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Abstract: In agriculture, remotely sensed data play a crucial role in providing valuable information
on crop and soil status to perform effective management. Several spectral indices have proven to be
valuable tools in describing crop spatial and temporal variability. In this paper, a detailed analysis
and comparison of vineyard multispectral imagery, provided by decametric resolution satellite and
low altitude Unmanned Aerial Vehicle (UAV) platforms, is presented. The effectiveness of Sentinel-2
imagery and of high-resolution UAV aerial images was evaluated by considering the well-known
relation between the Normalised Difference Vegetation Index (NDVI) and crop vigour. After being
pre-processed, the data from UAV was compared with the satellite imagery by computing three
different NDVI indices to properly analyse the unbundled spectral contribution of the different
elements in the vineyard environment considering: (i) the whole cropland surface; (ii) only the vine
canopies; and (iii) only the inter-row terrain. The results show that the raw s resolution satellite
imagery could not be directly used to reliably describe vineyard variability. Indeed, the contribution
of inter-row surfaces to the remotely sensed dataset may affect the NDVI computation, leading to
biased crop descriptors. On the contrary, vigour maps computed from the UAV imagery, considering
only the pixels representing crop canopies, resulted to be more related to the in-field assessment
compared to the satellite imagery. The proposed method may be extended to other crop typologies
grown in rows or without intensive layout, where crop canopies do not extend to the whole surface
or where the presence of weeds is significant.

Keywords: precision agriculture; remote sensing; satellite imagery; UAV; decision viticulture

1. Introduction

Over the last two decades, precision agriculture (PA) has received significant attention in the
agricultural community [1,2]. In viticulture, addressing difficulties during the production cycles by
defining appropriate crop management, the PA approach has the final aim to improve vineyard yield
and grape quality while reducing waste, costs and environmental impact [3,4].

A proper knowledge of the spatial variability between and within crop parcels is considered as a
key factor for vine growers to estimate the outcomes in terms of yield and quality [5–7]. In this context,
remote sensing (RS) has already proved its potential and effectiveness in spatiotemporal vegetation
monitoring [8–11]. Indeed, data provided by optical sensors of multispectral and hyperspectral
imagery systems are profitably exploited to compute a wide set of indices (such as the wide dynamic
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range vegetation index, the normalised difference red-edge index Index, etc.) by properly describing
several crop biophysical characteristics [12,13]. In the PA domain, an additional effective application is
found for within-field zone management, such as for sink size estimations [14,15] and soil moisture
evaluations [16,17], with particular attention to automatic procedures [18–20]. Among the wide set
of defined spectral indices, the normalized difference vegetation index (NDVI) is one of the most
extensively used, since it is strictly related to crop vigour and, thus, to the estimated quality and
quantity of field production [21–25].

Satellite multispectral imageries (MSI), due to sensors features and platforms altitude, covers
extensive areas. In addition, many satellite programmes (such as Landsat, Modis, Aster, SPOT,
Sentinel-1 and Sentinel-2) are nowadays providing free datasets, thus promoting satellite imagery
exploitation for many agricultural applications [26–30], even with the multi-sensor data fusion
approach [31]. Examples of valuable research contributions are the low-resolution Modis and
high-resolution IKONOS satellite imagery exploitation for mapping vineyard leaf area [23,32].
Sentinel-2 offers decametric resolution in terms of space and time, with a ground sample distance
(GSD) of up to 10 m and a revisit time of six days. Misregistration of sentinel-2A imageries was
addressed in the Processing Baseline (version 02.04), and deployed by European Space Agency (ESA)
on 15 June 2016 [33]. The effectiveness of decametric resolution satellite imagery in describing crop
status and variability, particularly when applied to arable crops, forests and extensive plantations,
has been proven by several relevant studies [12,34,35].

However, when considering crops with discontinuous layouts, such as vineyards and orchards,
remote sensing becomes more challenging [36]. Indeed, the presence of inter-row paths and weed
vegetation within the cropland may deeply affect the overall spectral indices computation, leading
to a biased crop status assessment. Indeed, novel approaches and algorithms using Unmanned
Aerial Vehicle (UAV) or satellite based multispectral imaging have been developed for vegetation
pixels classification [37–39]. Low altitude platforms, such as UAV and airborne sensors, by providing
imagery with a high spatial resolution (even a few centimetres) and a flexible flight scheduling [40],
allow differentiating between pure canopy pixel and other objects in the scene [41–45] or even to
classify different details within canopies [46–48].

In this paper, a detailed analysis and comparison of vineyards MSI, provided by a decametric
resolution satellite and low altitude UAV platforms, is presented. The effectiveness of the MSI from
Sentinel-2 and from the UAV airborne sensors, with very high resolution, was evaluated by considering
the well-known relation between the NDVI and crop vigour. In particular, the paper is structured
as follows: Section 2 reports information on the considered study area, on data acquisition from the
satellite and the UAV platforms, and on the performed data processing to allow a comparison of the
NDVI computed from different imagery sources. The results obtained by the data processing and
comparison are discussed in Section 3. Section 4 reports the conclusions and future developments.

2. Materials and Methods

A vineyard located in Serralunga d’Alba (Piedmont, northwest of Italy), covering a surface of
about 2.5 ha, was selected as a field test. The cropland, whose latitude and longitude positions range
between [44.62334◦44.62539◦] and [7.99855◦8.00250◦] (World Geodetic System 1984-WGS84), includes
three vineyard parcels (named “Parcel A”, “Parcel B” and “Parcel C”) cultivated with the cv Nebbiolo
grapevine, with an area of around 0.36, 0.69 and 0.19 ha, respectively (Figure 1).
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Figure 1. Selected test field located in Serralunga d’Alba (Piedmont, northwest of Italy). The 
boundaries of the three considered parcels, named “Parcel-A”, ”Parcel-B” and “Parcel-C”, are marked 
with solid green polygons. The cropland region, represented by pixel 𝑠 ,  of the Sentinel-2 tile, is 
highlighted by a yellow square. The map is represented in false colours (NIR, Red and Green 
channels). 
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above sea level and a predominantly southwest orientation. Due to the irregularity of the terrain 
morphology in terms of altitude and soil properties, the selected vineyard is characterised by a great 
variation in vine vigour within and between parcels. To extend the study to several vine phenological 
phases, the acquisition campaigns were performed from April to September 2017. Indeed, vigour 
varies during the phenological cycle from its minimum, after bud break (April), to its peak in the 

Figure 1. Selected test field located in Serralunga d’Alba (Piedmont, northwest of Italy). The boundaries
of the three considered parcels, named “Parcel-A”, ”Parcel-B” and “Parcel-C”, are marked with solid
green polygons. The cropland region, represented by pixel s8,20 of the Sentinel-2 tile, is highlighted by
a yellow square. The map is represented in false colours (NIR, Red and Green channels).

The vineyard is on a sloped land conformation, with an elevation ranging from 330 to 420 m
above sea level and a predominantly southwest orientation. Due to the irregularity of the terrain
morphology in terms of altitude and soil properties, the selected vineyard is characterised by a great
variation in vine vigour within and between parcels. To extend the study to several vine phenological
phases, the acquisition campaigns were performed from April to September 2017. Indeed, vigour
varies during the phenological cycle from its minimum, after bud break (April), to its peak in the
central part of the season (June–July). Finally, vigour decreases during the final phase of grape ripening.
According to the crop stages defined in the BBCH-scale [49], the acquisitions were performed in Stages
57 (inflorescences fully developed), 77 (berries beginning to touch), 85 (softening of berries) and 89
(berries ripe for harvest). The meteorological course in the 2017 season was not aligned to the average
temperature and rainfall trends of the region. In particular, March temperature values above the
seasonal average led the vine buds to break about 15 days early. A sudden decrease in temperatures
in the second half of April caused plant stress (frost damage) in some vines, slowing the vegetative
growth of the plants. The phases of flowering and of fruit set, partially influenced by this phenomenon,
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occurred 10–15 days early. The total rainfall in the 2017 season was 480 mm, much lower than the
average of the last 12 years (about 800 mm). This affected grape ripening particularly during August
and September, months in which it is refined and completed. The reduced water availability partially
contributed in accelerating ripening and in anticipating the veraison and the commercial harvest by
about 10 days.

2.1. Satellite Time Series Images

The Sentinel-2 satellite is equipped with a multi-spectral imaging sensor that measures Earth’s
Top of Atmosphere (TOA) reflected radiance in 13 spectral bands ranging from 443 nm to 2190 nm.
The technical details of Sentinel-2 along with its spatial resolution and spectral ranges are summarised
in Table 1. The Sentinel-2 imagery database, processed at different levels, can be downloaded from [50].
In this study, cloud-free level-2A Sentinel-2 Bottom of Atmosphere (BOA) reflectance images were
used. The Level-2A imagery was derived from Level 1 by applying scene classification, atmospheric
and BDRF correction algorithms, using SNAP toolbox (6.0) and sen2core processor (2.5.5) provided by
the ESA [51–54]. Additional details about the Sentinel-2 MSI products can be found in [55].

The selected satellite tiles were acquired on four dates during the 2017 growing season (Table 2)
to consider different vegetative vine statuses. Only red and near infrared bands (bands 4 and 8,
respectively) were used in this study. The pixels completely included within the boundaries of the
three considered “Parcel A”, “Parcel B” and “Parcel C” were selected, as shown in Figure 1. All relevant
information regarding the satellite imagery processed in this study is organised and summarised in
Tables 1 and 2.

Table 1. Technical details of the considered and adopted platforms and sensors.

Satellite UAV

Platform Sentinel-2 8-rotors custom UAV

Sensors

Remote Sens. 2019, 01, x FOR PEER REVIEW  4 of 18 

 

central part of the season (June–July). Finally, vigour decreases during the final phase of grape 
ripening. According to the crop stages defined in the BBCH-scale [49], the acquisitions were 
performed in Stages 57 (inflorescences fully developed), 77 (berries beginning to touch), 85 (softening 
of berries) and 89 (berries ripe for harvest). The meteorological course in the 2017 season was not 
aligned to the average temperature and rainfall trends of the region. In particular, March temperature 
values above the seasonal average led the vine buds to break about 15 days early. A sudden decrease 
in temperatures in the second half of April caused plant stress (frost damage) in some vines, slowing 
the vegetative growth of the plants. The phases of flowering and of fruit set, partially influenced by 
this phenomenon, occurred 10–15 days early. The total rainfall in the 2017 season was 480 mm, much 
lower than the average of the last 12 years (about 800 mm). This affected grape ripening particularly 
during August and September, months in which it is refined and completed. The reduced water 
availability partially contributed in accelerating ripening and in anticipating the veraison and the 
commercial harvest by about 10 days. 

2.1. Satellite Time Series Images 

The Sentinel-2 satellite is equipped with a multi-spectral imaging sensor that measures Earth’s 
Top of Atmosphere (TOA) reflected radiance in 13 spectral bands ranging from 443 nm to 2190 nm. 
The technical details of Sentinel-2 along with its spatial resolution and spectral ranges are 
summarised in Table 1. The Sentinel-2 imagery database, processed at different levels, can be 
downloaded from [50]. In this study, cloud-free level-2A Sentinel-2 Bottom of Atmosphere (BOA) 
reflectance images were used. The Level-2A imagery was derived from Level 1 by applying scene 
classification, atmospheric and BDRF correction algorithms, using SNAP toolbox (6.0) and sen2core 
processor (2.5.5) provided by the ESA [51–54]. Additional details about the Sentinel-2 MSI products 
can be found in [55]. 

The selected satellite tiles were acquired on four dates during the 2017 growing season (Table 2) 
to consider different vegetative vine statuses. Only red and near infrared bands (bands 4 and 8, 
respectively) were used in this study. The pixels completely included within the boundaries of the 
three considered “Parcel A”, “Parcel B” and “Parcel C” were selected, as shown in Figure 1. All 
relevant information regarding the satellite imagery processed in this study is organised and 
summarised in Tables 1 and 2. 

Table 1. Technical details of the considered and adopted platforms and sensors. 

 Satellite UAV 
Platform Sentinel-2 8-rotors custom UAV 

Sensors 

 
Multispectral Imager 

 
Parrot sequoia Multispectral camera 

Number of channels 13 4 
 Band name Range Band name Range 

Spectral band details 
B4-Red 
B8-NIR 

650–680 nm 
785–900 nm 

B2-Red 
B4-NIR 

640–680 nm 
770–810 nm 

GSD per band B4, B8 = 10 m 5 cm  
Flight altitude 786 km 35 m 
Field of view 290 km 70.6° HFOV 

Image Ground Dimension 100 km × 100 km  64 m × 48 m  
Number of images to cover vineyards 

test site 
1 >1000 

  

Multispectral Imager

Remote Sens. 2019, 01, x FOR PEER REVIEW  4 of 18 

 

central part of the season (June–July). Finally, vigour decreases during the final phase of grape 
ripening. According to the crop stages defined in the BBCH-scale [49], the acquisitions were 
performed in Stages 57 (inflorescences fully developed), 77 (berries beginning to touch), 85 (softening 
of berries) and 89 (berries ripe for harvest). The meteorological course in the 2017 season was not 
aligned to the average temperature and rainfall trends of the region. In particular, March temperature 
values above the seasonal average led the vine buds to break about 15 days early. A sudden decrease 
in temperatures in the second half of April caused plant stress (frost damage) in some vines, slowing 
the vegetative growth of the plants. The phases of flowering and of fruit set, partially influenced by 
this phenomenon, occurred 10–15 days early. The total rainfall in the 2017 season was 480 mm, much 
lower than the average of the last 12 years (about 800 mm). This affected grape ripening particularly 
during August and September, months in which it is refined and completed. The reduced water 
availability partially contributed in accelerating ripening and in anticipating the veraison and the 
commercial harvest by about 10 days. 

2.1. Satellite Time Series Images 

The Sentinel-2 satellite is equipped with a multi-spectral imaging sensor that measures Earth’s 
Top of Atmosphere (TOA) reflected radiance in 13 spectral bands ranging from 443 nm to 2190 nm. 
The technical details of Sentinel-2 along with its spatial resolution and spectral ranges are 
summarised in Table 1. The Sentinel-2 imagery database, processed at different levels, can be 
downloaded from [50]. In this study, cloud-free level-2A Sentinel-2 Bottom of Atmosphere (BOA) 
reflectance images were used. The Level-2A imagery was derived from Level 1 by applying scene 
classification, atmospheric and BDRF correction algorithms, using SNAP toolbox (6.0) and sen2core 
processor (2.5.5) provided by the ESA [51–54]. Additional details about the Sentinel-2 MSI products 
can be found in [55]. 

The selected satellite tiles were acquired on four dates during the 2017 growing season (Table 2) 
to consider different vegetative vine statuses. Only red and near infrared bands (bands 4 and 8, 
respectively) were used in this study. The pixels completely included within the boundaries of the 
three considered “Parcel A”, “Parcel B” and “Parcel C” were selected, as shown in Figure 1. All 
relevant information regarding the satellite imagery processed in this study is organised and 
summarised in Tables 1 and 2. 

Table 1. Technical details of the considered and adopted platforms and sensors. 

 Satellite UAV 
Platform Sentinel-2 8-rotors custom UAV 

Sensors 

 
Multispectral Imager 

 
Parrot sequoia Multispectral camera 

Number of channels 13 4 
 Band name Range Band name Range 

Spectral band details 
B4-Red 
B8-NIR 

650–680 nm 
785–900 nm 

B2-Red 
B4-NIR 

640–680 nm 
770–810 nm 

GSD per band B4, B8 = 10 m 5 cm  
Flight altitude 786 km 35 m 
Field of view 290 km 70.6° HFOV 

Image Ground Dimension 100 km × 100 km  64 m × 48 m  
Number of images to cover vineyards 

test site 
1 >1000 

  

Parrot sequoia Multispectral camera

Number of channels 13 4
Band name Range Band name Range

Spectral band details B4-Red
B8-NIR

650–680 nm
785–900 nm

B2-Red
B4-NIR

640–680 nm
770–810 nm

GSD per band B4, B8 = 10 m 5 cm
Flight altitude 786 km 35 m
Field of view 290 km 70.6◦ HFOV

Image Ground Dimension 100 km × 100 km 64 m × 48 m
Number of images to cover vineyards test site 1 >1000

Table 2. Information on satellite and UAV based acquired datasets.

Dataset Name Acquisition Date Data Source Time Difference (days)

D1 5 May 2017 UAV +5
S1 30 April 2017 Satellite −5
D2 29 June 2017 UAV −7
S2 6 July 2017 Satellite +7
D3 1 August 2017 UAV −4
S3 5 August 2017 Satellite +4
D4 13 September 2017 UAV −4
S4 17 September 2017 Satellite +4
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2.2. UAV-Based Imagery

The UAV-based MSI were generated with the Agisoft PhotoScan® software (Agisoft©, 2018 [56])
processing imagery blocks of more than 1000 aerial images acquired with an airborne Parrot Sequoia®

multispectral camera (Parrot© SA, 2017 [57]). The UAV path was planned to maintain the flight height
close to 35 m with respect to the terrain by properly defining waypoint sets for each mission block on
the drone guidance platform on the base of the GIS cropland map. With this specification, the aerial
images GSD resulted to be 5 cm (Figure 2).Remote Sens. 2019, 01, x FOR PEER REVIEW  6 of 18 
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Figure 2. Enlargement of UAV-based multispectral imagery, represented in false colours (NIR, Red and
Green channels), of: (a): “Parcel-A”; (b): ”Parcel-B”; and (c): “Parcel-C”.

A camera geometric calibration procedure was performed before the image alignment task;
moreover, a radiometric calibration was applied to the image blocks by using the reference images
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of a Micasense calibrated reflectance panel [58] acquired before and after each UAV flight. A set of
12 ground control points, whose positions were determined with a differential GNSS system (with an
accuracy of 0.1 m), was placed on selected vine trellis poles within the vineyard to georeference the
MSI in a geodetic coordinates frame.

The UAV flights were performed on four different dates over the 2017 crop season (15 May,
29 June, 1 August and 23 September), according to the satellite visiting dates (Table 2).

2.3. In-Field Vigour Assessment

The vigour of the vines within the three considered parcels in the study site was evaluated based
on the results of a specific in-field survey performed by trained operators and on the past experience
of the farmer. In the considered study site, the vigour variability is mainly related to the pedological
soil conformation and to the water availability, since irrigation is not allowed by Piedmont regulation.
The vigour classification was performed by defining three classes: low “L”, medium “M” and high
“H”. A specific data processing was performed to make the in-field vigour assessment comparable
to decametric resolution imagery. In particular, a 10 m × 10 m map was obtained by rastering and
clustering a vector GIS map provided by expert agronomists made by a set of three vigour class layers,
according to Sentinel-2 pixel location.

2.4. Data Processing

In this section, specific methods for data processing, developed to compare and investigate the
imagery derived from the two platforms with different spatial resolutions, are presented and discussed
in detail.

A tile S , derived from the satellite platform, can be considered as an ordered grid of pixels s(i, j),
with indices i and j representing the pixel row and column locations in the raster matrix, respectively.
Each pixel s(i, j) was here defined as s(i, j) = [αs(i, j), βs(i, j), nR(i, j), nN(i, j)]T ⊂ S , where αs(i, j) and
βs(i, j) are the latitude and longitude coordinates (expressed in WGS84) of the upper left corner of pixel
s(i, j), respectively, and nR(i, j) and nN(i, j) are the pixel digital numbers in the red and near infrared
bands (12 bit representation), respectively.

Data D derived from the UAV flights were defined as an ordered grid of pixels d(u, v) =

[αd(u, v), βd(u, v), mR(u, v), mN(u, v)]T ⊂ D, where pixel d(i, j) coordinates αd(i, j) and βd(i, j) (latitude
and longitude in WGS84) are related to the pixels centre and mR(i, j) and mN(i, j) are the pixel digital
numbers in the red and near infrared bands (16 bit representation), respectively.

A graphical representation of the defined parameters for the satellite and UAV-based datasets is
shown in Figure 3.
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Figure 3. (a) Ordered grid of pixels s(i, j) belonging to satellite tile S , located at latitude and longitude
coordinates αs(i, j) and βs(i, j); and (b) ordered grid of pixels d(u, v) belonging to satellite imagery D,
located at αd(i, j) and βd(i, j). Selected UAV pixels belonging to G(i, j), used for comparison to satellite
pixel s(i, j), are highlighted in light green.
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The evaluation of effectiveness in describing vineyard variability by the satellite and UAV
multispectral imagery was focused on the plants vigour assessment by using the NDVI. The NDVI
value for satellite pixel s(i, j) can be easily computed as

NDVIsat(i, j) =
nN(i, j)− nR(i, j)
nN(i, j) + nR(i, j)

(1)

by using the spectral information provided by the digital numbers nN(i, j) and nR(i, j) of the red and
near infrared bands. Figure 4a shows the NDVIsat map obtained by applying Equation (1) to the entire
set of selected pixels representing “Parcel A”, “Parcel B” and “Parcel C” of the Sentinel-2 tile of 7 July.

To allow the comparison of the UAV-based MSI and of the Satellite imagery, a preliminary
downsampling procedure of the high-resolution UAV imagery was performed. A portion of UAV
dataset D, made by pixel cluster G(i, j), which is related to satellite pixel s(i, j), was defined as

G(i, j) =
{

d(u, v) ∈ D
∣∣∣ αs(i, j + 1) ≤ αd(u, v) < αs(i, j), βs(i, j) ≤ βd(u, v) < βs(i + 1, j) , ∀u, v

}
(2)

With this approach, satellite pixel s(i, j) and the portion of UAV map G(i, j) represent the
same section of vineyard cropland, with latitude and longitude coordinates ranging between
[αs(i, j + 1)αs(i, j)] and [βs(i, j)βs(i + 1, j)]. As an example, an enlargement of UAV map subset G(8, 20),
related to satellite pixel s(8, 20) and highlighted in Figure 1 by a yellow square on the field test map,
is displayed in Figure 5.

Three specific NDVI indices were defined to perform a detailed analysis of the radiometric
information provided by the UAV-based MSI, and then to compare it with the satellite one. In detail,
they were computed from the UAV high-resolution data by considering: (i) the whole cropland surface
represented by G(i, j); (ii) only the crop canopy pixels and, for completeness; and (iii) only the pixels
representing the inter-row terrain. Using all pixels in subset G(i, j), the comprehensive NDVIuav(i, j)
for the UAV imagery was defined as

NDVIuav(i, j) =
∑u ∑v

mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

cardG(i, j)
∀d(u, v) ∈ G(i, j) (3)

By applying Equation (2) to raw UAV map D, an NDVIuav map congruent (properly aligned
and with the same spatial resolution) to the ones derived from the satellite imagery (NDVIsat) can be
obtained, as shown in Figure 4b for the UAV imagery acquired on 29 June 2017.

Since within a vineyard UAV orthophoto, with a GSD of 5 cm, the pixels representing the vine
canopies can be detected, a more accurate crop NDVI computation with respect to NDVIuav can
be performed. For this task, a pixel classification procedure is thus required for each subset G(i, j)
to define two different groups of pixels Gvin(i, j) and Gint(i, j), with Gvin(i, j) ∪ Gint(i, j) = G(i, j) and
Gvin(i, j)∩Gint(i, j) = ∅, representing crop canopies and inter-row surfaces, respectively. The automatic
classification procedure described in Comba et al. (2015) [33] was adopted. Figure 5b reports the
obtained pixel classification belonging to subset G(8, 20) into the two groups Gvin(8, 20) and Gint(8, 20).
By exploiting the spatial information concerning the location and extension of the vine canopies,
an enhanced NDVI computation can be defined as

NDVIvin(i, j) =
∑u ∑v

mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

cardG(i, j)
∀d(u, v) ∈ Gvin(i, j) (4)

An example of the enhanced NDVI definition, by considering only the NDVI of the pixels
representing the vine canopies, is reported in Figure 5c, while the complete NDVIvin map for the June
dataset is shown in Figure 4c.
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Figure 4. Comprehensive (a) NDVIsat map, computed from satellite imagery S2, and (b) NDVIuav

derived from UAV imagery D2. (c) Enhanced vineyard NDVIvin map, processing UAV imagery D2

by considering only canopy pixels Gvin and (d) NDVIint map considering only inter-row surface Gint.
In all represented NDVI maps, only pixels (i, j) completely included within “Parcel A”, “Parcel B” and
“Parcel C” boundaries are shown.

For completeness, the NDVI index was computed also for the vegetation in the inter-row, such as
weed or grass, as
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NDVIint(i, j) =
∑u ∑v

mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

cardG(i, j)
∀d(u, v) ∈ Gint(i, j) (5)

to further evaluate the contribution of no-canopy reflectance to the comprehensive NDVI computed
from satellite imagery. The obtained NDVI map for the inter-row areas, obtained by processing the
UAV imagery of 29 June, is shown in Figure 4d.
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Figure 5. (a) Enlargement of subset G(8, 20) of UAV map D2, highlighted by a yellow square in
Figure 1, is represented in false colours (NIR, Red and Green channels); (b) classification of pixels
d(u, v) ⊂ G(8, 20) into two classes: Gvin, representing vine canopies (green), and Gint, representing
inter-row surfaces (brown); (c) computed NDVI values of vine canopies pixels Gvin; and (d) inter-row
surface Gint.

3. Results

Three vineyard parcels (named “Parcel-A”, “Parcel-B” and “Parcel-C”), selected for their peculiar
spatial distributions and different micro-climate conditions, were considered in this study (Figure 1).
To extend the performed analysis to different vineyard phenological phases, four imagery acquisitions
were performed (UAV airborne campaigns) and considered (satellite Sentinel-2 platform) during the
2017 crop growing season (Table 2). Regarding the evaluation and the comparison of the effectiveness
of the satellite and UAV-based imagery in describing and assessing the variability within and between
vineyard parcels, four different NDVI maps were computed. More in detail, the NDVIsat map
(Equation (1)) was derived from satellite imagery while imagery acquired with the UAV platform
was processed to obtain three different NDVI maps: (i) a comprehensive NDVIuav map (Equation
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(3)) by considering the spectral information provided by both pixels representing vine canopies and
inter-row surfaces; (ii) an NDVIvin map for vineyard canopies (Equation (4)); and (iii) an NDVIint

map for inter-row paths (Equation (5)), by considering only one group of pixels at a time. To be able to
compare UAV-based imagery with the satellite imagery, with a GSD of 10 m, high-resolution imagery
from the UAV airborne platform was downsampled using Equation (2). The congruence between each
spatiotemporal map pair was investigated using the Pearson correlation coefficients, adopted as a map
similarity measure [59], after performing a normalisation procedure to focus on the relative differences
of each map pair.

A preliminary analysis investigated the coherence of the adopted dataset by comparing the
NDVIsat map and the properly downsampled comprehensive NDVIuav map for all three considered
parcels and for the four acquisition campaigns. The coherence between the information provided by
the two platforms was confirmed by the values of the obtained Pearson correlation coefficients, named
RSat/UAV, which were higher than 0.6 for more than 75% of the performed comparison, and never
lower than 0.55. All the obtained RSat/UAV values, which showed a considerable similarity between
the maps derived from the satellite and UAV raw imagery, are organised in Table 3. The correlation
plots for imagery pair D2/S2, detailed for “Parcel A”, ”Parcel B” and “Parcel C”, are shown in
Figure 6a–c, respectively.
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Table 3. Pearson correlation coefficients results of the NDVI maps comparison procedure.

RSat/UAV RSat/vin RSat/int

Map pair D1/S1 D2/S2 D3/S3 D4/S4 D1/S1 D2/S2 D3/S3 D4/S4 D1/S1 D2/S2 D3/S3
Parcel A 0.63 0.71 0.58 0.55 0.31 0.33 0.45 0.40 0.52 0.65 0.56 0.49
Parcel B 0.60 0.68 0.62 0.65 0.39 0.40 0.37 0.38 0.56 0.61 0.60 0.62
Parcel C 0.64 0.67 0.60 0.72 0.41 0.61 0.28 0.51 0.59 0.67 0.54 0.66
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Once the coherence of the adopted dataset was verified, the quality of the information provided
by the two typologies of NDVI maps was investigated, focusing on the well-known relationship
between the considered index and the vegetative condition of the vineyard. This task was performed
by comparing NDVIsat and NDVIuav maps to the in-field vigour assessment provided by expert
operators, which classified the different regions of the considered vineyard into three different vigour
classes (Figure 7). The results of the performed analysis of variance (ANOVA), which provided
p-values from 0.04 to 0.26, did not prove significant difference between vigour groups means for all
the considered parcels (Figure 8a).
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4. Discussion

The decametric resolution satellite imagery showed some limitations in directly providing reliable
information regarding the status of vineyards where the crop radiometric information can be altered by
other sources (e.g., inter-row paths) that, in the case of crops grown by rows, could be predominant and
could negatively affect the overall assessment. This effect was confirmed by the strong relation found
between the satellite NDVIsat map and the NDVIint map, derived by the UAV imagery considering
only the inter-row pixels, with Pearson correlation coefficients RSat/int of the 12 performed comparisons
ranging from 0.49 to 0.67 (Table 3) and with more than 65% of spatiotemporal map pairs achieving
RSat/int> 0.60. On the contrary, the relation between the satellite NDVIsat map and the enhanced
NDVIvin map, obtained by considering only pixels representing vine canopies within the UAV imagery,
resulted to be weak. About 75% of the Pearson correlation coefficients RSat/vin, obtained by comparing
NDVIsat and NDVIvin maps of all three considered parcels and the four acquisition campaigns,
were found to be lower than 0.41. All the obtained values of RSat/vin are organised in Table 3. This
analysis proves that, in the case of crops where the inter-row surfaces and paths involve a relevant
portion of the cropland, such as vineyards, the radiometric information acquired by decametric spatial
resolution satellite platforms are not sufficient to properly evaluate crop status and variability. Indeed,
depending on the specific adopted crop management approach, the inter-row surface can be covered
by grass, by other crops for pest and disease integrated control or it can be bare soil. In all these
situations, the vineyard vigour could often be in discord with the inter-row areas, leading to biased
vineyard vigour assessments from decametric spatial resolution imagery.

In addition, the effectiveness of the NDVIvin and NDVIsat maps in discriminating the vigour
of the considered parcels in accordance with the experts in-field assessment was investigated with
the ANOVA method. For what concern the NDVIvin map, the ANOVA, obtaining p-values ranging
from 2.47× 10−3 to 6.88× 10−8 (Table 4), confirmed that the observed variability of the vineyards
within the test site was well described by the NDVIvin map. Boxplots of the NDVIvin values, divided
in the three vigour classes, are shown in Figure 8b. On the contrary, the ANOVA results considering
NDVIsat map showed that the variability of the vineyards within the test site by satellite platform
was not significantly in accordance with the experts in-field assessment (Table 5). This additional
verification confirmed the main result of the presented analysis, proving that, in the case of crops where
the inter-row surfaces involve a relevant portion of the cropland, such as vineyards, the radiometric
information acquired by satellite platforms can have difficulties properly evaluating crop status and
variability. In these situations, imagery with a high spatial resolution is required to properly assess
variability within and between vineyards.

Table 4. Results of the ANOVA of UAV based NDVIvin map in relation to the three vigour classes from
in-field assessment.

Source DF SS MS F-Value P-Value

Parcel A
classes 2 1.360807 0.680403 30.092543 5.461188 × 10−8

Error 31 0.700921 0.022610
Total 33 2.061721

Parcel B
classes 2 2.713501 1.356750 71.166427 6.867305 × 10−7

Error 63 1.201062 0.019064
Total 65 3.914563

Parcel C
classes 2 0.867121 0.433560 9.199357 0.00247
Error 15 0.706941 0.047129
Total 17 1.57406
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Table 5. Results of the ANOVA of satellite based NDVIsat map in relation to three vigour classes from
in-field assessment.

Source DF SS MS F-Value P-Value

Parcel A
classes 2 0.308368 0.154184 3.458293 0.044081
Error 31 1.382101 0.044584
Total 33 1.690464

Parcel B
classes 2 0.393805 0.196903 4.892817 0.010587
Error 63 2.535323 0.040243
Total 65 2.929128

Parcel C
classes 2 0.198502 0.099251 1.455564 0.264401
Error 15 1.022811 0.068187
Total 17 1.221313

5. Conclusions

In this paper, a detailed analysis and comparison of multispectral imagery of vineyards, provided
by decametric resolution satellite and low altitude UAV platforms, is presented. The effectiveness
of the Sentinel-2 imagery and the high-resolution UAV aerial images was evaluated by considering
the well-known relation between the NDVI and vineyard vigour. A cropland located in Piedmont
(Serralunga d’Alba, Italy) was selected as the experiment site to perform four image acquisition
campaigns, which were properly scheduled according to the main vine phenological stages.

The results show how, in the case of crops where the inter-row surfaces involve a relevant portion
of the cropland, such as vineyards, the radiometric information acquired by decametric resolution
satellite platforms has difficulties in properly evaluating crop status and variability. In these situations,
the vigour of the vineyard could often be in discord with the inter-row areas (e.g., grass, plants for
pest and disease integrated control, or soil), leading to biased vineyard vigour assessments from
decametric resolution imagery, such as the Sentinel-2 imagery. This was proved by a detailed analysis
of the radiometric unbundled contribution of different elements within the cropland, performed by
defining three different NDVI indices from the high-resolution UAV imagery, considering: (i) the
whole cropland surface; (ii) only the crop canopy pixels; and (iii) only the inter-row terrain pixels.

In this study, the NDVI maps derived from the satellite imagery were found not to be in accordance
with the in-field crop vigour assessment. In addition, the satellite-based NDVI maps were found
to be more related to the NDVI maps computed by the high-resolution UAV imagery, considering
only the pixels representing inter-row surfaces. As a validation, a new type of NDVI map from the
UAV imagery, generated by considering only the pixels representing the vine canopies, was defined.
The effectiveness of this last type of map in describing the observed vineyard vigour was found to
be relevant.

The proposed approach can be extended to other crop typologies that are grown by rows or
without intensive layouts, where the crop canopies do not extend on the whole surface or where the
presence of weeds is relevant.
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Nomenclature

d(u, v) pixel in the row u and column v of the raster matrix D
D High-resolution multispectral imagery from UAV platform
G(i, j) Subset of UAV pixels d(u, v) representing the same area of satellite pixel s(i, j)
Gint(i, j) Subset of UAV pixels d(u, v) representing only inter-row surfaces
Gvin(i, j) Subset of UAV pixels d(u, v) representing only vines canopy
NDVIsat(i, j) NDVI computed using satellite imagery S
NDVIuav(i, j) Comprehensive NDVI computed considering all the UAV pixels in G(i, j)
NDVIvin(i, j) NDVI computed considering only the UAV pixels Gvin(i, j) representing vines canopy
NDVIint(i, j) NDVI computed considering only the UAV pixels Gint(i, j) representing inter-row surface
mN(i, j) digital numbers in the near infrared band of pixel d(u, v)
mR(i, j) digital numbers in the red band of pixel d(u, v)
nN(i, j) digital numbers in the near infrared band of pixel s(i, j)
nR(i, j) digital numbers in the red band of pixel s(i, j)
s(i, j) pixel in the row i and column j of the raster matrix S
S Decametric resolution multispectral imagery from satellite platform
αd(u, v) latitude coordinate (expressed in WGS84) of pixel d(u, v) centre
αs(i, j) latitude coordinate (expressed in WGS84) of the upper left corner of pixel s(i, j)
βd(u, v) longitude coordinate (expressed in WGS84) of pixel d(u, v) centre
βs(i, j) longitude coordinate (expressed in WGS84) of the upper left corner of pixel s(i, j)
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