domains 𝐶, the
BoDs and set of flows 𝐹 generated by a client. It then outputs flows annotated with the
core domain that generated them, or as unknown in case no association is found.

Algorithm 2 classify (𝐶,𝐵𝑜𝐷𝑠,𝐹)
Input:

𝐶 = {𝑐1, ..., 𝑐𝑘} ▷ core domains
𝐵𝑜𝐷𝑠 = {𝐵𝑐1

, ...,𝐵𝑐𝑘
} ▷ BoDs of core domains in 𝐶

𝐹 = {𝑓1, ..., 𝑓𝑛} ▷ list of flows of a client to be classified
Output:

𝑂 = {(𝑓1, 𝑙1), ..., (𝑓𝑛, 𝑙𝑛)} ▷ labeled flows
Parameters:

Δ𝑇𝐸𝑉 ▷ timeout without flows to expire BoDs

1: 𝑊 ← ∅ ▷ set of currently active EVs
2: 𝑂 ← ∅
3: for 𝑓 ∈ 𝐹 do
4: // retrieve start/end times and domain name of 𝑓
5: 𝑡𝑠𝑓, 𝑡𝑒𝑓, 𝑑𝑓 ← 𝑝𝑎𝑟𝑠𝑒(𝑓) ▷ 𝑡𝑠𝑓 is also current time
6: // remove expired EVs
7: 𝑊 ← {(𝑡𝑠, 𝑡𝑒, 𝑐𝑖,𝐵𝑐𝑖

) ∈ 𝑊 |𝑡𝑠𝑓 − 𝑡𝑒 ≤ Δ𝑇𝐸𝑉}
8: // obtain the best neighbor BoD among the active ones
9: 𝑤𝑏𝑒𝑠𝑡 ← {(𝑡𝑠, 𝑡𝑒, 𝑑𝑓,𝐵)} ← 𝐵𝑒𝑠𝑡𝐵𝑜𝐷(𝑡𝑠𝑓, 𝑑𝑓,𝑊)

10: 𝑐 = 𝑑𝑓 ▷ 𝑑𝑓 is the core domain of the best window
11: if 𝑐 ∈ 𝐶 ∧ 𝑣𝑎𝑙𝑖𝑑_𝑐𝑜𝑟𝑒(𝑐, 𝑡𝑠𝑓,𝑤𝑏𝑒𝑠𝑡,𝐹) then
12: // start an evaluation window for core domain 𝑐
13: 𝑊 ← 𝑊 + {(𝑡𝑠𝑓, 𝑡𝑒𝑓, 𝑐,𝐵𝑐)}
14: 𝑂 ← 𝑂 + {(𝑓, 𝑐)}
15: else
16: if 𝑤𝑏𝑒𝑠𝑡 ≠ ∅ then
17: 𝑂 ← 𝑂 + {(𝑓, 𝑐)}
18: // enlarge time boundary of best EV
19: 𝑡𝑒(𝑤𝑏𝑒𝑠𝑡) ← max(𝑡𝑒𝑓, 𝑡𝑒(𝑤𝑏𝑒𝑠𝑡))
20: else
21: 𝑂 ← 𝑂 + {(𝑓,‶ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛″)}

The algorithm is based on the concept of Evaluation Window (EV), i.e., the time
window during which a support flow can appear after the observation of a core domain.
For this, the algorithm maintains a list of active EVs, 𝑊. The list grows as new core
domains are observed (lines 11-14), and entries are aged out based on a timeout Δ𝑇𝐸𝑉,

53

5 – WHAT: Automatic Accounting of Modern Web Services

i.e., window ending time 𝑡𝑒 = max𝑓∈𝑊 𝑡𝑒𝑓 is elapsed by at least Δ𝑇𝐸𝑉, (line 7).
Differently from the training phase, the evaluation window duration is extended

during classification. This happens when new support domains are found (lines 18-19).
The rationale is that flows to support domains may be observed long time after the core
domain since the terminal keeps downloading objects due to a user action (e.g., scrolling
a webpage that triggers the download of new elements), or to the application fetching
further blocks of data (e.g., a video player using adaptive streaming and downloading
new portions of the video).

In case multiple active windows are alive, WHAT checks which is the most likely
one using the function 𝐵𝑒𝑠𝑡𝐵𝑜𝐷() (line 9). This is detailed in Algorithm 3. I checked
different options, and opted for a “closest in time” criteria: WHAT looks for the closest
active window among 𝑊, and for which the domain 𝑑𝑓 of 𝑓 has a frequency above the
𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 threshold (lines 2-5).

Algorithm 3 𝐵𝑒𝑠𝑡𝐵𝑜𝐷(𝑡𝑠𝑓, 𝑑𝑓,𝑊)
Input:

𝑡𝑠𝑓, 𝑑𝑓 ▷ start time and domain of flow to classify
𝑊 = {(𝑡𝑠, 𝑒, 𝑐,𝐵)} ▷ set of active BoDs

Output:
𝑂 = (𝑡𝑠𝑜, 𝑡𝑒𝑜, 𝑐𝑜,𝐵𝑜) ▷ best BoD

Parameters:
𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 ▷ Minimum 𝑡𝑓 score for valid support domains

1: 𝑤𝑐𝑎𝑛𝑑 ← ∅; Min=∞
2: for all {𝑤𝑖 = (𝑡𝑠, 𝑡𝑒, 𝑐,𝐵) ∈ 𝑊 |𝑡𝑓(𝑑𝑓,𝐵) > 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞} do
3: if ((𝑡𝑠𝑓 − 𝑡𝑠) ≤Min) then
4: Min← (𝑡𝑠𝑓 − 𝑡𝑠)
5: 𝑤𝑐𝑎𝑛𝑑 ← 𝑤𝑖

6: 𝑂 ← 𝑤𝑐𝑎𝑛𝑑 ▷ take most recent EV

At last, the most challenging problem is to resolve the ambiguity for a domain that
may be both support and core domain. Recall this is the case of www.facebook.com,
cfr. Figure 5.1c. To disambiguate, WHAT relies on the scores 𝑆(𝑑,𝐵). Algorithm 4 pro-
vides details. It first considers 𝑑𝑓 a possible core domain. It computes the 𝑐𝑜𝑟𝑒 score as
the sum of 𝑆(𝑑,𝐵) for those flows in the EV after the current flow time 𝑡𝑠𝑓. As usual,
only terms above the 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 threshold are considered (lines 2-4). Next, it consider 𝑑𝑓
a possible support domain for the best candidate core (𝑤𝑏𝑒𝑠𝑡) and computes the 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
score as the sum of 𝑆(𝑑,𝐵) for flows against 𝑤𝑏𝑒𝑠𝑡 (lines 6-8). It consider both those
past and future flows. The rationale is that EV would be extended in case 𝑓 becomes a
support flow. At last, WHAT compares 𝑐𝑜𝑟𝑒 and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 to classify 𝑓 (lines 9-12).

54

5.4 – Datasets

Algorithm 4 𝑣𝑎𝑙𝑖𝑑_𝑐𝑜𝑟𝑒(𝑑𝑓, 𝑡𝑠𝑓,𝑤𝑏𝑒𝑠𝑡,𝐹)
Input:

𝑑𝑓, 𝑡𝑠𝑓 ▷ candidate core domain and current time
𝑤𝑏𝑒𝑠𝑡 = (𝑡𝑠, 𝑡𝑒, 𝑐,𝐵) ▷ the best BoD
𝐹 = {𝑓1, ..., 𝑓𝑛} ▷ list of flows of a client to be classified

Output:
𝑉 𝑎𝑙𝑖𝑑 ▷ TRUE if the domain is a valid core

Parameters:
Δ𝑇𝐸𝑉 ▷ timeout without flows to expire BoDs
𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 ▷ Minimum 𝑡𝑓 score for valid support domains

1: // Possible core: compute score against 𝐵𝑑𝑓
for future flows

2: for all {𝑓𝑖|𝑡𝑠𝑓 ≤ 𝑡𝑠𝑓𝑖
≤ 𝑡𝑠𝑓 + Δ𝑇𝐸𝑉} do

3: if (𝑡𝑓 (𝑑(𝑓𝑖),𝐵𝑑𝑓
) > 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞) then

4: 𝑐𝑜𝑟𝑒 ← 𝑐𝑜𝑟𝑒 + 𝑆(𝑑(𝑓𝑖),𝐵𝑑𝑓
)

5: // Possible support: compute the score against 𝑤𝑏𝑒𝑠𝑡
6: for all {𝑓𝑖|𝑡𝑠 ≤ 𝑡𝑠𝑓𝑖

≤ 𝑡𝑠𝑓 + Δ𝑇𝐸𝑉} do
7: if (𝑡𝑓 (𝑑(𝑓𝑖),𝐵) > 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞) then
8: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ← 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 + 𝑆(𝑑(𝑓𝑖),𝐵)
9: if (𝑐𝑜𝑟𝑒 > 𝑠𝑢𝑝𝑝𝑜𝑟𝑡) then

10: 𝑉 𝑎𝑙𝑖𝑑 ← 𝑇 𝑅𝑈𝐸
11: else
12: 𝑉 𝑎𝑙𝑖𝑑 ← 𝐹 𝐴𝐿𝑆𝐸

5.4 Datasets
For training and testing I build upon two datasets. The first one is a passive trace

collected from a large ISP network. It represents a realistic scenario of possible WHAT
deployment. Almost no ground truth is available. To then thoroughly assess classifica-
tion performance, I build a second dataset made of synthetic traces where I have the full
ground truth knowledge. I use it to build benchmarking datasets and challenge WHAT
classification capabilities.

5.4.1 ISP Flow Traces
This dataset includes flow summaries exported by Tstat in a real deployment. Mea-

surement and collection methodologies are described in Chapter 2. In this chapter, I
consider data from January 2015 to April 2016 for the ADSL dataset, containing flow
summaries of 10,000ADSL subscribers. Considering onlyHTTP andHTTPS TCP flows,
I obtain 13.25 billion flows related to around 18 million domains. Data is stored in a
Hadoop cluster for scalable processing.

To give the picture of how extended the web is nowadays, Figure 5.4 provides basic
statistics about the trace. Figure 5.4a shows the growth of the number of unique do-
mains over time. More than 18 million domains have been contacted by users via TCP.

55

5 – WHAT: Automatic Accounting of Modern Web Services

 0

 5

 10

 15

 20

Jan
Feb

M
ar

A
pr

M
ay

Jun
Jul

A
go

Sep
O

ct
N

ov
D

ec

D
o

m
ai

n
s

[M
]

Time [months]

(a) Cumulative number of unique domains
over time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
0
0

1
 k

1
0
 k

1
0
0
 k

C
D

F

Domains

Domains

Stemmed Domains

2nd-Level Domains

(b) Share of volume per domain

Figure 5.4: Characteristics of the flow traces for the ADSL dataset. Most traffic is due to
10,000 domains. The probe suffered two outages during August and October 2015.

Some services rely on dynamic names (e.g., in CDNs) and inflate figures. For instance
CloudFront and Gstatic, Amazon’s and Google’s CDN, account for 10% (1.8M) and 26%
(4.7M) of the unique domains, respectively. My strategy to stem names partly reduces
the number of unique domains. Yet, more than 11 million stemmed names are in the
dataset. Similarly, the figure grows even limiting the domains to the 2nd-level domain
name, with about 5 million names seen in 2015. These numbers show how complicated
the picture is, and discourage the usage of synthetic traces for training and support the
need to automatically train WHAT on the field.

Looking at the traffic share per domain,4 Figure 5.4b shows the classic Pareto rule:
most traffic is associated to few domains, with ≈ 30% coming from a single 2nd-level
domain – i.e., googlevideo.com, a support domain serving YouTube videos. The top-
10,000 (0.05%) domains servemore than 95% of the traffic, with the remaining ones in the
tail contributing negligible volume each. Most of the negligible domains appear in the
trace just once, and are typically machine generated domains, where the client embeds
some information in the third/fourth-level domain. This plays in favor of WHAT which
targets primarily accounting.

5.4.2 Synthetic Traces
To assess classification performance, I create a labeled dataset using data from vol-

unteers, a mix of students, colleagues, and friends. I collect browsing histories of 30
users, extracting all visited URLs directly fromSQLite databases used by Safari, Chrome
and Firefox. Browsers log visited URLs and the time of visits. These are core domains,
since users did actually visit the URLs. Some browsing histories spawned years and in-
cluded more than 50 000 pages. I extract (up to) the most recent 5 000 URLs visited by

4I compute the volume as the bytewise total amount of data exchanged. Any statistic can be computed
once flows are annotated with the core domain.

56

5.4 – Datasets

each user, obtaining a dataset with more than 100 000 visits to 3 759 distinct domains.
These form the ground truth of core domains.

Browsing histories allow me to characterize also users’ browsing habits. I use those
to obtain Cumulative Distribution Function (CDF) of the idle time between consecutive
visits, and then use this to generate synthetic but realistic traces for benchmarking. I
observe that 90% of the visits are separated by less than 1 min, with the remaining visits
spread in a tail representing long pauses in volunteers’ navigation.

To obtain a set of support domains, I revisit each URL by instrumenting a Firefox
browser with Selenium. I let Selenium visit the URL, and then wait until the page is
fully loaded (i.e., the On Load event is fired). The next URL in the list is then loaded
after the browser is inactive for 1 second. Note that this creates artifacts, e.g., eventual
video playout are stopped after 1 s from start. In parallel, Tstat records flows seen in
the network, saving the same information available in the passive flow traces. This is
a labeled trace, where 100,000 URLs are visited, referring to 3,759 core domains, and
9,764 support (possibly ambiguous) domains. Note how negligible those are compared
to numbers in Figure 5.4. Crawling was done in April 2016 and lasted 5 days.

Web Browsing Benchmark

In this first synthetic trace, each user is identified by an different IP address, and
she visits URLs following the original sequence found in browsing histories. Inter-visit
time is extracted according to the CDF distribution extracted from browsing histories,
mimicking then user’s idle time.

After the core URL visit, I populate the trace with support flows as from recorded
by Tstat during the Selenium navigation. Timestamps are shifted to maintain the inter-
arrival times of support flows, and IP addresses adjusted per user.

The traffic share per domain of the resulting trace is depicted in Figure 5.5a. Contrast
this figure to Figure 5.4b. I see that this synthetic trace follows some patterns also seen
in the actual flow traces, with around 10 000 domains making the majority of traffic, but
missing the long tail. Most notably, it misses also the Pareto rule, i.e., the concentration
of traffic around few domains serving videos (see left-most points in the figures). This is
due to Selenium artificially stopping all video playout after 1 s. This trace is thus mostly
representative of simple web browsing. Considering the tail, it is considerbly shorter
than the real case due to the reduced size of the data.

Web and YouTube Benchmark

To increase the effect of video streaming I form a second dataset. I revisit all YouTube
URLs found in browsing histories of volunteers and let Selenium to play videos for
longer time, i.e, to 5 min of each video, or until the video is over.

I then augment the web browsing trace by injecting YouTube video playing events.
I form this trace with a worst case scenario in mind, in which all simulated users have

57

5 – WHAT: Automatic Accounting of Modern Web Services

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
0
0

1
 k

1
0
 k

C
D

F

Domains

Domains

Stemmed Domains

2nd-Level Domains

(a) Web

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
0
0

1
 k

1
0
 k

C
D

F

Domains

Domains

Stemmed Domains

2nd-Level Domains

(b) Web and YouTube

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0

 1
0
0

1
 k

1
0
 k

C
D

F

Domains

Domains

Stemmed Domains

2nd-Level Domains

(c) Web and Storage

Figure 5.5: Share of volume per domains in synthetic traces.

YouTube videos going on at random moments.5 No restrictions on starting time of
videos are imposed. In fact, I determine starting time of videos independently of in-
teractive visits to other URLs, thus mimicking videos played in background.

To determine the time between user video sessions, I rely on information coming
from volunteers’ browsing histories as previously done. Flows triggered by videos dur-
ing the tests with Selenium are then added to the synthetic trace. Again, timestamps
and IP addresses are adjusted accordingly.

The trace combining both interactive web and videos has the characteristics sum-
marized in Figure 5.5b. Here I see that 50% of the traffic is related to googlevideo.com
domain. It overestimates the share of video when compared to real traces (Figure 5.4b).
This trace is a challenging scenarios, since all users are having web and YouTube ses-
sions in parallel.

Web and Storage Benchmark

Since Browsing histories record only URLs visited within browsers, the trace misses
any possible flows generated by other applications. To then simulate the presence of

5In a real case, the chance of video playing during browsing would be much lower.

58

5.5 – WHAT Validation

background flows, I characterize the traffic of cloud storage services. I use traces pre-
sented in [11]. In short, 11 services, including Dropbox, Microsoft OneDrive and Google
Drive, have been installed in a testbed. Active experiments have been performed for
around 3 months to characterize traffic of each service while idle and while handling
workloads of different types (e.g., upload and download of single file, batches of files
etc). I reprocess all traces presented in [11] with Tstat, thus creating a dataset with
typical flows of background cloud services.

The third synthetic trace combines interactive web with cloud storage traffic. I cre-
ate an extreme scenario again, in which all users have one cloud storage application
constantly open in background, running idle.

Besides that, I add flows generated by cloud storage applications when actively ex-
changing content with servers. The arrival time of such flows is determined according
to the model proposed in [44]. As before, flows are added to the web browsing trace.
Figure 5.5b shows the resulting share of traffic per domain. I can see a high percentage
of traffic to some few domains – i.e., cloud storage ones. This trace challenges WHAT
to discriminate background traffic.

NAT Scenarios

The last synthetic traces simulate several users behind a NAT, so that the client
IP address is not anymore a reliable user identifier. In a nutshell, I take the previous
synthetic benchmark traces, and create a number of user replicas. Each replica starts
navigation at a random position in the browsing history, looping back to the beginning
when the list is over. 𝑘 replicas are assigned the same IP address to simulate the presence
of a NAT, so that flows from independent sessions are now multiplexed over the same
timeline. This simulates multiple users browsing the web, but with the same identifier,
e.g., behind a NAT, using multiple tabs, browsers, or devices.

5.5 WHAT Validation

5.5.1 Core Domain Discovery
I start by evaluating the performance of the decision tree used for Core Domain

Discovery.
I need to build a labeled dataset to train and test the classifier. I consider the first 10

days of March, 2016 from the ISP flow trace and manually inspect the domain names.
Following WHAT bootstrapping phase, I start from the ones with the highest traffic
share, cfr. Figure 5.4b. I visit the front web page of each of them (if any), and manually
mark domains as core or support. The procedure is followed until a dataset of 500 core
and 500 support domains are found. As such, samples for the two classes are balanced,
allowing a fair use of classification algorithms. I use Selenium and Tstat to automatically
extract features listed in Table 5.1 for all 1,000 domains.

59

5 – WHAT: Automatic Accounting of Modern Web Services

 40

 50

 60

 70

 80

 90

 100

10 20 30 40 60 80 120
160

240
320

480
640

1000

A
cc

u
ra

cy
 [

%
]

Dataset size

Figure 5.6: Core domain discovery accuracy per BoD learning period.

I use this labeled dataset to train and test the J48 decision tree with Weka, following
the 10-fold cross validation to assess accuracy, i.e., the percentage of domains correctly
classified. Results are in Figure 5.6. Points in the figure mark 10-fold cross-validation
experiments, which are performed with an increasing training and testing dataset size
(𝑥-axis). For instance, for 𝑥 = 100, I have randomly selected 100 domains, and used
them for training a new tree.6 The remaining 1000 − 𝑥 domains are used for testing.
Average accuracy is then computed over ten rounds.

Results let me conclude that even a moderate number of domains is sufficient to
train the Core Domain Discovery module. Indeed, I see that 120 domains allow WHAT
to reach accuracy above 90%. When 1000 domains are used, accuracy tops to 96%.

5.5.2 Classification Performance
I evaluate the performance ofWHAT when classifying new flows – i.e., Algorithm 2.

For next experiments, WHAT learns BoDs from ISP traces, and performance is assessed
on synthetic benchmarks. I consider the set 𝐶 of 500 most popular core domains as
previously described and let WHAT learn the BoDs using the ISP trace starting from
9 a.m. of March 1𝑠𝑡, 2016.

Figure 5.7 shows results forWebBrowsing benchmarks. YouTube and Storage bench-
marks are omitted since they lead to similar conclusions.The figure depicts the accuracy
of WHAT when letting it learn BoDs from an increasing time. The “optimal learning”
line marks the accuracy whenWHAT learns BoDs from the same benchmark trace used
for testing – i.e., a biased result that gives hints on the best possible performance of the
algorithm in this benchmark.

6To avoid over-fitting, I use J48 decision tree with binary split and 10 minimum number of instances
per leaf.

60

5.5 – WHAT Validation

 75

 80

 85

 90

 95

 100

1h 2h 4h 10h

1d 2d 4d 8d 15d

1m 2m

A
cc

u
ra

cy
 [

%
]

BoDs Learning Period

Optimal Learning

Figure 5.7: Accuracy vs. learning dataset size. BoDs learning starts on March 1𝑠𝑡, 2016.

Accuracy in these experiments is computed as the percentage of volume in bytes
against the correctly labeled benchmark trace. Therefore, errors occur either because
flows have been labeled with wrong core domains, or mislabeled as “unknown”. The
same figures are obtained when considering the the percentage of flows, i.e., the errors
are equally distributed across heavy hitters (e.g., video or storage), and less frequent
(and voluminous) domains.

Focusing on the left-most point in Figure 5.7, note that WHAT correctly classifies
90% of the traffic volume with a learning set of 1 day only. That is, most of the popular
BoDs are learned by observing a single day of traffic in such medium-sized PoP/ISP. In-
creasing the learning set marginally improves results, with the best accuracy at around
93% with a 1-month long learning set. Classification errors are due to (i) WHAT heuris-
tics to disambiguate domains; and (ii) domains seen in the benchmark that are not in
the ISP flow dataset. Yet, overall WHAT delivers very promising results.

Figure 5.8 presents the accuracy of the three benchmarks in NAT scenarios. Results
are obtained by increasing the number of users in the synthetic NAT trace. A similar
trend emerges for the three benchmarks. More user aggregation reduces the perfor-
mance of WHAT . This is not a surprise, since users navigating in parallel increase the
probability of support domains to become ambiguous. Overall, WHAT performs very
close to its best accuracy when up to five users are active at the same time. The accu-
racy drops to less than ≈ 70% when more than 20 users are aggregated. Finally, note
that the presence of background traffic such as Youtube or Storage marginally reduces
accounting capabilities despite injecting sizable amount of traffic.

5.5.3 Parameter Tuning
WHAT relies on a number of parameters, which are evaluated next to understand

their effects on classification accuracy. I discuss Evaluation Window (Δ𝑇𝐸𝑉) and the
minimum 𝑡𝑓 score to include domains in BoDs (𝑀𝑖𝑛𝐹 𝑟𝑒𝑞), since they have the highest

61

5 – WHAT: Automatic Accounting of Modern Web Services

 0

 20

 40

 60

 80

 100

1 3 5 8 12 16 20 32 50 80 150
A

cc
u
ra

cy
 [

%
]

Parallel navigations

Web Benchmark
Web and Youtube Benchmark
Web and Storage Benchmark

Figure 5.8: Accuracy of benchmarks in NAT scenarios.

impact on the system. Best choices for all parameters, including those omitted for the
sake of brevity, are listed in Table 5.2.

Table 5.2: Best choices of parameters.

Parameter Best Value
Training set size 1 Month

Δ𝑇𝑂𝑊 10 Seconds
Δ𝑇𝑖𝑑𝑙𝑒 1 Minute
Δ𝑇𝐸𝑉 2 Seconds

𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 2%

For experiments in this section,WHAT is trained with one month of traffic from the
ISP flow traces, and tested with the various benchmarks. Accuracy is calculated as in
the previous section – i.e., the percentage of bytes in benchmarks that is labeled with
the correct core domains.

Evaluation Window (Δ𝑇𝐸𝑉):
Figure 5.9 depicts how accuracy varies according to Δ𝑇𝐸𝑉. Lines represent results

for four benchmarks. Results for the NAT scenario are calculated considering five users
generating web traffic behind a NAT.

Focusing on theWeb Browsing benchmark (red line), notice how the accuracy starts
at ≈ 80% when Δ𝑇𝐸𝑉 = 0.1 s, grows at the best figures (e.g., ≈ 90%) when Δ𝑇𝐸𝑉 = 5 s,
and consistently decreases for larger values. Very small values of Δ𝑇𝐸𝑉 cause WHAT to
miss support domains, whereas large Δ𝑇𝐸𝑉 values increase the chance to account for
background or unrelated flows.

Similar pattern is observed for the YouTube benchmark (green line). However, ac-
curacy slightly decreases in this case, and the system performance degenerates faster
when Δ𝑇𝐸𝑉 is too large – compare the red and green lines in the right part of the figure.

62

5.5 – WHAT Validation

 50

 60

 70

 80

 90

 100

0.1

0.3

0.6

1 2 4 6 10 15 30 50 100
A

cc
u
ra

cy
 [

%
]

∆T
EV

 [sec]

Web Benchmark
Web and Youtube Benchmark
Web and Storage Benchmark

NAT Scenario Benchmark

Figure 5.9: Accuracy vs. evaluation window.

It happens because YouTube BoD shares support domains with other Google services’
BoDs. Large Δ𝑇𝐸𝑉 increases the probability that a YouTube support domain becomes
ambiguous because other BoDs related to Google are active. Similar conclusion arises
for the Storage benchmark (blue line), where a jump is seen when Δ𝑇𝐸𝑉 = 30 s. This
jump seems to be caused by periodic traffic of Google Drive, which would be misclas-
sified with large Δ𝑇𝐸𝑉. Again, this happens because support domains serving Google
Drive are in BoDs of other Google services.

Finally, Δ𝑇𝐸𝑉 becomes even more important in scenarios where traffic of multiple
users are mixed in NATs. Δ𝑇𝐸𝑉 needs to be carefully set, since accuracy decreases faster
for large number of simultaneous users.

Overall, Δ𝑇𝐸𝑉 ∈ [1,4] s provides the best trade-off.

𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 Threshold:
The impact of𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 threshold is illustrated in Figure 5.10. Curves for four bench-

marks are depicted, and similar methodology as in previous section is used to calculate
the accuracy. The 𝑥-axis marks the value of the threshold – e.g., 𝑥 = 2% depicts results
for which any domain with 𝑡𝑓 lower than 2% in a BoD is not considered.

The importance of the 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 to filter out noise from BoDs becomes clear. As an
example, when 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 is too large (e.g., 20%), domains that are very popular in BoDs
may be ignored, resulting in a sharp decrease on accuracy.That is, I observe a reduction
on accuracy in particular for YouTube benchmark where googlevideo.com domains
are ignored.

On the other extreme, when 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 is too low, unrelated support domains pol-
lute BoDs. Focusing on results for 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 = 0.05%, notice how accuracy is around
90% in the Web Browsing benchmark, but it is reduced to around 80% in the YouTube
benchmark. This happens because background videos cause YouTube domains to ran-
domly appear in many BoDs during learning. A similar pattern is not seen for Storage
benchmarks because the tested services are less chatty than YouTube and, thus, their

63

5 – WHAT: Automatic Accounting of Modern Web Services

 50

 60

 70

 80

 90

 100

20 10 5 2 1 0.5

0.2

0.1

0.05

0.02

0.01
A

cc
u
ra

cy
 [

%
]

MinFreq [%]

Web Benchmark
Web and Youtube Benchmark
Web and Storage Benchmark

NAT Scenario Benchmark

Figure 5.10: Accuracy vs. 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 threshold.

domains are filtered out even by a low 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞.
Overall, 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 ∈ [1,5]% provides best trade-off.

5.5.4 Stability of Learning
At last, I check how BoDs evolve over time, possibly giving insights about how

frequently learning phase should be run. Figure 5.11 illustrates the stability of some
example BoDs.The figure is produced by building BoDs for selected core domains using
consecutive ten days long periods from the ISP flow traces. Let 𝐵𝑐(𝑖) the BoD of core 𝑐
in the i-th period. I compute the number of support domains in 𝐵𝑐(𝑖 + 1) which were
not present in 𝐵𝑐(𝑖).

Interesting, the BoD of very popular core domains, such as www.facebook.com
and www.google.it are stable. This reflects the fact that the infrastructure of these
giants slowly changes over time.

Instead, BoDs of smaller but still popular core domains show variations. For in-
stance, www.ilmeteo.it (a popular weather service) and www.libero.it (a popu-
lar portal) show 5 to 40 new domains appearing in each BoD every ten days. Not shown
here due to lack of space, I observe also 5 to 40 domains that disappear from the BoD.
This is due to the dynamic domains used by trackers, e.g., by different advertisement
campaigns served by different platforms over time.

Interestingly, two large spikes are seen. Checking the BoDswhich includemore than
500 support domains, I observe the sudden emerging of new support services ranging
from tracking and ads platforms, CDNs and difficult to identify domains. WHAT helps
to uncover the changes in the remote services.

These results show the need of updating the BoDs, which can be easily solved by
periodically running the learning phase.

64

5.6 – Case Study

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50 60 70 80 90 100 110 120

N
ew

 d
o

m
ai

n
s

Training Set Days

www.facebook.com

www.google.it

www.ilmeteo.it

www.libero.it

Figure 5.11: Delta of domains in time.

5.6 Case Study
In this section, I present a case study to illustrate the applicability of WHAT . The

system is applied to the ISP flow trace considering 10 days at the beginning of March,
2016. All experiments focus on 𝐶 containing the 500 most popular core domains, while
BoDs are learned using the whole month of February, 2016.

5.6.1 Ranking Domains and Services
In this first case, I show how WHAT helps to account traffic to services. I present

three traffic rankings in Figure 5.12: (i) Traffic per domain (Figure 5.12a) illustrates the
volume grouped by mapping flows to domains; (ii) Traffic to core domains (Figure 5.12b)
provides the above figure, but only considering core domains; (iii) WHAT output (Fig-
ure 5.12c) provides figures which account the volume of support domains to core do-
mains.

Figure 5.12a illustrates how support domains dominate traffic share. Notice that
domains are stemmed in the labels. Sub-domains of CDNs, such as googlevideo.com,
fbcdn.net and nflxvideo.net, emerge among the main traffic sources.7 Numbers
inside plots mark the traffic observed for each domain.

While a network administrator could correlate trafficwith services in thementioned
examples (i.e., YouTube, Facebook and Netflix), enumerating all support domains of a
service requires a time-consuming manual process. Moreover, it misses the fact support
domains may be triggered by other services – e.g., YouTube videos embedded in Blogs
or News web sites.

Figure 5.12b shows the result of a possible (naive) approach, of focusing only on core

7isDcdn.se.skyvod.cdn.xxxxxx.it is a CDN serving Sky IPTV: 2nd-level domain is
anonymized for privacy reasons.

65

5 – WHAT: Automatic Accounting of Modern Web Services

100101102103104105106

Traffic [GB]

scontent-mxpC.cdninstagram.com

video-frtD-D.xx.fbcdn.net

CD.CD.akamai.net

rtinfinityss-C.akamaihd.net

iosapps.itunes.C.aaplimg.com

CD.milD.ix.nflxvideo.net

eu-irl-D.CD.amazonaws.com

scontent-mxpD-D.xx.fbcdn.net

CD—sn-Dnufxc-ugoe.gvtD.com

gsD.ww.prod.dl.playstation.net

CD—sn-Dnufxc-ugol.gvtD.com

iosapps.itunes.apple.com

video-mxpD-D.xx.fbcdn.net

isDcdn.se.skyvod.cdn.xxxxxx.it

CD—sn-CD.googlevideo.com

413

461

528

552

554

582

804

948

1208

1364

1564

1927

2234

2675

13809

(a) Traffic per Domain

100101102103104105106

Traffic [GB]

blog.giallozafferano.it

www.instagram.com

outlook.office365.com

m.youtube.com

www.msn.com

www.amazon.it

plus.google.com

www.bing.com

m.facebook.com

www.lastampa.it

www.youtube.com

mail.google.com

www.rai.it

www.google.it

www.facebook.com

5.0

5.6

6.4

6.6

6.8

8.6

8.8

12

13

16

26

28

94

110

200

(b) Traffic to Core Domains

100101102103104105106

Traffic [GB]

www.rai.tv

xhamster.com

www.mediaset.it

www.rai.it

it.xhamster.com

www.xnxx.com

be.infinitytv.it

www.xvideos.com

www.nowvideo.li

www.google.it

easybytez.com

www.netflix.com

m.youtube.com

www.facebook.com

www.youtube.com

93

94

94

95

98

135

213

218

291

313

357

434

526

1298

5613

(c) WHAT Output

Figure 5.12: Ranking traffic: Domain rankings highlight support sites.WHAT highlights
important services.

domains. Here I list the most popular core domains, which are naturally strongly bi-
ased towards popular websites in the country where the data has been collected. While
popular core domains are meaningful, their traffic shares by no means represent net-
work resource consumption by users accessing those services. Notice, for example, that
YouTube is only fifth in this list accounting for a mere 26 GB over ten days by 10,000
users.

Finally, Figure 5.12c shows WHAT output. Here I see a more realistic picture of the

66

5.6 – Case Study

Figure 5.13: Traffic of popular support domains according to core domains.

actual network usage. Video streaming, i.e., YouTube, NetFlix, adult video providers, and
Rai (a broadcaster) emerge among the most popular services in term of traffic volume.
Some support domains seen in Figure 5.12a (playstation.net and skyvod.cdn.xxx.it)
are not reflected in any service on Figure 5.12c because they host background services
(e.g., gaming consoles and IPTV), which are out of WHAT classification scope.

In sum, the figure illustrates how WHAT can help administrators to correctly ac-
count traffic to services going beyond per flow metering.

67

5 – WHAT: Automatic Accounting of Modern Web Services

5.6.2 Support Domains Pervasiveness
Support domains can be triggered by many core domains.WHAT methodology pro-

vides an interesting opportunity for understanding how flows of different parties con-
tribute to the traffic volume of core domains. Moreover, it allows to identify which core
domains trigger pervasive support domains, such as trackers.

An example is provided in Figure 5.13a. It depicts the list of core domains that trigger
a popular third-party tracking domain, i.e., criteo.com. This service is included in
many websites to collect information about users. WHAT unveils the breakdown of
Criteo traffic accounting it to core domains. The figure that emerges illustrates well
how this tracker is pervasive, covering an extensive list of popular sites (e.g., news,
blogs etc). WHAT helps administrators to spot tracker partners.

Figure 5.13b uncovers services that rely on a popular CDN (Cloudfront). It shows
the contribution of each core domain for the CDN traffic volume in the ISP network.
Cloudfront belongs to Amazon, and it is not a surprise that amazon.it emerges as the
main core domain relying on that CDN. However, WHAT automatically exposes other
services hosted in Cloudfront, such as adult video sites, news outlets, etc.

Finally, Figure 5.13c uncoverswhich services trigger googlevideo.com, i.e., which
are the services where users consume YouTube videos. As expected, YouTube website is
responsible for the vast majority of the traffic. However, since third-party sites embed
YouTube videos too, WHAT learns those relations. This example decisively illustrates
the applicability of WHAT for accounting applications: Whereas YouTube serves the
content, completely different services and websites can be responsible for the video
download. WHAT exposes such relations to network administrators and in general en-
ables any analytic that entails the accounting of traffic to services.

5.7 Related Work
With recent trend of increasing web service traffic, a number of traffic classification

works focus on the traffic contents [65, 64, 82, 25]. Kim et al. [65] surveys behavioral
techniques that leverages machine-learning to achieve traffic classification comparable
to far more privacy invasive DPI techniques. A behavioral approach Karagiannis et
al. [64] discovers traffic signatures unique to Peer-to-Peer (P2P) network. While the
behavioral traffic classification successfully identifies some services, they are far from
being comprehensive [82, 25]. Moreover, since their methods requires laborious manual
analysis to extract behavioral signatures, they were unscalable. WHAT on the other
hand, leverages machine learning to minimize human intervention to be self-adaptive
to different deployment scenarios.

DNS traffic based classification has been a popular area of research as an alterna-
tive to the behavioral classification. Agar et al. [2] is one of the first research proposing
to leverage DNS traffic for classification. The authors built a map of the whole World

68

5.8 – Conclusions

WideWeb using DNS information classified. But because themethod requires DNS traf-
fic to be actively generated, the method cannot be widely used in operational networks.
Plonka et al. [85] proposed passive DNS analyses by leveraging available DNS informa-
tion on the wire. The authors classify IP traffic in a tree structure comprised of three
classes. In contrast to [85], I neglect well-known protocols (e.g., FTP or P2P) in WHAT .
Instead, I focus on typical services that make the majority of web traffic nowadays, and
develop a system to classify flows according to services generating the flows.

In addition to DNS queries, Tongaonkar et al. [101] and Foremski et al. [37] propose
to use Server Name Indication (SNI) strings found in TLS handshakes for classification.
While authors discover better coverage thanks to SNI, their primary target for classifi-
cation were on the protocols (e.g., SIP, HTTP, etc). WHAT conducts finer-grained level
of classification on web services rather than their protocols.

5.8 Conclusions
This chapter presented WHAT (Web Helper Accounting Tool) describing how it

leverages machine learning to autonomously identify the core domain a user is access-
ing and the set of associated support domains automatically contacted as a consequence.
This dramatically recudes the manual effort needed to understand the mixture of web
traffic, and help ISPs obtain visibility on the activity of users. WHAT uses this to create
a model of web service access and uses it to categorize future traffic flows. The exten-
sive evaluation presented in the chapter show how WHAT offers accurate metering of
individual web activities, which is not enabled by traditional traffic classification and
metering solutions.

69

70

Chapter 6

AWESoME: Big Data for Automatic
Web Service Management in SDN

The work I present in this chapter is mostly taken from my paper “AWESoME: Big
Data for Automatic Web Service Management in SDN ” published in the IEEE Transac-
tions on Network and Service Management journal in March 2018 [104].

6.1 Introduction
The Software Defined Network (SDN) paradigm has changed the way networks are

managed [66]. Thanks to a logical centralized controller and well-defined interfaces to
program forwarding devices, SDN controls the traffic in a consistent manner and dra-
matically eases interoperability across different vendors. Yet, network managers face
complex traffic engineering and policing requirements when operating the network to
meet quality levels, prioritize traffic and enforce polices. Traditionally, such require-
ments might translate into complex matching on packets or flows, e.g., to drop P2P
packets or regulate flows related to specific services.

The complexity of the web has introduced more challenges in the overall picture.
On the one hand, the widespread adoption of cloud services and CDNs puts into ques-
tion the identification of the services behind the traffic flows because a single server
supports multiple services, e.g., providing content for several sites. On the other hand,
the convergence towards encrypted protocols – i.e., HTTP(S) [80] – has rendered Deep
Packet Inspection (DPI) based matching ineffective. Nowadays, the access to a single
service might result in the generation of several traffic flows to multiple servers, e.g.,
CDN nodes, advertising platforms, video servers, etc., that are shared by different ser-
vices and, as such, cannot be easily associated to the specific web service originating
the traffic.

Figure 6.1 illustrates this problem by showing the diverse servers contacted by a
user after visiting two simple web sites, i.e., an e-learning platform and a news website.

71

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

t0 Time (20s)

ww
w.n

ytim
es.c

om

dou
blec

lick
.net

krx
d.ne

t
goo

glea
pis.

com

you
tub

e.co
m

goo
glev

ideo
.com

crit
eo.c

om
alis

on.c
om

dou
blec

lick
.net

goo
glea

pis.
com

you
tub

e.co
m

goo
glev

ideo
.com

Figure 6.1: Flows opened when visiting two websites. I search flexible mechanisms to
independently manage all traffic triggered by each site – e.g., for traffic engineering and
policing.

Arrowsmark flows to the contacted domains of first- and third-party platforms involved
in the services. Both sites rely on the same third parties for video services (i.e., YouTube),
analytics andweb tracking.This poses unique challenges to a networkmanagerwanting
to give higher priority to the e-learning platform (on the right), while segregating the
news site traffic (on the left). Prioritizing only the first-party servers would fail to give
the intended treatment for the video content of the e-learning platform that is hosted
on YouTube, whereas prioritizing all YouTube traffic would give high-priority also to
leisure videos triggered by the news site.

My goal is to allow administrators tomanage all traffic of a service comprehensively,
i.e., steering all traffic generated by the user accessing a given service, and not just the
traffic related to first-party servers. A novel approach to traffic management is required
where policies are based on the services that users are contacting, which in turn must
be translated into rules that can be imposed on packets and flows.

I solve this problem by proposing AWESoME. It defines a novel paradigm in which
the network administrator imposes policies based on the service being accessed, e.g.,
giving priority to alison.com in Figure 6.1, while segregating nytimes.com, and
treating third-party traffic according to the accessed first-party service. Using big data
approaches, AWESoME automatically learns groups of flows related to the services and
steers them despite being served by the same CDNs, servers, clouds, and with the same
(encrypted) protocols.

AWESoME is a SDN application that leverages standard SDN functionalities to steer
traffic in the network. At the core of the SDN application is a novel annotation-module
operating at edge elements, which is able to associate each flow to the originating ser-
vice in real-time and with high accuracy. It leverages DNS information and big data
to automatically learn from the traffic. It achieves an overall accuracy higher than 90%,
that, despite not suitable for security purposes, is well-suited for traffic engineering and
management goals.

In contrast to previous works that also aimed at bringing service-awareness to SDN,
but focused on per-flowmanagement [8, 59, 81, 88], AWESoME addresses the challenge

72

6.1 – Introduction

in the more comprehensive and seamless way based on the following three premises:

• Comprehensive policing of services: AWESoME creates forwarding rules that
cover complex relations among flows (e.g., as in Figure 6.1). It achieves that by
learning which domains are typically contacted when accessing each service.
Models to translate high-level descriptions of services into low-level rules are
learned automatically from traffic with unsupervised algorithms, minimizing hu-
man intervention. Flow dependencies have already been studied and exploited for
data-center management [21, 22], but I extend those methodologies to operate at
the edge of the network.

• Early classification with low overhead: AWESoME takes final forwarding
decisions since the very first packet of each flow. This limits the load on the
controller and application, making it compatible with actual technology. This is
achieved by extending methodologies that rely on the DNS for traffic annota-
tion [7, 37, 78, 85].

• Compliance with SDN specifications: AWESoME has been designed to be
fully compliant with the basic SDN architecture and the latest version of Open-
Flow [83], although it could also be deployedwith other communication protocols
between controller and forwarding elements. It requires no changes to existing
APIs and SDN controllers, hence allowing adoption of AWESoME to existing SDN
platforms to be simple.

I thoroughly evaluate accuracy and scalability of AWESoME in the classification and
steering of web service traffic using traces collected from both volunteers (which offer
ground truth) and operational networks (which challenge AWESoME in both ISP and
corporate environments). Results show that AWESoME (i) identifies traffic per service
with accuracy greater than 90%, more than adequate for traffic management; (ii) limits
decision time to less than a hundred microseconds, with negligible load overhead to
SDN controllers; (iii) adds a compatible number of rules to forwarding devices and,
therefore, it is feasible for real deployments.

To allow other researchers to reproduce and validate my results, I release to the
public ground truth traces and Python scripts implementing the core components of
AWESoME.1

Next I introduce terminology, deployment scenarios, and AWESoME architecture
(Section 6.2). I then detail the core annotation algorithms (Section 6.3), before introduc-
ing the dataset (Section 6.4) that I use to validate performance (Section 6.5). I conclude
by discussing related work (Section 6.6) and summarizing my findings (Section 6.7).

1Available at: https://bigdata.polito.it/content/open-datasets

73

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

DNS

Server

Controller

Spill DNS traffic

1

2 3

AWESoME

Examine new
connections

SDN Enabled

Devices

Egress router

Terminal

Install rules to manage
the traffic due to
selected services

CDPI

NBI

Application

Figure 6.2: Typical corporate SDN deployment.

6.2 Definitions and Architecture

6.2.1 Per service management approach
I aim at enabling management operations that target the control of all traffic in-

volved in the access to web services, i.e, all objects a browser or a terminal downloads
when users access the given web service. I call this per service management. I envi-
sion several scenarios where the per service approach will help administrators to man-
age the network. To name some examples, AWESoME allows network managers (i) to
block non-authorized services in the network, (ii) to route traffic of given services on
specific paths with performance guarantees, (iii) to route suspicious traffic of unknown
services to specific devices (e.g., through a security firewall), (iv) to regulate the traf-
fic of pre-selected services. Even if I do not provide a specific evaluation of AWESoME
performance in all such tasks, I argue that the introduced per service management is an
enabling building block for all these operations.

I will use corporate networks as a running example in the chapter (see Figure 6.2)
although AWESoME is applicable to other scenarios too. In the scenario depicted in Fig-
ure 6.2 the corporate network has two links to external networks that deliver different
performance, potentially at different costs. In this example, the network administrator
may want to forward priority services (e.g., the e-learning platform illustrated in Fig-
ure 6.1) to the best performing link, whereas traffic from non-priority services is for-
warded to the best-effort link. AWESoME must guarantee that all traffic of the selected
services flow to the desired path. Therefore, all network elements in the corporate net-
work must be programmed to forward traffic according to the per service management

74

6.2 – Definitions and Architecture

approach.

6.2.2 Core and support domains
Servers being contacted by clients are identified by their IP addresses, but they are

typically reached using their Fully Qualified Domain Names, or domains for short. Like
in the the previous chapter, I divide domains in Core and Support (see Section 5.2). Ser-
vices that people (or applications) intentionally access are identified by their Core Do-
main: www.nytimes.com, alison.com are core domains (tall arrows in Figure 6.1). Un-
fortunately, only a minor fraction of traffic related to a service is served by the core
domain, with Support Domains (short arrows in Figure 6.1) being contacted for analyt-
ics, ads, video and image download.

Table 6.1 quantifies the traffic related to core and support domains for popular sites.
It details the breakdown of flows served by the core domain, by support domains whose
name is trivially linked to the core domain (e.g., www.nytimes.com and css.ny-
times.com), and by generic support domains (e.g., ads.com). Notice how a large frac-
tion of flows is exchangedwith support domains, and that a simple approach taking into
account only traffic to the core domain would fail in identifying most of the flows.

More than that, generic support domains are often shared across different websites,
and some core domains also appear as support domains for other services (e.g., on-
line social networks). Figure 6.3 quantifies these cases again for a set of popular sites.
It shows 9 websites, grouped into 3 categories. By visiting each site I have collected
all contacted support domains. Over 275 total domains, 43 are shared by websites of
different categories and 6 domains are present in all categories.

Per service management, therefore, is required to identify core and support domains.
In continuity with terminology introduced in Section 5.2, I call Bag of Domains (BoD)
the set of all support domains contacted when accessing the given core domain. For
each core domain, its Bag of Domains must be automatically built from traffic using big
data approaches.

6.2.3 SDN as enabling technology
I consider an SDN, where users access the Internet via their devices connected to

SDN enabled switches or wireless access points, as sketched by Figure 6.2. The SDN
controller manages the network, translating the requirements from the SDN applica-
tions to SDN datapath commands. AWESoME interacts with the SDN controller via the
NorthBound Interface (NBI), as a standard SDN application. AWESoME operates by in-
stalling three types of rules in the network elements: (i) default rules, (ii) per flow rules,
and (iii) policing rules.

Default rules are installed on edge switches to forward selected packets to theAWESoME
application running on the controller. These rules are summarized in Table 6.2a: (1) all
DNS response packets are normally forwarded, and mirrored to the controller, (2, 3) the

75

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

Table 6.1: Traffic generated by visiting 10 popular services.

Service Percentage of flows to
Total

domains
Core domain Related support

domains
Generic support
domains

www.bbc.com 19.4 35.3 45.3 90
www.nytimes.com 17.4 43.7 38.9 63
washingtonpost.com 34.8 21.2 44.0 90
www.ieee.org 37.8 24.3 37.9 17
www.acm.org 43.5 0.0 56.5 8
researchgate.net 5.2 75.5 19.3 29
www.facebook.com 21.9 63.0 15.1 12
www.google.com 8.9 77.8 13.4 141
twitter.com 6.8 86.8 6.4 6
www.youtube.com 5.8 76.9 17.2 30

Research

E-CommerceNews
nytimes.com bbc.com
washingtonpost.com

amazon.com ebay.com
groupon.com

ieee.org acm.org
researchgate .com

6
6

30

1

21

153 58

doubleclick.net
www.google.com

googlesyndication.com

youtube.com
googlevideo.com

Figure 6.3: Support domains shared across different categories of sites. Analytics and
advertisement domains are always present.

first packet of all TCP and UDP flows are forwarded to the controller.2 The first rule is

2The flow must match the TCP flags using the OFPXMT_OFB_TCP_FLAGS field available since Open-
Flow 1.5.0. These rules are given low priority to avoid overriding more specific rules.

76

6.2 – Definitions and Architecture

Table 6.2: Rules to be installed on the SDN switches across the network.

(a) Default rules installed at edge switches control the traffic that needs to pass the controller
for taking decisions.

N Match Action Description
1 IP_PROTO=UDP and UDP_SRC=53 Forward, Forward to Controller Spill DNS responses
2 IP_PROTO=TCP and TCP_FLAGS=PURE_SYN Forward to Controller Intercept new TCP connections
3 IP_PROTO=UDP and UDP_DST!=53 Forward to Controller Intercept all UDP non-DNS traffic

(b) Transient per-flow rules are installed at edge switches to tag each flow (e.g., 𝑓1 and 𝑓2) with
the respective service label.

N Match Action Description
1 IP_PROTO=TCP and IPV4_SRC=𝐼𝑃 𝑓1

𝑆𝑅𝐶 and TCP_SRC=𝑇 𝐶𝑃 𝑓1
𝑆𝑅𝐶 … Push VLAN tag, VID=0x001 Tag as Gold

2 IP_PROTO=TCP and IPV4_SRC=𝐼𝑃 𝑓2
𝑆𝑅𝐶 and TCP_SRC=𝑇 𝐶𝑃 𝑓2

𝑆𝑅𝐶 … Push VLAN tag, VID=0x002 Tag as Silver

(c) Stable policing rules are installed in core switches to steer packets according to the applica-
tion scenario faced by AWESoME. In this example, traffic of each class is forwarded to particular
network path (see also Figure 6.2).

N Match Action Description
1 VLAN_VID=0x001 Output on 𝑃1 Forward Gold traffic towards the reliable link
2 VLAN_VID=0x002 Output on 𝑃2 Forward Silver traffic towards the best-effort link

used to maintain a database that allows AWESoME to associate a flow with a domain
name via previously issued DNS requests [7, 37, 78, 85]. The latter rules let AWESoME
handle each new flow to subsequently impose the most appropriate actions.

Like any SDN solutions based on such reactive paradigm, the default rules may
force the controller to examine a large number of packets. In Section 6.5.5 I will show
that the load is still limited for a network with moderate number of users. For very
large deployments, controller load-balancing solutions should be considered [31, 52].
Reactive SDNs are also exposed to Denial-of-Service attacks – e.g., malicious nodes
that exploit rules to overwhelm controllers with lots of packets. Different solutions
have been proposed to tackle the issue [62, 112], and they could be employed in my
scenario.

Once AWESoME has taken the decision about a new flow, it installs a per flow rule
on the edge switch to handle the packets of the new flow. Per flow rules aim at guar-
anteeing that different flows associated to a single service are treated equally in the
network. They are transient and thus maintained only while the given flow is active.
Table 6.2b lists rules installed to handle the example presented in Figure 6.2. Flows
that are identified as belonging to selected applications are tagged as priority (i.e., Gold
class, implemented as VLAN tag 0x001), whereas the remaining flows are tagged as
best-effort class (i.e., Silver, implemented as VLAN tag 0x002).

Notice that only the first packet of each flow needs to be inspected by AWESoME.
Per flow rules guarantee that subsequent packets of the flow do not transit through
the controller, but are directly forwarded by edge switches. Since the system adopts a

77

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

reactive SDN paradigm, packets transiting through the controller are retained by the
switch until the controller takes a decision. More in detail, when such a packet arrives
to the switch, a copy is sent to the controller using a PacketIn message, and holds it in
a local buffer. When (eventually) the controller answers with a PacketOut message, it is
actually forwarded in the network. As a result, clients can only establish connections
after AWESoME has programmed the edge switch.

Finally, AWESoME programs core switches with pre-defined policing rules. These
rules are stable and installedwhen themanager deploys an application based onAWESoME.
In Figure 6.2, traffic of each category needs to be forwarded to the particular reserved
path. As such, rules to handle and forward the classes are installed in core switches (see
Table 6.2c). For this example on traffic engineering, policing rules are built based on the
VLAN tags determined at edge switches. Other mechanisms can be exploited too, such
as MPLS labels or Provider Backbone Bridges (PBB) tags.

6.2.4 AWESoME architecture
Figure 6.4 provides a schematic diagram of the AWESoME SDN application. Four

elements are identified, each in charge of a logically independent operation, which to-
gether enable per service management:

1. BoD-Training automatically learns and updates the BoDs in background;

2. Flow-to-Domain tags flows with domains;

3. Domain-to-Service links named-flows to services;

4. Service-to-Rule translates the service into the appropriate actions (i.e., the rules
described in previous section).

Below, I describe each of them, while performance and parameter tuning are discussed
in Section 6.5.

BoD-Training — automatically building BoDs

The BoD-Training block is responsible to automatically build the BoD associated to
each core domain. This is the key module in the AWESoME approach, and, it runs the
same algorithm described in the previous chapter in Section 5.3.4.

Flow-to-Domain — flow labeling using DNS

This step associates a server domain to each flow, i.e., to create named-flows. This
helps the association of a flow to a given service, since the information offered by IP
addresses is much coarser than the one carried by the domain of the server being con-
tacted [106]. This is because a single cloud (and CDN) server may host many services.

78

6.2 – Definitions and Architecture

Flow-To-Domain

Domain-To-Service
Service-to-Rule

New
Flows

NorthBound Interface

DNS

Self Learned
BoDs

Stat ic
BoDs

Active
Services

Service
Account ing

New Rules Expired Rules

User P olicies

Network
Administrator

Service
St at ist ics DB

BoD
Training

2
3 4

1

Figure 6.4: AWESoME architecture. Databases with arrows are maintained in real-time.

Intuitively, the same server IP address hosts a multitude of web services which are bet-
ter identified by their domains. It has been shown that this operation can be solved by
leveraging DNS traffic [7, 37, 78, 85]. The Flow-to-Domain block builds a local cache
of domains that terminals have resolved in the past, maintained as a key-value store.
Below, I describe the two actions of building and using the key-value pairs as Insert and
update and Lookup.

Insert and update: For each DNS response forwarded by the controller, AWESoME
extracts the 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃 address, the domain being queried (𝑄𝑢𝑒𝑟𝑖𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛), and, from
eachAnswer record, the list of resolved {𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑃𝑖} addresses. For each key {𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃,
𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑃𝑖}, it inserts (or rewrites) an entry with value 𝑄𝑢𝑒𝑟𝑖𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛. The time such
entries must be preserved in the store (and expired when old) is discussed in Section 6.5.

Lookup:Whenever a TCP orUDP packet is forwarded to the SDN controller, AWESoME
parses the IP and layer 4 headers and accesses the name store with the key {𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃,
𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑃} to fetch the original 𝑄𝑢𝑒𝑟𝑖𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛 the client previously resolved. In case
there is not such key, the store returns the 𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑃. The packet is then forwarded to
the Domain-to-Service block, along with the 𝑄𝑢𝑒𝑟𝑖𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛 or, if not available, the
𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑃.

Using DNS information has several advantages with respect to more intrusive flow
classification methods. First, it does not require to use costly DPI technology to extract
hostname or SNI (Server Name Indication) from HTTP or HTTPS requests. Second,
DNS information is not protected by encryption, and even DNSSEC does not provide
confidentiality. Most importantly, the lookup is done on the very first packet of each
flow, eliminating the need of keeping per flow state and waiting for more packets to
take a final decision at the controller. As such, when clients finally open a connection,

79

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

the network is already programmed to handle the traffic accordingly. On the down-
side, erroneous domain associations can happen due to collisions (i.e., a rewrite op-
eration) – the same 𝑠𝑒𝑟𝑣𝑒𝑟𝐼𝑃 being contacted by the same 𝑐𝑙𝑖𝑒𝑛𝑡𝐼𝑃 for two different
𝑄𝑢𝑒𝑟𝑖𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛. As I will show later, AWESoME is robust to such events.

Domain-to-Service — associating services to flows

Once the flows are labeled with DNS names, AWESoME associates the named-flows
to services. This is the core of AWESoME engine and its details are provided in Sec-
tion 6.3. Leveraging awell-known text mining technique, Bag-of-Words, I model seman-
tics of the domain names, namely, Bag-of-Domains (BoD). A BoD is created for each core
domain and includes all support domains that are contacted when the service identified
by the core domain is accessed.

I further group the domains into two types: Self Learned BoDs, and Static BoDs based
on the characteristics of the domains. Automatically built by AWESoME while analyz-
ing the traffic, Self Learned BoDs are BoDs comprised of interactive web services, which
users explicitly access from their browsers, e.g., interactive web applications. On the
other hand, manually built by network operators, static BoDs are comprised of back-
ground services that are periodically accessed by terminals without user intervention
(e.g., software updates, file sync with cloud storage services, calendar or mail services,
etc).3 The traffic generated by such services is quite different from the interactive ones
where core domains and support domains are expected to appear close in time (see
Figure 6.1). Background services challenge the assumption of temporal correlation be-
tween flows, and extending AWESoME to learn Static BoDs automatically is left for
future work.

The list of recently accessed core domains by each 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃 is stored in the Active
Service database. Keeping a cache of active services is important since the same domain
normally appears in multiple BoDs – cf. Figure 6.1 – and thus it must be associated to a
core domain that has been actually visited. Given a flow, the Domain-to-Service block
checks if its domain appears in the BoDs of 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃 Active Services, so to associate
to the most likely service the user has recently accessed. In case a domain is not in the
active services, it falls back to match against Static BoDs.

The packet is then forwarded to the Service-to-Rule block, along with the service
corresponding to the BoD the packet was associated with.

Service-to-Rule — policy enforcement

Once a flow has been associated to a service, the Service-to-Rule block is a classic
policingmodule which enforces actions by requesting the SDN controller to install rules

3In the current implementation, regexp andwildcards are supported in the specification of static BoDs
to simplify the administrator’s task.

80

6.3 – How Service Association Works

on the switches. Policies are stored in a User Policies database, which is accessed with
the service name as key, and returns the corresponding rules.

Policing rules are installed (e.g., in core switches) when the AWESoME application
is started, whereas the per flow rules are pushed whenever a flow must be steered.
Table 6.2 has already exemplified the rules created for the particular traffic engineering
case used as illustration, but other rules can be defined too – e.g., to block services,
route traffic to security devices or to regulate the traffic per service. Rules expire using
the Idle Timeout standard OpenFlow feature.

In case of “default” action, no extra rule has to be added for TCP flows since only
the SYN-TCP packet will be forwarded to the controller. The lack of explicit connection
indication in UDP forces AWESoME to insert a rule for each UDP flow. However, only
the first packet of UDP flows transits through the controller, while the others are directly
forwarded by the switch, as a transient per-flow rule is inserted.

Scalability is evaluated in Section 6.5.5. Again, per flow rules have to be installed
on the edge switches only – i.e., those switches that are directly connected to clients
or work as ingress point to the SDN. Upstream devices instead operate on a per service
basis, e.g., using IP Type of Service, MPLS labels or PBB tags, which are all supported
by SDN.

The Service-to-Rule block additionally maintains the Service Statistics DB, with flow
identifier (e.g., the classic 5-tuple) as key, and service information as value. When a rule
expires at switches, its flow identifier is passed along with statistics (byte and packet
amount) to the SDN controller (standard in FlowRemoved messages) that, in turn, ex-
poses them to the AWESoME application. Such statistics are collected in the Service
Statistics DB, later used for BoD training, and exposed to the network administrator.
This enables for instance per service accounting, anomaly detection, billing, etc.

6.3 How Service Association Works
The core of the service management is the ability to associate each flow to the orig-

inating core domain, i.e., the service the user originally intended to access. AWESoME
solves this by leveraging the bag-of-words model which is commonly used to succinctly
representing complex textual data in natural language processing [50]. In the context
of AWESoME, I extract bag-of-words features from each domain and “classify” it into
a service. Hence I call the process Bag-of-Domain (BoD) training. Due to the complex
composition of web pages and the intertwined nature of the Internet, it is not trivial to
design the BoD training with minimal human intervention.

6.3.1 Automatic BoD training
Let 𝐶 be the set of core domains of interest provided by the network administrator.

AWESoME training consists of building a 𝐵𝑜𝐷𝑐, for each core domain 𝑐 ∈ 𝐶. To this

81

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

t d

Time

Unknown
 domain

1

d1

d2

t d 2

Figure 6.5: Domain-to-Service: Blue and red services are active at the same time; the
EWs are extended as new flows are associated to the core domain.

end, it employs the algorithm already proposed in the last chapter, in Section 5.3.4.
Domains that constitute the BoDs are stored in a LRU cache of limited size (e.g.,

5 000 entries). This is more than adequate – cf. Table 6.1 – and limits memory usage.
Then, AWESoME needs to compute the average flow duration per each domain in

𝐵𝑜𝐷𝑐. This is done using the flow duration information as exposed by the Service-to-
Rule block. For each domain 𝑑, AWESoME maintains the average flow duration 𝑡𝑑. To
copewith possible changes in service behaviors, a standard exponential moving average
estimator is used (parameter 𝛼 = 0.1). AWESoME is however almost insensitive to the
parameter as site changes occur in much longer time periods than the re-training of
BoDs.

Flow duration is fundamental to AWESoME as I will show next, andOpenFlow Idle
Timeout mechanism lets the controller to derive it. After no packet has matched a
rule for a configurable period, a FlowRemoved message is sent by the switch to the
controller. Flow duration is obtained by computing the time between the rule install
action and the FlowRemovedmessage, subtracting the Idle Timeout set in switches.

AWESoME takes advantage of the last days of traffic to build the BoDs used by
the Domain-to-Service module. A discussion about the time needed to build BoDs is
provided in Section 6.5.The training dataset potentially becomes large in real scenarios,
and thus the BoD-Training module is implemented in a state-of-art big data platform,
namely Apache Spark. The statistics to build BoDs are continuously collected in the
BoD-Training module. Periodically, e.g., once per hour, BoDs are computed and given
to the Domain-to-Service for on-line annotation of traffic.

6.3.2 Domain-To-Service classification module
Armed with core domains and their respective BoDs, AWESoME has to associate

named-flows with the service identified by the core domain. It first tries to associate
the flow to any BoD in the Self Learned BoDs. In case of no match, it then tries with
Static BoDs. For the sake of simplicity, I describe only the first stage as the second is

82

6.3 – How Service Association Works

Algorithm 5 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒(𝑓,𝐶,𝐵𝑜𝐷𝑠, 𝑇)
Input:

𝑓 ▷ The current flow to annotate
𝐶 = {𝑐1, ..., 𝑐𝑘} ▷ Core Domains
𝐵𝑜𝐷𝑠 = {𝐵𝑜𝐷𝑐1

, ...,𝐵𝑜𝐷𝑐𝑘
} ▷ BoDs of core domains in 𝐶

𝑇 = {𝑡𝑑1
, ..., 𝑡𝑑1

} ▷ Domain average flow duration
Output:

𝑂 = (𝑓,𝐶𝑜𝑟𝑒𝐷𝑜𝑚𝑎𝑖𝑛) ▷ Annotated flow

1: // Retrieve start time and domain of 𝑓
2: 𝑡 = 𝐺𝑒𝑡𝑇 𝑖𝑚𝑒() ▷ Get current time
3: 𝑑𝑓 ← 𝑝𝑎𝑟𝑠𝑒(𝑓) ▷ Get the domain of 𝑓
4: // Remove expired Services
5: 𝐴𝑆 ← {(𝑡𝑠, 𝑡𝑒, 𝑐𝑖,𝐵𝑜𝐷𝑐𝑖

) ∈ 𝐴𝑆|𝑡 ≤ 𝑡𝑒}
6: // Obtain the best BoD among the AS
7: 𝑎𝑠𝑏𝑒𝑠𝑡 ← {(𝑡𝑠, 𝑡𝑒𝑏𝑒𝑠𝑡, 𝑐𝑏𝑒𝑠𝑡,𝐵𝑜𝐷)} ← 𝐵𝑒𝑠𝑡𝐵𝑜𝐷(𝑑𝑓,𝐴𝑆)
8: if 𝑑𝑓 ∈ 𝐶 ∧ 𝑎𝑠𝑏𝑒𝑠𝑡 == ∅ then
9: // 𝑑𝑓 is a core domain – Start a new AS for 𝑑𝑓

10: 𝑐 = 𝑑𝑓
11: 𝐴𝑆 ← 𝐴𝑆 + {(𝑡, 𝑡 + 𝑡𝑐, 𝑐,𝐵𝑜𝐷𝑐)}
12: 𝑂 ← (𝑓, 𝑐)
13: else
14: if 𝑎𝑠𝑏𝑒𝑠𝑡 ≠ ∅ then
15: 𝑂 ← (𝑓, 𝑐𝑏𝑒𝑠𝑡) ▷ The flow is assigned to 𝑐𝑏𝑒𝑠𝑡
16: // Update the AS validity time
17: 𝑡𝑒𝑏𝑒𝑠𝑡 ← max(𝑡 + 𝑡𝑑𝑓

, 𝑡𝑒𝑏𝑒𝑠𝑡)
18: else
19: 𝑂 ← (𝑓,‶ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛″) ▷ Flow not classified

identical.
Figure 6.5 gives an example of a possible timeline where a ClientIP accesses first to

the red service, and then to the blue services.
AWESoME uses Algorithm 5 to annotate each flow 𝑓. It is a modified version of the

algorithm proposed in the previous chapter, in Section 5.3.5, modified to operate in real
time. It receives: (i) the current named-flow 𝑓, (ii) the set of core domains 𝐶, (iii) the
BoDs, (iv) average duration 𝑡 for each domain. It processes each ClientIP separately and
keeps separate data structures. It outputs a flow annotated with the core domain, or
unknown in case no association is found.

The algorithm is based on the concept of EvaluationWindow (𝐸𝑊), i.e., a time during
which a support flow can still appear after the observation of the core domain 𝑐. The
algorithm maintains a list of Active Services, 𝐴𝑆, i.e., those core domains previously
seen, and for which it is still possible to associate some flows. The list grows as new
core domains are observed (lines 8–12), and entries are aged out, i.e., window ending
time 𝑡𝑒 is passed (line 5).

First, AWESoME checks if there exists a Active Service 𝑎𝑠𝑏𝑒𝑠𝑡 whose BoD contains

83

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

the domain of 𝑓. In casemore than oneASmatches, I consider the 𝑎𝑠𝑏𝑒𝑠𝑡 = 𝐵𝑒𝑠𝑡𝐵𝑜𝐷(𝑑𝑓,𝐴𝑆)
as the one whose evaluation window start time is the closest in time (line 7). Intuitively,
I consider the most recent visited core domain as the most likely one to associate the
current support domain. I tried other choices, e.g., considering random choice, weighted
choice by the frequency of occurrence in BoDs, etc., with worse results.

Next, AWESoME has to resolve the ambiguity for domains that can appear as both
support and core. If 𝑑𝑓 is a possible core domain, and there exists no AS in which it
appears as support domain (line 8), then it is considered a new core domain, and a new
evaluation window is opened (lines 9-12). The rationale is that the domain has been
contacted because of an intentional visit from the user.

On the contrary, 𝑑𝑓 is considered a support domain if there exist an active service
𝑎𝑠𝑏𝑒𝑠𝑡 (line 14). The flow is associated to the core domain 𝑐𝑏𝑒𝑠𝑡 (line 15), and the evalu-
ation window ending time 𝑡𝑒𝑏𝑒𝑠𝑡 is extended (line 17) to consider the average duration
of the current flow 𝑡𝑑𝑓

. The rationale is that flows to support domains may be observed
long time after the core domain, since the terminal keeps downloading objects due to
a user action, e.g., scrolling a web page that triggers the download of new elements, or
the download of a new video chunk in a streaming service.This is sketched in Figure 6.5
where the evaluation windows are represented by horizontal arrows, which extend the
AS ending time.

Finally, in case of no match with any AS, the flow is associated to the “unknown”
class (line 19), and AWESoME looks for a matching in the Static BoDs.

It is important to notice that the Domain-To-Service module operates on a per-flow
and per-ClientIP basis and, thus, the processing is amenable for per-client paralleliza-
tion.

6.4 Datasets
I validate AWESoME and evaluate its performance using trace-driven analysis. First,

I thoroughly assess classification performance using traces where ground-truth is avail-
able – i.e., where I have information about the core domain responsible for the visit to
support domains. Then, I use passive traces collected at operational networks to study
realistic AWESoME deployments.

6.4.1 Ground-truth traces
I rely on ground-truth data from volunteers, following an approach similar to what

I have done previously in Section 5.4.2. I collect browsing histories of 30 users, directly
extracting the URLs they intentionally visited in the past months, which are stored in
a local database by their browsers. I automatically revisit each URL by instrumenting a
Chrome browser. I let Chrome visit the URL and wait until the page is fully loaded (i.e.,
the On Load event is fired).

84

6.4 – Datasets

In parallel, I record all network activity in the environment to have a complete pic-
ture of the traffic that would be managed by AWESoME.The outcome of these steps is a
dataset of named-flows, where each entry is annotated as a core domain, if it was a URL
given as input to the instrumented browser; or as a support domain, if it was triggered
by a core domain visit.

In total, I collected 973 000 flows, referring to 3 760 and 97 640 unique core and sup-
port domains, respectively. Crawling was done in December 2016 and lasted 5 days. I
build three traces from this raw dataset:

• Simple-browsing: It mimics the original behavior of volunteers. Each volun-
teer is given a unique 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃 address, and I simulate page visits in the same
sequence and with the same visit time of the original browsing history. The ar-
rival time of support flows after a core domain visit respects what is seen during
crawling.

• Tab-browsing: I create this scenario by repeating the previous steps, but starting
5 independent navigation threads per 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃 in parallel. To avoid any kind of
synchronization among threads, each navigation starts following the browsing
histories at a random position.This scenario emulates (i) an extreme case ofmulti-
tabbed browsing where the same user has 5 tabs concurrently and continuously
browsing the web; or (ii) 5 users concurrently and continuously browsing the web
behind a NAT (i.e., identified by the same client IP address). The latter is a typical
setup in ISP environments where a single home gateway acts as a NAT, and a
handful of household devices access the Internet contemporarily with the same
identifier. Core and support domains of many visits may appear simultaneously
in the trace. This challenges the disambiguation of core and support domains.

• Simple-browsing + video streaming: My crawling based on volunteers’ his-
tories notably miss video streaming sessions, since videos may continue playing
after the On Load event is fired. Traffic generated by video servers might be quite
different from interactive browsing because flows to retrieve video chunks have
low temporal correlation with the core domain request [63]. Using the instru-
mented browser, I record all traffic generated when accessing 250 arbitrary URLs
from 15 sites with embedded videos. I let the video play for 5 min before moving
to another page. I finally mixed the Simple-browsing trace by simulating a second
parallel thread for each volunteer. This thread continuously watches videos, with
the user changing page every 5 min, without any pause in between. This is again
an extreme case to test.

6.4.2 Operational network traces
I capture flow-level datasets from operational networks using passive meters. My

captures include four measurement locations: two ISP networks (see Section 2) and

85

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

two corporate networks. The datasets are summarized in Table 6.3. To preserve users’
privacy, IP addresses have been anonymized, and I kept only the information required
for the study. Trace collections has been approved by ISP and corporate security board.

Table 6.3: Traces collected from operational networks. A detailed description of ADSL
and FTTH can be found in Section 2.

Dataset Duration Flows Unique Domains Client IP addresses
ADSL 12 months 13 billion 18 million ≈ 10 000
FTTH 12 months 4 billion 6 million ≈ 1 000

𝐶𝑜𝑟𝑝 1 1 day 6 million ≈ 38 000 ≈ 1 600
𝐶𝑜𝑟𝑝 2 3 days 32 million ≈ 64 000 ≈ 6 000

ISP traces

ADSL and FTTH traces include data exported by flow exporters deployed at differ-
ent Points of Presence (PoP) of a large ISP. A detailed description of the measurement
methodology is provided in Chapter 2. The flow exporters provide the Flow-to-Domain
mapping performed by AWESoME by processing the DNS traffic on-the-fly. I employ
data from January to December 2016. In total, I have observed more than 17 billion
flows, 18 million domains.

I additionally dumped DNS traffic in the ADSL and FTTH PoPs for 6 hours in De-
cember 2016, simultaneously to the flow exporting, for some specific analysis that will
follow.

Corporate traces

I rely on proxy logs from enterprise networks to assess AWESoME performance in
corporate scenarios. They come from two different enterprises in different states of the
USA. The proxies provide web connectivity to thousands of employees of two compa-
nies. They save logs for (i) each HTTP request and (ii) each CONNECT command for
HTTPS tunnels. Clients are consistently identified by IP addresses. No UDP traffic is
allowed.

I directly construct a named-flow log from each of the raw proxy logs, creating the
𝐶𝑜𝑟𝑝 1 and 𝐶𝑜𝑟𝑝 2 datasets. I proceeded as follows: for each CONNECT and for each
HTTP request entry I create a flow record for the involved client and server. The do-
main is extracted directly from the hostname in HTTP request and from the CONNECT
command. Naturally, this approach will over-estimate the number of flows in the net-
work, since TCP flows are reused by clients when communicating with a HTTP server.

86

6.5 – AWESoME Performance

0.0

0.2

0.4

0.6

0.8

1.0

1 m
s

10 m
s

100 m
s

1 s
10 s

1 m
in

10 m
in

1 h
6h

C
D

F

Time

FTTH

ADSL

Figure 6.6: Time between TCP flows and their associated DNS query. AWESoME needs
to cache information about 1-hour of DNS traffic to annotate flows.

6.5 AWESoME Performance

6.5.1 Flow-to-Domain evaluation
I evaluate the Flow-to-Domain block aiming to answer two questions: (i) What is

the percentage of flows that can be annotated with DNS information? (ii) How long
should the DNS information be cached to perform flow annotation?

I start focusing on the first question to check how many flows would remain un-
named due to lack of DNS data. To answer this question I use the 6-hour-long dataset
in which I have both named-flows and raw DNS traffic from the ADSL probe. I look
for web flows, i.e., to port 80 and 443, which have a domain associated. In particular I
simulate the Flow-to-Domain module with infinite memory. To avoid boundary effects,
I warm up the domain key-value store loading the initial 5 hours of the DNS trace and
then I use the last hour of the flow trace to perform a lookup while still processing the
DNS trace at the same time.

I found that 93% of the web flows are annotated. Manual inspection reveals two
main causes for the missing domains: (i) ≈ 1% of services contact support servers us-
ing directly IP addresses; (ii) possible loss of DNS packets during the passive captures.
AWESoME handles the first case by adding IP addresses to BoDs, whereas the second
case is a measurement artifact that should not happen in real SDN deployments.4

Figure 6.6 presents the Cumulative Distribution Function (CDF) of the delay be-
tween the flow and the previously issued DNS query. For both traces, more than 90%

4In SDN, packets sent to the controller are always received thanks to the usage of reliable transport
protocols between switches and the controller.

87

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

of the flows starts within 10 minutes since the corresponding DNS query. The percent-
age grows to 97% considering a 1-hour interval.5 These large time gaps between DNS
queries and the flows are mostly due to large TTLs of DNS responses and client-side
caches – i.e., clients can open flows to servers long after resolving their names thanks
to the local DNS cache. Nevertheless, the figure shows that the Flow-to-Domain block
must be sized to hold in its key-value store the information extracted from about 1-hour
of DNS traffic in order to output high-quality named-flows. In the largest of the traces
this corresponds to manage about 1 000 000 entries.

6.5.2 Domain-to-Service accuracy
I next evaluate the core part of AWESoME – i.e., the association of services to

named-flows. I use the ground-truth traces for this validation. I only check the accuracy
for self learned BoDs, since static BoDs are manually provided by network administra-
tors.

I estimate the accuracy of AWESoME by checking whether the service determined
for each flow matches with the ground-truth. In this experiment, learning of BoDs is
performed using the ground-truth trace. All 3 760 core domains are considered with
3 760 BoDs built from the trace itself. I here test such a case in which every service
would bemanaged independently to evaluate AWESoME performance in extreme cases.
In more practical scenarios (e.g., Figure 6.2), one would expect only a limited number
of key services to be classified and managed. I also repeat experiments with different
settings to study the effects of AWESoME parameters. The obtained figures are similar
to those reported before in Section 5.5, in which I evaluated the performance of WHAT
for classification. Despite the similar results, the annotation algorithms are different,
provided the need of AWESoME of running in real time, without any knowledge of
the future behavior of the client. Indeed, AWESoME performance is slightly lower if
compared to WHAT (see Section 5.5).

Figure 6.7 depicts the performance of AWESoMEwhen varying the𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 thresh-
old used for learning. Recall that a support domain is discarded from the BoD if it ap-
pears less frequently than 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞. Curves for three scenarios are depicted.

Focusing in 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 = 6.25%, notice how the accuracy of AWESoME is high,
reaching close to 93% in the Simple-Browsing trace. Errors are related to flows anno-
tated with ambiguous domains (i.e., belonging to more than one BoD) or left as “un-
known” (e.g., no active window during classification). Even for the extreme traces,
AWESoME delivers accuracy close to 85%. That is, AWESoME can identify flows per
service with high accuracy, even in challenging situations that should be uncommon in
real deployments. In particular, for the 5-Tab-Browsing trace the performance penalty

5Differences for small 𝑥-values occur due to variations in the RTT between clients and the flow ex-
porters.

88

6.5 – AWESoME Performance

 50

 60

 70

 80

 90

 100

50 25 12.50
6.25

3.12

1.56

0.78

0.39

0.19

0.10

0.05
A

cc
u

ra
cy

 [
%

]

MinFreq [%]

Simple-Browsing
5-Tab-Browsing

Simple-Browsing + Video Streaming

Figure 6.7: Accuracy when varying the 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 threshold. AWESoME accuracy sur-
passes 93% in the Simple-Browsing trace, and 85% in extreme scenarios.

is very small. This means that AWESoME can successfully operate when users perform
tab-browsing, or in typical ISP scenarios where devices of a household access the net-
work with the same client identifier.

I however remark that the tested 5-Tab-Browsing scenario does not guarantee that
AWESoME would work with any level of parallelism. Carrier Grade NAT, in which
hundreds or thousands of users are aggregated, is an example where the deployment
of AWESoME requires planning. Switches inside the NAT-ed network need to be part
of the SDN as well, thus aggregating a moderate number of users, which will ensure
AWESoME delivers performance as in Figure 6.7.

Notice also the importance of𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 to filter out noise fromBoDs.When𝑀𝑖𝑛𝐹 𝑟𝑒𝑞
is large (e.g., 50%), domains that are popular in BoDs are ignored, resulting in a sharp
decrease on accuracy. On the other extreme, when 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 is low, false support do-
mains pollute the BoDs. Focusing on results for 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 = 0.1%, notice how accuracy
drops to 90% in the Simple-Browsing trace, and to less than 80% in extreme scenarios.
This happens because BoDs get very large with lots of false support domains that hinder
the annotation process.

I omit for brevity analyseswith other parameters. Overall, the best parameter choices
are 𝑇𝑂𝑊 = 10 s, 𝑇𝑖𝑑𝑙𝑒 = 5 s and 𝑀𝑖𝑛𝐹 𝑟𝑒𝑞 = 6%, resulting the best figures shown in
Figure 6.7.

6.5.3 Training set size and location
AWESoME learns BoDs by observing traffic. I now answer two practical questions

regarding training in real deployments: (i) What is the amount of traffic that needs to
be observed for learning representative BoDs? (ii) Should training be performed with

89

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

 50

 60

 70

 80

 90

 100

1 h

2 h

4 h

12 h

1 d

2 d

5 d

10 d

1 m

2 m
A

cc
u

ra
cy

 [
%

]

BoDs Learning Period

Same location training

Figure 6.8: Accuracy vs. training dataset size. BoDs learned with ADSL, accuracy calcu-
lated with Simple-Browsing trace – 1-month training window is sufficient.

traffic of the managed network or generic BoDs can be distributed to different deploy-
ments?

Figure 6.8 shows the effects of the training dataset size. For this experiment, AWESoME
learns BoDs using ADSL trace, and performance is assessed with the Simple-Browsing
trace. I extend the training dataset duration in each experiment round. The “same loca-
tion training” line marks the best result obtained with training performed with Simple-
Browsing trace. Again, AWESoME has to learn 3 760 BoDs. Here, I want to study the
effect of different learning periods, and, thus, the study is limited to the ADSL trace.
𝐶𝑜𝑟𝑝 1 and 𝐶𝑜𝑟𝑝 2 are captured very far in space, and this would lead to worse results.
This effect is evaluated later in this section.

Focusing on the left-most point in Figure 6.8, note that AWESoME correctly identi-
fies 80% of the flowswhen the training set contains 1 hour of traffic only.That is, most of
the popular BoDs are learned by observing a single hour of traffic. Increasing the train-
ing set improves results, with the best accuracy at around 87%. Thus, AWESoME needs
to be trained for around 10 days to reach its best performance in this scenario. Further
results, omitted for brevity, show that BoDs change slowly and are well-captured by the
continuous training.

Since AWESoME requires historical data for training, the size of the training dataset
may become large. For ADSL and FTTH, this corresponds to millions of flow records,
which result in several GBs of traces. This calls for the use of scalable data processing
approaches, and AWESoME training is thus built on Apache Spark to scale with the size
of training dataset.

Figure 6.8 points to a decrease in performance when training is done with data from
a different network. I explore this effect in Table 6.4. It reports the fraction of flows
identified by AWESoME in a trace when training is done on another dataset. Columns
indicate the training dataset, and rows indicate the testing dataset. I consider as core

90

6.5 – AWESoME Performance

Table 6.4: Fraction of flows classified by AWESoME when varying training and testing
locations. The Alexa top-100 websites are core domains in this analysis.

Training
ADSL 𝐶𝑜𝑟𝑝 1 𝐶𝑜𝑟𝑝 2 𝐶𝑟𝑎𝑤𝑙𝑖𝑛𝑔

Cl
as
si
f. ADSL 1 0.45 0.48 0.32

𝐶𝑜𝑟𝑝 1 0.72 1 0.81 0.40
𝐶𝑜𝑟𝑝 2 0.42 0.47 1 0.34

domains the top-100 Alexa sites, since most of them are common across traces.
Cells report fractions taking as reference the flows which are annotated when train-

ing and testing are done with the same network. For instance, the first row shows that
when training is performed with 𝐶𝑜𝑟𝑝 1, AWESoME annotates only 45% of the flows
in ADSL that would be identified if both training and testing are done in ADSL. The re-
maining 55% of flows aremarked as “unknown”.This happens because the BoDs learned
from different vantage points differ because of variations in the domains used by CDN
servers or different content (ads) per location. Additionally, some BoDs are completely
empty in a trace because of regional browsing preferences.

Interesting, last column of Table 6.4 shows that active crawling is not sufficient
for generating comprehensive BoDs. I learned BoDs by active crawling the homepage
of top-100 Alexa sites. Those classify as little as 32% of the flows for the ADSL trace.
Therefore, AWESoME deployments must include mechanisms for in-place training.

6.5.4 Per service performance
I investigate further AWESoME performance by breaking down results for popular

services in my datasets. Figure 6.9 shows precision and recall obtained when learning
BoDs using 10 days training on 𝐼𝑆𝑃 1 and applying them to the Simple-Browsing trace.6

Figure 6.9 shows that precision is typically higher than 97% excluding Facebook
and Linkedin. That is, false positives are generally very rare unless for those service
that are (i) extremely popular and (ii) both core and support domains. AWESoME may
consider a support domain as a new core in these cases. Recall is typically higher than
80% – i.e., some support domains are not associated to the right service, typically be-
coming unknown. For management purposes, this translates into amarginal probability
of wrongly treating few flows of a service of interest, i.e., AWESoME most common er-
rors mark as unknown traffic that should not be considered unknown, but rarely assign
to a wrong class (the precision is generally higher than recall). For instance, in some
case, some support domains are not identified and handled as all other flows in default

6Precision is calculated as the percentage of flows correctly identified as belonging to a service,
whereas recall indicates the percentage of flows of the service that is identified.

91

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

 0

 20

 40

 60

 80

 100

E
-C

om
m

erce1

E
-C

om
m

erce2

E
-C

om
m

erce3

E
-C

om
m

erce4

N
ew

s1
N

ew
s2

N
ew

s3
S
port1

W
eather1

github.com
new

s.google.com

stackoverflow
.com

w
w

w
.bbc.com

w
w

w
.booking.com

w
w

w
.facebook.com

w
w

w
.google.com

w
w

w
.linkedin.com

w
w

w
.w

ordreference.com

w
w

w
.youtube.com

[%
]

Precision Recall

Figure 6.9: Precision and recall for popular services.

classes. Finally, I argue that this a pessimistic scenario, as AWESoME has been instru-
mented to discern all 3 760 Core Domains in the trace i.e., it must classify the traffic
into the same number of classes. In a real deployment, I expect lower misclassification
probability.

6.5.5 Is AWESoME scalable?
Finally, I evaluate three key aspects for a practical AWESoME deployment: (i) its

overall run-time to take a decision when a new packet is received by the controller;
(ii) the number of packets that need to be handled by the SDN controller; (iii) the number
of rules that are installed in forwarding devices.

AWESoME has been prototyped in Python. Figure 6.10 shows the CDF of the exe-
cution time of my prototype for each packet that arrives at the controller. I found that
AWESoME running on a commodity server takes less than 100 𝜇𝑠 to take a decision for
more than 99% of the packets reaching the SDN controller. That is, AWESoME internals
add only negligible delays per flow.

I now focus on the number of packets the controller has to handle. I use the oper-
ational network traces for this. Figure 6.11 depicts the number of packets per second
forwarded to the controller. Different experiment rounds are executed, including the
top-𝑛 most active ClientIP addresses in each round. Remind that client IP addresses are
equivalent to home gateways in ISP traces and to unique users in corporate traces. Box
plots depict the distributions of packets per 1-second time bins, with boxes ranging
from the 1st to 3rd quartiles, and whiskers marking 5ft and 95ft percentiles. Only ADSL,
𝐶𝑜𝑟𝑝 1 and 𝐶𝑜𝑟𝑝 2 are shown to improve visualization.

In summary, the packet arrival rate at the controller is very low. Focusing on the

92

6.5 – AWESoME Performance

0.0

0.2

0.4

0.6

0.8

1.0

 0 20 40 60 80 100

C
D

F

Processing time [us]

Figure 6.10: Processing speed of AWESoME for each packet arriving at the controller in
a single-core of a commodity server.

1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

2048
4096

[p
k
t/

se
c]

Users

CORP 1
CORP 2ADSL

Figure 6.11: Packet arrival rate at the controller. Even for large numbers of clients, the
number of packets handled by the controller is limited.

right-most point in Figure 6.11, notice that 4 096 terminals generate less than 1 000 pack-
ets/s for more than 95% of the time bins. For the sake of comparison, my AWESoME
Python implementation can handle more than 40 000 packets per second. That is, even
for large numbers of clients, AWESoME deployment is scalable thanks to its ability to
take decisions using only DNS traffic and a single packet per flow.

Finally, I investigate the number of rules that are installed on the SDN switches.
This aspect must be necessarily taken into account, since switches typically can host a
limited number of rules (i.e., < 10 000). Notice that AWESoME imposes the largest load
in edge switches, where packet policing and tagging are performed on a per flow basis
(see transient per flow rules in Table 6.2b). Other upstream elements (i.e., SDN switches

93

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

1

 10

 100

 1000

 10000

4 8 16 32 64 128
256

512

In
st

al
le

d
 r

u
le

s
p

er
 s

w
it

ch

Terminals

ADSL-TCP
ADSL-UDP

Figure 6.12: Active rules assuming that the top-𝑛 clients are connected to a bottleneck-
switch and all services are managed. The number of installed rules is limited.

in the core of the network) instead operate on a per service basis, and are programmed
using stable rules as illustrated in Table 6.2c. As such, the loading on switches that are
upstream in the network should be lower than on edge switches. In the example of
Figure 6.2, stable rules are based on VLAN tags and impose only one rule per traffic
class in the core switches.

I estimate the number of rules that would need to be installed in edge switches
creating a scenario where I assume: (i) the top-𝑛 most active clients are connected to a
single edge switch; (ii) the network administrators policy all services in the network,
thus requiring rules to manage every TCP/UDP flow individually; (iii) rules stay active
for Idle Timeout = 120 s after the last flow packet.

Figure 6.12 illustrates the distribution of the number of rules installed in the edge
switch. The distribution is calculated monitoring the flow table while replaying ADSL
trace.The box plots follow the same characteristics as in Figure 6.11.This study is limited
to ADSL for the sake of brevity. Similar results are obtained using the available traces.
Focusing on the right-most point of Figure 6.12, notice that the flow table occupancy is
low even when more than 500 terminals are connected on a single switch. The switch
would rarely observe more than 5 000 active rules.The figure also breaks down numbers
per TCP and UDP flows, showing that most rules would be related to (long-lived) TCP
flows. In real deployments, where only few services of interest are managed, I expect
AWESoME to put a negligible number of rules per switch.

6.5.6 Limitations and future work
Previous sections have shown that AWESoME is able to steer traffic per service with

an overall accuracy of about 90%. Whether or not this accuracy is sufficient depends on
the target application. For traffic engineering in a corporate scenario (see Figure 6.2)

94

6.6 – Related work

AWESoME accuracy is appropriate. For example, it would allow to steer/segregate un-
wanted video traffic to slower paths, prioritize corporate cloud services, etc. AWESoME
would steer 90% of the flows on the paths selected by the network administrator, with
the wrongly routed flows imposing minor loads to the remaining paths. Comparing this
error rate to today’s alternatives (e.g., routing based on IP addresses of core domains –
see Table 6.1), I believe AWESoME is a step forward for traffic engineering. I also argue
that 10% of errors is enough for most traffic engineering tasks, where a mistake would
result only in a longer/slower path without compromising the use of the service.

However, some scenarios may not tolerate any false positives, which is the case for
some security applications. Devising per service tagging with zero false positive rates
for security purposes is left for future work.

AWESoMEhas some limitations originating from assumptions and design decisions.
Those decisions are justified bymy goal of keeping AWESoME as simple as possible. For
instance, Algorithms I and II assume that services are interactive and, as such, core and
support domains appear close in time. BoDs for background services cannot be learned
by these Algorithms since the assumption does not hold for background services. My
experience with the traces suggests that background services are, in general, easier to
identify thanks to the machine-to-machine nature of the traffic and the low number
of domains supporting the services. While AWESoME allows administrators to specify
Static BoDs, extending the system to automatically learn BoDs of background services
is a promising direction for future work.

Finally, AWESoME assumes edge switches are part of the SDN and aggregate a mod-
erate number of users – e.g., users in home NAT or in a corporate LAN. AWESoME
cannot be deployed if large numbers of users are aggregated behind a single address,
such as in Carrier-grade NAT, unless edge switches inside the Carrier-grade NAT are
part of the SDN.

6.6 Related work

6.6.1 Web service traffic identification
Many approaches for traffic identification have been proposed [15, 65], and different

alternatives could be coupled with SDN to implement per service traffic management.
DPI has been employed not only to classify traffic of web services [101, 118, 117], but
also to bring service visibility into SDN [59]. The DPI-based approach however suffers
from weaknesses when applied to SDN: (i) the number of packets to be forwarded to
controllers or SDN applications can be high for common protocols; (ii) as encryption
gains momentum, essential information cannot be observed, thus reducing its applica-
bility.

AWESoME adopts a behavioral identification approach – i.e., traffic behavior is used
to infer the services generating packets [64]. The AWESoME approach is innovative in

95

6 – AWESoME: Big Data for Automatic Web Service Management in SDN

that it builds models based on server hostnames as they are resolved by clients. As such,
AWESoME can differentiate services even if they use exactly the same protocols (e.g.,
HTTPS) and are hosted in the same infra-structure (e.g., in the case of CDNs and cloud
hosting).

The idea of annotate traffic on-the-fly using DNS information has appeared in [7,
37, 78, 85]. However, AWESoME not only annotates flows and classifies traffic on a per-
flow basis, but also automatically clusters third-party flows triggered by services. Thus,
AWESoME is able to manage traffic even if flows are annotated with uninformative or
ambiguous hostnames.

AWESoME relies on the fact, exploited in other works [63, 87], that flows triggered
by a service present temporal correlations. AWESoME extends the approach to named-
flows, tunes it to operate in real-time scenarios, and integrates the algorithms into SDN,
so to control the network based on complex traffic relationships.7

Finally, authors of [21, 22] exploit relationships between flows for traffic manage-
ment. They leverage groups of flows, or coflows, to boost performance of MapReduce
applications. Their solutions are designed for data centers and require application-level
modifications, while AWESoMEuses a completely in-network approach.Moreover, AWESoME
aims at managing services at the edge of the network. Thus, AWESoME needs to man-
age a vast number of services that may behave differently from each other. Automatic
identification of coflows is proposed in [120], but the solution is also limited to data cen-
ters, facing limitations if deployed at edge networks. AWESoME instead builds models
for the services automatically, identifying service traffic based on the DNS.

6.6.2 Service-awareness in SDNs
SDN has become very popular from academic environments [72] to large-scale data-

centers [58], sparking a host of applications, such as SDN-based routing [111] and In-
ternet exchanges [46]. Most of the SDN applications proposed to date (see [66] for a
comprehensive survey) however are a good fit to forwarding rules expressed using in-
formation from L2-L4 headers, as it is typical of popular SDN implementations.

Authors of [89] mention the lack of support for L7 applications in SDN.Theymake a
first step towards it by solving in SDN traffic steering functions traditionally performed
by middle-boxes – e.g., firewalls, proxies, intrusion detection systems etc. Like us, they
advocate a solution that requires no changes to SDN standards. AWESoME is a next step
into bringing L7 support to SDN. It builds upon the traffic exchanged with the DNS to
perform advanced traffic steering, enabling flexible managing of complex web services.

Fewworks have proposed low-level (stateless) forwarding rules to comprehensively

7An off-line version of the algorithm used by AWESoME to learn bags of domains has alredy been
used in Chapter 5.

96

6.7 – Conclusions

manage complex services. Some authors have focused on specific services [114] or sce-
narios where communication patterns are well-known [121]. Authors of [86] propose a
collaboration between CDNs and ISPs to allow content-based traffic engineering and an
efficient server selection. In contrast, AWESoME learns how generic services communi-
cate only based on network traffic and then relies on traditional L2-L4-based forwarding
rules to handle the corresponding traffic.

Otherworks propose extensions to the SDN architecture either to delegate to switches
(i.e., the data plane) management tasks that are based on L7 information, or to customize
controllers and the data plane for stateful management [74, 79]. AWESoME instead is
a SDN application that requires no particular changes in the lower layers of the SDN
architecture.

I am aware of only fewworks that propose SDN applications to manage general web
services [8, 59, 81, 88].They use differentmethodologies to classify flows – e.g., forward-
ing the first 𝑁 packets of each flow to controllers or implementing machine learning
algorithms. These works however miss dependencies among flows, as depicted in Fig-
ure 6.1, and, as such, fail in handling CDN/cloud traffic. Moreover, AWESoME requires
to analyze only the first packet of each flow, which reduces the load at controllers.

6.7 Conclusions
I introduced the concept of “per service”managementwith SDN.This allows the net-

work administrators to define policies to handle all traffic exchanged by terminals when
accessing complicated web services today served by multiple domains and servers.

I presented and evaluated AWESoME to enable the per service management with
SDN. It leverages DNS and the concept of Bag of Domains to associate the first packet
of each flow to the originating service. I showed that AWESoME is accurate and poses a
marginal load on the SDN controllers and switches, thus enabling fine grained control
in practice.

I believe the concept of per service management can foster new studies, e.g., to
improve the classification up to make it compatible with security applications, where
high accuracy is mandatory, or to develop anomaly detection based on BoDs and per
service accounting.

97

98

Chapter 7

PAIN: A Passive Web Performance
Indicator for ISPs

The work I present in this chapter is mostly taken from my paper “PAIN: A Passive
Web Speed Indicator for ISPs” presented in the 2nd Workshop on QoE-based Analysis
and Management of Data Communication Networks (Internet-QoE 2017) [103].

7.1 Introduction
Metrics related to Quality of Experience (QoE) are key to understand how users

enjoy the web. Such metrics are of prime importance to all actors involved in the ser-
vice delivery. From Content Providers, which need to monitor users’ satisfaction to
maintain or increase their user base, to Internet Service Providers (ISPs), which need
to be aware of performance offered by the network and factors affecting web browsing
experience [92]. The idea that unsatisfied users are more prone to switch providers is
widely disseminated. More than that, there are many anecdotal evidences that a small
deterioration of quality levels could result in losses of revenues to providers.1

Given the importance of QoEmonitoring, Content Providers have developed a num-
ber of alternatives to estimate users’ QoE. On the contrary, there are hardly any meth-
ods to estimate users’ QoE at ISPs [10, 4, 92], even if they are equally blamed for poor
users’ experience. Bad performance in the network and, in particular, in the last-mile
is historically the first suspect when users’ quality degrades. This has motivated ma-
jor Content Providers to publicize rankings of ISP performance.2 It is no exaggeration
to say that ISPs are evaluated based on the experience of end-users while interacting
with third-party services, with video and web browsing being the most important. In
addition, ISPs need to measure the impact of possible network configuration changes

1https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
2For an example, see https://ispspeedindex.netflix.com/

99

7 – PAIN: A Passive Web Performance Indicator for ISPs

on performance – e.g., to decide whether the deployment of web caches or new content
delivery nodes is advantageous, or to tune configuration parameters of their networks.

Users’ QoE is intrinsically subjective, thus hard to be assessed and quantified. Pre-
vious works [4, 10, 18] have proposed objective metrics that have been shown to be
correlated with users’ Mean Opinion Score (MOS), even if a model to predict MOS is
still hard to get [12]. These metrics however either are computed at the server-side
(i.e., available to Content Providers only) or require ground truth from in-browser in-
strumentation (i.e., not scalable for the monitoring of a large number of sites at ISPs).
Passive solutions that provide visibility into web performance are rare, and generally
complicated by the need to analyze payload to reconstruct web pages [92].

Here, I introduce PAIN (PAssive INdicator), a completely unsupervised system to
monitor web page performance using passive traffic logs. The adoption of encryption
(e.g., HTTPS) makes solutions that reconstruct web sessions from payload [10, 4, 92] no
longer effective. PAIN instead relies only on L4-level statistics (e.g., Netflow), annotated
with the original server domain3 information [7] to compute a synthetic indicator of the
web page rendering time. Despite the passive approach, it combines machine learning
approaches and techniques guided by the domain knowledge to reach the challenging
goal of measuring browsing speed for encrypted websites. The design of PAIN is com-
plex, but then its deployment is straight-forward, as no manual intervention or tuning
is needed.

I validate PAIN in a testbed, which browses web pages while collecting also classic
client-side objective metrics. I show that PAIN is able to spot changes in network con-
ditions, reporting quality degradation when the page load time increases. PAIN metrics
are strongly correlated with objective metrics based on client instrumentation, that are,
in turn, shown to be correlated to users’ QoE by literature works [10]. Finally, PAIN out-
performs alternatives, either by avoiding expensive training or by effectively working
with encrypted traffic.

I demonstrate the practical application of PAIN in a case study. I run PAIN on ISP
network traces for one full year. First, I show how PAIN can help the ISP understand
its users’ experience, e.g., highlighting web browsing performance of users connected
with different Internet access capacity. In particular, it allows to study the penalty in
performance among users with good/poor access link conditions, topic of particular
interest for the ISP, and explicitly requested to our research team. Then, I show how
PAIN lets the ISP quantify variations in web browsing performance, e.g., pinpointing
sudden performance variations of websites.

PAIN is open-source, and it is released as a module of the NetLytics Big Data plat-
form [102]. It can be fed using Tstat [107], Squid [99] and Bro [84], to extract perfor-
mance metrics directly from raw log files.

3I use the term domain informally throughout the chapter, meaning Fully Qualified Domain Name
(FQDN).

100

7.2 – The complexity of QoE estimation

In the following, Section 7.2 details the problem and envisioned deployment sce-
nario, while Section 7.3 summarizes related work. Section 7.4 describes PAIN design and
algorithms. Section 7.5 introduces the employed datasets. Section 7.6 validates PAIN,
while Section 7.7 describes my experience of running PAIN on operational network
traces. Finally, Section 7.8 concludes the chapter.

7.2 The complexity of QoE estimation

7.2.1 Objective QoE-related metrics
Given the intrinsic subjectiveness of QoE, measuring it is hardly possible without

involving the users directly. Therefore, large-scale measurement campaigns are usu-
ally infeasible. Not a surprise, several approaches exist to estimate QoE with objective
metrics calculated without human intervention.

In this chapter I focus on users’ experience while browsing the web. Two of the
most popular objective metrics to estimate users’ QoE in this scenario are:
(i) OnLoad time: The time browsers fire the onLoad event – i.e., when all elements
of the page, including images, style sheets and scripts have been downloaded and pro-
cessed. This metric is widely used in literature to quantify web performance despite
some well-known pitfalls: (i) a single slow page elements could negatively affect On-
Load time, (ii) asynchronous scripts might be programmed to load after the OnLoad
event is fired by the browser.
(ii) SpeedIndex: Proposed by Google4, it represents the delay to render the visible por-
tions of a page. It is computed by capturing the video of the page loading in the browser
and tracking its visual progress.

These metrics are computed by the web browser at client-side. Collecting them re-
quires the access of users’ devices. Content providers and websites usually instrument
services to collect such metrics from web browsers and upload results to servers as
pages are loaded.

7.2.2 Challenges for estimating QoE from network traffic
QoE estimation based on Deep Packet Inspection [92] can no longer work, due to

the deployment of encrypted protocols. New methods to estimate QoE must therefore
be compatible with the data visible in the network.

ISPs can still rely on flow-level monitoring [51], which provides coarse-grained data
about the activity collected at the network and transport layers. Moreover, ISPs usually
control key Internet services, e.g., the DNS. PAIN exploits flow-level measurements and

4https://developers.google.com/speed/docs/insights/about

101

7 – PAIN: A Passive Web Performance Indicator for ISPs

t0
Time

(20s)

Support Domains

Figure 7.1: Sample of flows in a visit to 𝑤𝑤𝑤.𝑛𝑦𝑡𝑖𝑚𝑒𝑠.𝑐𝑜𝑚. I use the time to contact
support domains to monitor performance.

DNS information to build models for the traffic of given websites. In the remainder of
the chapter I assume that both flow level and DNS measurements are available at the
ISP. Proposed protocols designed to encrypt DNS traffic (like DNSCrypt and DNS-over-
TLS), despite being only at an early phase, would however complicate the design of
PAIN.

Estimating QoEmetrics from such coarse-grained data is not trivial.The complexity
of websites has dramatically increased over the years [54], and loading a web page
requires reaching dozens of servers and fetching hundreds of objects. I provide some
real examples of flow-level measurements obtained during visits to arbitrary websites
to illustrate the challenges for extracting meaningful performance metrics. Once users
reach a website, her browser opens multiple flows to different servers to fetch HTML
objects, scripts and media content. I call the domain associated with the first contacted
server the Core Domain and the remaining contacted domains Support Domains.

Figure 7.1 provides a simplified example: arrows represent the time inwhich flows to
support domains start while the user is visiting the core domain 𝑤𝑤𝑤.𝑛𝑦𝑡𝑖𝑚𝑒𝑠.𝑐𝑜𝑚. In
this example, loading the web page requires the browser to issue 16 flows to 12 different
servers. PAIN has to infer a performance indicator from this kind of traces, which are
influenced by browser configurations, website designs, network configuration, etc.

Figure 7.2 depicts a complete example, where I report all flows to support domains
opened during a visit to www.bbc.co.uk. This visit has taken around 6 seconds to load
all objects. The browser has contacted 94 (unique) support domains. Black lines in the
picture represent notable browser events. The browser starts rendering the page at 0.7𝑠
and finishes parsing the HTML document at time 1.6𝑠, when the browser has down-
loadedmainly HTML objects and JavaScripts.Then, it starts to download other page ob-
jects (e.g., images and style sheets), firing the onLoad event only at 5.4𝑠. After this, the
browser continues to download elements from other servers (and opening new flows).
In this example, the page triggers 27 additional connections to domains hosting analyt-
ics, advertisements, etc.

102

7.3 – Related Work

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

S
u
p
p
or

t
D

om
ai

n
s

Time [s]

Rendering
Starts

HTML
Parsed

OnLoad
Event

Figure 7.2: Support domain flows for a visit to www.bbc.co.uk. The browser contacted 94
support domains (𝑦-axis) during 6 seconds (𝑥-axis). Notable browser events are reported
as vertical lines.

PAIN profits from support domains to estimate page load speed from flow timings.
It is an unsupervised system that automatically learns typically contacted support do-
mains after a core domain visit, and creates models describing the typical order in which
support flows appear after the core domain visit. PAIN then considers the delay to ob-
serve support flows as performance indicators. PAIN assumes that clients’ location does
not vary, and the monitored set of clients is continuously connected to the Internet un-
der a well-known access technology.

7.3 Related Work
Several previous works focus on estimating QoE from passive network measure-

ments. Authors of [18] show that indirect metrics serve as indicators of users’ MOS.
According to [30], packet losses are strongly correlated with users’ session abandon-
ment events. Considering web browsing QoE, past works focus on the difficulty of
its estimation, and propose objective metrics to this end. Egger et al. [32] show that
user perceived web page load times may deviate from technical page load times, while
Wang et al. [113] claim that in-browser computation and blocking Javascript are signifi-
cant factors affecting perceived QoE. Metrics such as the onLoad time or SpeedIndex
have been shown to be correlated with QoE metrics [10]. Authors of [10] also propose
ByteIndex and ObjectIndex – metrics based on the bytes delivered to the client
to render a page. Authors of [14] propose the Above-The-Fold metric to overcome
the limitations of the naive onLoad approach. It is used in combination with classical
metrics to predict users’ MOS [27].

Past works targeting the ISP scenario either require DPI, or rely on ground truth
from client browsers to train machine learning classifiers. Ibarrola et al. [53] build a
network emulation system that, based on data collected thanks to volunteers, estimates

103

7 – PAIN: A Passive Web Performance Indicator for ISPs

PAIN Index Computation (Sec 4.3)
Model Learning (Sec 4.2)

Flow

Records

Core Domain: abc.com

 Group 1:

- opq.rs.com

- tuv.vz.net

 Group 2:

- def.gh.org

- lmn.op.com

 Time Core Domain P1 P2 …

 14256 abc.com 1.45 2.89 ..

 14357 zxy.net 1.92 3.25 ..

 12486 ijk.com 0.65 1.21 ..

 . . .

Models

New

Traffic

PAIN Index

Core Domains

Discard old

models

SD

learning

SD

scoring

SD

grouping

Figure 7.3: Architecture of PAIN. It learns and clusters support domains using flow
records and a list of target core domains. The resulting groups are used to estimate
performance.

QoE when varying network conditions. Shaikh et al. [95] study the correlation between
physical layermetricwithQoE of a single object page building on a lab testbed. A similar
approach is used by Aggarwal et al. [3], where mobile devices carefully instrumented
provide the ground truth to train models predicting QoE. Other works rely on deep
packet inspection (DPI) of HTTP transactions to gather useful knowledge, but fail in a
world where encryption is the norm [45]. Balachandran et al. [4] create models to pre-
dict web QoE from passive measurements on cellular networks examining the sequence
of HTTP requests. Similarly, Sandvine industry products [92] build dependency graph
of web pages to assess PLT, but are limited to not-encrypted traffic. Differently from
past works, I have decided to follow the unsupervised approach, avoiding the need of
a resource-consuming testbed to gather client-side metrics. PAIN automatically builds
the models from flow-level traces, with no need to access to payload, and seamlessly
operates with encrypted data carried over TLS/QUIC.

7.4 The PAIN system
PAIN is an unsupervised system composed by two blocks (see Figure 7.3).TheModel

Learning module analyzes flow records exported by monitoring devices and creates a
model for each core domain of interest, i.e., it discovers and clusters support domains
associated to specific websites. It must be continuously updated to cope with changes
in web-page structure. The PAIN Index Computation module extracts the actual perfor-
mance index using the previously built models. All algorithms scale linearly with re-
spect to the input size (i.e., each flow record must be inspected just once), and support
scalable processing using big data approaches offered by Apache Spark.

104

7.4 – The PAIN system

7.4.1 Input data
PAIN expects two inputs: (i) Flow records from traffic, and (ii) the list of Core Do-

mains of interest.
Flow records are annotated with time and domain information: Given a flow 𝑓,

identified by client and server IP addresses, client and server port numbers and the
transport-layer protocol, 𝑡𝑠𝑓, 𝑡𝑒𝑓 are the start and end timestamps, i.e., the time of the
first and last packet of the flow. Each flow record must be enriched with information
about the server domain 𝑑 requested by the client.

Flow meters typically export information from the network and transport layers,
missing the association between server IP addresses and domain names. To get the
server domain, different methods can be used. For example, DNS logs can be employed
to extract queries/responses and annotate records in a post-processing phase [7]. Equally,
some flow meters export such information on-the-fly directly from the measurement
point for popular protocols [51]. For instance, Deep Packet Inspection allows one to
extract the Server Name Identification (SNI) from encrypted TLS flows, or the server
Host: header from plain-text HTTP flows.

The list of Core Domains is a user-defined list containing the set of core domains
the ISP is interested in monitoring, such as popular websites accessed by users of the
network. Since PAIN operates with L4-level measurements and domains names, the
analyst must specify only the domain names to be monitored, and not full URLs. This
allows PAIN to deal with encrypted traffic.

7.4.2 Model learning
The Learning Module observes the timings of flows as seen for the network traffic

after a Core Domain. The first task is to learn which support domains are due to the
core domain visit. PAIN learns that by focusing on the flows commonly occurring after
core domains appearance. Section 7.6.5 shows that support domains are rather stable,
and change slower than monthly.

Given that downloaded HTTP objects while rendering a page vary from visit to
visit (e.g., because of caching, persistent connections, modification in the content, per-
sonalized content etc.), PAIN analyzes the order in which groups of support domains
typically appear. The rationale is that some support domains may be missing in a visit,
while others may not be relevant for indicating page rendering events (see Figure 7.2).
PAIN uses groups of support domains to build models that are robust to such variations,
i.e., tolerate missing or out-of-order support domains.

The combination of these building blocks lets PAIN model the typical behavior of
the websites hosted in a core domain.

105

7 – PAIN: A Passive Web Performance Indicator for ISPs

Support domains learning

PAIN learns support domains based on the methodology explained in Section 5.3.4.
Let 𝐶 be the set of core domains of interest provided as input. PAIN training consists
of learning the set of support domains 𝑆𝑐, for each core domain 𝑐 ∈ 𝐶. The intuition
is simple: When a client is observed opening a flow to the core domain 𝑐, the domains
of flows that follow shall be considered within 𝑆𝑐. As illustrated in Section 5.3.4, PAIN
evaluates flows after the core domain in a window Δ𝑇 long.5 The impact of Δ𝑇 on the
final results is discussed later in Section 7.6.1. Traffic from all clients contributes to 𝑆𝑐,
so that information is accumulated over time and in different conditions, i.e., identities,
browsers, devices, configurations, etc.

Support domain scores

Intuitively, the timeline of support flows reflects the speed at which a web page
is rendered (recall Figure 7.2). Page elements hosted by third-party sites (e.g., images
and advertisements) are requested after other components of the page (e.g., scripts) are
processed. PAIN leverages this behavior to calculate a score for 𝑑 ∈ 𝑆𝑐. The score is
higher for support domains appearing further away in time from the core domain 𝑐
(e.g., right-most points in Figure 7.2).

However, the set of support domains varies from visit to visit. 𝑆𝑐 is constructed from
many observation windows and not all support domains appear in every observation
window due to caching and persistent connections. Equally, nothing prevents browsers
or mobile apps from opening flows to third-parties in a different order while rendering
pages.

To determine the score for each 𝑑𝑖 ∈ 𝑆𝑐, PAIN computes a dependency matrix ℳ𝑐 of
order |𝑆𝑐| for each core domain 𝑐. Each cell ℳ𝑐𝑖,𝑗

represents the number of observations
windows 𝑂𝑊𝑐 in which the support domain 𝑑𝑖 has appeared after the support domain
𝑑𝑗 in time. Note that ℳ𝑐𝑖,𝑖

= 0. Similarly, ℳ𝑐𝑖,𝑗
= |𝑂𝑊𝑐| only if 𝑑𝑖 appears always after

𝑑𝑗, and both 𝑑𝑖 and 𝑑𝑗 are in all observation windows for the core domain 𝑐. The score
of 𝑑𝑖 is calculated as:

𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑑𝑖) = ∑
𝑗

ℳ𝑐𝑖,𝑗
(7.1)

Note that 𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑑𝑖) is high if 𝑑𝑖 appears often later than other domains in the obser-
vations windows of 𝑐. Similarly, it is lower if 𝑑𝑖 usually appear close to the core domain.
Algorithm 6 reports a pseudocode for the score calculation function. It processes one
core domain at a time. PAIN computes the dependency matrix ℳ (lines 1-6), and, then,
uses it to provide the scores (lines 7-8).6

5The Δ𝑇 parameter has the same role of both Δ𝑇𝑂𝑊 and Δ𝑇𝐸𝑉 in Chapter 5.
6In PAIN implementation, Algorithms are executed on-the-fly as new traffic comes into the system.

106

7.4 – The PAIN system

Algorithm 6 Compute the scores of support domains for the core domain 𝑐.
Input:

𝑐 ▷ Core domain to be processed
𝑆𝑐 ▷ Support domains of 𝑐
𝑂𝑊𝑐 ▷ Observation windows for 𝑐

1: ℳ ∈ ℝ|𝑆𝑐|×|𝑆𝑐| ▷ Define the dependency matrix
2: for 𝑜𝑤 in 𝑂𝑊𝑐 do ▷ For each observation window
3: for 𝑑𝑖 in 𝑜𝑤 do ▷ For each support domain in 𝑜𝑤
4: for 𝑑𝑗 before 𝑑𝑖 in 𝑜𝑤 do ▷ Supports before 𝑑𝑖 in time
5: if 𝑑𝑖 ∈ 𝑆𝑐 ∧ 𝑑𝑗 ∈ 𝑆𝑐 then
6: ℳ𝑖,𝑗+ = 1 ▷ Increment ℳ𝑖,𝑗 if supports are in 𝑆𝑐

7: for 𝑑𝑖 in 𝑆𝑐 do ▷ Compute score for each support domain
8: 𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑑𝑖) = ∑𝑗 ℳ𝑖,𝑗 ▷ Sum the row of ℳ

Support domain grouping

After scoring, PAIN identifies groups of support domains. I propose a simple rule
that considers groups of support domains, which gives robust outcomes based on my
tests. By clustering the support domains in some few groups, I filter out the noise caused
by missing support domains, besides creating groups of domains that are strongly cor-
related to web performance.

More precisely, I sort 𝑑𝑖 ∈ 𝑆𝑐 in increasing order of 𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑑𝑖) and split the domains
in 𝑛 groups in 𝐺𝑐, where groups have at least |𝐺𝑐𝑘

| = ⌊
|𝑆𝑐|

𝑛 ⌋ support domains. 𝐺𝑐1
will

contain those support domains that often appear the closest to the core domain flow,
wheres 𝐺𝑐𝑛

will have the support domains that often appear the furthest to the core
domain. 𝑛 is a parameter to be investigated.

The set 𝐺 – i.e., groups of support domains for core domains 𝐶 – is the output of
the Model Learning module.

7.4.3 PAIN index computation
The index computation module analyzes live traffic to provide a performance in-

dex. Like in the training phase, PAIN analyzes the traffic flows on a per-client basis,
chronologically sorted by time. When it encounters a flow to a core domain 𝑐, it opens
an observation window Δ𝑇 long. PAIN considers all support domain flows generated by
the client within the OW, and accounts them to the corresponding group.

I measure the time at which flows in each group are observed. A visit to a group is
considered completed at the time when the last flow in the group is observed. For each
group 𝐺𝑐𝑖

with 𝑖 ∈ 1,… , 𝑛, PAIN calculates the index 𝑃𝑖, equals to the time difference
between the starting of the last flow in the group 𝑖 and the starting time of the core
domains 𝑐. Note that groups can be absent if none of its support domains is in 𝑂𝑊. This
can be typically caused by two phenomena: (i) the browser cache contains all the objects

107

7 – PAIN: A Passive Web Performance Indicator for ISPs

that are hosted on a particular domain and (ii) the browser already opened a persistent
connection toward the target domain. In this case, I do not consider the sample.

I tested different criteria in place of last per group (e.g., average and median) and all
lead to worse results. The intuition is that the web page performance is mainly driven
by the ability of the browser to obtain objects to render the page, which correlates well
with the time late flows are observed in the network. Using the last flow per group also
highlights possible degradation of specific servers involved in serving the content.

The tuple 𝑃 = {𝑃1,… ,𝑃𝑛} represents the performance index for a given visit to the
core domain 𝑐. By considering all visits from all clients to 𝑐, PAIN builds statistics on the
performance faced by clients. Due to the intrinsic noisiness of flow-level measurements,
PAIN assumes relevance when multiple measures are aggregated to contrast different
users, time periods or locations.

7.4.4 Design decisions, caveats and limitations
The decision of making PAIN a completely unsupervised system is motivated by

my goal to monitor a vast range of websites. The system is expected to receive only
the list of core domains of interest. It learns models directly from traffic, without re-
quiring human intervention or any information collected at the client-side. Due to this
design choice, PAIN does not directly provide QoE figures, as this would require expen-
sive campaigns involving users directly. However, Section 7.6 shows that PAIN index
is strongly correlated with objective metrics that have been identified as good proxies
to users’ satisfaction [27]. Even if I did not perform experiments in that direction, it
is possible to calculate boundaries for the correlation between PAIN and QoE leverag-
ing partial correlation properties.7 Given my experiments, it is possible to demonstrate
that correlation between PAIN index and QoE is always positive and in the interval
(0.3, 0.9).

Other designs would be possible too, such as by using supervised algorithms. The
system could train the model from network traffic assuming client-side metrics are
present. Such a supervised design would result in a system that requires ground truth
data captured at client-side for each core domain of interest. The supervised approach
would allow one to guess the actual value of objectivemetrics (e.g.,OnLoad and SpeedIn-
dex), but I argue that the absolute values of such indicators are far less useful than con-
trasting across different users and conditions. PAIN is fully able to pinpoint variations
in objective metrics (see Section 7.6.2) despite not being able to estimate their absolute
values.

The deployment of the supervised alternative requires a resource-consuming test-
bed, in which training should be performed periodically for each monitored websites. I

7Given 𝜌𝐴𝐵 and 𝜌𝐴𝐶, one can obtain bounds for 𝜌𝐵𝐶 with 𝜌𝐵𝐶 = 𝜌𝐴𝐵𝜌𝐴𝐶 ± √1 − 𝜌2
𝐴𝐵√1 − 𝜌2

𝐴𝐶.

108

7.5 – Datasets

Table 7.1: Description of datasets.

Dataset Size Collected on Collection Environment

SynthTypical 11 GB Testbed 10 websites × 4 (emulated) devices
× 8 emulated typical access links

SynthDegraded 11.4 GB Testbed 2 websites × 4 (emulated) devices
× manually degraded access link conditions

ADSL 495 GB ISP network > 100 K websites × 10,000 ADSL installations × 1 year

have decided to follow the unsupervised approach, since it broaden the PAIN deploya-
bility and dramatically enhances training scalability. In Section 7.6.4 I consider a simple
supervised approach and compare it to PAIN. I show that it brings limited benefits.

7.5 Datasets
In this section I describe my validation datasets. I employ both synthetic datasets

generated using a testbed, and real world traces collected in an operational network.
They are summarized in Table 7.1.

7.5.1 Synthetic traces
Testbed

Synthetic traces produced in a testbed allow to compare PAIN to objective met-
rics directly collected in the browser. I instrument a PC with WebPageTest [115], a
tool for web performance assessment. WebPageTest emulates networks based on Dum-
myNet [17], a network emulation tool. Given a list of URLs, it automatically navigates
through each page while saving detailed statistics. Many options are available, includ-
ing the choice of client browser (Chrome and Firefox), device (PCs, tablets and smart-
phones) and network emulation (e.g., 3G, DSL and Cable). It thus provides the means
to emulate users’ browsing considering realistic clients and network conditions.

WebPageTest exports the HTTP Archive (HAR) [49] for each page visit. It contains
information about the visit as well as statistics for each object: from HTTP-headers, to
network-level statistics that describe the TCP connections opened to download objects,
including the time in which the TCP connection starts, and the domain associated with
it.

Additionally, WebPageTest computes many objective metrics related to QoE. Here,
I consider the OnLoad and the SpeedIndex (see Section 7.2).

Synthetic datasets

I build two datasets to validate PAIN, namely SynthTypical and SynthDegraded,
with respectively typical and degraded network conditions.

109

7 – PAIN: A Passive Web Performance Indicator for ISPs

Table 7.2: Browsers and emulated devices in the testbed.

Browser Device Operating System
Mozilla Firefox PC Windows 10
Google Chrome PC Windows 10
Google Chrome Nexus 7 Android
Google Chrome iPad Mini iOS

Table 7.3: Settings in the SynthTypical dataset.Native corresponds to a scenario with
no traffic shaping.

Name Down Link Up Link RTT
Native 1 Gbit/s 1 Gbit/s native
FIOS 20 Mbit/s 5 Mbit/s 4 ms
Cable 5 Mbit/s 1 Mbit/s 28 ms
DSL 1.5 Mbit/s 1 Mbit/s 50 ms
LTE 12 Mbit/s 12 Mbit/s 70 ms

3G Fast 1.6 Mbit/s 768 Kbit/s 150 ms
3G 1.6 Mbit/s 768 Kbit/s 200 ms

3G Slow 780 Kbit/s 330 Kbit/s 200 ms

The SynthTypical dataset is built by letting WebPageTest visit 10 popular do-
mains in Italy (listed in Table 7.4). For each domain, WebPageTest visits the homepage
and 9 internal pages for a total of 100 pages.

Since PAIN must work seamlessly regardless of client configurations, I consider 4
different browser and device combinations, which I summarize in Table 7.2. I consider
both Firefox and Chrome running on PCs and I leverage Chrome’s features to emulate
its use on a smartphone and on a tablet. I did not consider other browsers such as
Explorer or Safari, as not handled by the Linux version of WebPageTest.

I further consider 8 access network technologies summarized in Table 7.3. These are
emulated by WebPageTest by imposing traffic shaping policies that mimic actual pa-
rameters of the technologies. The Native case has no shaping – i.e., the 1 Gbps Ethernet
network connecting the testbed is used without changes. For other cases, DummyNet
enforces typical bandwidth and Round Trip Time (RTT) faced by users of a given tech-
nology.

I visit each page twice for each setup: (i) with empty browser cache; and (ii) few
seconds later for profiting from caching. The traffic is expected to vary strongly, since
many objects are cached in the second case, complicating the identification of support
domains. In total, WebPageTest recorded 6 400 visits while building this first dataset (all
visits have been completed in about 48 h).

The second dataset, SynthDegraded, represents artificial conditions, in which I
enforce link delay or bandwidth limits. I simulate scenarios in page load time increases
caused by worsening network conditions. I simulate 10 cases: (i) adding from 100 ms to

110

7.5 – Datasets

Table 7.4: Support domains for websites in SynthTypical dataset, together with the
probability they appear after onLoad.

Core domain Support Domains After
OnLoadMin Median Max

www.corriere.it 30 57 137 2.2 %
www.ebay.it 2 50 223 40.5 %

www.gazzetta.it 25 58 138 6.5 %
www.ilmeteo.it 17 56 185 18.5 %
www.lastampa.it 14 34 81 8.7 %
www.meteo.it 27 52 91 6.6 %

www.mymovies.it 24 45 147 11.0 %
www.repubblica.it 27 53 216 23.0 %

www.subito.it 26 52 119 7.0 %
www.wordreference.com 2 14 68 6.0 %

500 ms extra per-packet delay and (ii) imposing a limit from 2.5 Mbit/s to 312.5 kbit/s
on uplink and downlink access bandwidth. Again, I visit each page twice (cold and
warm cache) and with 4 browsers. For the sake of brevity, I performed these experi-
ments for 2 websites only, namely www.repubblica.it and www.subito.it. WebPageTest
has performed 8 000 extra visits for building this second dataset (completed in about
60 h).

7.5.2 Support domains at a glance
I first provide high-level statistics about support domains in SynthTypical dataset

(see Table 7.4). With these numbers, I aim at complementing Figure 7.2, illustrating the
challenges to extract knowledge from support domains and their complex relationswith
the page loading process. Table 7.4 lists the websites in SynthTypical dataset.The 3rd
column reports the median number of support domains across all visits:They vary from
less than 20 to more than 50. The number and order at which support domain flows are
opened significantly vary across visits (see 2nd and 4th columns of Table 7.4). This is no
surprise as webpages of single website might be very different. However, considering
25𝑡ℎ and 75𝑡ℎ instead of minimum and maximum leads to considerably more consis-
tent results, with a variations in the order 20-30%. More than that, support domains are
often contacted after the OnLoad event has fired, e.g., due to browser pre-fetching or
the presence of analytics scripts programmed to run after the page is loaded. I quan-
tify the percentage of these cases in the 5th column of the table. Extreme is the case
of www.ebay.it : More than 40% of connections are issued after the browser completed
loading the page.

These results already hint for the importance of PAIN grouping step. For example, if
one would naively take the delay of the last support flow as a performance indicator, the

111

7 – PAIN: A Passive Web Performance Indicator for ISPs

Table 7.5: Support domain persistence across different devices and subpages
(SynthTypical dataset).

Core domain Support Domain Persistence
Devices Subpages

www.corriere.it 0.78 0.69
www.ebay.it 0.68 0.16
www.gazzetta.it 0.81 0.67
www.ilmeteo.it 0.68 0.90
www.lastampa.it 0.79 0.61
www.meteo.it 0.66 0.87
www.mymovies.it 0.59 0.69
www.repubblica.it 0.74 0.56
www.subito.it 0.58 0.82
www.wordreference.com 0.41 0.89

obtained metric would have very low correlation with objective QoE metrics observed
at the client-side. Next, I validate several aspects of PAIN.

I then perform a second analysis aiming at quantifying the variability of support do-
mains. Indeed, contacted support domains may change when varying the device used
to load the page or when accessing different subpages of the same website. I thus com-
pare the list of support domains obtained when considering each subpage separately.
Then I compute the Jaccard index similarity coefficient [57] for all the pairs of sub-
pages, and report the median values in Table 7.5, separately for each websites. On av-
erage, subpages share the majority of support domains, with www.ilmeteo.it reaching a
0.9 median similarity coefficient. A low value is observed only for www.ebay.it, where
manual inspection reveals that few subpages have a simpler structure reflecting in a
lower number of support domains. I repeat the operation for the 4 emulated devices
in the SynthTypical dataset. Overall, varying the device used for accessing the web-
page does not affect the contacted support domains. The lowest value is observed for
www.wordreference.com, where the median similarity coefficient is 0.41. These results
show that the set of contacted support domains is rather stable when varying subpages
and employed device, allowing PAIN to create reliable and stable models, where device
type and subpages cannot be observed by passive monitoring.

7.5.3 ISP flow traces
This dataset includes flow summaries exported by Tstat [107] in a real deployment.

I use the ADSL dataset containing flow summaries for 10,000 ADSL subscribers. The
measurement methodology and a further description can be found in Chapter 2. Im-
portant to this analysis, the ISP provides me the access link speed of each ADSL cus-
tomer. Moreover, each customer is provided a fixed IP address and, thus, by inspecting

112

7.6 – Validation

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35 40 45 50 55 60

C
or

re
la

ti
on

∆T [s]

onLoad
speedIndex

Figure 7.4: Spearman Correlation of 𝑃3 with onLoad and SpeedIndex when varying
Δ𝑇 (SynthTypical dataset).

the (anonymized) client IP addresses in the dataset, PAIN isolates flows per ADSL in-
stallation and use them as the per-client traces. Each trace includes information about
traffic of all users’ devices connected at home.

I here consider data for the ADSL dataset for the whole year 2017. Considering only
HTTP and HTTPS flows, I obtain 15 billion flows related to around 100,000 websites.
This trace represents a realistic scenario of a possible PAIN deployment. No ground
truth about associations of support and core domains is available in the dataset.

7.6 Validation

7.6.1 Tuning of parameters Δ𝑇 and 𝑛
I now tune the parameters Δ𝑇 and 𝑛. I rely on the SynthTypical dataset. I vary

each parameter while comparing the PAIN index to the metrics exposed by my testbed,
i.e., onLoad and SpeedIndex. Indeed, I want the PAIN index to be correlated with ob-
jective metrics. I quantify correlation using the Spearman’s rank correlation coefficient
between PAIN index and objective metrics [98]. A Spearman coefficient higher than 0.5
is usually considered a strong correlation indication.

I first observe the impact of the observation window choice (Δ𝑇) in Figure 7.4. Only
the correlations between objective metrics and the 3rd group of support flows (i.e., 𝑃3)
are shown to improve visualization. Notice in the figure that PAIN achieves high cor-
relation coefficients when Δ𝑇 increases. When Δ𝑇 value is larger than 30𝑠, results do
not improve further. In a nutshell, PAIN is not very sensitive to Δ𝑇, as long as it is not
too small. Provided that support domains are grouped, and each group is used to ex-
tract 𝑃𝑖, PAIN index remains mostly unaffected, even if some support domains are not
associated to the respective core domain because Δ𝑇 is expired. In the following, I set
Δ𝑇 = 30𝑠.

I next perform a similar analysis for 𝑛, the number of groups. I report results for the

113

7 – PAIN: A Passive Web Performance Indicator for ISPs

1 2 3 4 5 6

i

1

2

3

4

5

6

n

0.76

0.74 0.74

0.69 0.77 0.73

0.65 0.74 0.78 0.73

0.62 0.72 0.77 0.77 0.73

0.60 0.71 0.76 0.77 0.76 0.72

(a) OnLoad

1 2 3 4 5 6

i

1

2

3

4

5

6

n

0.71

0.70 0.69

0.66 0.69 0.68

0.62 0.70 0.67 0.68

0.59 0.67 0.69 0.67 0.68

0.58 0.66 0.69 0.67 0.67 0.67

0.5

0.6

0.7

0.8

0.9

1.0

C
o
r
r
e
la
t
io
n

(b) SpeedIndex

Figure 7.5: Correlation of PAIN index with onLoad and SpeedIndex when varying
the number of groups 𝑛 (SynthTypical dataset).

SynthTypical dataset for onLoad and SpeedIndex separately in Figure 7.5a and
Figure 7.5b, respectively. Each row 𝑗 represents an experiment with a different 𝑛 ∈ [1,6].
The column 𝑖 reports the correlation of 𝑃𝑖 when using 𝑛 = 𝑗. For example, the left-most
cell on the last row represents the correlation of 𝑃1 with onLoad when using 𝑛 = 6.

I notice that PAIN is not very sensitive to 𝑛 either, and the best values are observed
for 𝑛 = 4 and for 𝑃3 and 𝑃4 (they are the groups correlated the most with objective
QoE metrics). Notice also that 𝑃3 is slightly better than 𝑃4, in particular when taking
onLoad as reference. Using a small value of 𝑛 provides poor information. Considering
multiple groups (i.e., more than one 𝑃𝑖), on the other hand, makes PAIN more robust to
outliers.

I take 𝑃3 with 𝑛 = 4 for the remaining experiments. However, Figure 7.5a shows
that small variations of 𝑛 and 𝑃𝑖 do not affect the results, and my experiments reinforce
this claim.

7.6.2 Effects of network conditions
I check whether PAIN is able to reflect worsening on network conditions using the

SynthDegraded dataset. Figure 7.6 illustrates PAIN index values when varying delay
and bandwidth to reach the two websites in the dataset. Each point in the figure depicts
the median value for the PAIN index over all tests with the given setup. Each point is
the result of 80 runs, and includes experiments for different browsers, subpages, etc.
Variability of such values is low and in no case higher than 15% from the median.

114

7.6 – Validation

 0

 2

 4

 6

 8

 10

0 100 200 300 400 500

P
A

IN
 i
n
d
ex

 [
s]

RTT [ms]

P1
P2

P3
P4

(a1) www.repubblica.it

 0

 2

 4

 6

 8

0 100 200 300 400 500

P
A

IN
 i
n
d
ex

 [
s]

RTT [ms]

P1
P2

P3
P4

(a2) www.subito.it

(a) Delay

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Native 2.5 1.25 0.62 0.31

P
A

IN
 i
n
d
ex

 [
s]

Bandwidth [MBit/s]

P1
P2

P3
P4

(b1) www.repubblica.it

 0

 2

 4

 6

 8

Native 2.5 1.25 0.62 0.31

P
A

IN
 i
n
d
ex

 [
s]

Bandwidth [MBit/s]

P1
P2

P3
P4

(b2) www.subito.it

(b) Bandwidth

Figure 7.6: Median time of PAIN index when varying delay and bandwidth
(SynthDegraded dataset).

Consider Figure 7.6a, which refers to www.repubblica.it and www.subito.it, when
RTT∈ [0,500]𝑚𝑠. PAIN index increases alongside the delay, starting from around 0.5𝑠
and up to almost 10𝑠 when RTT is 500 ms for www.repubblica.it. That is, 𝑃𝑖 reflects the
network conditions and increases in case of degradation. Actual PAIN index values are
sometimes inverted from their expected order for extreme values of RTT (e.g., 𝑃3 larger
than 𝑃4).This is due to timers firing on the page that make not-deterministic the visiting
order of support domains.8 Similarly, in Figure 7.6a2, 𝑃1 has a slightly lower value for
500 ms than for 400 ms. Indeed, this confirms that 𝑃1 and 𝑃2 are not good as sensible
as 𝑃3 and 𝑃4 to network conditions, reinforcing results of Figure 7.5.

Similar considerations hold for Figure 7.6b, which shows the impact of download
link capacity. When the available bandwidth is reduced, PAIN index increases. Observe

8I notice that the order at which a browser opens connections towards support domains is subject
to variations, especially for those support domains appearing early in the page load process, and, thus,
belonging to 𝑃1 and 𝑃2.

115

7 – PAIN: A Passive Web Performance Indicator for ISPs

 0

 20

 40

 60

 80

Native
100 200 300 400 500

 0

 4

 8

 12

 16
T

im
e

[s
]

P
A

IN
 i
n
d
ex

 [
s]

RTT [ms]

onLoad
speedIndex

P3

(a) Delay

 0

 20

 40

 60

 80

 100

Native
5 2.5 1.25

0.625
0.3125

 0

 5

 10

 15

 20

T
im

e
[s

]

P
A

IN
 i
n
d
ex

 [
s]

Traffic Shaping Rate [Mbit/s]

onLoad
speedIndex

P3

(b) Bandwidth

 0

 10

 20

 30

 40

N
ative

FIO
S
LTE

Cable

3G
Fast

D
SL

3G 3G
Slow

 0

 2

 4

 6

 8

T
im

e
[s

]

P
A

IN
 i
n
d
ex

 [
s]

Network Profile

onLoad
speedIndex

P3

(c) Profile

Figure 7.7: www.repubblica.it onLoad, SpeedIndex and 𝑃3 for various setups
(SynthTypical and SynthDegraded datasets).

that a bandwidth of 1.25Mbit/s already implicates performance degradation forwww.re-
pubblica.it, while still no penalty is suffered by www.subito.it.

In summary, results show that 𝑃𝑖 reflects the network conditions, allowing ISPs
to track degradation on the network that impacts website performance. Very similar
results are obtained considering 𝑃3 and 𝑃4.

7.6.3 Comparison to objective metrics
I have already seen in Figure 7.5 that PAIN index is correlated to objective QoE met-

rics. I now detail that analysis, by directly comparing the values of 𝑃3 to the SpeedIn-
dex and onLoad. I set 𝑛 = 4 and Δ𝑇 = 30𝑠. Figure 7.7 reports results obtained for a
single website in different scenarios. Similar figures are obtained for other cases. Again,
the figure reports median values over 80 runs. Figure 7.7a also reports error bars that
span over 25𝑡ℎ and 75𝑡ℎ percentiles. I use this figure to quantify the variability of my
results that is always limited to less than 15% of the median value. Similar results are
obtained for the other two figures, but they are not reported as error bars would overlap
and compromise the readability.

Each point in Figure 7.7 represents the median value for all visits with the given

116

7.6 – Validation

network condition. Since the metrics have different absolute values, I use the 𝑦-axis
in the left-hand side to report SpeedIndex and onLoad times, and the 𝑦-axis in the
right-hand side to report values of the PAIN index. Thus, the figure shows whether the
metrics present similar rate of variation given changes in the network conditions.

Focusing on Figure 7.7a notice how the three metrics grow almost linearly with the
RTT.The rate of variation in PAIN (see blue line) is similar for SpeedIndex (green) and
onLoad (red) ones. When varying the bandwidth in the degraded scenario (Fig. 7.7b),
the values of PAIN index change similarly to the rate observed for onLoad time, but
faster than SpeedIndex. PAIN ismore sensitive to deterioration on the available capac-
ity. Yet, results show that the PAIN index is directly related to page load times. Observe
also that all three metrics are basically constant when the bandwidth is larger than 2.5
Mbit/s (see points in the left part of the figure). That is, the web page performance is
not affected when a minimum bandwidth is available, and all three metrics reflect such
behavior. Finally, Figure 7.7c reports the values for typical network scenarios. Again,
I see similar patterns among the metrics, with the rate of variation of PAIN index in
between the other metrics.

In summary, results show that the metrics are correlated, and they vary according
to the network conditions similarly. Absolute values are in different ranges, but they all
reflect degradation in quality.

7.6.4 Comparison to alternative approaches
I validate PAIN against two possible alternatives:
(i) BestCheckpoint: I use a supervised mechanism to extract a performance metric

that tries to maximizes the correlation with objective metrics. Considering a training
dataset and a core domain 𝑐, I extract the delay to observe each support domain 𝑠 ∈ 𝑆𝑐
after all visits to 𝑐. Then, I compute the correlation coefficient between the delays for
each 𝑠 ∈ 𝑆𝑐 and the objective metrics (SpeedIndex and onLoad). I select the most
correlated support domain to serve as landmark.

When evaluating new traffic, the delay to observe the landmark is considered as
the performance metric for the given core domain. Note that this supervised approach
requires the availability of per-site objective metrics at training time.

(ii) BeaconCheckpoint: This approach has been proposed by authors of [54]. It
consists in leveraging the analytics objects typically present in web pages to identify
when page loading is complete. The intuition comes from the fact that analytics ser-
vices wait for the browser to finish rendering the page before sending back statistics to
the server. Here, I consider the Google Analytics script that uploads statistics to Google
servers after the onLoad event is fired by the browser. After finding a flow to the core
domain of interest, I search the HTTP requests to Google Analytics URL. Note that such
an approach requires non-encrypted traffic and works only for sites embedding analyt-
ics scripts (e.g., only present in 4 websites in SynthTypical).

117

7 – PAIN: A Passive Web Performance Indicator for ISPs

w
w
w
.e
ba
y.
it

w
w
w
.c
or
ri
er
e.
it

w
w
w
.il
m
et
eo
.it

w
w
w
.g
az
ze
tt
a.
it

w
w
w
.m
et
eo
.it

w
w
w
.r
ep
ub
bl
ic
a.
it

w
w
w
.m
ym
ov
ie
s.
it

w
w
w
.s
ub
it
o.
it

w
w
w
.la
st
am
pa
.it

w
w
w
.w
or
dr
ef
er
en
ce
.c
om

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
el
a
ti
o
n

P3 BestCheckpoint BeaconCheckpoint

(a) OnLoad

(b) SpeedIndex

Figure 7.8: Correlation of PAIN, BestCheckpoint and BeaconCheckpoint with ob-
jective metrics (SynthTypical dataset).

The delay between the core domain flow and Google Analytics HTTP request is
reported as performance metric.

Figure 7.8 shows the correlation of PAIN, BestCheckpoint and BeaconCheck-
point with SpeedIndex and OnLoad. BeaconCheckpoint can be computed only for
4 websites. As I have seen before, PAIN correlation coefficients are positive and very
high. Considering onLoad in Figure 7.8a, they range from 0.67 for www.ebay.it to 0.90
forwww.gazzetta.it. Most values are close to 0.8 for both metrics. BestCheckpoint and
BeaconCheckpoint are also positively correlated to the objective metrics. For exam-
ple, for www.gazzetta.it, they achieve 0.92 and 0.88, respectively. BestCheckpoint is
more strongly correlated to onLoad than PAIN. This is expected because of the su-
pervised approach. Yet, absolute differences are small, showing that PAIN can achieve

118

7.6 – Validation

0.0

0.2

0.4

0.6

0.8

1.0

10 20 50 100 200 500 1000 2000 5000 10000

J
a
cc

a
rd

 s
im

il
a
ri

ty
co

ef
fi
ci

en
t

Observations per core domain

Figure 7.9: Support domains learned with increasing number of observations per core
domain, compared to those learned with 10,000 observations (ADSL dataset).

similar performance without the burdens of building ground truth for training the mod-
els.

Similar conclusions hold for SpeedIndex in Figure 7.8b. PAIN correlations coeffi-
cient span from 0.55 for www.ilmeteo.it to 0.86 for www.gazzetta.it, with other metrics
in similar ranges.

Summarizing, PAIN index is strongly correlated with both objective metrics for dif-
ferent sites. PAIN achieves similar performance than other approaches, which are how-
ever hardly feasible in real deployments.

7.6.5 Learning duration and periodicity
Next I investigate the number of observation needed to learn support domains, and

for how long the models remain valid. This information defines the duration and peri-
odicity of PAIN learning. Since PAIN is unsupervised, it learns models directly from live
traffic. Large learning periods should help creating robust models. On the other hand,
sites may change over time invalidating the models.

I first evaluate how the size of the learning sample impacts PAIN. I perform experi-
ments with the ADSL dataset. Since I aim at checking how the models behave in large
samples and long periods, I focus on the top-100 ranked pages in Italy by Alexa.

In Figure 7.9, I let PAIN learn support domains with an increasing number of ob-
servations per core domain. I then compare the selected support domains with the set
obtained with the largest observation period – i.e., when all core domains have been
observed at least 10,000 times.The 𝑦-axis reports how similar the two sets are using the
Jaccard similarity coefficient [57]. Clearly, the right-most point has value 1 (perfect sim-
ilarity). Other points confirm that the larger the observation period is, the more stable
the sets become. This figure suggests that some thousands observations are required to
learn stable sets of support domains. It also shows that shallow models can be learned
with few tens of observations, but to get a complete one, much more are needed.

119

7 – PAIN: A Passive Web Performance Indicator for ISPs

0.0

0.2

0.4

0.6

0.8

1.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

J
a
cc

a
rd

 s
im

il
a
ri

ty
co

ef
fi
ci

en
t

Month

Figure 7.10: Persistence of support domains over the months of a year (ADSL dataset).

A question still remains: How often should PAIN learning be performed? Perform-
ing learning sporadically may let models get outdated and reduce the metrics precision.
I quantify this phenomenon in Figure 7.10. I let PAIN run on the ADSL dataset using the
previous subset of domains, learning support domains separately for each month.Then,
I compare the set of support domains learned at each month with those learned during
the January 2017. Again, I use the Jaccard coefficient as similarity metric.

The figure shows that support domains learned on February have a 0.77 similarity
coefficient with those learned on January. The similarity decreases to 0.69 on March,
and finally to 0.36 on November. It is clear that even in short periods, e.g., a couple of
months, the learned support domains diverge significantly. While PAIN grouping ap-
proach partly compensates for such variations, these results suggest that continuously
updating support domains is advisable to retain PAIN performance. In other words, an
updated model is better than a model trained on large data.

In summary, PAIN requires a large number of observations to learn models of sup-
port domains for the websites. Few thousands of samples per core domain seem suf-
ficient to bootstrap the system. On the other hand, learning must be continuous, with
models being updated to avoid using outdated sets of support domains.

7.7 Case studies
I now report my experience when using PAIN in a real deployment. I exploit the

ADSL dataset, containing flow-level measurements of around 10,000 ADSL customers
over one year. More concretely, I run PAIN to understand (i) whether web browsing
performance changes for different ADSL installations; (ii) the impact of large server-
side events on users’ experience.

PAIN learns the models on the ADSL dataset on a per-month basis. I focus on the
top-100 Alexa rank for Italy. PAIN is set with best parameters (𝑛 = 4, Δ𝑇 = 30𝑠).

120

7.7 – Case studies

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30

C
D

F

P3 [s]

<4 Mb/s
4-12 Mb/s
>12 Mb/s

(a) www.lastampa.it

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30

C
D

F

P3 [s]

<4 Mb/s
4-12 Mb/s
>12 Mb/s

(b) www.repubblica.it

Figure 7.11: Distribution of PAIN 𝑃3 index according to the access-link capacity for all
visits in ADSL dataset.

7.7.1 Performance per ADSL capacity
For ISPs, it is important to understand the impact of access link capacity on web

browsing. For example, ISPs are interested in knowing whether users with poor con-
nectivity are significantly impaired while surfing the Web, e.g., to propose upgrades
to such users. PAIN allows them to estimate how objective metrics (i.e., OnLoad and
SpeedIndex) vary across users, where these are not measurable with passive monitor-
ing.

I know the download access link capacity of each ADSL installation in the ADSL
dataset. I thus divide users in three categories: (i) slow (< 4MBit/s), (ii) medium (4–12Mbit/s)
and (iii) fast (> 12 Mbit/s). I then compute PAIN 𝑃3 for users of each group.

Results for two popular newswebsites in Italy are reported Figure 7.11. Forwww.las-
tampa.it (Figure 7.11a), distributions are clearly not overlapping. PAIN index decreases
significantly when the access capacity increases. Indeed, the median value moves from
9.6𝑠 for slow users to 4.3𝑠 for fast users. For www.repubblica.it (Figure 7.11b), differ-
ences across users are even more pronounced. PAIN index median value is 12.3𝑠 for
slow users and 5.1𝑠 for fast users.

These results allow quantifying the role of access capacity on page load time in the
real world, where previous experiments relied only on testbeds [73, 70].

7.7.2 Impairments due to server-side events
ISPs can rely on PAIN index to monitor anomalies causing real impact on users’

performance. To this end, I illustrate some noticeable episodes emerging from the ADSL
dataset. I let PAIN run on the entire dataset for the top-100 Alexa services. I then man-
ually went through the obtained time series to find episodes worth of attention, such
as abrupt changes in PAIN index. Prominent cases have been further investigated, to
uncover possible reasons behind the sudden changes.

121

7 – PAIN: A Passive Web Performance Indicator for ISPs

 0
 2
 4
 6
 8

 10
 12
 14

Jan 1 Jan 10 Jan 20 Jan 30

P
A

IN
 i
n
d
ex

 [
s]

Day

P3
P4

HTTPS migration

Figure 7.12: PAIN index for www.poste.it over 1 month (ADSL dataset).

Figure 7.12 reports an episode related to www.poste.it.9 On January 18th 2017, the
median PAIN index incurs sudden increase: The median value for 𝑃3 grows from the
[4,6]𝑠 range to the [8,10]𝑠 range, while median 𝑃4 increases from [8,10]𝑠 to [10,12]𝑠
ranges (see 𝑦-axis the figure).

Investigating the root-cause for this change in behavior, I discovered that the web-
site switched all services to HTTPS on that date. As such, the additional load imposed
to both servers and clients is likely causing a performance impairment.

Figure 7.13 depicts a second prominent episode uncovered by PAIN, related towww.re-
pubblica.it. Recall that this site hosts a major Italian news portal. The website passed a
major reorganization of layout and content on 27th February 2017.The portal claimed at
the time that the reorganization would lead to performance improvements for its users.

PAIN is able to measure the page performance before and after the restructuring.
Figure 7.13 depicts 𝑃3 and 𝑃4 evolution in time.Themedian values computed per day are
reported with thin lines, with thick lines marking the exponentially weighted moving
average (EWMA) of the values. The performance of the website has improved after the
migration day. 𝑃3 decreases from ≈ 8𝑠 to ≈ 6𝑠, while 𝑃4 from ≈ 11𝑠 to ≈ 9𝑠.10

In summary, these case studies illustrate how PAIN can be used to spot changes
in page load performance, due to intrinsic characteristics of the network or external
events (e.g., websites modifications). PAIN can be used to trigger alerts in case of sud-
den changes in performance, driving ISPs to further investigate the problems that are
relevant to users’ experience.

9www.poste.it is the website of the Italian national mail service.
10A one-tailed T-Test confirms that differences for values before and after themigration are statistically

significant.

122

7.8 – Conclusions

 0

 2

 4

 6

 8

 10

 12

Feb 1 Feb 10 Feb 20 Mar 1 Mar 10 Mar 20 Mar 31

P
A

IN
 i
n
d
ex

 [
s]

Day

P3
P4

Website
restructuring

Figure 7.13: PAIN index trend for www.repubblica.it before and after website restruc-
turing (ADSL dataset).

7.8 Conclusions
In this chapter I presented PAIN, an automatic and unsupervised system to moni-

tor website performance using flow-level measurements, and release it as open source.
PAIN builds a behavioral model for the websites’ traffic, leveraging flows automatically
opened by browsers to retrieve images, scripts etc. The model is used for assessing per-
formance.

I validated PAIN by showing that PAIN metrics are strongly correlated with well-
known objectivemetrics used as indication of users’ QoE, i.e., onLoad time and SpeedIn-
dex. I showed that PAIN performance is similar to supervised alternatives, which are
however harder to be deployed in practical scenarios. Finally, my results show that
PAIN metrics highlight sudden performance deterioration due to changes on network
conditions, that may result in degrade web browsing performance.

Finally, I run PAIN on operational network traces for one full year. PAIN allowed
me to quantify page load speed differences across customers with different access link
capacities. Moreover, PAIN pinpointed sudden performance variations for websites that
incurred restructuring.

123

124

Chapter 8

Conclusions

In my thesis, I presented several works addressing the problem of analyzing net-
work traffic. Helped by big data and machine learning techniques, I provided several
analyses of Internet traffic, and proposed innovative algorithms for web service traf-
fic classification. I also faced the problems of per-service traffic management and web
browsing quality.

In the first part of my thesis I characterized Internet traffic as seen from a nation-
wide ISP, and illustrated the trends emerging from 2013 to 2018. Then, I showed the
challenges and complexity of understanding Internet traffic in the modern web, where
encryption and convergences around few big players make the life of network analysts
harder. To overcome the limitations of classical solutions, I proposed novel algorithms to
address the problems of traffic classification and management. These approaches make
use of machine learning and big data techniques to achieve visibility on the compli-
cated traffic generated by modern web services. The key idea behind these work is to
exploit temporal correlation among network events (i.e., network flows), mining com-
mon patterns from possibly large datasets of real traffic. In the last chapter, I used similar
techniques to study the Quality of Experience of users accessing web services. Again,
exploiting temporal correlation among events, I built a system that helps the ISP mon-
itor the performance of web browsing of subscribers.

In general, I believe my thesis contains interesting advances in the field of network
traffic analysis. The detailed analyses of ISP traffic provide useful insights to for opera-
tors, researchers and practitioners. The proposed algorithms are novel attempts to en-
hance network awareness, in a scenariowhere the size and complexity of traffic severely
challenge its analysis.

Several research directions emerge from the encountered topics, and I am happy to
face them inmy future life as a researcher. First, the proposed algorithms are well-suited
for traffic classification andmanagement, but their accuracy should be further improved
to be used in security environments, field in which data science could significantly help
where classical approaches based on pure domain knowledge fail to scale or are loos-
ing visibility. Moreover, the trend towards encryption is still modifying what is carried

125

8 – Conclusions

by computer networks. In particular, recent proposals for DNS encryption make the
network to loose visibility also on the domain names contacted by clients, while URLs
are already hidden by the widespread deployment of HTTPS. If encrypted DNS will be
deployed, several monitoring techniques (including some of those presented in this the-
sis) will become ineffective. Indeed, this will claim for new research threads, in which
different and more sophisticated techniques are needed to re-obtain, again, visibility on
network traffic.

126

Appendix A

List of Publications

Journal Publications
1. Martino Trevisan, Idilio Drago, MarcoMellia, “PAIN: A PassiveWeb Performance

Indicator for ISPs”, To appear in Computer Networks, ISSN: 1389-1286, January
2019

2. Martino Trevisan, Idilio Drago, “Robust URL Classification With Generative Ad-
versarial Networks”, ACM Performance Evaluation Review, Volume 46 (3), ISSN:
0163-5999, December 2018

3. Martino Trevisan, Stefano Traverso, Eleonora Bassi, Marco Mellia, “4 Years of
EU Cookie Law: Results and Lessons Learned”, To appear in Proceedings on Privacy
Enhancing Technologies, ISSN: 2299-0984, April 2019

4. MartinoTrevisan, Idilio Drago,MarcoMellia, HanHee Song,Mario Baldi, “AWE-
SoME: Big Data for Automatic Web Service Management in SDN ”, IEEE Transac-
tions on Network and ServiceManagement, pp.1-14, ISSN: 1932-4537, March 2018

5. Giuseppe Siracusano, Roberto Bifulco, Martino Trevisan, Tobias Jacobs, Simon
Kuenzer, Stefano Salsano, Nicola Blefari-Melazzi, Felipe Huici, “Re-designing Dy-
namic Content Delivery in the Light of a Virtualized Infrastructure”, IEEE Journal
on Selected Areas in Communications, Vol.35, ISSN: 0733-8716, November 2017

6. Martino Trevisan, Alessandro Finamore, MarcoMellia, MaurizioMunafò, Dario
Rossi, “Traffic Analysis with Off-the-Shelf Hardware: Challenges and Lessons Learned”,
IEEE Communications Magazine - Network Testing and Analytics Series, March
2017

127

A – List of Publications

Conference and Workshop Publications
1. Andrea Morichetta,Martino Trevisan, Luca Vassio “CharacterizingWeb Pornog-

raphy Consumption From PassiveMeasurements”, to appear in the 2019 Passive and
Active Measurement Conference (PAM 2019), Puerto Varas (Chile), March 27-29,
2019

2. Azadeh Faroughi, Reza Javidan,MarcoMellia, AndreaMorichetta, Francesca Soro,
Martino Trevisan, “Achieving Horizontal Scalability in Density-based Clustering
for URLs”, 2nd Workshop on Benchmarking, Performance Tuning and Optimiza-
tion for Big Data Applications (BPOD) 2018, Seattle (USA), December 10, 2018

3. Martino Trevisan, Danilo Giordano, Idilio Drago, Marco Mellia, Maurizio Mu-
nafò, “Five Years at the Edge: Watching Internet from the ISP Network”, 14th In-
ternational Conference on emerging Networking EXperiments and Technologies
(CoNEXT 2018), Heraklion (Grece), December 5-7, 2018

4. Martino Trevisan, Idilio Drago, Marco Mellia, “Measuring Web Speed From Pas-
sive Traces”, ACM, IRTF & ISOC Applied Networking Research Workshop 2018
(ANRW 18), Montreal (Canada), July 16, 2018

5. Martino Trevisan, Idilio Drago, Marco Mellia, Maurizio Munafò, “Automatic
Detection of DNS Manipulations”, IEEE Workshop Data Science for Networking
(DS4N), Boston (USA), 14 December 2017

6. Ali Safari Khatouni,MartinoTrevisan, Leonardo Regano, Alessio Viticchie, “Pri-
vacy Issues of ISPs in the Modern Web”, IEEE IEMCON 2017, Vancouver (Canada),
October 3-5

7. LucaVassio, Danilo Giordano,MartinoTrevisan, MarcoMellia, Ana Paula Couto
da Silva, “Users’ Fingerprinting Techniques from TCP Traffic”, ACM SIGCOMM
Workshop on Big Data Analytics and Machine Learning for Data Communica-
tion Networks, Los Angeles (USA), August 2017

8. Martino Trevisan, Idilio Drago, Marco Mellia, “PAIN: A Passive Web Speed Indi-
cator for ISPs”, ACM SIGCOMM Workshop on QoE-based Analysis and Manage-
ment of Data Communication Networks, Los Angeles (USA), August 2017

9. Stefano Traverso,Martino Trevisan, Leonardo Giannantoni, MarcoMellia, Has-
san Metwalley, “Benchmark and Comparison of Tracker-blockers: Should You Trust
Them?”, Traffic Monitoring and Analysis workshop (TMA), Dublin (Ireland), 21-
22 June 2017

10. MartinoTrevisan, Idilio Drago,MarcoMellia, HanHee Song,Mario Baldi, “WHAT:
A Big Data Approach for Accounting of Modern Web Services”, IEEE Workshop on

128

A – List of Publications

Big Data and Machine Learning in Telecom (BMLIT), Washington DC (USA), De-
cember 2016

11. Martino Trevisan, Idilio Drago, Marco Mellia, Maurizio Munafo‘, “Towards Web
Service Classification using Addresses and DNS”, 7th International Workshop on
TRaffic Analysis and Characterization, TRAC2016, Paphos (Cyprus), September,
2016

12. Martino Trevisan, Idilio Drago, Marco Mellia, “Impact of Access Line Capacity
on Adaptive Video Streaming Quality - A Passive Perspective”, ACM SIGCOMM
Workshop onQoE-basedAnalysis andManagement of Data CommunicationNet-
works, Florianopolis (Brasil), August 22 2016

129

Bibliography

[1] Vijay Kumar Adhikari, Sourabh Jain, and Zhi-Li Zhang. “YouTube Traffic Dy-
namics and Its Interplay with a Tier-1 ISP: An ISP Perspective”. In: Proceedings
of the ACM SIGCOMM Internet Measurement Conference. IMC’10. 2010, pp. 431–
443. url: http://doi.acm.org/10.1145/1879141.1879197.

[2] Bernhard Ager et al. “Web Content Cartography”. In: Proceedings of the 11th
ACM SIGCOMM Conference on Internet Measurement. 2011, pp. 585–600.

[3] Vaneet Aggarwal et al. “Prometheus: Toward Quality-of-experience Estimation
for Mobile Apps from Passive Network Measurements”. In: Proceedings of the
HotMobile. 2014, 18:1–18:6.

[4] Athula Balachandran et al. “Modeling Web Quality-of-experience on Cellular
Networks”. In: Proceedings of the MobiCom. 2014, pp. 213–224.

[5] Paul Barford and Mark Crovella. “Measuring Web Performance in the Wide
Area”. In: SIGMETRICS Perform. Eval. Rev. 27.2 (1999), pp. 37–48.

[6] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). Tech. rep. 7540. RFC Editor, 2015.

[7] Ignacio Bermudez et al. “DNS to the Rescue: Discerning Content and Services
in a Tangled Web”. In: Proceedings of the ACM SIGCOMM Internet Measurement
Conference. IMC’12. 2012, pp. 413–426. url: http://doi.acm.org/10.
1145/2398776.2398819.

[8] Andrea Bianco et al. “On-the-fly Traffic Classification and Control with a State-
ful SDN approach”. In: Communications (ICC), 2017 IEEE International Confer-
ence on. IEEE. 2017, pp. 1–6.

[9] Zachary S. Bischof, Fabian E. Bustamante, and Rade Stanojevic. “Need, Want,
Can Afford: Broadband Markets and the Behavior of Users”. In: Proceedings of
the ACM SIGCOMM Internet Measurement Conference. IMC’14. 2014, pp. 73–86.
url: http://doi.acm.org/10.1145/2663716.2663753.

[10] Enrico Bocchi, Luca De Cicco, and Dario Rossi. “Measuring the Quality of Ex-
perience of Web Users”. In: Proceedings of the Internet-QoE. 2016, pp. 37–42.

[11] Enrico Bocchi, Idilio Drago, and Marco Mellia. “Personal Cloud Storage Bench-
marks and Comparison”. In: IEEE Trans. Cloud Comput. PP.99 (2015), pp. 1–14.

131

http://doi.acm.org/10.1145/1879141.1879197
http://doi.acm.org/10.1145/2398776.2398819
http://doi.acm.org/10.1145/2398776.2398819
http://doi.acm.org/10.1145/2663716.2663753

BIBLIOGRAPHY

[12] Enrico Bocchi et al. “The Web, the Users, and the MOS: Influence of HTTP/2 on
User Experience”. In: Proceedings of the PAM. 2017, pp. 47–59.

[13] Pierre Borgnat et al. “Seven Years and One Day: Sketching the Evolution of
Internet Traffic”. In: IEEE INFOCOM 2009. INFOCOM’09. 2009, pp. 711–719. url:
https://ieeexplore.ieee.org/document/5061979.

[14] Jake Brutlag, Zoe Abrams, and Patrick Meenan. “Above the fold time: Measur-
ing web page performance visually”. In: https://conferences.oreilly.
com / velocity / velocity - mar2011 / public / schedule / detail /
18692. 2011.

[15] Arthur Callado et al. “A Survey on Internet Traffic Identification”. In: Commun.
Surveys Tuts. 11.3 (2009), pp. 37–52.

[16] Thomas Callahan, Mark Allman, and Michael Rabinovich. “OnModern DNS Be-
havior and Properties”. In: SIGCOMM Comput. Commun. Rev. 43.3 (2013), pp. 7–
15.

[17] Marta Carbone and Luigi Rizzo. “Dummynet Revisited”. In: SIGCOMM Com-
put. Commun. Rev. 40.2 (Apr. 2010), pp. 12–20. issn: 0146-4833. doi: 10.1145/
1764873.1764876. url: http://doi.acm.org/10.1145/1764873.
1764876.

[18] Pedro Casas et al. “Next to You: Monitoring Quality of Experience in Cellu-
lar Networks From the End-Devices”. In: IEEE Trans. Netw. Service Manag. 13.2
(2016), pp. 181–196.

[19] CEB 2013. forbes . com / sites / tomgroenfeldt / 2013 / 12 / 02 / 40 -
percent-of-it-spending-is-outside-cio-control.

[20] Kenjiro Cho et al. “Observing Slow Crustal Movement in Residential User Traf-
fic”. In: Proceedings of the 2008 ACM CoNEXT Conference. CoNEXT’08. 2008,
pp. 1–12. url: http://doi.acm.org/10.1145/1544012.1544024.

[21] Mosharaf Chowdhury and Ion Stoica. “Coflow: A Networking Abstraction for
Cluster Applications”. In: Proceedings of the 11th ACM Workshop on Hot Topics
in Networks. HotNets-XI. Redmond, Washington: ACM, 2012, pp. 31–36. isbn:
978-1-4503-1776-4. doi: 10.1145/2390231.2390237. url: http://doi.
acm.org/10.1145/2390231.2390237.

[22] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. “Efficient Coflow Schedul-
ing with Varys”. In: Proceedings of the 2014 ACM Conference on SIGCOMM. SIG-
COMM ’14. Chicago, Illinois, USA: ACM, 2014, pp. 443–454. isbn: 978-1-4503-
2836-4. doi: 10.1145/2619239.2626315. url: http://doi.acm.org/
10.1145/2619239.2626315.

[23] Cisco. Visual Networking Index. 2017. url: https://www.cisco.com/c/
en/us/solutions/service-provider/visual-networking-index-
vni/index.html.

132

https://ieeexplore.ieee.org/document/5061979
https://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://doi.org/10.1145/1764873.1764876
https://doi.org/10.1145/1764873.1764876
http://doi.acm.org/10.1145/1764873.1764876
http://doi.acm.org/10.1145/1764873.1764876
forbes.com/sites/tomgroenfeldt/2013/12/02/40-percent-of-it-spending-is-outside-cio-control
forbes.com/sites/tomgroenfeldt/2013/12/02/40-percent-of-it-spending-is-outside-cio-control
http://doi.acm.org/10.1145/1544012.1544024
https://doi.org/10.1145/2390231.2390237
http://doi.acm.org/10.1145/2390231.2390237
http://doi.acm.org/10.1145/2390231.2390237
https://doi.org/10.1145/2619239.2626315
http://doi.acm.org/10.1145/2619239.2626315
http://doi.acm.org/10.1145/2619239.2626315
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html

BIBLIOGRAPHY

[24] Kimberly C. Claffy. “Measuring the Internet”. In: IEEE Internet Computing 4.1
(2000), pp. 73–75.

[25] A. Collado et al. “A Survey on Internet Traffic Identification”. In: 11.3 (2009).

[26] Jakub Czyz et al. “Measuring IPv6 Adoption”. In: SIGCOMM Comput. Commun.
Rev. 44.4 (2014), pp. 87–98.

[27] Diego Da Hora et al. “Narrowing the gap between QoS metrics and Web QoE
usingAbove-the-foldmetrics”. In: PAM2018 - International Conference on Passive
and Active Network Measurement. Berlin, Germany, Mar. 2018, pp. 1–13. url:
https://hal.inria.fr/hal-01677260.

[28] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: Commun. ACM 51.1 (2008), pp. 107–113.

[29] Amogh Dhamdhere and Constantine Dovrolis. “Twelve Years in the Evolution
of the Internet Ecosystem”. In: IEEE/ACM Trans. Netw. 19.5 (2011), pp. 1420–
1433.

[30] Imadud Din, Nazar Abbas Saqib, and Adeel Baig. “Passive analysis of web traf-
fic characteristics for estimating quality of experience”. In: 2008 IEEE Globecom
Workshops. IEEE. 2008, pp. 1–5.

[31] Advait Dixit et al. “Towards an Elastic Distributed SDN Controller”. In: SIG-
COMM Comput. Commun. Rev. 43.4 (Aug. 2013), pp. 7–12. issn: 0146-4833. doi:
10.1145/2534169.2491193. url: http://doi.acm.org/10.1145/
2534169.2491193.

[32] Sebastian Egger et al. ““Time is bandwidth”? Narrowing the gap between sub-
jective time perception and Quality of Experience”. In: Communications (ICC),
2012 IEEE International Conference on. IEEE. 2012, pp. 1325–1330.

[33] Jeffrey Erman et al. “Over the Top Video: The Gorilla in Cellular Networks”. In:
Proceedings of the ACM SIGCOMM Internet Measurement Conference. IMC’11.
2011, pp. 127–136. url: http : / / doi . acm . org / 10 . 1145 / 2068816 .
2068829.

[34] Adrienne Porter Felt et al. “Measuring HTTPS Adoption on the Web”. In: Pro-
ceedings of the 26th USENIX Security Symposium. USENIX Security’17. 2017,
pp. 1323–1338. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/felt.

[35] Alessandro Finamore et al. “Experiences of Internet Traffic Monitoring with
Tstat”. In: Netwrk. Mag. of Global Internetwkg. 25.3 (2011), pp. 8–14.

[36] Marina Fomenkov et al. “Longitudinal Study of Internet Traffic in 1998-2003”.
In: Proceedings of the Winter International Synposium on Information and Com-
munication Technologies. WISICT’04. 2004, pp. 1–6. url: http://dl.acm.
org/citation.cfm?id=984720.984747.

133

https://hal.inria.fr/hal-01677260
https://doi.org/10.1145/2534169.2491193
http://doi.acm.org/10.1145/2534169.2491193
http://doi.acm.org/10.1145/2534169.2491193
http://doi.acm.org/10.1145/2068816.2068829
http://doi.acm.org/10.1145/2068816.2068829
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
http://dl.acm.org/citation.cfm?id=984720.984747
http://dl.acm.org/citation.cfm?id=984720.984747

BIBLIOGRAPHY

[37] Pawel Foremski, Christian Callegari, and Michele Pagano. “DNS-Class: Imme-
diate Classification of IP Flows using DNS”. In: Int. J. Netw. Manag. 24.4 (2014),
pp. 272–288.

[38] Chuck Fraleigh et al. “Packet-level Traffic Measurements from the Sprint IP
Backbone”. In: Netwrk. Mag. of Global Internetwkg. 17.6 (2003), pp. 6–16.

[39] José Luis García-Dorado et al. “Characterization of ISP Traffic: Trends, User
Habits, and Access Technology Impact”. In: IEEE Trans. Netw. Service Manag.
9.2 (2012), pp. 142–155.

[40] Arnau Gavalda-Miralles et al. “Impact of Heterogeneity and Socioeconomic Fac-
tors on Individual Behavior in Decentralized Sharing Ecosystems”. In: Proceed-
ings of the National Academy of Sciences 111.43 (2014), pp. 15322–15327.

[41] Steffen Gebert et al. “Internet Access Traffic Measurement and Analysis”. In:
Proceedings of the 4th International Conference on Traffic Monitoring and Analy-
sis. TMA’12. 2012, pp. 29–42. url: http://dx.doi.org/10.1007/978-3-
642-28534-9_3.

[42] Vinicius Gehlen et al. “Uncovering the Big Players of the Web”. In: Proceedings
of the TMA. 2012, pp. 15–28.

[43] Alexandre Gerber and Robert Doverspike. “Traffic Types and Growth in Back-
bone Networks”. In: Optical Fiber Communication Conference/National Fiber Op-
tic Engineers Conference. 2011, pp. 1–3. url: http://www.osapublishing.
org/abstract.cfm?URI=OFC-2011-OTuR1.

[44] Glauber D. Gonçalves et al. “Workload Models and Performance Evaluation of
Cloud Storage Services”. In: Comput. Netw. (to appear) (2016).

[45] Roberto Gonzalez, Claudio Soriente, and Nikolaos Laoutaris. “User Profiling in
the Time ofHTTPS”. In: Proceedings of the 2016 InternetMeasurement Conference.
IMC ’16. Santa Monica, California, USA: ACM, 2016, pp. 373–379. isbn: 978-1-
4503-4526-2. doi: 10.1145/2987443.2987451. url: http://doi.acm.
org/10.1145/2987443.2987451.

[46] Arpit Gupta et al. “SDX: A Software Defined Internet Exchange”. In: Proc. of the
SIGCOMM. 2014, pp. 551–562.

[47] Mark Hall et al. “The WEKA Data Mining Software: An Update”. In: SIGKDD
Explor. Newsl. 11.1 (2009).

[48] Bo Han et al. “Network Function Virtualization: Challenges and Opportunities
for Innovations”. In: IEEE Commun. Mag. 53.2 (2015), pp. 90–97.

[49] HAR 1.2 Spec. https://dvcs.w3.org/hg/webperf/raw-file/tip/
specs/HAR/Overview.html. 2012.

[50] Zellig S Harris. “Distributional structure”. In: Word 10.2-3 (1954), pp. 146–162.

134

http://dx.doi.org/10.1007/978-3-642-28534-9_3
http://dx.doi.org/10.1007/978-3-642-28534-9_3
http://www.osapublishing.org/abstract.cfm?URI=OFC-2011-OTuR1
http://www.osapublishing.org/abstract.cfm?URI=OFC-2011-OTuR1
https://doi.org/10.1145/2987443.2987451
http://doi.acm.org/10.1145/2987443.2987451
http://doi.acm.org/10.1145/2987443.2987451
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/Overview.html
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/Overview.html

BIBLIOGRAPHY

[51] Rick Hofstede et al. “Flow Monitoring Explained: From Packet Capture to Data
AnalysiswithNetFlow and IPFIX”. In:Commun. Surveys Tuts. 16.4 (2014), pp. 2037–
2064.

[52] Y. Hu et al. “BalanceFlow: Controller load balancing for OpenFlow networks”.
In: 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence
Systems. Vol. 02. Oct. 2012, pp. 780–785.

[53] Eva Ibarrola, Ianire Taboada, Rodrigo Ortega, et al. “Web QoE evaluation in
multi-agent networks: Validation of ITU-T G. 1030”. In: Autonomic and Au-
tonomous Systems, 2009. ICAS’09. Fifth International Conference on. IEEE. 2009,
pp. 289–294.

[54] Sunghwan Ihm and Vivek S. Pai. “Towards UnderstandingModernWeb Traffic”.
In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference. IMC ’11. Berlin, Germany: ACM, 2011, pp. 295–312. isbn: 978-1-
4503-1013-0. doi: 10.1145/2068816.2068845. url: http://doi.acm.
org/10.1145/2068816.2068845.

[55] Cisco Visual networking Index. “Forecast and methodology, 2016-2021, white
paper”. In: San Jose, CA, USA 1 (2016).

[56] Intel. DPDK - Data Plane Development Kit. 2011. url: http://dpdk.org.

[57] Paul Jaccard. “The distribution of the flora in the alpine zone.” In:New phytologist
11.2 (1912), pp. 37–50.

[58] Sushant Jain et al. “B4: Experience with a Globally-deployed Software Defined
WAN”. In: Proc. of the SIGCOMM. 2013, pp. 3–14.

[59] Seyeon Jeong et al. “Application-Aware TrafficManagement for OpenFlow Net-
works”. In: Proc. of the APNOMS. 2016, pp. 1–5.

[60] Hongbo Jiang et al. “Lightweight Application Classification for Network Man-
agement”. In: Proceedings of the IMC. 2007, pp. 299–304.

[61] Arash Molavi Kakhki et al. “Taking a Long Look at QUIC: An Approach for
Rigorous Evaluation of Rapidly Evolving Transport Protocols”. In: Proceedings
of the ACM SIGCOMM Internet Measurement Conference. IMC’17. 2017, pp. 290–
303. url: http://doi.acm.org/10.1145/3131365.3131368.

[62] R. Kandoi and M. Antikainen. “Denial-of-service attacks in OpenFlow SDN net-
works”. In: 2015 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM). May 2015, pp. 1322–1326. doi: 10.1109/INM.2015.7140489.

[63] SrikanthKandula, Ranveer Chandra, andDina Katabi. “What’s Going on?: Learn-
ing Communication Rules in Edge Networks”. In: Proc. of the SIGCOMM. 2008,
pp. 87–98.

135

https://doi.org/10.1145/2068816.2068845
http://doi.acm.org/10.1145/2068816.2068845
http://doi.acm.org/10.1145/2068816.2068845
http://dpdk.org
http://doi.acm.org/10.1145/3131365.3131368
https://doi.org/10.1109/INM.2015.7140489

BIBLIOGRAPHY

[64] ThomasKaragiannis, Konstantina Papagiannaki, andMichalis Faloutsos. “BLINC:
Multilevel Traffic Classification in the Dark”. In: SIGCOMM Comput. Commun.
Rev. 35.4 (2005), pp. 229–240.

[65] Hyunchul Kim et al. “Internet TrafficClassificationDemystified:Myths, Caveats,
and the Best Practices”. In: Proceedings of the CoNEXT. 2008, pp. 1–12.

[66] Diego Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”.
In: Proc. IEEE 103.1 (2015), pp. 14–76.

[67] Craig Labovitz et al. “Internet Inter-Domain Traffic”. In: Proceedings of the ACM
Conference on Data Communication. SIGCOMM’10. 2010, pp. 75–86. url: http:
//doi.acm.org/10.1145/1851182.1851194.

[68] Adam Langley et al. “The QUIC Transport Protocol: Design and Internet-Scale
Deployment”. In: Proceedings of the Conference of the ACM Special Interest Group
on Data Communication. SIGCOMM’17. 2017, pp. 183–196. url: http://dl.
acm.org/citation.cfm?doid=3098822.3098842.

[69] Jun Liu, Feng Liu, and Nirwan Ansari. “Monitoring and Analyzing Big Traffic
Data of a Large-Scale Cellular Networkwith Hadoop”. In:Netwrk. Mag. of Global
Internetwkg. 28.4 (2014), pp. 32–39.

[70] Yi Liu. “DemystifyingMobileWeb Browsing underMultiple Protocols”. In: arXiv
preprint arXiv:1712.00237 (2017).

[71] Gregor Maier et al. “On Dominant Characteristics of Residential Broadband In-
ternet Traffic”. In: Proceedings of the ACM SIGCOMM Internet Measurement Con-
ference. IMC’09. 2009, pp. 90–102. url: http://doi.acm.org/10.1145/
1644893.1644904.

[72] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Networks”.
In: SIGCOMM Comput. Commun. Rev. 38.2 (2008), pp. 69–74.

[73] Patrick Meenan. “How fast is your website?” In: Communications of the ACM
56.4 (2013), pp. 49–55.

[74] Hesham Mekky et al. “Application-Aware Data Plane Processing in SDN”. In:
Proc. of the HotSDN. 2014, pp. 13–18.

[75] Marco Mellia et al. “Passive Identification and Analysis of TCP Anomalies”. In:
Proceedings of the IEEE International Conference on Communications. ICC’06.
2006, pp. 723–728. url: http : / / ieeexplore . ieee . org / document /
4024214/.

[76] DavidMoore et al. “Inferring Internet Denial-of-serviceActivity”. In:ACMTrans.
Comput. Syst. 24.2 (2006), pp. 115–139.

[77] Victor Moreno et al. “Commodity Packet Capture Engines: Tutorial, Cookbook
and Applicability”. In: Commun. Surveys Tuts. 17.3 (2015), pp. 1364–1390.

136

http://doi.acm.org/10.1145/1851182.1851194
http://doi.acm.org/10.1145/1851182.1851194
http://dl.acm.org/citation.cfm?doid=3098822.3098842
http://dl.acm.org/citation.cfm?doid=3098822.3098842
http://doi.acm.org/10.1145/1644893.1644904
http://doi.acm.org/10.1145/1644893.1644904
http://ieeexplore.ieee.org/document/4024214/
http://ieeexplore.ieee.org/document/4024214/

BIBLIOGRAPHY

[78] Tatsuya Mori et al. “SFMap: Inferring Services over EncryptedWeb Flows Using
Dynamical Domain Name Graphs”. In: Proceedings of the TMA. 2015, pp. 126–
139.

[79] Masoud Moshref et al. “Flow-level State Transition As a New Switch Primitive
for SDN”. In: Proc. of the HotSDN. 2014, pp. 61–66.

[80] David Naylor et al. “The Cost of the “S” in HTTPS”. In: Proceedings of the 10th
ACM International Conference on Emerging Networking Experiments and Tech-
nologies. CoNEXT’14. 2014, pp. 133–140. url: http://doi.acm.org/10.
1145/2674005.2674991.

[81] Bryan Ng, Matthew Hayes, and Winston K.G. Seah. “Developing a Traffic Clas-
sification Platform for Enterprise Networks with SDN: Experiences & Lessons
Learned”. In: Proc. of the Networking. 2015, pp. 1–9.

[82] T. T.T. Nguyen and G. Armitage. “A Survey of Techniques for Internet Traffic
Classification Using Machine Learning”. In: 10.4 (2008).

[83] OpenNetworking Foundation.OpenFlow Switch Specification - Version 1.5.0. https:
/ / www . opennetworking . org / technical - communities / areas /
specification. 2014.

[84] Vern Paxson. “Bro: a System for Detecting Network Intruders in Real-Time”. In:
Computer Networks 31.23-24 (1999), pp. 2435–2463. url: http://www.icir.
org/vern/papers/bro-CN99.pdf.

[85] David Plonka and Paul Barford. “Flexible Traffic and Host Profiling via DNS
Rendezvous”. In: Proceedings of the SATIN. 2011, pp. 1–8.

[86] Ingmar Poese et al. “EnablingContent-aware Traffic Engineering”. In: SIGCOMM
Comput. Commun. Rev. 42.5 (Sept. 2012), pp. 21–28. issn: 0146-4833. doi: 10.
1145 / 2378956 . 2378960. url: http : / / doi . acm . org / 10 . 1145 /
2378956.2378960.

[87] Lucian Popa et al. “Macroscope: End-point Approach to Networked Application
Dependency Discovery”. In: Proc. of the CoNEXT. 2009, pp. 229–240.

[88] Zafar Ayyub Qazi et al. “Application-Awareness in SDN”. In: Proc. of the SIG-
COMM. 2013, pp. 487–488.

[89] Zafar Ayyub Qazi et al. “SIMPLE-fying Middlebox Policy Enforcement Using
SDN”. In: Proc. of the SIGCOMM. 2013, pp. 27–38.

[90] Philipp Richter et al. “Distilling the Internet’s Application Mix from Packet-
Sampled Traffic”. In: Proceedings of the 16th International Conference on Passive
and Active Measurement. PAM’15. 2015, pp. 179–192. url: https://doi.org/
10.1007/978-3-319-15509-8_14.

137

http://doi.acm.org/10.1145/2674005.2674991
http://doi.acm.org/10.1145/2674005.2674991
https://www.opennetworking.org/technical-communities/areas/specification
https://www.opennetworking.org/technical-communities/areas/specification
https://www.opennetworking.org/technical-communities/areas/specification
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf
https://doi.org/10.1145/2378956.2378960
https://doi.org/10.1145/2378956.2378960
http://doi.acm.org/10.1145/2378956.2378960
http://doi.acm.org/10.1145/2378956.2378960
https://doi.org/10.1007/978-3-319-15509-8_14
https://doi.org/10.1007/978-3-319-15509-8_14

BIBLIOGRAPHY

[91] Jan Rüth et al. “A First Look at QUIC in the Wild”. In: Proceedings of the 19th In-
ternational Conference on Passive andActiveMeasurement. PAM’18. 2018, pp. 255–
268. url: https://doi.org/10.1007/978-3-319-76481-8_19.

[92] Sandvine. “MeasuringWeb Browsing Quality of Experience”. In: (2015). https:
//www.sandvine.com/hubfs/downloads/archive/whitepaper-
web-browsing-qoe.pdf.

[93] Selenium Web Browser Automation. http://www.seleniumhq.org/. 2016.

[94] Muhammad Zubair Shafiq et al. “A First Look at Cellular Machine-to-machine
Traffic: Large Scale Measurement and Characterization”. In: Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems. SIGMETRICS’12. 2012, pp. 65–76.
url: http://doi.acm.org/10.1145/2254756.2254767.

[95] Junaid Shaikh, Markus Fiedler, and Denis Collange. “Quality of experience from
user and network perspectives”. In: annals of telecommunications-annales des
telecommunications 65.1-2 (2010), pp. 47–57.

[96] Yuval Shavitt and Eran Shir. “DIMES: Let the Internet Measure Itself”. In: SIG-
COMM Comput. Commun. Rev. 35.5 (2005), pp. 71–74.

[97] Ankit Singla et al. “The Internet at the Speed of Light”. In: Proceedings of the
13th ACM Workshop on Hot Topics in Networks. HotNets’14. 2014, pp. 1–7. url:
http://doi.acm.org/10.1145/2670518.2673876.

[98] Charles Spearman. “The proof and measurement of association between two
things”. In: The American journal of psychology 15.1 (1904), pp. 72–101.

[99] Squid-Cache. http://www.squid-cache.org/.

[100] Davide Tammaro et al. “Exploiting Packet-Sampling Measurements for Traffic
Characterization and Classification”. In: Int. J. Netw. Manag. 22.6 (2012), pp. 451–
476.

[101] Alok Tongaonkar et al. “Towards Self Adaptive Network Traffic Classification”.
In: Comput. Commun. 56.1 (2015), pp. 35–46.

[102] Martino Trevisan. NetLytics. https://github.com/marty90/netlytics.
2017.

[103] Martino Trevisan, Idilio Drago, and Marco Mellia. “PAIN: A Passive Web Speed
Indicator for ISPs”. In: Proceedings of the Workshop on QoE-based Analysis and
Management of Data Communication Networks. Internet QoE ’17. Los Ange-
les, CA, USA: ACM, 2017, pp. 7–12. isbn: 978-1-4503-5056-3. doi: 10.1145/
3098603.3098605. url: http://doi.acm.org/10.1145/3098603.
3098605.

138

https://doi.org/10.1007/978-3-319-76481-8_19
https://www.sandvine.com/hubfs/downloads/archive/whitepaper-web-browsing-qoe.pdf
https://www.sandvine.com/hubfs/downloads/archive/whitepaper-web-browsing-qoe.pdf
https://www.sandvine.com/hubfs/downloads/archive/whitepaper-web-browsing-qoe.pdf
http://www.seleniumhq.org/
http://doi.acm.org/10.1145/2254756.2254767
http://doi.acm.org/10.1145/2670518.2673876
http://www.squid-cache.org/
https://github.com/marty90/netlytics
https://doi.org/10.1145/3098603.3098605
https://doi.org/10.1145/3098603.3098605
http://doi.acm.org/10.1145/3098603.3098605
http://doi.acm.org/10.1145/3098603.3098605

BIBLIOGRAPHY

[104] Martino Trevisan et al. “Awesome: Big data for automatic web service manage-
ment in sdn”. In: IEEE Transactions on Network and Service Management 15.1
(2018), pp. 13–26.

[105] Martino Trevisan et al. “Five Years at the Edge: Watching Internet from the ISP
Network”. In: Proceedings of the 2018 ACM CoNEXT Conference. CoNEXT’18.
2018.

[106] Martino Trevisan et al. “Towards Web Service Classification using Addresses
and DNS”. In: Proceedings of the 7th International Workshop on Traffic Analysis
and Characterization. TRAC’16. 2016, pp. 38–43. url: https://ieeexplore.
ieee.org/document/7577030/.

[107] Martino Trevisan et al. “Traffic Analysis with Off-the-Shelf Hardware: Chal-
lenges and Lessons Learned”. In: IEEE Commun. Mag. 55.3 (2017), pp. 163–169.

[108] Martino Trevisan et al. “WHAT: A big data approach for accounting of modern
web services”. In: 2016 IEEE International Conference on Big Data (Big Data). Dec.
2016, pp. 2740–2745.

[109] Silvio Valenti et al. “Reviewing Traffic Classification”. In: Data Traffic Monitor-
ing and Analysis - From Measurement, Classification, and Anomaly Detection to
Quality of Experience. 1st ed. Heidelberg: Springer, 2013.

[110] Petr Velan et al. “A Survey of Methods for Encrypted Traffic Classification and
Analysis”. In: Int. J. Netw. Manag. 25.5 (2015), pp. 355–374.

[111] Stefano Vissicchio et al. “Central Control Over Distributed Routing”. In: Proc. of
the SIGCOMM. 2015, pp. 43–56.

[112] H. Wang, L. Xu, and G. Gu. “FloodGuard: A DoS Attack Prevention Extension in
Software-Defined Networks”. In: 2015 45th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks. June 2015, pp. 239–250.

[113] Xiao Sophia Wang et al. “Demystifying Page Load Performance with WProf.”
In: NSDI. 2013, pp. 473–485.

[114] Yu Wang et al. “TeleScope: Flow-Level Video Telemetry using SDN”. In: Proc. of
the EWSDN. 2016, pp. 1–6.

[115] WebPageTest. https://www.webpagetest.org/. 2009.

[116] Carey Williamson. “Internet Traffic Measurement”. In: IEEE Internet Computing
5.6 (2001), pp. 70–74.

[117] Guowu Xie et al. “ReSurf: Reconstructing web-surfing activity from network
traffic”. In: 2013 IFIP Networking Conference. 2013, pp. 1–9.

[118] Hongyi Yao et al. “SAMPLES: Self Adaptive Mining of Persistent LExical Snip-
pets for Classifying Mobile Application Traffic”. In: Proc. of the MobiCom. 2015,
pp. 439–451.

139

https://ieeexplore.ieee.org/document/7577030/
https://ieeexplore.ieee.org/document/7577030/
https://www.webpagetest.org/

BIBLIOGRAPHY

[119] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: Pro-
ceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing. Hot-
Cloud’10. 2010, pp. 10–10. url: http://dl.acm.org/citation.cfm?id=
1863103.1863113.

[120] Hong Zhang et al. “CODA: Toward Automatically Identifying and Scheduling
Coflows in the Dark”. In: Proceedings of the 2016 ACM SIGCOMM Conference.
SIGCOMM ’16. Florianopolis, Brazil: ACM, 2016, pp. 160–173. isbn: 978-1-4503-
4193-6. doi: 10.1145/2934872.2934880. url: http://doi.acm.org/
10.1145/2934872.2934880.

[121] Shuai Zhao, Ali Sydney, and Deep Medhi. “Building Application-Aware Net-
work Environments Using SDN for Optimizing Hadoop Applications”. In: Proc.
of the SIGCOMM. 2016, pp. 583–584.

140

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://doi.org/10.1145/2934872.2934880
http://doi.acm.org/10.1145/2934872.2934880
http://doi.acm.org/10.1145/2934872.2934880

This Ph.D. thesis has been typeset by
means of the TEX-system facilities. The
typesetting engine was LuaLATEX. The
document class was toptesi, by Clau-
dio Beccari, with option tipotesi
=scudo. This class is available in every
up-to-date and complete TEX-system
installation.

	List of Tables
	List of Figures
	Introduction
	Measurements and data collection
	Five Years at the Edge: Watching Internet from the ISP Network
	Introduction
	Measurement methodology
	Measurement architecture
	Challenges in long-term measurements

	The cost of a user
	How much you eat: Consumption per day
	Eager and Eager: Trends on traffic consumption

	The cost of services
	Give me that: Service popularity
	The downfall of Peer-To-Peer - finally
	The usual suspects: YouTube and Netflix
	The new elephants in the room: Social messaging applications

	Web trends, and surprises
	Where are my servers?
	The birth of the sub-millisecond Internet
	The Internet of few giants

	Related Work
	Conclusion

	Towards Web Service Classification using Addresses and DNS
	Introduction
	Datasets and Methodology
	Datasets
	Methodology

	Enumerating Names and Addresses of Services
	Classification Using IP Addresses
	Classification Using Bags of Domains
	Use Cases
	A Deeper Look into Popular Services
	Names and Addresses over Time

	Traffic in Ambiguous Names
	Conclusions

	WHAT: Automatic Accounting of Modern Web Services
	Introduction
	Scenario & Problem Statement
	Examples

	The WHAT System
	Architecture Overview
	Input Data
	Core Domains Discoverer
	BoD Learner
	Traffic Classifier

	Datasets
	ISP Flow Traces
	Synthetic Traces

	WHAT Validation
	Core Domain Discovery
	Classification Performance
	Parameter Tuning
	Stability of Learning

	Case Study
	Ranking Domains and Services
	Support Domains Pervasiveness

	Related Work
	Conclusions

	AWESoME: Big Data for Automatic Web Service Management in SDN
	Introduction
	Definitions and Architecture
	Per service management approach
	Core and support domains
	SDN as enabling technology
	AWESoME architecture

	How Service Association Works
	Automatic BoD training
	Domain-To-Service classification module

	Datasets
	Ground-truth traces
	Operational network traces

	AWESoME Performance
	Flow-to-Domain evaluation
	Domain-to-Service accuracy
	Training set size and location
	Per service performance
	Is AWESoME scalable?
	Limitations and future work

	Related work
	Web service traffic identification
	Service-awareness in SDNs

	Conclusions

	PAIN: A Passive Web Performance Indicator for ISPs
	Introduction
	The complexity of QoE estimation
	Objective QoE-related metrics
	Challenges for estimating QoE from network traffic

	Related Work
	The PAIN system
	Input data
	Model learning
	PAIN index computation
	Design decisions, caveats and limitations

	Datasets
	Synthetic traces
	Support domains at a glance
	ISP flow traces

	Validation
	Tuning of parameters ΔT and n
	Effects of network conditions
	Comparison to objective metrics
	Comparison to alternative approaches
	Learning duration and periodicity

	Case studies
	Performance per ADSL capacity
	Impairments due to server-side events

	Conclusions

	Conclusions
	List of Publications
	Bibliography

