
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Parallel Hardware Architecture For Quantum Annealing Algorithm Acceleration / Forno, Evelina; Acquaviva, Andrea;
Yuki, Kobayashi; Macii, Enrico; Urgese, Gianvito. - ELETTRONICO. - (2018). (Intervento presentato al convegno
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2018) tenutosi a Verona nel 8-10
October 2018) [10.1109/VLSI-SoC.2018.8644777].

Original

A Parallel Hardware Architecture For Quantum Annealing Algorithm Acceleration

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VLSI-SoC.2018.8644777

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2725886 since: 2020-10-21T10:44:55Z

IFIP/IEEE

A Parallel Hardware Architecture For Quantum
Annealing Algorithm Acceleration

Evelina Forno∗, Andrea Acquaviva∗, Yuki Kobayashi†, Enrico Macii∗, and Gianvito Urgese∗
∗ Politecnico di Torino, Torino, Italy, 0039 011 090 7042. Email: gianvito.urgese@polito.it

† NEC Corporation, Kawasaki, Japan. Email: y-kobayashi@hq.jp.nec.com

Abstract—Quantum Annealing (QA) is an emerging technique,
derived from Simulated Annealing, providing metaheuristics for
multivariable optimisation problems. Studies have shown that it
can be applied to solve NP-hard problems with faster convergence
and better quality of result than other traditional heuristics,
with potential applications in a variety of fields, from transport
logistics to circuit synthesis and optimisation. In this paper,
we present a hardware architecture implementing a QA-based
solver for the Multidimensional Knapsack Problem, designed
to improve the performance of the algorithm by exploiting
parallelised computation. We synthesised the architecture using
as a target an Altera FPGA board and simulated the execution for
solving a set of benchmarks available in the literature. Simulation
results show that the proposed implementation is about 100 times
faster than a single-thread general-purpose CPU without impact
on the accuracy of the solution.

I. INTRODUCTION

Optimization problems can be encountered in many fields
of science and technology, from the synthesis of electronic
circuits (Boolean satisfiability problems) to transportation and
location logistics (Vehicle routing problem). In most cases,
to solve such problems means to find the global optimum of
a multivariable function, while fulfilling a set of constraints.
Global optimization problems are NP-hard in complexity; as
such, finding the exact solution is often unfeasible in terms
of computation time. However, many heuristic methods have
been developed to provide good quality, approximate solutions
in a short time.

The list of available heuristic algorithms is long, and new
variants are being developed every year. Among the most
well-established [1] we find Simulated Annealing (SA) [2].
Inspired by the physical process of thermal annealing in
materials science, SA is controlled by tuning the value of a
temperature parameter T over a given period of time. The
algorithm randomly generates moves in the search space that
are always accepted when the cost function H is improved;
moves that would result in the cost increasing are accepted
with a probability e

∆H
T . SA is well-tested, efficient and robust,

but requires rather long computation times.
Simulated Annealing is widely used in the VLSI field for

the generation of connection paths, placement and other opti-
mization. For example, it has been successfully employed in
solving floorplanning [3] and placement [4] problems, which
are classified as NP, obtaining better results than other types
of heuristics such as PSO and Ant Colony. An outstanding

example is the use of SA in placement algorithms within
commercial software such as Quartus II [5] for FPGA design
optimization. Research within the field has led to several im-
provements to SA, especially in parallelization efforts, which
yield better results and linear speedups with respect to the
classic algorithm while trying to balance the added complexity
in synchronizing several solver processes.

Quantum Annealing is an emerging technique derived from
Simulated Annealing. Previous papers have demonstrated that
for some problems (such as the Traveling Salesman Problem
(TSP) [6], the Multidimensional Knapsack Problem (MKP)
[7], and the Ising spin glass [8]), QA has a faster convergence
in terms of simulation steps, providing results of improved
quality.

However, Quantum Annealing is even more computationally
expensive than SA when executed on standard PCs. As such,
there has been interest from several research teams in de-
veloping parallel hardware architectures for accelerating SA
on FPGAs and GPU. Since SA is an inherently sequential
algorithm, workarounds are necessary to exploit concurrency;
solutions have been proposed both on CPU [4] [5] and GPU
[9] which run independent SA solvers in separate threads, then
choose the best solution reached among all threads. A similar
approach has been attempted on FPGA [10], reporting success
for relatively small problems (1024-bit, corresponding to a 32-
city TSP problem). FPGA acceleration of Monte Carlo solvers,
which apply concepts compatible with SA, has found great
success in physical simulations of the nearest-neighbor Ising
spin glass such as the Janus II computer [11]; however, most
NP problems require higher levels of connectivity.

Regarding the Multidimensional Knapsack Problem, imple-
mentations have been made on GPU for heuristic solvers [12]
[13], reporting speedup over parallel CPU solutions. Exact
solvers [14] were realized on GPU for the 0-1 Knapsack
Problem, but literature suggests that exact MKP solvers may
be too demanding for current GPU architectures.

In this paper, we propose the design of a hardware architec-
ture implementing a solver for the Multidimensional Knapsack
Problem using Quantum Annealing (QA). We analyzed the
behavior of the Quantum Annealing algorithm and applied
modifications to improve its performance. We also paralle-
lised computation with a multi-core architecture and applied
architectural and functional optimizations to reduce calculation
times. We described the QA solver in a High Level Synthesis

language and synthesized it with an Altera Stratix V FPGA
as target. The results in this paper are derived from RTL
simulation.

The rest of the paper is organized as follows: in Section
II we provide a mathematical description of the Quantum
Annealing algorithm. In Section IV we discussed our proposed
architecture, whereas we reported the performances achieved
by our accelerator in Section IV. Finally we give some
conclusions (Section V).

II. BACKGROUND

Quantum Annealing is a metaheuristic algorithm inspired by
classical Simulated Annealing. Instead of applying a thermal
gradient to the system, it applies a slowly diminishing trans-
verse field.

The quantum annealing process can be simulated in a tra-
ditional computer using stochastic techniques like the Monte
Carlo method. This algorithm involves an adaptation of the
classical Metropolis-Hastings algorithm [8] to step out of local
optimum solutions.

What sets apart Quantum Annealing from Simulated An-
nealing is the emulation of the quantum tunneling effect for
escaping local minima. The key parameter Γ, which indicates
the strength of the transverse field, represents the quantum
tunneling width and determines the radius of local search.
At first, the neighborhood comprises the whole search space;
during the annealing this radius is gradually reduced.

A benchmark for QA [8] is the Ising spin glass, a mathema-
tical model of ferromagnetism used in statistical mechanics.
This model consists of a system of up/down spins organized
in a graph. Each spin has a given radius of neighbor spins that
it is allowed to interact with. The model is described by the
Hamiltonian reported in equation 1.

Hc = −
∑
〈i,j〉

Jijsisj (1)

Where the N spins si can take the values ±1. The interaction
between spins si and sj on lattice sites i and j is described
by the exchange coupling Jij . 〈i, j〉 means that i and j are
neighbor spins; the radius of neighborhood depends on the
chosen model. When spins are not neighbors their interaction
is Jij = 0, therefore such pairs do not contribute to the
Hamiltonian.

The Monte Carlo simulation of the Ising spin glass consists
of iterating over every spin and performing an update, i.e.,
deciding whether or not to flip each spin based on the status
of its neighbors and the strength of its interaction with them.
A Monte Carlo step is concluded when all the spins in the
systems have been updated.

To perform QA of Ising spin glasses, an additional term is
added to the Hamiltonian by applying a transverse magnetic
field Γ, as shown in equation 2.

Hq = −
N∑
i<j

Jijσiσj − Γ(t)

N∑
i

σi (2)

Γ starts out at a high value and is gradually reduced to zero
during the annealing.

In computer-simulated QA [8] [7] [6], the quantum ef-
fect is simulated by mapping the partition function of the
quantum Ising model to that of a classical Ising model in
one higher dimension, called imaginary time dimension or
Trotter dimension (as the Suzuki-Trotter expansion is used
to perform this mapping). This means that the system is
simulated simultaneously in R different iterations or replicas
(Fig. 1), which start out completely independent but have
a correlation factor Jt that grows in time, forcing them to
converge to a single solution at the end of annealing. Jt is
calculated each MCS as a function of Γ, by the formula in
equation 3.

Jt = −1

2
log(tanh(Γ)) (3)

QA is not just SA with R copies running in parallel.
Normally, SA is only able to pass to a neighboring state on the
energy landscape in one step, by thermal transitions. However,
by adding the Jt coupling, QA is able to tunnel through energy
barriers, avoiding local maxima, and exploring the state space
more effectively. This can explain the faster convergence of
Quantum Annealing.

In particular, thermal transition probability is proportional to
e
−∆
kBT (where ∆ is the height of the energy barrier, kB is the

Boltzmann constant, and T the annealing temperature). This
probability is dominated by the height ∆ of the barrier, which
means it is difficult to get out of a very deep well of local
minimum by means of thermal fluctuations. However, it has
been demonstrated [15] that the quantum tunneling probability
through the same barrier is proportional to e

−
√

∆w
Γ .

The tunneling probability depends not only on the height
∆, but also on the width w of the energy barrier. This means
that QA shows significant advantage on problems where the
energy landscape presents a high amount of perturbation with
many high and thin barriers (w � ∆). Indeed, the search of
the ground state for an Ising spin glass model is one of these
problems: since many NP problems can be formulated through

Fig. 1: The Quantum Annealing algorithm. On the left, a visual representation
of replicas as a series of parallel threads exchanging information with
neighbors about their local solution. On the right, the flowchart of the
algorithm executed within each replica: highlighted in red are the portions
of the program that can be rewritten to fit different problem types (e.g., to
allow only legal moves within the constraint system). The red dashed line
indicates parts that stay the same, save for the problem Hamiltonian.

the Ising model [16], we can apply QA to them and expect
favorable results.

III. IMPLEMENTATION

The architecture (shown in Fig. 2) is composed of an array of
R processors, each representing a Trotter replica for Quantum
Annealing. Each replica shares its current itemvector with its
neighbors.

There is also a controller module that ensures synchroni-
zation of the replicas during one Monte Carlo step (MCS).
It fetches the Jt value for the current MCS from memory,
then enables the replicas to allow calculation of the next step.
It also receives the current total profit from each replica and
detects when a new optimum has been found.

Finally, we have a Restricted Quantum Annealing (RQA)
engine that receives the item vectors from the processors and
calculates the frequency of each item across all solutions.
It outputs a binary vector describing the locked items that
replicas are no longer allowed to change. In the following we
will examine each module in detail.

We described this circuit behaviorally in SystemC and
perform high-level synthesis with the NEC CyberWorkBench
HLS compiler (CWB) [17], exporting the components to an
RTL format with the same procedure described in [18].

Fig. 2: Block diagram of the FPGA architecture

A. MKP Processor

The basic structure of the MKP processor is the same for all
replicas. The core of this processor is a Finite State Machine
that executes the operations for one Monte Carlo step of
Quantum Annealing. Every MKP processor stores a copy of
the problem data in local registers.

The processor is a Finite State Machine of 23 states for the
largest problem (30x500); because of a few branches in the
algorithm, the average latency due to pipelining is lower than
23 cycles. However, since each random number generation
attempt using the LFSR introduces an extra cycle of latency,
the overall latency of this module is not deterministic.

Indeed, a key problem of implementing a stochastic algo-
rithm on FPGA is the quality of the Random Number Gene-
rator (RNG). We use a simple 32-bit LFSR which provides
good pseudorandom performance. From this LFSR we select
up to 9 bits as an item identifier (itemRNG) and 16 bits for
the Metropolis random number (metroRNG). When the MKP
solver needs a random number, it enables the LFSR and waits
for the next clock cycle. Since the LFSR is a synchronous
circuit, it necessarily introduces latency.

Fig. 3: Block diagram of the Jt multiplication stage

Most of the necessary instructions in the process datapath
are adders, subtractors, and comparators. However, when we
enter a Metropolis attempt to swap item A with item B, the
calculation of the quantum portion of the Hamiltonian:
∆Hkin = Jt · ((sl−1

A + sl+1
A) · 2slA + (sl−1

B + sl+1
B) · 2slB) (4)

would introduce at least one 16-bit multiplier. We observe that
the result of the right hand side parenthesis only has a few
discrete possible values: −8,−4, 0,+4,+8. Then, the ∆Hkin

calculation can be accomplished by using exclusively LUTs
and shifters, as shown in Fig. 3. This saves a considerable
amount of area and reduces the critical path.

The calculation of the exponential e−∆H for the Metropolis
trial is also prohibitively expensive in FPGA, so we implement
it with a LUT indexed by ∆Hkin. We experimentally deter-
mined that a high precision is not necessary for this operation
and the exponential LUT only needs 24 entries of 16 bits.

When it is necessary to evaluate ∆Hkin, each replica needs
to have a stable copy of the item vectors from its neighbors,
and these vectors should be from the same annealing step
that the replica is currently in. FPGA implementations of
the Ising model [19] solve this problem by partitioning the
spins into two groups and sharing each spin unit between two
neighboring spins that are processed in separate clock cycles.

From simulation statistics we determine that calculation of
∆Hkin is not performed in 98-99% of annealing steps within
a simulation. Then, the replicas can indeed work in parallel
most of the time. In our final implementation we enable all the
replicas at once; because of the low granularity of our moves,
a replica can use a neighbor’s result from the previous MCS,
accepting a possible error of at most 2 bits. We confirm that the
quality of result is equivalent to the one with the partitioned
replicas. By allowing all replicas to process at the same time,
we improve overall latency by about 50%.

The processor core implements the QA algorithm for MKP
proposed by Bergé et al. [7]. We apply two modifications:

1) The mutation proposed in [7] is to try exchanging an item
a outside the bag with an item b inside the bag. If the
exchange is not possible, “step back” by removing item
b from the bag. After making several trials, we observed
that by avoiding to “step back”, we are able to obtain
better results.

2) The value of Jt plays a paramount role in the annealing.
However, no prescription for it is given in [7]. The
available benchmark problems present a very broad range

(10 − 1000) of possible values for the item prices, and
therefore a broad range of possible values for the potential
energy ∆Hpot. Since stepping out of the local optimum
depends on the value of ∆H = ∆Hpot + ∆Hkin, it is
evident that ∆Hkin must be roughly of the same order
of magnitude as ∆Hpot for the Metropolis dynamics to
work. ∆Hkin is directly proportional to Jt, therefore we
want Jt to be of the same order of magnitude as the range
of item prices. One possible way to change the value of Jt
is to change the value of Γ0: however, modifying Γ0 also
influences the rate of growth of Jt. By trial and error we
identified the ideal rate of growth as that corresponding
to Γ0 = 3.0, as lower values cause the Jt interaction to
spike to high values too early in the annealing (preventing
the system to explore the state space for most of the
annealing), while high values make the growth of Jt too
slow (greatly reducing the quantum tunneling effect). The
method we settle on is to ”amplify” Jt to fit the given
problem set: before the annealing, we scan the matrix of
item prices and calculate the average value. Then we use
that to multiply Jt throughout the annealing. This allows
us to improve results significantly, especially in problems
that have high values for prices, like the ones in the Chu-
Beasley benchmark.

B. Controller

The role of the controller is to keep replicas synchronized
over the same Monte Carlo step. It stores the 16-bit values
for Jt in a memory block of τ entries. When all the replicas
are done updating, the controller disables them and fetches
the next Jt value. Then the replicas are enabled and a new
MCS begins. Once all Jt values have been read it raises the
QA done output signal and stops the annealing.

C. RQA Engine

The Restricted Quantum Annealing (RQA) engine’s role is
to keep track of the frequency of appearance of each item
across solutions. We accomplish this by means of a SWAR
algorithm for popcount (or Hamming weight counter), which
is essentially a series of log(R) + 1 sum, right shift and bit
masking steps.

For each item i, the input to the popcount is built out of a
vertical slice of all the replicas’ item vectors, taking from each
only the ith bit (as highlighted in red in Fig. 4). The result of
the popcount is stored in a frequency vector at position i. If
the frequency is greater than the RQA blocking frequency, the
ith bit of the output signal lockedItems is set.

Using popcount lets us avoid computing long sums with the
500-position item vectors of the hardest benchmark. Every
vertical slice we build is R bits long, which is generally much
shorter than the item vectors.

Additionally, we can explore the design space for this com-
ponent by performing loop unrolling to control the quantity of
items processed at the same time and the pipeline depth of the
frequency counter. We found that the smallest-area, smallest-
delay, longest-latency implementation is the most efficient:
we process only one item at a time, and we allow CWB’s

Fig. 4: Block diagram of the RQA engine

automatic scheduling to reduce the delay as much as possible,
resulting in a (log(R) + 1)-cycle latency.

Although the replicas don’t have access to the most updated
version of the lockedItems vector at all times, we verified in
simulation that this minimized implementation has no adverse
effects on the speed of convergence of RQA or the quality of
result. Then, we can add RQA to the system with negligible
impact on area and maximum frequency.

IV. RESULTS AND DISCUSSIONS

We performed RTL synthesis in CWB with the Altera
Stratix V (5SGXEA7N2F45C2) FPGA as target. We then
performed RTL simulation of the resulting Verilog files to
extract the timing performance results reported in this section.
The Verilog files were then input to Altera Quartus Prime for
logic synthesis.

A. Area and Critical Path

In Tab. I are reported the logic synthesis results for a system
with R = 16, τ = 1000000, 500 items and 30 constraints.

The OR30X500 family of benchmarks is the largest one
available to us and the one we considered for final implemen-
tation. Meanwhile, the block memory occupation also depends
on τ . We synthesized up to 1 million steps, which is an
appropriate simulation time for the 30x500 problem instances.

The total area of logic utilization grows linearly with the
number of replicas. This is to be expected since every replica
added corresponds to a new processor core in the architecture.

Examining the growth of area when varying the number of
constraints and items shows that area also grows linearly with
the problem size.

We compared the maximum frequency estimated by Quartus
Prime over a wide range of synthesis results corresponding to
various combinations of number of replicas, number of items,
and number of constraints.

From Fig. 5, it is evident that the worst-case maximum
frequency is decreasing as the area grows. We can identify at
least two main reasons for this. i) combinational paths become

Logic utilization 147,236 / 234,720 (63 %)
Total registers 157782

Total block memory bits 18,457,600 / 52,428,800 (35 %)
Maximum frequency 164 MHz

Total Thermal Power Dissipation 8.559 mW

TABLE I: Results of QA hardware architecture logic synthesis

Fig. 5: Maximum frequency obtained by Quartus synthesis for varying
hardware size.

Fig. 6: Comparison of results from the FPGA and software versions of the
algorithm for the benchmark OR30X500-0.25, R = 16. Quality of result is not
lost in the transition from floating point (fp) to fixed point data representation.

longer and slower as the width of parameters grows, especially
of the item vector. ii) interconnections also become longer
and more complex, causing increased delays. In practice,
increasing the number of replicas or the size of the problem
makes the system slower.

B. Quality of results compared to CPU version

We created a bit-compatible integer model in software to
estimate performance of an FPGA version ahead of implemen-
tation. As shown in Fig. 6, the behavior is completely coherent
with the floating point version, displaying similar convergence
across a wide range of τ .

Then, it is fair to compare the behavior of the FPGA
implementation (in RTL simulation) with the floating-point
software version of the algorithm.

C. QA-HW vs QA-CPU

The execution time for different values of τ is charted in
Fig. 7. At the maximum frequency of 164 MHz, the FPGA
solution is much faster than the software at executing the same
number of Monte Carlo steps. However, in the FPGA version
the number of cycles per step appears to increase quite strongly
as τ increases; while the speedup over software is about 350×
at τ = 2048, at τ = 32768 it is only 210×, and this advantage
will probably continue to decrease for greater values of τ .
This problem may be attributed to the LFSR’s limited ability
to generate an adequate number.

How much does the RNG problem affect the FPGA latency?
We compared the average latency per step of the FPGA
implementation with the average number of RNG trials in
the software version. We suppose that the two parameters

Fig. 7: Execution times for the FPGA and software versions for the benchmark
OR30X500-0.25.

Fig. 8: Comparison of the growth in number of random trials per step as
the annealing time increases, benchmark problem OR30X500-0.25. The
regression function used is f(λ) ≈ 13.17λ0.12.

are directly proportional as the FPGA latency per step is
predominantly determined by the number of LFSR trials,
with little (and generally constant) overhead from the rest
of the algorithm. Fig. 8 shows how the latency due to the
RNG trials, after a sharp initial growth, settles into a slowly
increasing curve, compatible with that encountered in the
software simulation.

Then, we expect that the FPGA implementation’s speedup
will maintain a reasonable advantage (150−180× faster) over
the software version even as we increase the annealing time.

Finally, in Fig. 9 we show the speed of convergence to
result for the two versions of the algorithm. It is clear that
the hardware version can produce a similar quality of result
as the software version in less computation time.

Our FPGA implementation appears to compare favorably
with GPU results reported in literature; the parallelised QA
solver reports lower computation time than the Ant Colony
Optimization on GPU from [12] (408 ms for the largest
instance, rather than ∼ 10000 ms). We reserve comparison

Fig. 9: Speed of convergence to result for the software and FPGA versions,
benchmark problem OR30X500-0.25.

with a GPU implementation of QA for future work.
Though synthesis provides limited information on the po-

wer consumption, it is still possible to make an optimistic
estimation of the energy savings. The software version ran
on a computer with an Intel i7 920 CPU; it has a maximum
Icc per core equal to 145 A and a typical associated Vcc per
core of 0.131 V. Assuming our single-thread software ran on
a single core at full load, that would mean an instantaneous
power of 18.995 W; since the program ran for 17.319 s, the
estimated energy consumption is about 329 J. Meanwhile, the
FPGA energy consumption is around 8.559 W × 0.108 s =
0.924 J, leading to estimated energy savings of ∼ 350×.

V. CONCLUSION

In this paper we propose a parallel architecture for the
solution of the Multidimensional Knapsack Problem using a
Quantum Annealing solver. We implemented our hardware ar-
chitecture in a High Level Synthesis language and synthesized
on an FPGA target. The parametric design instantiates multiple
computation cores, synchronized by a Controller module that
regulates the annealing process. We also implemented an op-
tional module for computing a Restricted Quantum Annealing
solution, allowing to improve the quality of result with a
negligible cost in terms of area and latency.

Simulation shows that our QA solver provides the same qua-
lity of result as a floating point software version, while outper-
forming a single-thread CPU. We can demonstrate analytically
that the QA solver is at least 150× faster than software. In
addition, synthesis reports show that the implementation has
a reasonable logic utilization even for the largest problems.

Future works will focus in further improving and testing
the FPGA architecture. As it is, the memory containing
the problem parameters is implemented in the FPGA logic
elements; the block memory utilization can be improved by
offloading the data to external memory. We plan to further
improve the architecture and continue with the placement
on an FPGA board to evaluate the real performance of the
proposed accelerator.

We will also develop a CPU-GPU multithread implementa-
tion of the QA solver in order to compare the effective speedup
and power savings for the FPGA version.

ACKNOWLEDGMENTS

The HLS compiler and the technical support were provided
by NEC Corporation, Japan.

REFERENCES
[1] Beheshti and Shamsuddin. “A Review of Population-based Meta-

Heuristic Algorithm”. In: Int. J. Advance. Soft Comput. Appl., Vol.
5, No. 1, March 2013 (2013).

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by
Simulated Annealing”. In: Science 220.4598 (1983), pp. 671–680.
ISSN: 00368075, 10959203. URL: http://www.jstor.org/stable/1690046.

[3] Jenifer J, Anand S, and Levingstan Y. “SIMULATED ANNEA-
LING ALGORITHM FOR MODERN VLSI FLOORPLANNING
PROBLEM”. In: 2 (Apr. 2016), pp. 175–181.

[4] Atanu Roy Karthik Ganesan Pillai. “Parallel Simulated Annealing for
VLSI Cell Placement Problem”. In: 2009.

[5] Adrian Ludwin and Vaughn Betz. “Efficient and Deterministic Parallel
Placement for FPGAs”. In: ACM Trans. Design Autom. Electr. Syst.
16 (2011), 22:1–22:23.

[6] Roman Marto ňák, Giuseppe E. Santoro, and Erio Tosatti. “Quantum
annealing of the traveling-salesman problem”. In: Phys. Rev. E 70 (5
Nov. 2004), p. 057701. DOI: 10 . 1103 / PhysRevE . 70 . 057701. URL:
https://link.aps.org/doi/10.1103/PhysRevE.70.057701.

[7] P. Bergé et al. “Restricting the search space to boost Quantum
Annealing performance”. In: 2016 IEEE Congress on Evolutionary
Computation (CEC). July 2016, pp. 3238–3245. DOI: 10.1109/CEC.
2016.7744199.

[8] Roman Marto ňák, Giuseppe E. Santoro, and Erio Tosatti. “Quan-
tum annealing by the path-integral Monte Carlo method: The two-
dimensional random Ising model”. In: Phys. Rev. B 66 (9 Sept. 2002),
p. 094203. DOI: 10.1103/PhysRevB.66.094203. URL: https://link.aps.
org/doi/10.1103/PhysRevB.66.094203.

[9] Y. Han, S. Roy, and K. Chakraborty. “Optimizing simulated annealing
on GPU: A case study with IC floorplanning”. In: 2011 12th Interna-
tional Symposium on Quality Electronic Design. Mar. 2011, pp. 1–7.
DOI: 10.1109/ISQED.2011.5770735.

[10] Sanroku Tsukamoto et al. “An Accelerator Architecture for Combina-
torial Optimization Problems”. In: 2017.

[11] M. Baity-Jesi et al. “Janus II: A new generation application-driven
computer for spin-system simulations”. In: Computer Physics Com-
munications 185.2 (2014), pp. 550–559. ISSN: 0010-4655. DOI: https:
//doi.org/10.1016/j.cpc.2013.10.019. URL: http://www.sciencedirect.
com/science/article/pii/S0010465513003470.

[12] Henrique Fingler et al. “A CUDA based Solution to the Multidimen-
sional Knapsack Problem Using the Ant Colony Optimization”. In:
Procedia Computer Science 29 (2014). 2014 International Conference
on Computational Science, pp. 84–94. ISSN: 1877-0509. DOI: https:
//doi.org/10.1016/j.procs.2014.05.008. URL: http://www.sciencedirect.
com/science/article/pii/S1877050914001859.

[13] Bianca de Almeida Dantas and Edson Norberto Cáceres. “Sequential
and Parallel Implementation of GRASP for the 0-1 Multidimensio-
nal Knapsack Problem”. In: Procedia Computer Science 51 (2015).
International Conference On Computational Science, ICCS 2015,
pp. 2739–2743. ISSN: 1877-0509. DOI: https : / / doi . org / 10 . 1016 / j .
procs.2015.05.411. URL: http://www.sciencedirect.com/science/article/
pii/S1877050915012193.

[14] M. E. Lalami and D. El-Baz. “GPU Implementation of the Branch and
Bound Method for Knapsack Problems”. In: 2012 IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium Workshops PhD
Forum. May 2012, pp. 1769–1777. DOI: 10.1109/IPDPSW.2012.219.

[15] Arnab Das, Bikas K. Chakrabarti, and Robin B. Stinchcombe. “Quan-
tum annealing in a kinetically constrained system”. In: Phys. Rev. E
72 (2 Aug. 2005), p. 026701. DOI: 10 .1103/PhysRevE.72.026701.
URL: https://link.aps.org/doi/10.1103/PhysRevE.72.026701.

[16] Andrew Lucas. “Ising formulations of many NP problems”. In: Fron-
tiers in Physics 2 (2014), p. 5. ISSN: 2296-424X. DOI: 10.3389/fphy.
2014.00005. URL: https://www.frontiersin.org/article/10.3389/fphy.
2014.00005.

[17] Kazutoshi Wakabayashi. “CyberWorkBench: Integrated design envi-
ronment based on C-based behavior synthesis and verification”. In:
VLSI Design, Automation and Test, 2005.(VLSI-TSA-DAT). 2005 IEEE
VLSI-TSA International Symposium on. IEEE. 2005, pp. 173–176.

[18] Marco Bettoni et al. “A convolutional neural network fully implemen-
ted on fpga for embedded platforms”. In: CAS (NGCAS), 2017 New
Generation of. IEEE. 2017, pp. 49–52.

[19] Francisco Ortega-Zamorano et al. “FPGA Hardware Acceleration
of Monte Carlo Simulations for the Ising Model”. In: CoRR
abs/1602.03016 (2016). arXiv: 1602 . 03016. URL: http : / / arxiv. org /
abs/1602.03016.

