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Abstract

This paper focuses on answering fill-in-the-blank style multiple choice questions
from the Visual Madlibs dataset. Previous approaches to Visual Question Answering
(VQA) have mainly used generic image features from networks trained on the ImageNet
dataset, despite the wide scope of questions. In contrast, our approach employs features
derived from networks trained for specialized tasks of scene classification, person activ-
ity prediction, and person and object attribute prediction. We also present a method for
selecting sub-regions of an image that are relevant for evaluating the appropriateness of
a putative answer. Visual features are computed both from the whole image and from
local regions, while sentences are mapped to a common space using a simple normalized
canonical correlation analysis (CCA) model. Our results show a significant improvement
over the previous state of the art, and indicate that answering different question types ben-
efits from examining a variety of image cues and carefully choosing informative image
sub-regions.

1 Introduction

Visual Question Answering (VQA) [2] has gained popularity in the past year with the release
of several new datasets [2, 6, 9, 13, 19, 30, 34]. Recent high-profile approaches to VQA
combine Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks to generate answers for questions about an image [1, 6, 14]. Other works integrate
attention mechanisms for text-guided analysis of images [22, 28, 29, 34]. In contrast to these
relatively complex methods, simple CNN+Bag-of-Words [32] and multi-modal Canonical
Correlation Analysis (CCA) [30] have also been shown to achieve good accuracy.

Despite the broad scope of questions and the diversity of proposed solutions for VQA,
all the approaches mentioned above use image features computed by a CNN pre-trained for
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image classification on the ImageNet dataset [21], for example, VGG-Net [23]. However, it
is unlikely that a single network can capture the full range of information needed to correctly
answer a question. Consider a question about the position of an object in an image: the
answer could involve information about the overall scene (e.g., it is in the kitchen), other
reference objects (on the table), appearance (against the blue wall), or even details about
people (behind the girl) or activities (in front of the man holding a glass), etc. In order to
better understand an image and answer questions about it, it is necessary to leverage rich and
detailed global and local information instead of relying on generic whole-image features.

This paper presents a CCA-based approach that uses a variety of cues to improve per-
formance significantly on questions from the Visual Madlibs Dataset [30]. This dataset was
created by asking people to write fill-in-the-blank descriptions for 12 question types, broadly
divided into three areas: questions about image as a whole (scene identity, emotion evoked
by the image, most interesting thing about the image, likely future and past events); questions
about an indicated person (attribute, action, location, interaction with an indicated object);
and questions about an indicated object (affordance, attribute, location). Every Madlibs
question consists of an image (possibly with a ground truth mask of the indicated person or
object), a sentence prompt based on the question type, and four possible answers to fill in
the blank, one of which is correct. Three example questions are illustrated in Figure 1.

A few recent works have similarly attempted to leverage external knowledge, either
through a rich set of different labels, or by exploiting textual resources such as DBpedia [3].
The former approach is adopted in [33] by learning an MRF model on scene category, at-
tribute, and affordance labels over images from the SUN dataset [27]. While quite powerful
on the image side, the lack of natural language integration limits the set of possible questions
that may be asked of the system. The approach presented in [26] starts from multiple labels
predicted from images and uses them to query Dbpedia. The obtained textual paragraphs are
then coded as a feature and used to generate answers through an LSTM. Though quite in-
teresting, this method still relies on ImageNet-trained features, missing the variety of visual
cues that can be obtained from networks tuned on tasks other than object classification.

To extract diverse cues for answering Madlibs questions, we use features from CNNs
trained on multiple specialized sources: the Places scene dataset [31], the HICO and MPII
human activity datasets [5, 17], the MS-COCO object detection dataset [10], and the grounded
image description dataset, Flickr30k Entities [18]. As detailed in Section 2.1, our networks
are based on state-of-the-art architectures for image classification [23], object detection [11],
and action recognition [15]. Further, we propose methods for automatically finding spatial
support for mentions of persons and objects in candidate answers (Section 2.2) and for com-
bining multiple types of cues to obtain a single score for a question and a candidate answer
(Section 2.3). In Section 3, we present a thorough experimental analysis of different types of
cues and combination schemes. By combining information from all cues relevant for a given
question type, we achieve new state-of-the-art accuracies on all question types.

2 The Approach

We want to learn a model that maps visual information extracted from an image to the correct
multiple-choice answer for a fill-in-the-blank question. This image-to-answer compatibility
naturally depends on the global compatibility of whole-image cues with the answer sentence,
as well as on the local compatibility of image regions and any person or object named in the
answer sentence.
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e

Future Question: Scene Question: Person Action Question:

One or two seconds after this picture was taken The place is a The person/people is/are
* the dog continued walking away e train station ¢/ * sailing
* the man started to smile e grassy hillside * paddling the boat ¢/
* the child ate the food ¢ * sidewalk bench * laying
* the woman chewed the sandwich e ski trail ¢ sitting
Predictions Predictions Predictions
Actions: hold, eat, pick-up-donut, eating-sitting Scenes: train-station/platform, train-railway, Actions: ride, sit-on, row-boat
Attributes: little boy, young boy, child, kid railroad-track, subway-station/platform

Figure 1: Given Visual Madlibs images and questions, our method uses multiple deep net-
works trained on external datasets to predict actions, attributes, scenes, and other cues. The
spatial support of these cues can be an automatically detected region (left example, dashed
yellow box); the whole image (middle example, red box), or a ground truth box provided
with the question (right example, yellow box). Top-scoring predicted labels for the corre-
sponding regions are shown on the bottom. We train CCA models on top of cue-specific
activations and combine the CCA scores to rank candidate answers for 12 types of multiple
choice questions.

Our image-to-text compatibility scores come from CCA models [8], which give us linear
mappings from visual and textual features to a common latent space. On the visual side,
we leverage deep networks to obtain cue-specific features from the whole image and from
person/object bounding boxes. We use the activations of the last fully connected layer (fc7)
or the final prediction layer of each network described in the following section as a visual
representation. On the textual side, we represent each word with its word2vec feature [16]
and consider the average 300-dimensional vector over the whole answer (when picking a
choice) or the parsed phrases that mention people or objects (when selecting a region of
interest). At test time, among the four candidate answers, we select the one that obtains the
highest cosine similarity with the image features in the joint embedding space of the CCA
model. To integrate multiple cues, we experiment both with low-level visual feature stacking
and high-level CCA score combinations.

In the following we provide details about the architectures used to extract visual features
(Sec. 2.1), the selection procedure to localize objects and persons named in the sentences
(Sec. 2.2), and the strategies adopted for multi-cue combination depending on the image
question type (Sec. 2.3).

2.1 Cue-Specific Models

Baseline Network (VGG). The VGG-16 network [23] trained on 1000 ImageNet categories
is a standard architecture in many current works on VQA. Consistent with the original
Madlibs paper [30], we consider it as the reference baseline. We obtain a 4096-dimensional
feature vector by averaging fc7 activations over 10 crops.
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Scene Prediction (Places). The Places dataset [31] contains about 2.5 million images be-
longing to 205 different scene categories. We utilize the VGG-16 network from [31] with
10-crop 4096 dimensional fc7 features to obtain information about the global scene.

Person Activity Prediction (Act. HICO, MPII). We leverage two of the largest currently
available human activity image datasets: the Humans Interacting with Common Objects
(HICO) dataset [5] and the MPII Human Pose Dataset [17]. HICO has 600 labels for differ-
ent human-object interactions, e.g., ride-bicycle or repair-bicycle. The HICO objects belong
to the 80 annotated categories in the MS-COCO dataset [10]. The MPII dataset has 393 cat-
egories, including interactions with objects as well as solo human activities such as walking
and running. We employ the CNN architecture introduced by Mallya and Lazebnik [15],
which currently hold state-of-the-art classification accuracy on both datasets. This archi-
tecture is based on VGG-16 and combines information from a person bounding box (either
ground truth or detected, depending on the question type) and the whole image. In case
of multiple people in an image, the network is run independently on each person and then
the features are average-pooled. As will be explained in Section 2.3, for combining mul-
tiple cues, we will experiment with 4096-dimensional fc7 activations as well as with class
prediction logits (inputs to the final sigmoid/softmax layer).

Person Attribute Prediction (Attr.). We extract a rich vocabulary of describable person
attributes from the Flickr30k Entities dataset [18], which links phrases in sentences to cor-
responding bounding boxes in images. Our vocabulary consists of 302 phrases that refer to
people and occur at least 50 times in the training set, and covers references to gender (man,
woman), age (baby, elderly man), clothing (man in blue shirt, woman in black dress), ap-
pearance (brunette woman, Asian man), multiple people (two men, group of people), and
more. Besides having the appealing characteristic of being derived from natural language
phrases, our set of attribute labels is one order of magnitude larger than that of other ex-
isting attribute datasets [4, 25]. We train a Fast-RCNN VGG-16 network [7] to predict our
302 attribute labels based on person bounding boxes (in case of group attributes, the ground
truth boxes contain multiple people). To compensate for unbalanced training data, we use a
weighted loss that penalizes mistakes on positive examples 10 times more than on negative
examples [15]. Unlike our activity prediction network, this network can predict group at-
tributes given a box containing multiple people. For the downstream VQA models, we will
consider both the fc7 activations and the class prediction logits of this network, same as with
the HICO and MPII networks. Sample outputs of the person action and attribute predictors
are shown in Figure 2.

Color Prediction (Color). For questions focused on objects, color is a very salient character-
istic that is not captured well by CNNss trained to recognize object categories. We follow [18]
and fine-tune a Fast-RCNN VGG-16 network to predict one of 11 colors that occur at least
1,000 times in the Flickr30K Entities training set: black, red, blue, white, green, yellow,
brown, orange, pink, gray, purple. The training is performed on non-person phrases to pre-
vent confusion with color terms that refer to race. For VQA, we use the 4096-dimensional
fc7 feature extracted from the object bounding box.

2.2 Image Region Selection

Some of the Madlibs question types ask about a particular object or person and provide
its bounding box (e.g., the rightmost example in Figure 1 asks what the person outlined in
yellow is doing). Other questions, namely those related to image interestingness, future, and
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ride, stand-on-surfboard, surfing carry, hold-tennis-racket, hold-bat wear, stand-on, ride-skis
man, young man, man in red shirt man, man in white shirt & white hat man, skier, person

carry, hold, stand-under-umbrella Both: sit-at, eat-at-dining-table, hold-pizza Both: run, ride, straddle-horse
woman, girl, young woman man, young man, guy — woman, girl, lady Both: jockey, man, rider
Full Image: people, group of people, four people Full Image: three man, two man, two people

Figure 2: Predicted person actions and attributes. The first and second lines below each
image show the top 3 predicted actions and attributes respectively. In the case of multiple
people in an image, the third line shows the top 3 attributes predicted for the whole image.
(Both means that both of the people in the image have the same action/attribute predictions.)

The man enjoyed his meal She was doing some work They kept talking A woman finishes eating a donut

Figure 3: Examples of selected person boxes based on person phrases (in red).

past, do not provide a target image region. In particular, for the left example in Figure 1,
each of the four candidate answers mentions a different person or object: “the dog,” “the
man,” “the child,” “the woman.” In order to pick the right choice, we need to select the best
supporting regions for each of the four entity mentions and use the respective correspondence
scores as part of our overall image-to-answer scoring scheme.

For Interestingness, Past, and Future questions, we first parse all answers with the Stan-
ford parser [24] and use pre-defined vocabularies to identify NP (Noun-Phrase) chunks re-
ferring to a person or to an object. Then we apply the following region selection mechanisms
for mentioned people and objects, respectively.

Person Box. We first detect people in an image using the Faster-RCNN detector [20] with
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The dog runs back away A woman closed a laptop He held the racket She ate the pizza

Figure 4: Examples of selected object boxes based on object phrases (in red).

the default confidence threshold of 0.8. We discard all detected boxes with height or width
less than 50 pixels since in our experience they mostly contain noise and fragments. We also
consider the smallest box containing all detected people, to account for cues originating from
multiple people. Given an image and an answer, we attempt to select the person detection
that corresponds best to the named person. For example, if an answer refers to a “young girl,”
we want to select the detection window that looks the most like a young girl. To this end,
we train a Person CCA model on the val+test set of Flickr30k Entities using person phrases
and image features extracted from the corresponding person box. We represent the phrases
with the 300-d average of word2vec [16] and the image regions with the 302-d vector of
predictions obtained from our person attribute network (Sec. 2.1). To apply this model to the
Madlibs dataset, we extract the part of the answer sentence referring to a person and select
the image region with the highest similarity in the CCA embedding space. A few successful
region selections are shown in Figure 3 (parsed person phrase and corresponding selected
boxes are colored red). Note that in the third example, CCA selects the overall box. Thus,
all the person-specific boxes are colored red with the exception of the top right one which is
discarded as it is below the size threshold. In case no words referring to people are found in
a choice, all person boxes are selected.

Object Box. We localize objects using the Single Shot MultiBox Detector (SSD) [11] that
has been pre-trained on the 80 MS-COCO object categories. SSD is currently state-of-the-art
for detection in speed and accuracy. For each Madlibs image, we consider the top 200 detec-
tions as object candidates and use the Object CCA model created for the phrase localization
approach of [18] to select the boxes corresponding to objects named in the sentences. This
model is trained on the Flickr30k Entities dataset over Fast-RCNN fc7 features and 300-d
word2vec features. The top-scoring box is selected for each object phrase (Figure 4).

Person and Object Scores. The Person and Object CCA models created for image region
selection can also be used to help score multiple-choice answers. For the detected people,
we associate each answer with the score of the selected person box. For the objects, since the
detector output is much less reliable and the cues are more noisy, we use a kernel introduced
for matching sets of local features [12]: we collect all of the N object boxes from the image
and the M object phrases from each answer and then compute the following score:

11 N M
K(image,answer) = N ,:Zi j:Z’l{cos_similarity(boxi, phrasej)}? . (1)
The parameter p assigns more relative weight to box-phrase pairs with higher similarity. We
use p =5 in our implementation.
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2.3 Cue Integration

With the variety of features described in section 2.1 we can cover different visual aspects of
the image that are relevant for different question types. For each Madlibs image, we extract
the global VGG and Places representations and use either the ground truth focus region (if
provided with the question type) or the region selection procedure of Section 2.2 to localize
where VGG, Act., Attr., and Color features should be extracted for persons and objects.
As detailed below, we then explore a variety of combination schemes, including stacking
of various network outputs and forming linear combinations of scores from CCA models
learned on top of different features.

Combining fc7 activations. Our most basic integration scheme is to combine the output
of the vanilla global VGG network with the output of a single cue-specific network applied
either to the whole image (Places), or to a person or object bounding box. To do this, we
stack the 4096-d fc7 activations of the respective networks to obtain 8192-d representations.
Results with this scheme will be shown in the “Baseline + X” columns of Table 1.

Combining label activations. If we want to combine the VGG baseline with the out-
put of more than one specialized network, fc7 stacking becomes infeasible due to exces-
sively high dimensionality. Instead, we stack lower-dimensional class prediction vectors
(recall from Section 2.1 that we use logits, or values before the final sigmoid/softmax layer).
Specifically, to characterize people, we concatenate the class predictions of the two action
networks (HICO+MPII), or the two action networks together with the attribute network
(HICO+MPII+Attr.), giving 993-d and 1295-d feature vectors, respectively. Results with
this scheme will be shown in the Label Combination columns of Table 2.

CCA Score Combination. To enable even more complex cue integration, we resort to
combining scores of multiple CCA models. Namely, for each of the stacked cues described
above, we learn a CCA model on the training portion of the Madlibs dataset. Given a test
question/answer pair, we obtain the score of each CCA model that is appropriate for that
question type and linearly combine the scores with weights chosen depending on the question
type. From the C available cues for that type, we manually pre-determine the one that makes
the most sense (e.g., Places for person location, Color for object attribute) and assign it a
weight of (1 — (C — 1) x 0.1) while all of the remaining cues get weight 0.1. Once the
weighted CCA score is calculated for all the candidate answers, we choose the one with the
highest score. The resulting performance will be shown in the last three columns of Table 2.

3 Experiments

As mentioned earlier, the 12 types of Madlibs questions can be broadly divided into three
groups based on whether they are about the whole image, a specific person, or a specific
object. In the first group there are questions related to scene, emotion, interestingness, past,
and future. The second group asks questions about specified people, including attributes,
activities, location, and relationship with an object. The third group asks questions about
attributes, affordances, and position of a specified object. “Hard” and “Easy” versions of
each question are provided with the dataset (“Hard” questions have distractor options that
are more easily confused with the correct option). To start, the leftmost column of Table 1
presents accuracies for each question type when using the baseline global VGG feature,
while the following columns show the performance for feature combination of the baseline
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Question Type Full Image Person Box Object Box
Baseline B. + B. + B. + B. + B. + B. + B. +
VGG Places | VGG | Act. HICO | Act. MPII | Attr. | VGG | Color
Scene Easy 88.14 89.48 - - - - - -
Hard 71.05 73.42 - - - - - -
Emotion Easy 52.84 52.92 - - - - - -
Hard 40.07 39.72 - - - - - -
a) Interesting Easy 79.53 79.74 | 79.92 80.82 80.51 80.04 | 79.61 -
Hard 55.05 55.05 | 55.45 54.95 55.83 55.99 | 54.92 -
Past Easy 80.24 80.86 | 81.27 83.09 81.56 82.68 | 80.75 -
Hard 54.35 54.64 | 55.74 55.61 55.57 57.74 | 54.82 -
Future Easy 80.22 80.96 | 81.47 82.84 81.62 83.19 | 81.79 -
Hard 55.49 56.03 | 57.51 57.36 56.72 59.21 | 57.26 -
Person Easy 53.56 54.50 | 60.04 54.86 55.66 64.97 - -
Attribute Hard 42.58 42.89 | 49.34 43.79 45.85 55.50 - -
Person Easy 84.71 84.89 | 85.96 87.54 85.46 85.13 - -
b) Action Hard 68.04 68.68 | 69.79 71.39 70.33 69.08 - -
Person Easy 84.95 86.16 | 84.70 85.49 85.12 84.48 - -
Location Hard 64.67 66.72 | 65.50 64.91 65.36 64.77 - -
Person Object  Easy 73.63 74.52 | 75.26 78.34 76.66 75.59 | 77.06 | 75.84
Relationship  Hard 56.19 56.88 | 59.06 60.37 59.27 58.35 | 57.17 | 57.45
Object Easy 50.35 50.64 - - - - 57.56 | 59.31
Attribute Hard 4541 45.55 - - - - 53.63 | 54.73
0 Object Easy 82.49 83.10 - - - - 87.40 | 84.02
Affordance Hard 64.46 64.55 - - - - 68.47 | 65.37
Object Easy 67.91 69.75 - - - - 68.68 | 69.22
Location Hard 56.71 58.08 - - - - 57.90 | 57.35

Table 1: Accuracy on Madlibs questions with fc7 features. The Baseline VGG column gives
performance for 4096-d fc7 outputs of the standard reference network trained on Imagenet.
For the columns labeled “B. + X,” the baseline fc7 features are concatenated with fc7 features
of different specialized networks, yielding 8192-d representations (see Section 2.3).

with the individual cues. We want to see how using cues better suited for different question
types can improve performance.

Whole-Image Questions. As shown in group (a) of Table 1, for Scene questions, using the
fc7 Places features helps improve performance over the VGG baseline. Emotion questions
are rather difficult to answer and we do not see much improvement by adding scene-based
features. We did not attempt to use person- or object-based features for the Scene and Emo-
tion questions since we found that only 13% (resp. 2%) of the answers to those two question
types mention one of the 80 MS-COCO objects and less than 2% mention one of the 302
person labels.

On the other hand, for the Future, Past, and Interestingness questions, people and objects
often play an important role: between 30% and 40% of the answers name an object and the
frequency of person mentions ranges from 25% for Interestingness to about 80% for Past and
Future. Thus, for these question types, we perform person and object detection and use the
selection methods described in Sec. 2.2 to find relevant boxes to score a given answer. We
extract four different types of fc7 features from a selected person box: VGG features from
passing a resized box (224 x 224) as input, Act. features from the networks trained on HICO
and MPII, and the Attr. features from the prediction network trained on Flickr30. We do not
expect color to provide useful information to discriminate between answers, so we do not
include it here. From Table 1 (a), we find that Act. and Attr. features give us improvement
in accuracy with respect to the whole image baseline. The HICO network, with its large
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fc7 Combination Label Combination CCA Score Combination

Question Type Baseline Baseline + HICO [HICO + MPII || + Person |+ Obj.|| CCA

VGG | Single Best Cue ||+ MPII + Attr. Score | Score ||Ensemble

Interesting Easy || 79.53 HICO 80.82(| 79.96 81.12 81.69 |81.57|| 83.20
Hard|| 55.05 Attr.  55.99|| 53.95 55.76 56.64 |56.37| 57.70

a) Past Easy|| 80.24 HICO 83.09(| 83.29 84.64 85.62 | 85.05 86.36
Hard|| 54.35 Attr.  57.74|| 55.23 58.21 60.33 | 58.43 60.00

Future Easy|| 80.22 Attr.  83.19]| 83.66 85.53 85.79 [85.57| 86.88
Hard|| 55.49 Attr.  59.211|| 57.58 60.61 61.85 |60.63 62.39

Person Easy|| 53.56 Attr.  64.97|| 60.22 67.96 - - 68.50
Attribute Hard|| 42.58 Attr.  55.50]| 46.44 55.78 - - 55.90
Person Easy|| 84.71 HICO 87.54| 87.31 87.56 - - 88.34

b) Action Hard|| 68.04 HICO 71.39(| 71.16 71.56 - - 71.65
Person Easy|| 84.95 Places 86.16| 84.77 84.80 - - 85.70
Location Hard|| 64.67 Places 66.72|| 62.65 62.80 - - 63.92
Person Object Easy || 73.63 HICO 78.34|| 77.49 77.77 - - 78.93
Relationship Hard|| 56.19 HICO 60.37| 57.91 57.96 - - 58.63
Object Easy || 50.35 Color 59.31 - - - - 58.94
Attribute Hard|| 45.41 Color 54.73 - - - - 54.50

0 Object Easy || 82.49 |Obj. VGG 87.40 - - - - 87.29
Affordance Hard|| 64.46 |Obj. VGG 68.47 - - - - 68.37
Object Easy|| 67.91 Places 69.75 - - - - 70.03
Location Hard|| 56.71 Places 58.08 - - - - 58.01

Table 2: Results of combining multiple cues. Columns marked “fc7 Combination™ give key
results from Table 1 for reference. Columns marked “Label Combination” show results with
the respectively named strategies of Section 2.3. Columns marked “+ Person Score” and “+
Obj. Score” show the results of combining the region selection scores of Section 2.2 with
the HICO + MPII + Attr. CCA. The CCA Ensemble column shows the results of linearly
combining all CCA scores appropriate for each question type (see text for details).

number of labels covering objects from the MS-COCO dataset, provides better results than
the MPII network. However, VGG features extracted from the object regions do not help to
improve over the whole-image baseline.

Person Questions. For questions about specified people, we extract features from the pro-
vided ground truth person box and report results in group (b) of Table 1. As expected,
attribute features yield the best results on Attribute questions and the HICO representation
improves accuracy by up to 3% over the baseline for Action questions. For Person Location,
the most useful representation is the one obtained from the Places dataset. Finally, for the
Person-Object Relation questions, 51% of answers name one of the 600 HICO actions, ex-
plaining the observed performance boost obtained with HICO. For the latter question type,
the ground truth position of the query object is also provided: by extracting the VGG and
Color features from the object box we obtain lower accuracies than with the HICO represen-
tation but higher than with the whole-image baseline.

Object Questions. For questions about specified objects, we extract features from the pro-
vided ground truth object box and report results in group (c) of Table 1. Here, the best results
for Attribute questions are obtained with the Color representation, the best results for Affor-
dance questions are obtained with the VGG representation, and the best results for Object
Location are obtained with the Places representation.

Cue Integration. Table 2 reports results obtained by integrating multiple cues as described
in Section 2.3. We exclude Scene and Emotion questions from the following analysis since
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they do not involve persons and objects and we previously only used a single cue for them.
Second and third columns reproduce the best results on the different question types, as pre-
viously reported in Table 1, and the subsequent columns compare performance obtained by
integrating multiple cues via label combination and CCA score.

For questions in groups (a) and (b) of Table 2, we test the representations obtained by ac-
tion (HICO+MPII) and attribute (HICO+MPII+Attr.) label combination. For HICO+MPII,
we typically see a small drop in performance on whole-image questions (i.e., in Interest-
ing, Past, Future rows) and location-related questions (Person Location and Person-Object
Relation), probably owing to the reduced feature dimension and loss of global contextual
information as compared to the 8192-dimensional fc7 combination features. On the other
hand, the HICO+MPII representation produces results comparable with the best fc7 cue for
the Person Action question while being much more compact (993-d vs. 8192-d). By adding
the attribute labels (HICO+MPII+Attr. column), we further improve performance, particu-
larly for the Person Attribute question.

The last three columns of Table 2 shows the results of linearly combining multiple CCA
scores as described in the last paragraph of Section 2.3.

Recall from Section 2.2 that for Interestingness, Past, and Future questions, we perform
focus region selection and compute Person and Object scores measuring the compatibility of
person and object mentions in answers with the selected regions. These scores also provide
some useful signal for choosing the correct answer, so we combine them (with weight 0.1)
with the scores from the HICO+MPII+Attr. column (with weight 0.9). The results reported
in columns labeled “+ Person Score” and “+ Obj. Score” of Table 2 show small but consistent
accuracy improvements, particularly for the hard questions.

Finally, we consider different CCA score ensamble depending on the question type. For
Interestingness, Past, and Future questions we combine scores from CCA models trained on
Places, VGG Person Box, and VGG Object Box features (as in Table 1), with the “+ Person
Score” from region selection. For Person questions, we combine CCA scores from Places,
VGG Person Box, and HICO+MPII+Attr. models. For Object questions, we combine CCA
scores from Places, VGG Object Box, and Color models. Overall, we observe an average
improvement of about 1% in accuracy for most of the questions with respect to the single
best cue performance and 5% with respect to the baseline.

4 Conclusions

We have shown that features representing different facets of image content are helpful for
answering multiple choice questions. This indicates that external knowledge can be success-
fully transferred with the help of deep networks trained on specialized datasets. Further, by
attempting to match image regions with the persons/objects named in the answers, and by
using an ensemble of CCA models, we have created a system that beats the previous state
of the art on Visual Madlibs and establishes a stronger set of baselines for future methods to
beat. As future work, besides evaluating the proposed approach with other multiple-choice
question datasets and searching for other sources of external knowledge, we plan to improve
our multi-cue integration method by learning combination weights for each feature.
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