
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Code Mapping in Heterogeneous Platforms Using Deep Learning and LLVM-IR / Barchi, Francesco; Urgese, Gianvito;
Macii, Enrico; Acquaviva, Andrea. - ELETTRONICO. - (2019). (Intervento presentato al convegno In 2019 56th
ACM/ESDA/IEEE Design Automation Conference (DAC) tenutosi a Las Vegas USA nel 2-6 June 2019)
[10.1145/3316781.3317789].

Original

Code Mapping in Heterogeneous Platforms Using Deep Learning and LLVM-IR

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/3316781.3317789

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2726074 since: 2020-10-20T20:03:11Z

ACM

Code Mapping in Heterogeneous Platforms Using Deep
Learning and LLVM-IR

Francesco Barchi, Gianvito Urgese
DAUIN Dept.

Politecnico di Torino, Italy
{firstname.lastname}@polito.it

Enrico Macii, Andrea Acquaviva
DIST Dept.

Politecnico di Torino, Italy
{firstname.lastname}@polito.it

ABSTRACT
Modern heterogeneous platforms require compilers capable
of choosing the appropriate device for the execution of pro-
gram portions. This paper presents a machine learning met-
hod designed for supporting mapping decisions through the
analysis of the program source code represented in LLVM
assembly language (IR) for exploiting the advantages offe-
red by this generalised and optimised representation. To
evaluate our solution, we trained an LSTM neural network
on OpenCL kernels compiled in LLVM-IR and processed
with our tokenizer capable of filtering less-informative to-
kens. We tested the network that reaches an accuracy of
85% in distinguishing the best computational unit.

Keywords
LLVM-IR; Deep Learning; Code Mapping; Heterogeneous
Platforms; Embedded Platforms

1. INTRODUCTION
Currently, the process of code mapping on the hardware

units available on heterogeneous multi-core embedded sy-
stem is one of the main challenges for a software developer.
Despite the availability of machine independent languages
(like LLVM [?]) and interfaces supporting the offloading to
selected accelerators (such GPUs, DSPs and FPGA) the
execution of code fragments (kernels) [?, ?, ?] a consistent
amount of research is still in progress for defining automatic
mapping techniques aimed at improving the available com-
putational power and avoiding the effort of manual profiling.

While methods have been developed performing machine
learning based code analysis for high-level languages such
as OpenCL [?], the potential of LLVM has not been fully
exploited to this purpose. At this level, the code has un-
dergone a preliminary optimisation pass during high-level
code transformation, such as the removal of unnecessary ele-
ments. From the other side, concerning machine dependent
assembly code, LLVM representation is more hardware inde-
pendent. Finally, LLVM-IR is a general representation that

ACM ISBN xxx.

DOI: xxx

can be reached from different high-level languages. For this
reason, developing a code classifier at this level would be
more generally applicable and robust. However, the possi-
bility to keep the same expressiveness as for the higher level
language is questionable.

In this work, we addressed this issue, and we designed a
method able to identify, select, and encode the syntactic lan-
guage elements (tokens) of a source code of a kernel compiled
in the LLVM - Intermediate Representation (LLVM-IR).

We used the generated sequence of tokens as input for
training a Deep Neural Network (DNN) in recognising which
is the most appropriate architectural component for each
piece of code evaluated.

We trained our network using a dataset of OpenCL kernels
profiled on the kernel execution time executed on CPU and
GPU [?]. Then, we tested the kernel-to-device allocation
performance demonstrating that our LLVM-based classifier
achieves an accuracy of 85% in selecting the best kernel al-
location. We compared our approach based on LLVM-IR
with the state-of-art solution based on native source code
(e.g. OpenCL) showing that our solution produces a more
accurate mapping, with the advantage of working on a layer
decoupled from the code-language.

Our results show that LLVM-IR keeps the informative
content needed to perform an effective classification making
possible the application of our classifier to any source code
for which an LLVM compiler exists.

2. RELATED WORKS
Recently, compiler designers started considering the adop-

tion of machine learning techniques to obtain heuristic com-
pilers capable of learning from the data rather than relying
on experience and manual effort [?, ?]. These techniques
come into play to cope with the complexity of the code al-
location and optimisation for heterogeneous multicore em-
bedded systems.

In this paper, we work at the intermediate representa-
tion (IR) level of the LLVM compiler. LLVM is increasingly
adopted in the embedded system world, because it is ca-
pable of decoupling the front-end compiler from the target
architecture, in this way many optimisation steps can be
performed at the IR level before generating the binary ma-
chine code.

Source code features, at this intermediate level, can be ex-
ploited to perform complex compilation decisions including
allocating code fragments to architecture devices. Machine
learning techniques can be applied to learn these characte-
ristics by creating a learning model based on training code

xxx

LLVM-IR Code Fragment

1 %9 = and i64 %8, 4294967295
2 %10 = getelementptr inbounds <4 x float >, <4 x ←↩

float >* %1, i64 %9
3 %12 = fsub <4 x float > <float 1.0e+00, float 1.0e←↩

+00, float 1.0e+00, float 1.0e+00>, %11
4 %13 = fmul <4 x float > %11 , <float 3.0e+01, float ←↩

3.0e+01, float 3.0e+01, float 3.0e+01>

Tokenization

1 % 9 = and i64 % 8 , _integer_constant
2 % 1 0 = getelementptr inbounds _float_4 , _float_4 ←↩

* % 1 , i64 % 9
3 % 1 2 = fsub _float_4 _vector_constant , % 1 1
4 % 1 3 = fmul _float_4 % 1 1 , _vector_constant

Atomization

1 10 9 11 13 14 10 8 12 15
2 10 1 0 11 16 17 18 12 18 19 10 1 12 14 10 9
3 10 1 2 11 20 18 21 12 10 1 1
4 10 1 3 11 22 18 10 1 1 12 21

Figure 1: Example of code transformations: The code
in the top pane is an LLVM-IR code fragment. The code in
the middle pane contains the result of the transformations
applied in the tokenisation phases. The tokens sequence in
the bottom pane is the network input, the result obtained
after the atomization phase.

fragments. Several techniques have been proposed in the
literature to represent programs using a set of quantifiable
properties or features [?], compatible with the inputs of the
learning module. Standard machine learning algorithms ty-
pically work on fixed length inputs, so the selected properties
shall be transformed into a fixed length vector of features
(boolean, integer, or real values).

Compiler researchers have designed, during the years, va-
rious forms of program features for their machine learning
algorithms. These include static code structures extrac-
ted from the source code or the compiler intermediate re-
presentation [?] and dynamic profiling information obtai-
ned through runtime profiling of the program execution [?].
Compiler optimisation methods based on supervised lear-
ning have been proposed using Bayesian Networks [?], Sup-
port Vector Machines [?,?], Decision Trees [?,?], Graph Ker-
nels [?], and Deep Neural Network [?].

In this research area, we designed a method that applies a
deep learning approach to the LLVM intermediate represen-
tation of code fragments making the methodology suitable
for a wide range of languages.

3. METHOD
The Low-Level Virtual Machine (LLVM) is a compilation

framework that allows decoupling a programming language
from the target architecture. Identifying features within a
LLVM-IR program allows decoupling the classifier from the
programming language. We chose to build an LLVM-IR ma-
chine learning algorithm using a supervised learning method
belonging to the deep learning category. Given the avai-
lability of code written in several high-level languages (C,
C++, OpenCL, Python), we can easily obtain a dataset of
code fragments compiled in LLVM-IR. Then, we analyse the
LLVM-IR code and filter the most significant syntactic ele-

ments (tokens). Reducing the tokens to a sequential list of
integers we can bring them in a deep neural network (com-
posed of LSTM layers) for performing the code analysis. In
the following sections, we will give details about the code
conversion and the structure of the deep neural network.

3.1 Tokenisation and Atomisation
The first step for using deep-learning techniques is the

conversion of the code-fragments dataset in a form suitable
to be processed by the input layer of the machine-learning
model.

To build a dataset of code fragments in LLVM-IR we can
use any dataset written in a high-level language that has a
front end compiler for LLVM. The clang compiler, for exam-
ple, allows compiling the main C-Like languages (C, C++,
Objective C). Using version 6 of clang and llvm is also pos-
sible to compile OpenCL code for nvptx (NVidia), amdgcn
(AMD) and spir (Standard Portable Intermediate Represen-
tation) architectures. The generated bytecode can then be
sent to the OpenCL Platform Runtime and executed.

The LLVM-IR code obtained after the compilation is rich
in metadata useful for the back-end compiler. It is neces-
sary to clean and normalise the code before inserting the
code fragments in the neural network. During this phase,
our pipeline removes many of the redundant information by
transforming the kernels from a sequence of characters to a
series of integers.

The Tokenisation procedure identifies the most signifi-
cant language syntactic elements (tokens) within the cha-
racter sequences. All the tokens are catalogued and placed
in a dictionary. The Atomisation procedure transforms
code sequences replacing the characters that compose a to-
ken with the position of the token in the dictionary.

We implemented the Tokenisation procedure in two steps:
the pre-tokenisation phase and the post-tokenisation phase.
The pre-tokenisation phase act on each line of a kernel and
performs the following four operations:
• Remove empty lines, comments and extract functions body.
• Simplify vectors and arrays data-types.
• Replace vectors, arrays, float constants with a placehol-

der.
• Expand the symbols “ () [] { } < > = * : , ” by inserting

a space before and after the character.
During this phase, the procedure makes a significant re-
duction of the code fragment length, through the simplifica-
tion of complex data types and by replacing constants with
placeholders. In LLVM, for example, real constants can be
expressed in 3 different ways: i) standard decimal notation
(e.g. 123.421), ii) exponential notation (e.g. 1.23421e+2), or
a iii) hexadecimal notation (e.g. 0x432ff973cafa8000). Each
of these representations is identified and replaced with a pla-
ceholder. After this step, it is possible to identify as a token
every sequence of characters separated by spaces.

The post-tokenisation transformations act directly on the
tokens for applying the following higher level generalisations:
• Remove tokens starting with ! (unnamed meta-data) or

(attribute groups).
• Replace variable and function names with a placeholder.
• Identification of some special labels starting with “phi”,

“pre”, “in”, “preheader” and “loopexit”.
• Identification and transformation of integer constants.
• Identification and character expansion of global and local

unnamed identifiers (e.g. %54 → % 5 4)

Figure 2: Deep Neural Network architecture. The data flow (tensors exchanged between the network layers) was highlighted.

Then, in the Atomisation step, all the tokens are replaced
with their integer indexes of the token dictionary forming a
sequence of integers to be used as input for the network.

An example of the results of code transformation can be
appreciated in Figure 1. In the literature, the performance
of a text-based deep-learning system (e.g. in the sentimen-
tal analysis) depends heavily on the dictionary chosen to
transform the input into a numerical sequence [?].

The technique used to build the dictionary impatcs the
length of the resulting sequences. Long sequences require
complex models capable of storing and correlating informa-
tion for more extended periods, such models need to train
many weights; this is feasible only using a high number of
training samples that are not always available. In the Natu-
ral Language Processing (NLP) field is a common practice
to remove less-informative tokens called Stop Words [?].
Section 4 shows how, by carefully selecting the tokens to
be inserted in the dictionary, it is possible to filter out less-
informative tokens for keeping shorter sequences and incre-
ase the classification capability of the model.

3.2 Deep Learning Model
Figure 2 shows the network architecture used in this work.

It is based on a standard network able to manage multiple
and heterogeneous inputs [?], and it is composed of six prin-
cipal layers:
• Embedding Layer: This layer takes a sequence of η sym-

bols and returns a sequence of η vectors, each κ elements
long.
• RNN Layer 1: This first LSTM layer transforms the se-

quence coming from the Embedded Layer in another se-
quence that correlates the symbols between them.
• RNN Layer 2: This second LSTM layer performs a second

correlation among the symbols leaving the previous layer.
The output of this layer is a single vector of κ elements.
It represents the whole sequence.
• Concatenation Layer: The auxiliary inputs and the LSTM

output are concatenated in a single vector.
• Dense Layer 1: This layer, with a RELU activation function,

transforms the auxiliary inputs and the LSTM output into
a vector of υ elements.
• Dense Layer 2: The last dense layer, with a sigmoidal

activation function, transforms the output of the previous
layer in a vector with ω elements (the number of the target
classes).

At each iteration of training, the sequences that are part of
the training set can be introduced into the network one at a
time or in groups (in this case we speak of batch insertion).
After the introduction of the input, the output emitted by
the network is compared with the expected output (super-

vised learning). The difference between the network output
and the expected output is the classification error. Through
the classification error, it is possible to modify the weights
of the network and to reduce the error at the next itera-
tion. The training was performed using the optimiser Adam
(Adaptive moment estimation) a variant of the SGD (Sto-
chastic Gradient Descent) that through the backpropagation
modifies the weights of the network layers and minimises the
classification error [?].

The network input is a tensor composed of batch-size se-
quences each one composed of sequence-length elements. We
will refer to the input elements with the term token-indexes,
since each component represents the position of a token in-
side the token dictionary.

Machine learning algorithms need to work on comparable
data, and since the token indexes do not have this property
because we cannot define a distance metric between two in-
dices, the sequence of token-indexes must be projected into
a metric space.

Embedding Layer is the first layer of the network that re-
ceives sequences of token-indexes and projects each element
into an embedding space Rκ. The output of the Embedding
Layer is, therefore, a list of sequences each one composed of
vectors belonging to the embedding space. The weights of
the Embedding Layer determine how the token-indexes are
projected in the embedding space. At the beginning of the
training, the weights are initialised randomly with the con-
sequence that the projection of the embedding space starts in
a random condition. They change during the training phase
of the network.

The sequence in output from the embedding space, the
token-points, is now ready to be introduced into the first
LSTM layer. The LSTM is a neural network with memory,
which makes it suitable for processing data sequences [?].
The token-points are introduced within the layer one by one
(the entire batch is used to maximise the efficiency of the
GPU) producing a change in the internal state of the net-
work. The internal state of the network is used to process the
next token-point. The sequence in output from the LSTM
layer is recomposed element by element, and once the last
token-point has been received the resulting sequence is ready
to be introduced in the second LSTM layer.

The second LSTM layer performs the same procedure as
the first one, but it does not recompose the sequence into the
output. At the end of the processing, when the last token-
point is issued, it is used to represent the features extracted
from the code sequence. The features will first be linked
with µ auxiliary inputs (used to introduce others data) and
then classified with a sequence of two Dense Layers.

The first Dense Layer reduces the number of features from

Figure 3: For each combination of datasets (OpenCL, LLVM), sequence lengths (2048, 1024, 512) and token-blacklist (used or
not used): the first two box-plots show the distribution of the classification accuracy of the ten classifiers in cross-validation,
the last two box-plots show the distribution of the lost-tokens (truncation) or added-tokens (padding) in the classifier input
sequences.

0 50 100 150 200 250
Kernels

101

102

103

104

Le
ng

th

Sequence length

OpenCL
LLVM-IR
LLVM-IR+Blacklist
1024
2048

Figure 4: Length of code sequences in the three datasets:
OpenCL, LLVM and LLVM with blacklist.

κ + µ to υ and the second layer brings them further to ω,
the number of desired classes.

In this work we use: κ = 64, µ = 2, υ = 32 and ω = 2
since each element of the final output represents one of the
two target devices considered: CPU and GPU.

4. RESULTS
Since an adequately labelled dataset is needed to build a

classifier using deep learning we have used a dataset com-
posed of OpenCL kernels where each element has a label
that denotes the better performing computation unit bet-
ween a multicore CPU (AMD) and a GPU (ATI or NVidia).
The dataset is a composition of six collections of code [?]:
i) AMD and NVidia OpenCL examples and benchmarks ii)
NPB, the NASA Advanced Supercomputing Parallel Bench-
marks iii) Parboil, computing applications for studying the
performance of computing architecture and compilers. iv)

PolyBench/GPU v) Rodinia, the University of Virginia Ro-
dinia benchmark suite vi) SHOC, Scalable HeterOgeneous
Computing benchmark suite. The authors of the dataset
executed each kernel belonging to the code collection using
different loads (byte transfer) and a different level of paral-
lelism (work group size).

Each triple composed by kernel, byte transfer and work
group size was labelled with the computing unit (CPU or
GPU) which proved to be the fastest. The full dataset is
composed of 680 triple, and 256 different kernels with an
unbalance factor of about 60/40 in favour of the CPU class.

Using clang and llvm we have compiled in LLVM-IR all
the kernels of the dataset. The clang compiler can emit
LLVM-IR code using the “-emit-llvm” parameter, set the
desired OpenCL version using “-cl-std=CL2.0” and import
OpenCL headers using the“-Xclang -finclude-default-header”
parameters. The compilation of some kernels ended with the
presence of errors. We then proceeded to manually fix the
broken OpenCL kernels and use the entire dataset.

The construction of the token dictionary can be done in
three ways: i) Using a pure-character dictionary, it considers
only the characters with the advantage of avoiding complex
analysis for token construction, but it can be used mainly
for short sequences. ii) Using a hybrid dictionary, it allows
a reduction of the length of the sequences by encoding the
most common words with a single symbol and processing as
single characters all the letters not recognised as dictionary
words. iii) Using a pure-token dictionary, it allows a sub-
stantial reduction of the length of the sequences through a
transformation of the code where complex syntax artefacts
are encoded with single symbols.

In this work, we used the pure-token dictionary because
LLVM-IR sequences tend to be much longer than their coun-
terparts in a C-like language. The use of a hybrid dictionary
would have required a more extensive dataset for feeding a
much more complex network (concerning trainable weights).

Even by simplifying the LLVM code through the pre and
post tokenisation phases and using a pure-token dictionary,

Table 1: Comparison of results.

Seq.Len. Median Average

DeepTune [?] 1024 80.9% 82.2%

OpenCL
2048 83.1% 83.8%
1024 84.6% 85.1%
512 83.1% 83.4%

LLVM
2048 78.7% 78.7%
1024 80.9% 78.8%
512 80.1% 79.3%

LLVM-B
2048 86.0% 85.1%
1024 86.8% 84.6%
512 85.3% 85.0%

the sequences were too long to be correctly analysed by the
network (Figure 4). It was, therefore, necessary to gene-
rate a token-blacklist for removing redundant tokens (like
the stop words in NLP) keeping only the most significant.
We used a Term Frequency - Inverse Document Frequency
(TF-IDF) analysis for eliminating tokens that did not pro-
vide a high level of information [?]. The Figure 4 shows the
length of the kernels in OpenCL (hybrid dictionary) that
are always shorter than LLVM (pure-token dictionary) while
kernels elaborated with the LLVM-B (pure-token dictionary
with blacklist) reach a reasonable size.

We built and trained our network using Tensorflow, confi-
gured with LSTM layers optimised for GPU execution (via
the CuDNN library). The optimised LSTM layers allow a
substantial time reduction (from 10 hours to 50 minutes) of
the training time using a GeForce Titan Xp (NVidia Pas-
cal Architecture). The reduced training time allowed us
to experiment with some parameters including the batch-
size (affects the Optimiser) and the length of the sequences
(trade-off between information loss and network simplicity).
The length of the sequences, in particular, has proved to be
a critical factor because long sequences require more com-
plex models and large datasets to be adequately processed.
Moreover, the presence of very long and very short sequen-
ces within the dataset forces the user to add padding to
the short sequences and eliminate elements from the longer
sequences. It is possible to configure variable batch sizes
(n, 2n, 3n) and to insert the sequences into the appropriate
batches for minimising both padding and truncation. This
method overcomes the problem but, for small datasets, it
has the disadvantage of preventing the introduction of se-
quences into the network in a random-way (the reshuffling
is performed within each batch and not on the entire trai-
ning set) and carries the risk of introducing biases during
training. Given the small dataset: train-set of 612 elements
and 256 different kernels, we chose fixed size sequences of
512, 1024 and 2048 elements. Then we performed k-fold
cross-validation with k=10 to have a better statistical basis
of the values of classification accuracy. The Figure 4 high-
light the lengths (2048, 1024) of the sequences introduced
into the neural network during the experiments. The line-
plot highlight the amount of padding and the number of
sequences to be truncated for each dataset used.

We trained the network using three different datasets and
three different sequence lengths. The first two box plots
in Figure 3 show the accuracy distributions for each class
(CPU, GPU) of the ten classifiers that were built to per-

opencl opencl+noise llvm llvm+noise

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Noise Impact - Accuracy

Figure 5: The graph show the classification accuracy distri-
bution of ten classifiers in cross-validation for OpenCL and
LLVM dataset in presence of noise.

form the cross-validation. We trained the model also using
a dataset in which we replaced the code sequences with a
random sequence (only the contribution of the auxiliary in-
put remains). We immediately notice the contribution of the
code sequences compared to the random sequences and the
difference in accuracy between the CPU and GPU classes
due mainly to the unbalance of the dataset.

In the third and fourth box-plots of Figure 3 we can note
the distributions of the number of padding tokens and to-
kens deleted for each dataset. The LLVM sequences are too
long, and they are strongly disadvantaged by the trunca-
tion of more than 60% of the kernels. The introduction of
the token blacklist has drastically reduced the length of the
sequences, and the accuracy of the classifier has returned
to the levels of the OpenCL dataset, with an improvement
in the classification of the CPU class while maintaining, on
average, the same levels of accuracy in the GPU class. The
higher variance in GPU class accuracy disappears as the se-
quence length increases (llvm-b-2048). This behaviour is an
indication that LLVM input is more difficult to be classified
than OpenCL code. The difficulty depends on the highly
rigid structure of an assembly-like language that requires a
longer-term memory of the LSTM layers as the information
is distributed over more extended sequences. The modest
unbalance of the dataset contributes to creating difficulties
for the classification of the disadvantaged class.

Table 1 shows the average results of each classifier in which
we can see the improvement over DeepTune [?], and the gro-
wth of performances of the LLVM classifier when the TF-
IDF token-blacklist is applied. The LLVM-B slightly excee-
ded the performance of the OpenCL classifier.

The main advantage of using LLVM-IR is that it is built
after a code compilation and multiple optimisation phases.
The code is analysed and cleaned from unused variables and
unreachable code fragments, the cycles are examined and
simplified, and other optimisations are performed that ge-
nerally allow reducing the variability of code (noise) intro-
duced by the programmer compared to the database used in
the learning phase.

To highlight the impact on classification accuracy we in-
troduced unreachable code in both OpenCL and LLVM test
sets. Results are reported in Figure 5 where the LLVM clas-
sifier is not affected by the introduction of the noise code-
fragment (the compilation step eliminates the noise introdu-
ced) while the classifier using a high-level language degrades
its performance by about 10%.

5. CONCLUSIONS
In this work, we presented a framework designed for evalu-

ating the performance of an LLVM-IR source code classifier
based on deep neural networks. The possibility to apply a
deep-learning methodology directly on the intermediate re-
presentation used by LLVM allows building a more robust
and generally applicable (more supported programming lan-
guages) source code classifier.

Using an LLVM compiler, we obtained a general and opti-
mised low-level representation (IR) of a source code written
in a high-level programming language. At the LLVM-IR
level, the code can be manipulated and filtered for conden-
sing complex syntactic language elements in a restricted set
of keywords (tokenisation procedure) that once translated in
sequences of numbers (atomization procedure) are suitable
for being used as input for the deep neural network classifier.

We evaluated the performances of our LLVM-based classi-
fier using a dataset of OpenCL kernels properly manipulated
with our tokenisation - atomization strategy. Furthermore,
through a TF-IDF weight analysis, we remove less infor-
mative tokens thus reducing the input dimension and being
able to obtain an accuracy of the classifier with a median
value of 86% (5% better compared to 81% achieved by the
state-of-the-art code classifier DeepTune, Table 1).

These results show that, while analysing LLVM code re-
quires an additional effort than working on the high-level
language, it allows achieving a more general and more ro-
bust classifier.

In future works, we will investigate deeper network models
that require more massive datasets.

	Introduction
	Related Works
	Method
	Tokenisation and Atomisation
	Deep Learning Model

	Results
	Conclusions

