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Abstract
We consider a decision maker who performs a stochastic decision process over a
multiple number of stages, where the choice alternatives are characterized by random
utilities with unknown probability distribution. The decisions are nested each other,
i.e. the decision taken at each stage is affected by the subsequent stage decisions.
The problem consists in maximizing the total expected utility of the overall multi-
stage stochastic dynamic decision process. By means of some results of the extreme
values theory, the probability distribution of the totalmaximumutility is derived and its
expected value is found. This value is proportional to the logarithm of the accessibility
of the decision maker to the overall set of alternatives in the different stages at the start
of the decision process. It is also shown that the choice probability to select alternatives
becomes a Nested Multinomial Logit model.

Keywords Multi-stage dynamic decision process · Stochastic utilities ·
Extreme values theory · Asymptotic approximation · Nested Multinomial Logit
model

1 Introduction

Discrete choice models under the assumption of a utility-maximizing behavior by the
decision maker and uncertainty over the estimation of the utility values are called
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1208 R. Tadei et al.

random utility models [15,16]. According to [23], in these models “a decision maker
i faces a choice among N alternatives and will assign a certain level of utility to each
alternative. The utility that the decision maker assigns to alternative j is ũi j , j =
1, . . . , N . The decision maker will choose the alternative that provides the greatest
utility, i.e. choose alternative j if and only if ũi j > ũik, ∀k �= j . Consider now an
external observer. The observer does not observe the decision maker’s utility ũi j , but
he observes just some attributes of the alternatives as faced by the decision maker,
labeled vi j , ∀ j . Since there are aspects of the utility that the observer cannot catch,
vi j �= ũi j . Utility is then decomposed as ũi j = vi j + x̃i j , where x̃i j captures the
factors that affect utility but are not included in vi j . The observer does not know x̃i j
and therefore treats these terms as random variables”. The aforementioned setting is
typical of several applications of operations management, where the decisions must
be taken in advance and a limited knowledge of some quantities is present, as in
project management, supply chain optimization, service network design, logistics,
and transportation (see, e.g., [3,4,13,14]).

In this paper, we consider a decision process evolving over multiple stages (e.g.,
over a discrete time horizon) in which a decision maker is asked to solve consecutively
several random utility models, i.e. he needs to select, at each stage, an alternative
among a finite set of mutually exclusive choices. A certain level of utility, depending
on stochastic variables with unknown probability distribution, is associated with each
alternative and the decision maker wants to maximize the expected value of the total
utility originating from the overall decision process. However, the decision process
cannot be decomposed per stage because decisions are nested each other, i.e., the
utility of an alternative at each stage is affected by the utilities associated to the
selected alternatives in the subsequent stages.

When facing the special case in which only a single stage exists (i.e., when the
decision maker has only a static set of alternatives to choose from), it is well-known
that the choice probability reduces to a Multinomial Logit (MNL) model under the
assumption that the random utilities are independent and identically distributed (i.i.d.)
and the common distribution is a Gumbel function (see [1,2,5,12]). In the past, some
contributions have shown that the assumption of a Gumbel distribution for the random
utilities is too restrictive when the number of alternatives becomes large. Actually, a
MNL model can be still derived under the mild assumption that the common distribu-
tion of the i.i.d. random utilities has an asymptotically exponential behavior in its tail
[9,10,22]. The effectiveness of such an asymptotic approximation have been proved
in several applications in the context of location, routing, loading, packing, and other
logistics operations [17–21].

The main contribution of this paper is to generalize the above theory to a multi-
stage dynamic stochastic decision process in which decisions are nested each other.
We will show that, by using some results of the extreme values theory, the probability
distribution of the total maximum utility can be asymptotically approximated and
its expected value can be found. Moreover, we will be able to show that the choice
probability to select alternatives becomes aNestedMultinomial Logitmodel. A similar
result was obtained in [11], but there the authors considered a static multi-level nested
location problem with a known Gumbel distribution for the random utilities.
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The multi-stage dynamic stochastic decision process… 1209

The rest of the paper is organized as follows. In Sect. 2, we formally define the
process under study and the necessary notation. Section 3 is devoted to present how
it is possible to derive an asymptotic approximation for the probability distribution
of the random utilities in the multi-stage dynamic stochastic decision process, while
Sect. 4 focuses on how to model the choice probability as a NestedMultinomial Logit.
Finally, conclusions are drawn in Sect. 5.

2 Problem formulation

Let us consider amulti-stage dynamic randomutilitymodel described by the following
notation

– t = 0, . . . , T : stages;
– Nt = {1, . . . , nt }: set of choice alternatives at stage t ;
– N0 = {0}: initial start of the decision process, containing a singleton alternative;
– L j (t): set of scenarios for alternative j at stage t ;
– l j (t) = |L j (t)|: number of scenarios for alternative j at stage t ;
– L(t) = ∪ j∈Nt L j (t): total set of scenarios of the decision process at stage t ;
– l(t) = |L(t)| = ∑

j∈Nt
l j (t): total number of scenarios of the decision process at

stage t ;
– vi j (t): deterministic utility of alternative j at stage t when the decision process
starts from alternative i at stage t − 1;

– θ̃ lj (t): random oscillation of the utility of alternative j at stage t under scenario
l ∈ L j (t).

Let us assume that θ̃ lj (t) are independent and identically distributed (i.i.d.) stochastic
variables in j , l, and t , with the following common unknown probability distribution

F(x) = Pr{θ̃ lj (t) ≤ x}, j ∈ Nt , l ∈ L j (t), t = 1, . . . , T . (1)

The general structure underlying the multi-stage dynamic stochastic decision pro-
cess we want to study can be represented as in Fig. 1. This type of decision process
structure and its optimization perspective can be found very commonly in several
practical applications. A straightforward example is represented by the Critical Path
Method (CPM) in the solution of project scheduling problems [8]. In these problems,
a set of tasks (each one with its own duration) must be performed to complete a project
as soon as possible. Since precedence constraints exist among the tasks, the decision
maker would like to minimize the make-span (i.e. the completion time of the last
task) by satisfying the precedence constraints. The CPM leads to an optimal plan by
focusing on the concept of critical path, i.e. the sequence of tasks that are the most
critical for the entire project. The method basically works in two phases. In the first
one, tasks become nodes of a network clustered into ranks according to the precedence
constraints, and in the second one, the longest path is found throughout this network.
It is easy to see that, in the case of stochastic and time-dependent task durations, the
decision process resorts to the one presented in this paper, in which tasks are the alter-
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1210 R. Tadei et al.

Fig. 1 Multi-stage dynamic stochastic decision process

natives, ranks are the stages, and a longest path is a sequence of decisions throughout
the stages that minimizes the make-span.

Let ṽi j (t) be the random utility of alternative j at stage (t) when the decision
process starts from alternative i at stage t = 1, . . . , T . We assume that the decision
process is efficiency-based so that, for any alternative j ∈ Nt , t = 1, . . . , T , among
the different scenarios l ∈ L j (t), the one which maximizes the random choice utility
will be considered. The random utility ṽi j (t) is then

ṽi j (t) = vi j (t) + θ̃ j (t) +Uj (t), i ∈ Nt−1, j ∈ Nt , t = 1, . . . , T , (2)

where θ̃ j (t) is defined as the maximum of the random utility oscillations θ̃ lj (t) among
all possible alternative scenarios l ∈ L j (t), i.e.

θ̃ j (t) = maxl∈L j (t)θ̃
l
j (t), j ∈ Nt , t = 1, . . . , T , (3)

and Ui (t) is the expected utility of alternative i at stage t , i.e.

Ui (t) =
{
IEθ̃

[
max j∈Nt+1 ṽi j (t + 1)

]
, t = 1, . . . , T − 1

0, t = T
, i ∈ Nt . (4)

Equation (2) shows that the alternative j at stage t is evaluated not only by its own
utility vi j (t) + θ̃ j (t) but also by the utilityUj (t) of the future selected alternatives. In
such a way, the utilities become nested over the stages.

Note that, since F(x) is unknown, θ̃ j (t) is still a random variable with the following
unknown probability distribution

Bj (x, t) = Pr
{
θ̃ j (t) ≤ x

}
, j ∈ Nt , t = 1, . . . , T . (5)
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The multi-stage dynamic stochastic decision process… 1211

Given the definition in (3), θ̃ j (t) ≤ x ⇐⇒ θ̃ lj (t) ≤ x, l ∈ L j (t). Since θ̃ lj (t) are
independent, using (1), (5) becomes

Bj (x, t) =
∏

l∈L j (t)

Pr
{
θ̃ lj (t) ≤ x

}
=

∏

l∈L j (t)

F(x) = [F(x)]l j (t) , (6)

where l j (t) is the total number of scenarios for alternative j at stage t .
Now, by defining

ṽi (t) = max
j∈Nt+1

ṽi j (t + 1), i ∈ Nt , t = 0, . . . , T − 1, (7)

Eq. (4) becomes

Ui (t) =
{
IEθ̃

[
ṽi (t)

]
, t = 1, . . . , T − 1

0, t = T
, i ∈ Nt , (8)

and the maximum utility U of the whole multi-stage dynamic stochastic decision
process is

U = U0(0) = IEθ̃

[
ṽ0(0)

]
. (9)

However, the calculation of U0(0) requires the calculation of IEθ̃

[
ṽ0(0)

]
, which in

turn requires to know the probability distribution of ṽ0(0), or, because of the nested
structure of the utilities, of {ṽi (t), i ∈ Nt , t = 0, . . . , T −1}. Let us call the probability
distribution of ṽi (t) as

Gi (x, t) = Pr{ṽi (t) ≤ x}, i ∈ Nt , t = 0, . . . , T − 1, (10)

that is still unknown, since {θ̃ lj (t)} have an unknown probability distribution. Never-
theless, the asymptotic approximation of Gi (x, t), i.e. an approximation valid when
the total number l(t + 1) of scenarios of the decision process at stage (t + 1) becomes
large, will be derived in the next session.

3 The asymptotic approximation ofGi(x, t)

Let us assume that the probability distribution of {θ̃ lj (t)}, named F(x) in (1), is asymp-
totically exponential in its right tail, i.e.

∃β > 0 such that lim
y→+∞

1 − F(x + y)

1 − F(y)
= e−βx . (11)

By using some results of the asymptotic extreme values theory [6], we will show that
under assumption (11) the distributionGi (x, t) asymptotically converges to a Gumbel
function as the total number of scenarios of the decision process l(t+1) at stage (t+1)
becomes large.
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1212 R. Tadei et al.

First note that, because of (5), (6), (2), and (7), Eq. (10) becomes

Gi (x, t) = Pr{ṽi (t) ≤ x} = Pr

{

max
j∈Nt+1

ṽi j (t + 1) ≤ x

}

= Pr

{

max
j∈Nt+1

[vi j (t + 1) + θ̃ j (t + 1) +Uj (t + 1)] ≤ x

}

=
∏

j∈Nt+1

Pr{vi j (t + 1) + θ̃ j (t + 1) +Uj (t + 1) ≤ x}

=
∏

j∈Nt+1

Pr{θ̃ j (t + 1) ≤ x − vi j (t + 1) −Uj (t + 1)}

=
∏

j∈Nt+1

B j (x − vi j (t + 1) −Uj (t + 1), t + 1)

=
∏

j∈Nt+1

[F(x − vi j (t + 1) −Uj (t + 1)]l j (t+1), i ∈ Nt , t = 0, . . . , T − 1.

(12)

Moreover, note that we can set the origin for the utility scale arbitrarily, i.e., the choice
probabilities are unaffected by a shift in the utility scale and any additive constant
to the utilities can be ignored. Let us choose this constant as the root al(t+1) of the
equation

1 − F(al(t+1)|l(t + 1)) = 1/l(t + 1) (13)

where l(t + 1) is the total number of scenarios of the decision process at stage t + 1.
By replacing ṽi j (t) with ṽi j (t) − al(t + 1) in (12) one has

Gi (x, t |l(t + 1)) =
∏

j∈Nt+1

[F(x−vi j (t+1)−Uj (t+1)+al(t+1)|l(t+1))]l j (t+1) (14)

where Gi (x, t |l(t + 1)) is used to underline the dependency of Gi (x, t) from l(t +1).
Let us consider the ratio

α j (t + 1) = l j (t + 1)/l(t + 1), j ∈ Nt , t = 0, . . . , T − 1 (15)

and assume that this ratio remains constant for each pair ( j, t + 1) while the values
of l(t + 1) = 1, 2, . . . do increase. Then, Eq. (14) can be written as

Gi (x, t |l(t + 1)) =
∏

j∈Nt+1

[F(x−vi j (t+1)−Uj (t+1)+al(t+1)|l(t+1))]α j (t+1)l(t+1).

(16)
Now, let us assume that l(t+1) is large enough to use liml(t+1)→+∞ Gi (x, t |l(t+1))

as an approximation of Gi (x, t). Then, the following theorem holds
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Theorem 1 Under condition (11), the probability distribution Gi (x, t) becomes the
following Gumbel function

Gi (x, t) = lim
l(t+1)→+∞Gi (x, t |l(t + 1)) = exp

(
−Ai (t)e

−βx
)

, i ∈ Nt , t = 0, . . . , T − 1

(17)
where

Ai (t) =
∑

j∈Nt+1

α j (t + 1)eβ[vi j (t+1)+Uj (t+1)], i ∈ Nt , t = 0, . . . , T − 1 (18)

is the accessibility in the sense of Hansen [7] of alternative i at stage t to the overall
set of alternatives at stage (t + 1).

Proof By (14) and (15) one has

Gi (x, t) = lim
l(t+1)→+∞Gi (x, t |l(t + 1))

= lim
l(t+1)→+∞

∏

j∈Nt+1

[
F(x − vi j (t + 1) −Uj (t + 1)

+ al(t+1)|l(t + 1))
]α j (t+1)l(t+1)

=
∏

j∈Nt+1

lim
l(t+1)→+∞

[
F(x − vi j (t + 1) −Uj (t + 1)

+ al+1|l(t + 1))
]α j (t+1)l(t+1)

. (19)

Since liml(t+1)→+∞ 1/l(t + 1) = 0, from (13) we have liml(t+1)→+∞ 1
− F(al(t+1)|l(t + 1)) = 0. This means that liml(t+1)→+∞ al(t+1)|l(t + 1) = +∞.
From (11), where al(t+1)|l(t + 1) plays the role of y, one obtains

lim
l(t+1)→+∞

1 − F(x − vi j (t + 1) −Uj (t + 1) + al(t+1)|l(t + 1))

1 − F(al(t+1)|l(t + 1))

= e−β(x−vi j (t+1)−Uj (t+1)). (20)

By (20) and (13) one gets

lim
l(t+1)→+∞ F(x − vi j (t + 1) −Uj (t + 1) + al(t + 1)|l(t + 1))

= lim
l(t+1)→+∞

(
1 − [1 − F(al(t+1)|l(t + 1))]e−β(x−vi j (t+1)−Uj (t+1))

)

= lim
l(t+1)→+∞

(

1 − e−β(x−vi j (t+1)−Uj (t+1))

l(t + 1)

)

. (21)
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1214 R. Tadei et al.

By substituting (21) into (19), after multiplying numerator and denominator by α j (t+
1), one has

Gi (x, t) =
∏

j∈Nt+1

lim
l(t+1)→+∞

[

1 − α j (t + 1)e−β(x−vi j (t+1)−Uj (t+1))

α j (t + 1)l(t + 1)

]α j (t+1)l(t+1)

(22)
and, by reminding that limy→+∞(1 + x

y )
y = ex and using (18), (22) becomes

Gi (x, t) =
∏

j∈Nt+1

exp
(
−α j (t + 1)e−β(x−vi j (t+1)−Uj (t+1))

)
= exp

(−Ai (t)e
−βx) .

(23)
The probability distribution derived in (23) is a Gumbel distribution. �

3.1 Expected value calculation

Having now an explicit form forGi (x, t), we can calculate IEθ̃

[
ṽi (t)

]
in (8) as follows

Ui (t) = IEθ̃

[
ṽi (t)

]

=
∫ +∞

−∞
xdGi (x, t)

=
∫ +∞

−∞
x exp

(−Ai (t)e
−βx) Ai (t)e

−βxβdx, i ∈ Nt , t = 0, . . . , T − 1.

(24)

By substituting z = Ai (t)e−βx , one gets

Ui (t) = −1/β
∫ +∞

0
ln(z/Ai (t))e

−zdz

= −1/β
∫ +∞

0
e−z ln zdz + 1/β ln Ai (t)

∫ +∞

0
e−zdz

= γ /β + 1/β ln Ai (t)

= 1/β(ln Ai (t) + γ ) (25)

where γ = − ∫ +∞
0 e−z ln z dz � 0.5772 is the Euler constant.

Because of (25), and disregarding the constant γ /β, the maximum utility U of the
whole multi-stage dynamic stochastic decision process in (9) becomes

U = 1

β
ln A0(0). (26)
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4 A NestedMultinomial Logit model for the choice probability

The choice probability pi j (t + 1) for a decision maker who has selected alternative
i at stage t to select alternative j at stage (t + 1) can be determined as follows. The
decision maker will choose alternative j at stage t + 1 if and only if that alternative
will have the largest utility among all alternatives at that stage, i.e.

vi j (t + 1) + θ̃ j (t + 1) +Uj (t + 1) ≥ vik(t + 1) + θ̃k(t + 1) +Uk(t + 1),

i ∈ Nt , j, k ∈ Nt+1, k �= j, t = 0, . . . , T − 1. (27)

Then

pi j (t + 1) = Pr{vi j (t + 1) + θ̃ j (t + 1) +Uj (t + 1) ≥ vik(t + 1)

+ θ̃k(t + 1) +Uk(t + 1),

i ∈ Nt , j, k ∈ Nt+1, k �= j, t = 0, . . . , T − 1}
= Pr{vi j (t + 1) + θ̃ j (t + 1) +Uj (t + 1) ≥ max

k∈Nt+1; k �= j
vik(t + 1)

+ θ̃k(t + 1) +Uk(t + 1),

i ∈ Nt , j ∈ Nt+1, t = 0, . . . , T − 1}. (28)

By using (5), one gets

Pr{vi j (t + 1) + θ̃ j (t + 1) +Uj (t + 1) ≤ x}
= Pr{θ̃ j (t + 1) ≤ x − vi j (t + 1) −Uj (t + 1)}
= Bj [x − vi j (t + 1) −Uj (t + 1), t + 1]) (29)

and, since {θ̃k(t), k ∈ Nt+1, t = 0, . . . , T − 1} are independent,

Pr

{

max
k∈Nt+1; k �= j

vik(t + 1) + θ̃k(t + 1) +Uk(t + 1) ≤ x, i ∈ Nt , t = 0, . . . , T − 1

}

=
∏

k∈Nt+1; k �= j

Bk[x − vik(t + 1) −Uk(t + 1), t + 1]. (30)

Now, from the Total Probability Theorem, Eq. (28) becomes

pi j (t + 1) =
∫ +∞

−∞

⎡

⎣
∏

k∈Nt+1; k �= j

Bk[x − vik(t + 1) −Uk(t + 1), t + 1]
⎤

⎦

dB j [x − vi j (t + 1) −Uj (t + 1), t + 1],
i ∈ Nt , j ∈ Nt+1, t = 0, . . . , T − 1. (31)

The following theorem holds
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1216 R. Tadei et al.

Theorem 2 The choice probability pi j (t + 1) for a decision maker who has selected
alternative i at stage t to select alternative j at stage t + 1 is given by

pi j (t+1) = l j (t + 1)eβ[vi j (t+1)+Uj (t+1)]
∑

k∈Nt+1
lk(t + 1)eβ[vik(t+1)+Uk (t+1)] , i ∈ Nt , j ∈ Nt+1, t = 0, . . . , T−1,

(32)
which is a Nested Multinomial Logit model.

Proof By using (6) and (15), from (31) one obtains

pi j (t + 1)

=
∫ +∞

−∞

∏

k∈Nt+1; k �= j

{F [x − vik(t + 1) −Uk(t + 1)]}αk (t+1)ld{F [
x − vi j (t + 1)

−Uj (t + 1)
]}α j (t+1)l . (33)

As per Theorem 1, by comparing (19) and (23), one can show that, when l −→ +∞,

{F [
x − vi j (t + 1) −Uj (t + 1)

]}α j (t+1)l

−→ exp
[
−α j (t + 1)e−β(x−vi j (t+1)−Uj (t+1)−al )

]
. (34)

Finally, by setting γ = eβal and z = e−βx , from (18) and (34), Eq. (33) becomes

pi j (t + 1)

=
∫ +∞

−∞

∏

k∈Nt+1; k �= j

exp
[
−αk(t + 1)e−β[x−vik (t+1)−Uk (t+1)−al ]

]

d exp
[
−α j (t + 1)e−β[x−vi j (t+1)−Uj (t+1)−al ]

]

=
∫ +∞

−∞

∏

k∈Nt+1; k �= j

exp
[
−γαk(t + 1)e−β[x−vik (t+1)−Uk(t+1)]]

d exp
[
−γα j (t + 1)e−β[x−vi j (t+1)−Uj (t+1)]]

= γα j (t + 1)eβ[vi j (t+1)+Uj (t+1)]
∫ +∞

−∞
βe−βx exp[−γ Ai (t)e

−βx ]dx

= γα j (t + 1)eβ[vi j (t+1)+Uj (t+1)]
∫ +∞

0
e−γ Ai (t)zdz

= α j (t + 1)eβ[vi j (t+1)+Uj (t+1)]

Ai (t)

= l j (t + 1)eβ[vi j (t+1)+Uj (t+1)]
∑

k∈Nt+1
lk(t + 1)eβ[vik (t+1)+Uk (t+1)] , i ∈ Nt , j ∈ Nt+1, t = 0, . . . , T − 1.

�
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5 Conclusions

In this paper, we have considered a multi-stage dynamic decision process in which
decisions are nested each other. The process is tackled as a random utility model in
which decision utilities depend on i.i.d. stochastic variables with unknown probability
distribution, and the decision maker aims at maximizing the expected value of the
process total utility.

By using some results of the extreme values theory, we have derived the asymptotic
approximation for the probability distribution of the total utility and calculated its
expected value. Interesting enough, the resulting expected value is proportional to the
logarithm of the accessibility in the sense of Hansen [7], i.e. the accessibility of the
decision maker to the overall set of alternatives at the different stages at the start of the
decision process. Moreover, we have also shown that the choice probability to select
alternatives becomes a Nested Multinomial Logit model.

In the near future, the theoretical outcomes of the present paper are supposed to
be applied and experimentally validated in different operational settings. The main
advantages of such an approach with respect to other ways to deal with multi-stage
dynamic problems under uncertainty (e.g., Stochastic Programming and Robust Opti-
mization) are the computational tractability of the deterministic approximation and
the very mild assumptions needed on the probability distribution of the stochastic
variables involved.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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