
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the performance of Web Services, Google Cloud Messaging and Firebase Cloud Messaging / Albertengo, Guido;
Debele, Fikru G.; Hassan, Waqar; Stramandino, Dario. - In: DIGITAL COMMUNICATIONS AND NETWORKS. - ISSN
2352-8648. - ELETTRONICO. - 6:1(2020), pp. 31-37. [10.1016/j.dcan.2019.02.002]

Original

On the performance of Web Services, Google Cloud Messaging and Firebase Cloud Messaging

Publisher:

Published
DOI:10.1016/j.dcan.2019.02.002

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2726158 since: 2019-02-26T10:29:28Z

Elsevier

Digital Communications and Networks(DCN)

journal homepage: www.elsevier.com/locate/dcan

On the performance of Web Services,
Google Cloud Messaging and Firebase
Cloud Messaging

Guido Albertengoa, Fikru G. Debelea, Waqar Hassan∗a, Dario Stramandinoa

aDepartment of Electronics and Telecommunications, Politecnico di Torino
Corso Duca degli Abruzzi, 24, Turin 10129, Italy

Abstract

Smartphones and other connected devices rely on data services, such as Web Services (WS), Google Cloud Messaging (GCM)
and Firebase Cloud Messaging (FCM) to share the information they collect or use. Traditionally, these services were classified
according to the average number of bytes transmitted or to their delivery time. However, when dealing with battery-operated
devices, another important parameter to be taken into account is their power consumption. Furthermore, software designers and
developers often do not consider the efficiency of a data communication system but are simply concerned about ease-of-use and
response time. In this paper, we compare FCM, GCM and two types of WS, namely Simple Object Access Protocol (SOAP)
and REpresentational State Transfer (REST) WS in terms of delay, data efficiency, and power consumption. The final outcome
is that RESTful WS outperforms all others, making GCM and FCM a viable alternative only when the amount of data to be
transmitted is very limited, or when the mobile application requires the advanced services offered by FCM or GCM only.

c© 2018 Published by Elsevier Ltd.

KEYWORDS: Web Services, Google Cloud Messaging, Firebase Cloud Messaging, REST, SOAP

1. Introduction

Web Services (WS) [1], Google Cloud Messaging
(GCM) [2] and Firebase Cloud Messaging (FCM) [3],
which replaced GCM in 2016, are designed to ex-
change messages across the Internet. With respect to
fixed hosts, where energy and data efficiency are mi-
nor concerns, in any mobile scenario available energy
is always limited and network data traffic is usually
capped. In both scenarios, applications may even have
time constraints to be fulfilled. Due to the constant
increase of mobile users connected to the Internet,
smartphone applications are rapidly replacing web-
sites in the Consumer-to-Business (C2B) and even in

∗Corresponding author (email: waqar.hassan@polito.it).
1Guido Albertengo is a confirmed associate professor, Fikru G.

Debele was a post-graduate researcher, Waqar Hassan is a PhD
student and Dario Stramandino was a graduate student at the De-
partment of Electronics and Telecommunications of Politecnico di
Torino.

the Business-to-Business (B2B) markets. Therefore,
the selection of the messaging technique can no more
neglect how energy is used and must also take into
account the message delivery time, which affects the
application response time. To address this problem,
we set up a test bed, using mobile devices, to evalu-
ate one-way delay, round trip time, data usage, packet
overhead and battery duration for the above mentioned
messaging techniques. The results we presented in the
following sections can be used to assist application de-
signers and developers in their technical choices.

Traditionally, websites and applications used WS to
exchange data with servers, according to the classical
client-server communication scheme. This approach,
in general, requires quite a lot of time to design the
WS, implement and test it, and then implement and
test the corresponding client. This increases the time
to market and the development cost of the application.
In terms of infrastructure, WS require an always-on
server with a Public IP address, which can be either

2 Guido Albertengo, et al.

a dedicated computer or a virtual machine in the In-
ternet Cloud. Nowadays, this latter solution is usually
preferred due to its higher reliability and lower overall
cost.

Cloud-based messaging solutions such as Google’s
GCM and FCM as well as Apple’s Push Notifica-
tion [4] service usually require fewer resources, in
terms of time, development cost and infrastructure,
with respect to WS. All of them provide a Software
Development Kit (SDK) and Application Program-
ming Interfaces (APIs) so that developers do not need
to define low-level programming logic. Moreover,
since all of these services are Cloud-based, mobile
applications and data servers can exchange data di-
rectly, in a peer-to-peer fashion, without the need for
any dedicated server to handle messages, as in the WS
case. All of these factors make these services more
reliable and usually cheaper than WS. Moreover, de-
velopers can use and test all features with comfortable
usage quotas without paying any charges, when using
GCM or FCM only. As a conclusion, these services
are no more expensive than WS, during both develop-
ment and production.

From the application provider’s perspective, there
are therefore no reasons to keep on using WS, but the
situation could be very different from the customer’s
perspective. In fact, they are usually very sensitive
about these issues:

1. How much battery does this application use?
2. Is this application fast and responsive?
3. How much data does it use?

This paper aims to answer these questions, in order
to help application developers to choose the messag-
ing technique which exploits the best trade-off be-
tween development cost and user’s satisfaction. This
is, to the best of our knowledge, the first attempt
to compare the out-of-the-box performances offered
by WS, GCM and FCM. Source code for all main
classes needed for the tests conducted for this pa-
per are publicly available at https://github.com/
hassanwaqar00/ws-vs-gcm-vs-fcm.

2. Architectures and comparison

In this section, we briefly describe the operation
and architectures of WS, GCM and FCM. All of them
are designed for message exchanges, but unlike WS,
which follows the classic client-server communication
paradigm, GCM and FCM force all messages to pass
through servers (managed by Google), making them
distinct in terms of architecture and, of course, out-of-
the-box features. These dissimilarities should likely
imply a difference in performance. On the other side,
these same servers enable GCM and FCM to provide
value-added services such as push technology, data en-
cryption and collapsible messages [5], which can not
be directly provided by any WS. However, in order to

Find Publish

Interact

Discovery
agencies

Service
requestor

Service
provider

Client Service

Service
description

Service
description

Fig. 1: Web Services message exchange pattern [6]

compare these services on a fair base, we used a com-
mon test scenario, composed of a mobile terminal and
a data server. The mobile, using the above-mentioned
services, sends a block of data to the server, which in
turns sends back the same data block.

2.1. Web Services

WS are programmatic interfaces for communicating
between software agents using the HyperText Trans-
fer Protocol (HTTP). Software agents that provide ser-
vices are referred to as Service Providers. They are re-
sponsible for publishing programmatic interfaces and
description of the services to Discovery Agencies. The
published services are discoverable and consumable
over the web by other software agents called Service
Requesters. They need to discover the published ser-
vices from discovery agencies before they can start
using them. Once services are discovered, service re-
questers interact with providers through message ex-
changing. Fig. 1 depicts the WS architecture mod-
elling the interactions among the service provider, ser-
vice discovery service, and service requester.

As far as the messages exchanged between the
service requester and provider is concerned, differ-
ent WS implementations use different protocols and
message structures. The two well known WS archi-
tectural styles named REpresentational State Trans-
fer (REST) [7] and Simple Object Access Protocol
(SOAP) [8] are the ones currently used on the Inter-
net.

REST is an architectural style that defines a set of
recommendations for designing loosely coupled appli-
cations that use the HTTP protocol for data transmis-
sion. In its purest form, a RESTful WS uses HTTP
methods (such as POST, GET, PUT and DELETE), is
stateless to improve performance by saving bandwidth
and minimising server-side application state caching,
uses Uniform Resource Identifier (URI) to address re-
sources, is data-driven and transfers data structures se-
rialising them in eXtensible Markup Language (XML)
or JavaScript Object Notation (JSON) [9].

On the performance of Web Services, Google Cloud Messaging and Firebase Cloud Messaging 3

Fig. 2: Google Cloud Messaging general architecture

SOAP is a protocol defining strict rules for messag-
ing and Remote Procedure Calls (RPCs) using XML
format using any application layer protocol and is usu-
ally coupled with Web Services Description Language
(WSDL). In its purest form, it also uses HTTP meth-
ods, is stateless (but can be made stateful), is function-
driven and transfers data structures serialising them
only in XML [10].

2.2. Google Cloud Messaging

GCM is a service, provided and maintained by
Google, although not recommended for new applica-
tions, that allows developers to exchange messages
among a single server and one or more client de-
vices. GCM handles all aspects of messaging includ-
ing queuing, delivery and addressing, is completely
free to use for developers and supports client devices
running Android, iOS and Chrome. Messages can be
sent downstream (i.e. from the server to clients) or up-
stream (i.e. from a client to the server). Downstream
messages can be distributed in three different ways:

• to a single client device

• to a group of devices

• to all devices that subscribed to a topic

Downstream messages are usually used to alert users,
start a background process on the client’s device or
chat messaging. Upstream messages may be used as
acknowledgements, pushing data or chat messaging.
There are three fundamental components in the GCM
architecture:

1. GCM Connection Server
2. Application server based on:

(a) HTTP
(b) eXtensible Messaging and Presence Proto-

col (XMPP)
3. Client application

The GCM architecture is presented in Fig. 2.
The GCM Connection Servers receives messages

from an application server and sends them to the client
applications or vice versa. Google provides two types

of connection servers, which differ from the messag-
ing protocol they use, namely: HTTP and XMPP.
They slightly differ in terms of features they support
(refer to Table 1) and can be used separately or to-
gether at the same time. The XMPP-based server is
commonly known as Cloud Connection Server (CCS).
The application server communicates with the se-
lected GCM connection server to send/receive data
to/from the client application. It is responsible for
communicating with GCM connection server using
properly formatted requests, handle requests, expo-
nential back-off (which is an error handling approach
in which a client periodically retries a failed request
with increasing delays between requests), store API
key and manage client registration tokens. The client
application must register with GCM service to obtain
a unique identifier called a registration token, which
will be later on used to identify and authenticate the
client when it sends messages to the GCM server.

2.3. Firebase Cloud Messaging
FCM is a cross-platform solution for messages and

notifications for Android, iOS, and web applications.
FCM is provided and maintained by Firebase, a com-
pany now owned by Google [11]. FCM inherits
GCM’s core infrastructure but simplifies the client-
side development (for example developers no longer
need to write their own registration or subscription
retry logic in the client application). Most of what has
been said earlier about GCM remains true for FCM.
The way FCM handles messages is very similar to
GCM except in this case messages pass through FCM
servers instead of GCM connection servers. Although
GCM has not been deprecated by Google so far, de-
velopers are strongly encouraged to upgrade their ap-
plications to FCM.

The fundamental components in the FCM architec-
ture are:

1. FCM Connection Server
2. Trusted environment with:

(a) Application server based on:
i. HTTP

ii. XMPP
(b) Cloud functions

3. Client application

The FCM architecture is presented in Fig. 3. FCM
supports notification and data messages. Notification
messages are automatically handled by the FCM SDK
to show a notification on behalf of the client applica-
tion. They contain a predefined set of user-visible keys
(and an optional data payload of custom key-value
pairs). Data messages, on the other hand, have only
custom key-value pairs and are completely handled by
the client application. FCM allows collapsible and
non-collapsible message delivery. A non-collapsible
message is a message that is always delivered to the
device. A collapsible message is a message that may

4 Guido Albertengo, et al.

Features CCS HTTP

Upstream / Downstream
messages

Upstream and Downstream Downstream

Messaging (synchronous /

asynchronous)
Asynchronous Synchronous

Message format JSON encapsulated in XMPP mes-
sages

JSON or plain text sent as HTTP
POST

Multicast downstream Not supported Supported in JSON message format

Table 1: Comparison of features supported by Cloud Connection Server and HyperText Transfer Protocol-based Google Cloud Messaging
Connection Servers

Fig. 3: Firebase Cloud Messaging general architecture

be replaced by a new message, which supersedes it, if
it has yet to be delivered to a device [12].

2.4. Comparison

As explained in the previous sections, WS strongly
differs from GCM and FCM in terms of architec-
ture and out-of-the-box features. Value-added features
such as encryption, push-based messaging and so on
are not intrinsically supported by WS (although they
can be implemented by custom software). GCM and
FCM offer encryption, push-based messaging, native
Android and official iOS SDK support. In terms of
architecture, GCM and FCM have a third entity in be-
tween the client and the application server or trusted
environment, which adds some delay in the communi-
cation path between a mobile terminal and an Internet-
located server.

We are making our comparison on the out-of-the-
box performance of WS, GCM and FCM in a simple
client-server scenario, which is the only one where the
additional services offered by GCM or FCM will not
bias the choice of a developer. In more complex sce-
narios, the features only GCM and FCM provides usu-
ally make them the only viable solution. Finally, no-
tice that the time delays due to the presence of servers
in GCM and FCM are included in all of their time
measurements.

3. Performance metrics

In order to analyse the performance of the above
mentioned messaging techniques, we used the follow-
ing metrics:

• One-Way Delay (OWD): the time taken for a
packet to be transmitted across a network from
source to destination [13].

• Round Trip Time (RTT): the time taken for a
packet to be transmitted plus the time taken for
an acknowledgement of that packet to be re-
ceived [14].

• Network Data Usage (NDU): the amount of data
transmitted over the network.

• Packet Overhead (POH): the data overhead
due to protocols and serialisation. Com-
puted as packet overhead = packet size −
payload length [15].

• Battery Duration (BD): the number of hours a de-
vice’s battery lasts while constantly using WS,
GCM or FCM, all of them at the same messag-
ing rate.

4. Methodology

To evaluate the performances, we implemented a
test bed for each of the three communication systems.
In all of them, the client was a smartphone, running
an Android application, whereas the server hosted a
Java application. The smartphone was directly con-
nected using Wireless Fidelity (Wi-Fi) 802.11n to a
router, which in turns was connected to the Internet
through a 100Mbps Ethernet link. This solution was
chosen to minimise the transmission delay and to be
able to monitor the data packet traffic using a Wire-
shark [16] instance running on the router itself. An-
other Wireshark instance running on the server moni-
tored the same data packet traffic on the other side of
the communication path. The Wireshark traces were
used to evaluate NDU and POH.

On the performance of Web Services, Google Cloud Messaging and Firebase Cloud Messaging 5

For the evaluation of OWD, client and server re-
quired a common time reference. We used the Net-
work Time Protocol (NTP) to synchronise them. For
OWD and RTT, we executed 10 tests per payload
length where each test consisted of the transmission of
500 messages. NTP time synchronisation between the
smartphone and the application server was achieved as
follows:

1. The smartphone queried an NTP server
(time.google.com) 100 times to get 100
time-offsets: their average was taken as the
actual time-offset.

2. The smartphone requested the application server
to perform time synchronisation with the same
NTP server (time.google.com), again using 100
iterations and taking an average at the end.

3. The application server reported a successful time
synchronisation to the smartphone.

4. The smartphone started the OWD test. After ev-
ery 100 test messages (i.e. time duration < 1
min), the smartphone and application server re-
synchronised the local time-offset (step 1) until
all test messages were sent (500 messages per test
with 10 tests).

For BD, four tests were performed with different pay-
load lengths. BD tests collected device’s battery statis-
tics every 3 min until the battery drained completely.
Notice that BD is the duration of the battery in a sce-
nario where a device continuously uses the messaging
technique. This allows to estimate the duration of the
battery in an endurance test, which is a situation where
the energy consumption of the smartphone’s other ap-
plications or of its operating system is minimised. In a
more realistic scenario, a device may use a messaging
technique discontinuously or periodically with a large
period. It is, however, realistic to assume that the rank-
ing of messaging techniques achieved using BD will
be valid also for discontinuous or periodic requests.

WS test beds always used HTTP POST method with
XML serialisation for SOAP WS and JSON serialisa-
tion for RESTful WS. The testing scenarios for each
message exchange technique are described in the fol-
lowing sections.

For OWD, RTT, NDU, and POH tests were per-
formed with payload length between 64 and 4,055
bytes. This latter value was chosen to comply with a
requirement of GCM and FCM that were designed to
transfer a data message with maximum key/value pairs
size up to 4,096 bytes. During the tests, the maximum
length of a value that we were able to bundle with a
key (named ”PAYLOAD”) was 4,055 bytes. Using a
value size longer than that resulted in a GCM ”Mes-
sage Too Big” error [17] [18]. To have conformity
among different tests, therefore, we fixed the max-
imum payload length for all messaging systems we
tested to 4,055 bytes.

During all tests, there were no other network loads
on the 100 Mbps link connecting our router to the

Smartphone Web service

tRTT

tOWD

tA

tC

tB

Fig. 4: Message delivery timeline for Web Services One-Way Delay
and Round Trip Time evaluation

Internet. All mobile devices were running the of-
ficial versions of Android with all available updates
from the manufacturer and only factory default appli-
cations.

The WS, GCM and FCM servers were hosted on an
Ubuntu 14.10 computer with Intel Core 2 Duo 2.56
GHz, 6 GB Random-Access Memory (RAM) and a
100 Mbps Ethernet link to the Internet. The operat-
ing system was completely up-to-date and during the
course of the tests, the system was only used by the
system or test related processes.

4.1. Web Services test bed

In order to evaluate the delay performance (i.e.
OWD and RTT), the smartphone sent a message, every
500 ms, containing a predefined payload to the server
and recorded the current time. The server received the
message and recorded the current time for OWD com-
putation. Then, it echoed the same message back to
the smartphone which computed the RTT value upon
reception, as shown in Fig. 4. A time interval of 500
ms was chosen since it was higher than the highest
OWD value observed during preliminary tests, while
still allowing to execute a single test in a reasonable
time (i.e. 250 s).

The OWD and RTT were evaluated as tOWD = tB−tA

and tRTT = tC − tA respectively, where all values are
measured in ms. The steps to compute the NDU were
the following:

1. The smartphone sent a message of a predefined
payload length, and the Wireshark instance run-
ning on the router traced the packet.

2. The server received the packet and the Wireshark
instance traced it.

3. The server sent a packet with the same payload
back to the smartphone and Wireshark traced it
again at both server and client sides.

4. In the end, all Wireshark traces were examined to
evaluate NDU and POH.

For BD, the scenario was similar to that of NDU, ex-
cept that Wireshark was not required. The smartphone
sent a message every 500 ms and logged the battery
parameters (i.e. battery charge percentage, voltage and
temperature) every 3 min. The consumption statis-
tics collection continued until the smartphone battery
completely discharged.

6 Guido Albertengo, et al.

Smartphone Google cloud messaging
connection servers Application server

tRTT

tOWD

tA

tC

tB

Fig. 5: Message delivery timeline for Google Cloud Messaging
One-Way Delay and Round Trip Time evaluation

4.2. Google Cloud Messaging test bed

The communication scenario of GCM was differ-
ent from the previous one since for GCM there were
three entities in the system. To evaluate the time per-
formance, the smartphone sent a message, again every
500 ms, containing a predefined payload and its GCM
registration ID [19] to the CCS and recorded the cur-
rent time instance. The CCS forwarded the message
to the application server which recorded the reception
time. The application server echoed, again through the
CCS, the same message back to the smartphone which
computed the RTT value upon reception, as shown in
Fig. 5.

The delay and RTT for GCM were evaluated us-
ing the same formula as WS. For the evaluation of
NDU, the scheme was very similar too, except that
the message passed through the CCS before reaching
the application server. For the estimation of BD, a
slightly different mechanism was used, since the CCS
disconnected the communication between the smart-
phone and the application server in a couple of hours
(randomly between 2 to 4 hours). Instead of sending
periodic upstream messages (like in the case of WS)
we sent periodic downstream messages. In detail, the
approach we took to overcome this problem is as fol-
lows:

1. The smartphone sent an initiation message with
its GCM registration ID to the CCS along
with the identification number of the application
server.

2. The CCS received the message and forwarded it
to the application server.

3. The application server received the message and
started sending messages, every 500 ms, with a
predefined payload length to the smartphone.

4. The CCS received the messages and forwarded
them to the destination smartphone.

5. The smartphone received the messages sent from
the application server.

6. Periodically (every 3 min, same as BD tests for
WS), the battery parameters were saved locally
and sent to the application server, where they
were logged.

Steps 1 – 6 were repeated until the smartphone dis-
charged completely.

4.3. Firebase Cloud Messaging test bed

The communication scenario of FCM was identical
to that of GCM for the evaluation of OWD, RTT, NDU
and POH. For the estimation of BD, the scenario was
similar to that of WS since the application server dis-
connection bug was finally fixed in the implementation
of FCM that we used in our tests. Due to the presence
of this bug BD tests of GCM were done by sending
periodic downstream messages, but the test for FCM
used upstream messages as in the case of WS.

5. Test bed devices and configurations

The devices used in all tests can be divided into two
categories, namely mobiles and servers. All details
regarding them and the software used are reported in
the following sections.

5.1. Mobiles

For OWD, RTT, NDU and POH analysis we used
these devices:

• Samsung Galaxy SII (GT-I9100) running An-
droid 4.1.2 with 1.2 GHz dual-core Central Pro-
cessing Unit (CPU) and 1 GB of RAM

• HTC One S (Z520e) running Android 4.1.1 with
1.2 GHz dual-core CPU and 1 GB of RAM

For BD analysis we used two similar devices:

• Asus Google Nexus 7 Wi-Fi (ME370T) running
Android 5.1.1 with 1.5 GHz quad-core CPU, 1
GB of RAM and 4,325 mAh LiPo battery

• Asus Google Nexus 7 Cellular (ME370TG) run-
ning Android 5.1.1 with 1.5 GHz quad-core CPU,
1 GB of RAM and 4,325 mAh LiPo battery

As far as software are concerned, for SOAP WS,
we used ksoap2-android library [20], which is a
lightweight and efficient client library supporting con-
sumption and serialisation of SOAP WS. For RESTful
WS, we used Java’s HttpURLConnection. All GCM
and FCM payloads were encrypted and WS payloads
were not encrypted, due to the fact that this is their
default behaviour.

GCM requires devices running Android version 2.2
or higher. FCM requires devices running Android ver-
sion 4.0 and higher. Both GCM and FCM require the
device to support Google Play Services. The version
of ksoap2-android library used for these test beds uses
Java version 1.5 which makes it compatible with all
versions of Android higher than 4.0. Java’s HttpURL-
Connection is part of Android’s API since API level
1 (Android version 1.0). All libraries and API’s used
for these tests are compatible with the latest available
version of Android (as of October 2018, version 9.0).

On the performance of Web Services, Google Cloud Messaging and Firebase Cloud Messaging 7

0

50

100

150

200

250

300

350

400

64 128 256 512 1024 2048 4055

O
n
e

w
ay

 d
el

ay
 [

m
s]

Length of payload [bytes]

FCM GCM WS (SOAP) WS (RESTful)

Fig. 6: One-Way Delay comparison

5.2. Servers

To implement a CCS application server for GCM,
we used Smack library [21] (as suggested by Google
guidelines) which is an open-source XMPP client li-
brary. For the implementation of XMPP applica-
tion server for FCM, we used Smack library’s version
4.2.1.

For both WS we used Java EE’s built-in libraries
for implementation. Additionally, for RESTful WS,
JSON parsing was done using an open-source imple-
mentation for JSON called JSON-java library [22].

6. Experimental results

Test results are shown for each performance param-
eter.

Fig. 6 summarises OWD averages for all tests. For
all payload lengths, on average, SOAP WS took 127
ms, RESTful WS took 55 ms, GCM took 210 ms and
FCM took 335 ms for a packet to travel from source
to destination. RESTful WS showed the fastest per-
formance while FCM was the slowest (followed by
GCM), which can be explained by the presence of an
extra hop in the communication path. All communica-
tion techniques shared a general trend of performance:
they slowed down as the size of payload increased,
likely due to packet segmentation and increase in CPU
computation time.

Fig. 7 shows RTT averages for all tests. For all
payload lengths, on average, SOAP WS took 177 ms,
RESTful WS took 100 ms, GCM took 531 ms and
FCM took 697 ms for a packet to travel from source to
destination and the acknowledgement from the desti-
nation back to the source. RESTful WS again showed
the best performance while FCM was the slowest,
which can be explained as before. Also, the general
trend of performance slow down with larger payload
sizes was still present.

Fig. 8 reports NDU for multiple payload lengths,
where each point is the data traffic, measured on the
wire, at the smartphone in RTT scenario. In other
words, each point is the sum of inward and outward

0

100

200

300

400

500

600

700

800

64 128 256 512 1024 2048 4055

R
ou

n
d

tr
ip

 t
im

e
[m

s]

Length of payload [bytes]

FCM GCM WS (SOAP) WS (RESTful)

Fig. 7: Round Trip Time comparison

0

1

2

3

4

5

6

7

8

9

10

64 256 1024 4055

N
et

w
or

k
da

ta
 t

ra
ff

ic
 [

kB
]

Length of payload [bytes]

FCM

GCM

WS (SOAP)

WS (RESTful)

Fig. 8: Network Data Usage comparison in Round Trip Time sce-
nario

data traffic at the smartphone end. For example, if the
smartphone sends a message (upstream) with a pay-
load of p bytes, the outward traffic at smartphone end
is expected to be p + x bytes and the inward traffic
at smartphone end should be p + y bytes. The total
data traffic (reported in the figure) is expected to be
2p + x + y bytes. Overall, for these tests with four pay-
loads in RTT scenario (upstream message followed by
echoed downstream message), RESTful WS used 13.4
kB, GCM used 14.3 kB, FCM used 13.7 kB and SOAP
WS used 16.7 kB of data on the network at the smart-
phone end. RESTful WS used the minimum amount
of data while SOAP WS used the maximum, as it was
expected due to the use of JSON instead of XML for
serialisation. GCM and FCM used encryption and fall
in between RESTful WS and SOAP WS.

Fig. 9 shows the average POH for multiple payload
lengths, which is given by: (x+y)

/
2 bytes. For all pay-

load lengths, SOAP WS had 18% to 92%, RESTful
had 11% to 83%, GCM had 12% to 87% and FCM had
15% to 82% POH. The overall trend was that the size
of POH remained more or less the same for smaller
payloads, but as the payload size increased, the POH
size increased as well. This happened due to packet
segmentation applied to larger payload sizes. Also, at
smaller payload sizes (64 bytes and 256 bytes), FCM
used less POH compared to others, while at larger

8 Guido Albertengo, et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

64 256 1024 4055

P
ac

ke
t

ov
er

h
ea

d
 [

k
B

]

Length of payload [bytes]

FCM GCM WS (SOAP) WS (RESTful)

Fig. 9: Packet Overhead comparison

0 200 400 600 800 1000 1200 1400 1600 1800
Time [min]

FCM

GCM

WS (SOAP)

WS (RESTful)

Fig. 10: Battery Duration comparison

payload sizes (1,024 bytes and 4,055 bytes) REST-
ful WS used less POH. Overall, on average, RESTful
WS showed the minimum while SOAP WS showed
the maximum NDU and POH, with FCM falling very
close to RESTful WS.

It is worth to notice that for a payload size of 256
bytes GCM exhibits an inconsistent behaviour with re-
spect to all other payload sizes. This anomaly was
investigated and confirmed by our tests but not ex-
plained, due to the lack of a comprehensive descrip-
tion of the GCM protocol. What we observed is that
for this particular payload size, the packet overhead is
very high as if some padding were used to increase
the overall GCM message size. Notice however that
FCM, which replaced GCM, no more exhibits this be-
haviour, which could suggest the presence of a bug in
GCM, later fixed in FCM.

Fig. 10 provides BD averages for two tests per test
device (i.e. four complete battery cycles). The battery
showed the longest duration using RESTful WS and
the shortest one using FCM. This was likely due to the
need to maintain an active connection with the inter-
mediate server. The temperature of the devices was
between 25◦C and 30◦C during all tests.

7. Conclusion

A set of tests in a simple client-server scenario
were done for four messaging techniques: SOAP WS,
RESTful WS, GCM and FCM. The tests evaluated
time-related performance, data usage and battery du-
ration. The results confirmed that RESTful WS out-
performs other communication techniques in all eval-
uated performance matrices. FCM showed the worst
performance for 3 out of 5 evaluated parameters (i.e.
OWD, RTT and BD). It is important however to men-
tion that FCM and GCM support more features out-
of-the-box than WS, such as push technology, data
encryption, native Android support as well as official
iOS SDK support by Google. As far as the ques-
tion is concerned if WS are replaceable by Google’s
messaging services (GCM and FCM), the answer de-
pends on the particular requirements of the applica-
tion. Google’s messaging services perform really well
as far as value-added features and smaller payloads are
concerned. However, for scenarios where the delivery
of larger payloads is required or where there are time
constraints, WS should be the preferred solution. Al-
though no tests were done for iOS, it is, however, real-
istic to assume that the rankings in all scenarios would
not change.

References

[1] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web Services:
Concepts, Architectures and Applications, Springer, 2004,
Ch. Web services, pp. 123–125.

[2] Google, Google Cloud Messaging, Website, [Accessed 10
Mar. 2016] (2016).
URL https://developers.google.com/

cloud-messaging/

[3] Google, Firebase Cloud Messaging, Website, [Accessed 25
Nov. 2017] (2017).
URL https://firebase.google.com/docs/

cloud-messaging/

[4] Apple, Local and remote notification programming guide:
APNs overview, Website, [Accessed 06 Feb. 2019] (2018).
URL https://developer.apple.com/library/

archive/documentation/NetworkingInternet/

Conceptual/RemoteNotificationsPG/APNSOverview.

html#//apple_ref/doc/uid/TP40008194-CH8-SW1

[5] Google, Google Cloud Messaging - Messaging Concepts and
Options, Website, [Accessed 10 Dec. 2017] (2017).
URL https://developers.google.com/

cloud-messaging/concept-options#

common-message-options

[6] W. W. W. C. W3C, Web Services Architecture, Website,
[Accessed 25 Nov. 2017] (2002).
URL https://www.w3.org/TR/2002/

WD-ws-arch-20021114/

[7] L. Richardson, S. Ruby, D. H. Hansson, RESTful Web
Services, Vol. 1, O’Reilly Media, 2008, Ch. RESTful,
Resource-Oriented Architectures, pp. 13–14.
URL http://www.oreilly.com/catalog/

9780596529260/

[8] J. Snell, D. Tidwell, P. Kulchenko, Programming Web
Services with SOAP, O’Reilly Media, 2002, Ch. Describing
a SOAP service, pp. xiii + 244.
URL https://books.google.it/books?id=

ALo1LxID5q0C

On the performance of Web Services, Google Cloud Messaging and Firebase Cloud Messaging 9

[9] A. Rodriguez, Restful web services: The basics, IBM devel-
operWorks 33.
URL https://developer.ibm.com/articles/

ws-restful/

[10] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
S. Weerawarana, Unraveling the web services web: an
introduction to SOAP, WSDL, and UDDI, IEEE Internet
Computing 6 (2) (2002) 86–93. doi:10.1109/4236.991449.
URL https://ieeexplore.ieee.org/abstract/

document/991449

[11] Wikipedia, Firebase - Wikipedia, Website, [Accessed 9 Nov.
2018].
URL https://en.wikipedia.org/wiki/Firebase

[12] Google, Documentation: About FCM Messages, Website,
[Accessed 25 Nov. 2017] (2017).
URL https://firebase.google.com/docs/

cloud-messaging/concept-options

[13] J. Walrand, S. Parekh, Communication Networks: A Concise
Introduction, Vol. 3 of Synthesis lectures on communication
networks, Morgan & Claypool Publishers, 2010, Ch. Delay,
pp. 1–192. doi:10.2200/S00254ED1V01Y201002CNT004.
URL http://www.morganclaypool.com/doi/abs/10.

2200/S00254ED1V01Y201002CNT004

[14] A. Farrel, Network Management Know It All, Morgan Kauf-
mann know it all series, Elsevier Science, 2008, Ch. Active
Network Monitoring, pp. 135–136.
URL http://www.amazon.com/dp/0123745985

[15] K. Arai, L. Sugiyanta, Agent based approach of routing
protocol minimizing the number of hops and maintaining
connectivity of mobile terminals which move one area to the
other, Vol. 6018 LNCS, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 305–320. doi:10.1007/978-3-642-
12179-1-27.
URL http://dx.doi.org/10.1007/

978-3-642-12179-1

[16] Wireshark Foundation, Wireshark, [Version 2.2.1].
URL https://www.wireshark.org/

[17] Google, XMPP Connection Server Reference, Website,
[Accessed 25 Nov. 2017] (2017).
URL https://developers.google.com/

cloud-messaging/xmpp-server-ref

[18] Google, Documentation: Firebase Cloud Messaging XMPP
Protocol, Website, [Accessed 25 Nov. 2017] (2017).
URL https://firebase.google.com/docs/

cloud-messaging/xmpp-server-ref

[19] Google, Registering Client Apps, Website, [Accessed 10 Mar.
2016].
URL https://developers.google.com/

cloud-messaging/registration

[20] Simpligility, ksoap2-android, [Version 3.6.2].
URL https://simpligility.github.io/

ksoap2-android/

[21] Ignite Realtime, Smack, [Version 4.2.1].
URL https://www.igniterealtime.org/projects/

smack/index.jsp

[22] Stleary, JSON-java, [Release 20160810].
URL https://github.com/stleary/JSON-java

Note: The manuscript was extended from the
conference proceeding “On the performance
of Web Services and Google Cloud Messag-
ing, Computer and Information Technology
(CIT), 2017 Proceedings of 17th Interna-
tional Conference on (pp. 363-367). IEEE,
Helsinki, Finland, August 2017.”

