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Abstract. One of the most fascinating challenges in Physics is the
realization of an electron-based counterpart of quantum optics, which
requires the capability to generate and control single electron wave
packets. The edge states of quantum spin Hall (QSH) systems, i.e.,
two-dimensional (2D) topological insulators realized in HgTe/CdTe and
InAs/GaSb quantum wells, may turn the tide in the field, as they do
not require the magnetic field that limits the implementations based
on quantum Hall effect. However, the band structure of these topologi-
cal states, described by a massless Dirac fermion Hamiltonian, prevents
electron photoexcitation via the customary vertical electric dipole tran-
sitions of conventional optoelectronics. So far, proposals to overcome
this problem are based on magnetic dipole transitions induced via
Zeeman coupling by circularly polarised radiation, and are limited by
the g-factor. Alternatively, optical transitions can be induced from the
edge states to the bulk states, which are not topologically protected
though.

Here we show that an electric pulse, localized in space and/or time
and applied at a QSH edge, can photoexcite electron wavepackets by
intra-branch electrical transitions, without invoking the bulk states or
the Zeeman coupling. Such wavepackets are spin-polarised and propa-
gate in opposite directions, with a density profile that is independent
of the initial equilibrium temperature and that does not exhibit dis-
persion, as a result of the linearity of the spectrum and of the chiral
anomaly characterising massless Dirac electrons. We also investigate
the photoexcited energy distribution and show how, under appropriate
circumstances, minimal excitations (Levitons) are generated. Further-
more, we show that the presence of a Rashba spin–orbit coupling can
be exploited to tailor the shape of photoexcited wavepackets. Possible
experimental realizations are also discussed.
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1 Introduction

Electron quantum optics is one of the most fascinating and rapidly growing fields in
Physics. Its goal, i.e., the realization of an electron-based counterpart of quantum
optics, requires the capability to generate and control single electron wave pack-
ets, where one could encode, transmit and process information [1–3]. Presently, the
edge channels of quantum Hall (QH) systems are considered the reference platform
to achieve this purpose [4–15]: electrons injected by electron pumps in these chiral
one-dimensional (1D) edge channels can propagate ballistically and coherently over
various micrometers, topologically protected from backscattering off disorder. Fur-
thermore, quantum point contacts can be used as the analogue of electron beam
splitters. There is, however, a major drawback limiting the large scale applications of
QH-based electron quantum optics, namely the strong values of magnetic field that
are needed to generate the ballistic edge states.

A quite promising alternative is the quantum spin Hall (QSH) effect [16–18],
where edge channels do not require any applied magnetic field, as they originate
from a spin–orbit induced topological transition. These QSH edge channels, observed
in HgTe/CdTe [19–22] and InAs/GaSb [23–26] quantum wells, are also protected from
backscattering off non-magnetic impurities, as their group velocity is locked to their
spin orientation. Notably, QSH edge states also offer two more important advantages.
First, quite similarly to photons, they exhibit a linear electronic spectrum, where the
Fermi velocity vF plays the role of the speed of light c. As a consequence, a freely
propagating electronic wave packet does not feature the customary dispersion arising
in conventional parabolic band materials. This is crucial for the information trans-
mission rate, which requires the generation of wavepackets sequences that propagate
without overlapping. Second, QSH edge states are helical, meaning that their spin
orientation is locked to the group velocity. This means that electron wavepackets
propagating in a given direction along the edge are characterized by a well defined
spin polarization. For all these reasons, QSH edge states may be a promising platform
for electron quantum optics [27–33].

In order to generate electron wave packets in a controlled way, photoexcitation is
perhaps the most customary approach. However, QSH edge states exhibit an impor-
tant difference with respect to customary optoelectronics systems: the vertical electric
dipole transitions that typically occur between valence and conduction bands of con-
ventional semiconductors are forbidden in QSH edge states, due to a selection rule
arising from their helical nature. To tackle this problem, some works have proposed
to exploit circularly polarised radiations, whose magnetic field can induce magnetic
dipole transitions on the edge states. This approach, relying on Zeeman coupling
[34–36] is, however, limited by the rather small g-factor. Alternatively, it is possible
to induce optical transitions from the edge states to the bulk states [35,37] thereby
losing, however, the topological protection from disorder, which is one of the most
interesting features of topological systems. Most of these approaches are based on
what is known in optoelectronics as the far field regime, where a monochromatic
radiation is applied over the whole sample for a duration that is long compared to
its oscillation period.

In this article, we show that in the so called near field regime the photoexcita-
tion in QSH edge states is possible without invoking the bulk states or the Zeeman
coupling: when the electric field is applied on a spatially localised region and for a
finite time, one can photoexcite localised electron wave packets that propagate with a
density profile that maintains its shape unaltered, without dispersion and with a well
specified spin polarization. Such photoexcited space density profile is independent of
the temperature, of the initial equilibrium state and depends only – and linearly–
on the intensity of the applied pulse. These properties, which are derived exactly,
are due to the linearity of the spectrum and the chiral anomaly effect characterizing
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QSH edge states, and do not rely on any linear response assumption. We also show
that the energy correlations induced by the photoexcitation depend on the initial
temperature, and that the photoexcited energy distribution does not merely amount
to particle-hole excitations, i.e., to a reshuffling of electron states from below to above
the equilibrium Fermi level as a result of the electric pulse. Instead, due to the chi-
ral anomaly effect, the electric pulse effectively gives rise to a net creation of charge
of one electron branch (compensated by the annihilation of charges of the opposite
branch) and under appropriate circumstances one can generate minimal (i.e., purely
particle or hole) excitations in each QSH helical branch. So far, these excitations,
also known as Levitons [38–46], have been observed in ballistic channels in 2DEGs
[47–50]. Furthermore, by analyzing the interplay between the photoexcitation process
and the presence of Rashba spin–orbit interaction, we show that the latter can be
exploited to tailor the shape of the photoexcited QSH wavepackets.

The article is organised as follows. In Section 2 we present the model, briefly recall
the goal of the photoexcitation problem, and present the exact solution of the massless
Dirac equation coupled to an electromagnetic pulse. Then, in Section 3, we use such
result to determine the general expressions for the photoexcited electron density
profile and energy correlations induced by the photoexcitation process, pointing out
how to obtain gauge-invariant results. In Section 4 we specify such general results to
various types of applied electric pulse, computing the photoexcited electron density
profile and the photoexcited energy distribution. Finally, in Section 5 we discuss the
interplay between the photoexcitation and presence of Rashba spin–orbit interaction,
whereas in Section 6 we propose some possible experimental realization schemes. We
finally summarize and conclude in Section 7.

2 Model for photoexcitation in QSH edge states

2.1 Hamiltonian

Let us focus on one edge of a QSH system and denote by x the coordinate along
the boundary. A Kramers’ pair of one-dimensional (1D) counterflowing helical states
is described by a spinor field operator Ψ(x) = (ψ↑(x), ψ↓(x))T , where ↑ and ↓ refer
to the QSH edge spin orientation. The electronic system, initially in an equilibrium
state, is then exposed to an externally applied electric field, expressed as

E(x, t) = −∂xV − ∂tA/c (1)

in terms of scalar and vector potential, V and A, respectively. Here c is the speed of
light. The full Hamiltonian thus reads

Ĥ = Ĥ◦ + Ĥem, (2)

where Ĥ◦ denotes the electronic contribution, while

Ĥem = e

∫
dxV (x, t) n̂ − e

c

∫
dxA(x, t) Ĵ (3)

describes the coupling to the electromagnetic field, where

n̂ = Ψ†(x)Ψ(x) = n̂↑ + n̂↓ (4)



4 The European Physical Journal Special Topics

is the total electron density operator, with n̂σ
.
= ψ†σψσ(σ = ↑, ↓) denoting the spin-

resolved density, and Ĵ is the current density operator, whose explicit expression
depends on the electronic term Ĥ◦. In particular, we shall mostly focus on the case
where the electronic contribution describes the purely linear spectrum of the QSH
edge states, and consists of the massless Dirac fermion ‘kinetic’ term

Ĥ◦ = Ĥkin = vF

∫
dxΨ†(x)σ3px Ψ(x) (5)

where vF is the Fermi velocity, px = −i~∂x, and σ1,2,3 are Pauli matrices. Then, the

expression for the electronic current Ĵ appearing in (3) reads

Ĵ = vFΨ
†(x)σ3Ψ(x) = vF (n̂↑ − n̂↓) . (6)

We anticipate, however, that in Section 5 we shall include in Ĥ◦ also the Rashba
spin–orbit coupling along the edge, and in that case the expression of Ĵ gets mod-
ified. Finally, the Zeeman coupling ascribed to the magnetic field arising from
time-dependence of E(x, t) can be shown to be negligible [33] and will be omitted
henceforth.

2.2 Statement of the problem and the gauge invariance issue

In the initial equilibrium state, i.e., before the term (3) is switched on, the space-time
evolution of the electron field operator is dictated by the term (5) and is given by

ψ◦σ(x, t) =
1√

2π~vF

∫
dEe

−iE~ (t∓ x
vF

)
c◦E,σ σ =↑, ↓= ±, (7)

where the correlation between the energy mode operators c◦E,σ

G◦σ(E, Ẽ)
.
=

〈
c◦ †
E+ Ẽ

2 ,σ
c◦
E− Ẽ2 ,σ

〉
= δ(Ẽ) f◦(E) (8)

is purely diagonal and characterized by the Fermi equilibrium distribution function
f◦(E) = [1 + exp[(E − µ)/kBT ]]

−1
, with chemical potential µ and temperature T .

Here energies are measured with respect to the Dirac level. Furthermore, the space
profile of the equilibrium density is uniform

n◦σ = 〈ψ◦ †σ (x, t)ψ◦σ(x, t)〉 = const =
µ+ Ec
2π~vF

(9)

where Ec denotes the ultraviolet energy cut-off of the band dispersion.

When the electric pulse is applied, the system is driven out of equilibrium by
the term equation (3), and the space profile, as well as the energy correlations are
modified. The goal of the investigation is to determine the photoexcited density profile
and energy correlations, i.e., the deviations of these quantities with respect to their
equilibrium value,

∆nσ(x, t)
.
= 〈ψ†σ(x, t)ψσ(x, t)〉 − 〈ψ◦ †σ (x, t)ψ◦σ(x, t)〉 (10)

∆Gσ(E, Ẽ;x)
.
= 〈c†

E+ Ẽ
2 ,σ

(x)c
E− Ẽ2 ,σ

(x)〉 − 〈c◦ †
E+ Ẽ

2 ,σ
c◦
E− Ẽ2 ,σ

〉 (11)
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where ψσ(x, t) is the electron field evolution for the full Hamiltonian (2), and the
local (i.e., x-dependent) density mode operators, defined as

cE,σ(x)
.
=

√
vF
2π~

∫
dt e

+iE~ (t∓ x
vF

)
ψσ(x, t), (12)

identify the energy weight of the electron field operator at the space point x.

Importantly, we observe that the Hamiltonian (2) depends on the specific gauge
(V,A) chosen to describe the electric field (1). However, a physically meaningful
observable can only depend on the applied electric field, and not on the gauge choice.
Thus, the essential prerequisite for a correct result about photoexcitation is that it
must be left invariant by any gauge transformation V → V ′ = V − (~/e)∂tχ

A → A′ = A+ (~c/e)∂xχ

Ψ(x, t) → Ψ ′(x, t) = eiχ(x,t)Ψ(x, t)
(13)

where χ is any arbitrary function. We emphasize that, since gauge invariance issue
is tightly connected to the conservation of electrical charge, this aspect cannot be
overlooked. In systems described by a linear spectrum (massless Dirac fermions), such
requirement involves some subtlelties that are not present in conventional systems
described a parabolic spectrum (Schrödinger fermions), as we shall discuss below.

2.3 Exact solution of the massless Dirac equation coupled to an electric field
in 1+1 dimensions

In a given gauge (V,A) of electromagnetic potentials, the equations of motion for the
electron field operator are dictated by the Hamiltonian (2) with equations (3) and
(5), and read

i~∂tΨ =
(
vFσ3 (p̂− e

c
A(x, t)) + eV (x, t)σ0

)
Ψ, (14)

where σ0 is the 2 × 2 identity matrix. Equation (14) is the massless Dirac equation
coupled to the electromagnetic potentials in 1+1 dimensions. Since the matrix term
on the right-hand side is purely diagonal, the equations for the two components ψ↑
and ψ↓ are decoupled and can be solved exactly [32], obtaining

ψ↑,↓(x, t) = ψ◦↑,↓(x∓ vF t) e±iφ↑,↓(x,t), (15)

where ψ◦↑,↓(x∓ vF t) denotes the space-time evolution of the electron field component

of equation (5), i.e., in absence of the electromagnetic coupling, and represents genuine
right-moving electrons with spin-↑ and left-moving electrons with spin-↓, respectively.
In contrast, the phases φ↑,↓ encode the effect of the electromagnetic potentials V (x, t)
and A(x, t), and can be given two equivalent expressions

φ↑(x, t) =
evF
~c

∫ t

−∞
(A− c

vF
V )(x− vF (t− t′), t′) dt′

=
e

~c

∫ x

−∞
(A− c

vF
V )(x′, t− x− x′

vF
) dx′ (16)
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and

φ↓(x, t) =
evF
~c

∫ t

−∞
(A+

c

vF
V )(x+ vF (t− t′), t′) dt′

=
e

~c

∫ ∞
x

(A+
c

vF
V )(x′, t+

x− x′

vF
) dx′. (17)

The above expressions have a straightforward physical interpretation. The first (sec-
ond) line of equation (16), for instance, expresses the phase φ↑(x, t) induced by the
electromagnetic field on the helical right-moving electron ψ◦↑(x− vF t) as a convolu-

tion over time (space) of the values of the electromagnetic potentials at times earlier
than t and at positions located on the left of x, propagating with the electron Fermi
velocity vF according to the dynamics dictated by equation (5). It is worth pointing
out that the phases (16) and (17) are gauge dependent, as they characterize the exact
solution of the gauge-dependent equation of motion (14). In the next section we shall
show how to obtain gauge independent results.

3 General results for photoexcitation

3.1 Photoexited electron density profiles

Since the whole effect of the electromagnetic coupling amounts to the phases (16)
and (17) that multiply the result ψ◦σ in absence of electric pulse, one might at first
naively think that such phases drop out when computing field bilinear from equation
(15), such as densities n̂σ = ψ†σψσ (with σ =↑, ↓). That would mean that the numbers
of right- and left-moving electrons are separately conserved, remaining equal to the
value n̂◦σ = ψ◦σ

†ψ◦σ without electric field. One would thus be tempted to conclude
that the electric pulse does not alter the equilibrium density profiles (∆n̂σ ≡ 0)
and, in particular, that the chiral density n̂a = Ψ†σ3Ψ = n̂↑ − n̂↓ is conserved. This
conservation of the chiral density would also seem to agree with Nöther’s theorem,
following from the existence of the chiral symmetry Ψ(x, t)→ Ψ ′(x, t) = eiζ(x,t)σ3Ψ(x, t)

V → V ′ = V − (~/e)σ3 ∂tζ
A → A′ = A+ (~c/e)σ3 ∂xζ

(18)

of the equation of motion (14). However, such conclusion is wrong. The obvious
physical reason is that an applied electric field must modify the electron current
(6). The mathematical reason is that, despite the existence of such symmetry and
the decoupling of the equation (14), the infinite number of states characterizing the
Fermi sea leads to an anomalous breaking of Nöther’s conservation law. This non-
trivial effect is known as the chiral anomaly. Here we shall only summarize the main
technical aspects related to the 1+1 dimensional case of QSH edge states (details can
be found in Ref. [32]), before describing its effects on the photoexcitation properties.
A physically correct photoexcited density must be finite and gauge independent. In
order to fulfill these two requirements, one computes the photoexcited density as

∆nσ(x, t)
.
= lim

(x′,t′)→(x,t)

〈
ψ†σ(x′, t′)ψσ(x, t) e−iWL(x,t,x

′,t′) − ψ◦σ
†(x′, t′)ψ◦σ (x, t)

〉
◦
, (19)
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where ψσ(x, t) is the electron field operator in the presence of the electromagnetic
field, equation (15), while ψ◦σ(x, t) is the one in absence of electromagnetic field.
The point-splitting procedure, which is equivalent to introducing a cut-off in k-space,
enables one to regularize the infinite ground state contribution, which is already
present without electromagnetic field and can thus be safely subtracted, thereby
obtaining a finite result. However, such result would be gauge-dependent since the
point-splitting procedure breaks the gauge invariance. Thus, the Wilson line

WL(x, t, x′, t′) =
e

~c

∫ (x′,t′)

(x,t)

(cV dt′′ −Adx′′) (20)

connecting the two split points (x′, t′) and (x, t) is introduced in equation (19) to
restore the gauge invariance, guaranteeing that the result is independent of the spe-
cific gauge (V,A) chosen for the electric field (1). Applying the above procedure,
and inserting the exact solution (15) into equation (19), one obtains the following
equivalent expressions for the photoexcited density profiles [32]

∆n↑(x, t) = +
e

2π~

∫ t

−∞
E(x− vF (t− t′), t′) dt′

= +
e

2π~vF

∫ x

−∞
E(x′, t− x− x′

vF
) dx′

= +
1

2π

(
∂xφ↑(x, t)−

e

~c
A(x, t)

)
= − 1

2πvF

(
∂tφ↑(x, t) +

e

~
V (x, t)

)
, (21)

and

∆n↓(x, t) = − e

2π~

∫ t

−∞
E(x+ vF (t− t′), t′) dt′

= − e

2π~vF

∫ ∞
x

E(x′, t+
x− x′

vF
) dx′

= +
1

2π

(
∂xφ↓(x, t) +

e

~c
A(x, t)

)
= +

1

2πvF

(
∂tφ↓(x, t)−

e

~
V (x, t)

)
. (22)

Three comments are in order about this result. First, their gauge invariance clearly
appears from the first two lines of equations (21) and (22), which depend only on
the electric field. Second, they are exact (as far as the model for linear spectrum
holds) and do not rely on any linear response approximation. Third, the profile are
independent of the temperature T and of the chemical potential µ of the initial
equilibrium state.
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3.1.1 Chiral anomaly

By taking time and space derivatives of the first lines of the obtained photoexcited
densities equations (21) and (22), one can straightforwardly prove that

(∂t + vF∂x)∆n̂↑(x, t) = +
e

2π~
E(x, t)

(∂t − vF∂x)∆n̂↓(x, t) = − e

2π~
E(x, t),

(23)

showing that the electric field E(x, t) breaks the conservation laws appearing on the
left hand side, thereby effectively creating and destroying electrons in each branch.
Importantly, by taking sum and difference of equation (23) one finds

∂t∆n̂(x, t) + ∂x∆ĵ(x, t) = 0 (24)

∂t∆n̂
a(x, t) + ∂x∆ĵ

a(x, t) =
e

π~
E(x, t). (25)

The continuity equation (24) for the electron charge ∆n̂ = ∆n̂↑ + ∆n̂↓ is fulfilled,
due to the gauge invariance under equation (13). However, the conservation law

involving the axial charge ∆n̂a = ∆n̂↑ − ∆n̂↓ and axial current ∆ĵa = vF (∆n̂↑ +
∆n̂↑), which would be expected from the chiral symmetry equation (18), is broken
by the anomalous term appearing in equation (25). This is the chiral anomaly effect,
first discovered in high energy physics [51–54] and nowadays on the spotlight in
condensed matter physics [55–58] both in 3D Weyl semimetals [59–62] and in 1D
QSH edge states [63]. Notably, the anomalous term on the r.h.s. of equation (25)
[or equivalently in Eq. (23)] depends only on the universal constant e/2π~ and the
electric field E(x, t), and not on the electron degrees of freedom. This shows the close
relation between the chiral anomaly and the above mentioned T - and µ-independence
of∆nσ(x, t) for massless Dirac fermions. Indeed for massive fermions with a non-linear
dispersion relation, equation (25) would display an additional (non-anomalous) term,
proportional to the mass and dependent on the electronic state [54].

3.2 Photoexcited local energy correlations

Let us now consider the electronic correlations. While in reference [32] we have
focussed mostly on the photoexcited momentum distribution, which is a correla-
tion of electron operators at different space points and at the same time t′ = t, here
we shall focus on the local correlation (i.e., at equal space point x′ = x) at different
times, described by

Gσ(t2, t1;x)
.
= e−

ie
~
∫ t1
t2
V (x′,t) dt′ 〈ψ†σ(x, t1)ψσ(x, t2)

〉
σ =↑, ↓, (26)

where the phase pre-factor involving the scalar potential V is nothing but the Wilson
line (20) in the particular case of equal space point correlations x′ = x, and guarantees
the gauge invariance of the equation (26). By Fourier transforming equation (26) with
respect to the time difference t′ = t1 − t2 and the average time t = (t1 + t2)/2, one
obtains the correlation in the energy domain,

Gσ(E, Ẽ;x) =
vF
2π~

∫∫
dt dt′e−i

Et′
~ e−i

Ẽt
~ Gσ(t− t′

2
, t+

t′

2
;x). (27)
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Inserting the exact space-time evolution obtained in equation (15) for the electron
field operator into equations (26) and (27), one expresses the energy correlation as

G↑,↓(E, Ẽ;x)=
1

4π~

∫ +∞

−∞
dt e−iẼt/~

(
−i lim

a→0

∫ +∞

−∞

e∓i∆φ
es
↑,↓(t,t

′;x)e−i(E−µ)t
′/~

lT sinh[π(vF t′ − ia)/lT ]
d(vF t

′)

)
,

(28)
where lT = ~vF /kBT is the thermal lengthscale related to the equilibrium temper-
ature T , whereas a = ~vF /Ec is a short distance related to the ultra-violet energy
cutoff Ec. Furthermore, the dimensionless quantity

∆φes↑,↓(t, t
′;x)

.
= φ↑,↓(x, t+

t′

2
)− φ↑,↓(x, t−

t′

2
)± e

~

∫ t+ t′
2

t− t′2
V (x, t′) dt′ (29)

denotes the gauge invariant phase difference at equal space (es) points x = x′, where
the second term on the right-hand side compensates for the gauge dependence of the
first term φ↑,↓, given by equations (16) and (17).

In particular, for the initial equilibrium state the correlation (26) is given by

G◦σ(t2, t1;x) = 〈ψ◦σ
†(x, t1)ψ◦σ (x, t2)〉◦ = −i eiµ(t1−t2)/~

2lT sinh
[
πvF (t1 − t2 − i~

Ec
)/lT

] , (30)

and depends only on the time difference. Thus, once inserted into equation (27),
it straightforwardly yields the diagonal equilibrium energy correlation (8), which

vanishes for any Ẽ 6= 0.
In contrast, when the time-dependent electric pulse is applied, the out of equi-

librium correlation (26) does not necessarily depend on the difference t′ = t1 − t2
between the two time arguments, due to the phase difference (29) and the Wilson pref-
actor. Thus, the photoexcited energy distribution, i.e., the deviation of equation (28)

from the equilibrium value (8), also contain ‘off-diagonal’ terms Ẽ 6= 0, and can be
expressed as

∆G↑,↓(E, Ẽ;x) = ∓ 1

4π~
1

lT

∫ +∞

−∞
dt e−iẼt/~

×
∫ +∞

−∞

sin
[
∆φes↑,↓(t, t

′;x)± (E − µ)t′/~
]
∓ sin [(E − µ)t′/~]

sinh[πvF t′/lT ]
d(vF t

′). (31)

The photoexcited energy distribution is obtained as the diagonal term Ẽ → 0 of the
photoexcited energy correlations, i.e.,

∆ν↑,↓(E;x)
.
= ∆G↑,↓(E, Ẽ = 0;x). (32)
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4 Explicit results for specific cases

4.1 Plane wave pulse

In order to appreciate the role of the finite duration of the applied electric pulse, let
us first consider the case where a plane wave is applied for a time duration τ

E(x, t) = E0 θ(
τ

2
− t)θ(τ

2
+ t) cos(

Ωx

c
) cos(Ωt), (33)

where Ω and τ are the frequency the duration of the pulse, respectively, and θ
denotes the Heaviside function. Applying the general result equations (21) and (22)
to equation (33), and focussing on the times t > τ/2 after the end of the pulse, one
finds

∆n↑,↓(x, t) = ± eE0

2π~Ω

(∑
r=±

sin
[
Ωτ(1 + r vFc )/2

]
(1 + r vFc )

)
cos

[
Ω

c
(x∓ vF t)

]
t >

τ

2
.

(34)
We can now consider two limits of equation (34). For a long pulse and/or high fre-
quency (Ωτ � 1) one straightforwardly sees that the photoexcited density profiles
vanishes,

∆n↑,↓(x, t) = ± eE0

2~Ω
cos

[
Ω

c
(x∓ vF t)

] (
δ(1 +

vF
c

) + δ(1− vF
c

)
)

= 0. (35)

In this case the electron system probes the whole plane wave both in space and time,
and momentum and energy conservation laws lead to a vanishing response: there
cannot be intra-branch transitions because of the difference between the electron
Fermi velocity vF and the speed of light c.

In contrast, in the case of a short pulse and/or low frequency (Ωτ � 1) one finds

∆n↑,↓(x, t) = ±eE0τ

2π~
cos

[
Ω

c
(x∓ vF t)

]
. (36)

In this situation only the momentum q = Ω/c is conserved, whereas energy is not, so
that the electron density propagates oscillating in time with a frequency

Ωel = ΩvF /c (37)

lower than the frequency Ω of the electromagnetic wave. In particular, denoting by L
the size of the system, in the customary situation ΩL/c� 1, one obtains

∆n↑,↓(x, t) ' ±
eE0τ

2π~
cos
[vF
c
Ωt
]

(38)

i.e., the electron system sees a spatially uniform field that oscillates in time with a
lower frequency Ωel = ΩvF /c, and the charge distribution is also uniform.
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4.2 Gaussian electric pulse

Let us now consider the case of an electric field that is localized both in time and
space. In particular, a Gaussian electric pulse is described by

E(x, t) = E0 e
− x2

2∆2 e−
t2

2τ2 , (39)

where ∆ and τ denote its space extension and time duration around the space and
time origin, respectively, and E0 is its amplitude. Here below we present the result
for the case (39), focussing on the density space profile and the energy distribution of
the photoexcited wave packets. Substituting the pulse (39) into equations (21) and
(22), one obtains

∆n↑,↓(x, t) = ±eE0

2π~
D

vF

√
π

2
e
− (x∓vF t)

2

2(∆2+(vF τ)
2)

[
1 + Erf

(
D√

2

(
± x

∆2
+

t

vF τ2

))]
where

D
.
=

vF τ∆√
∆2 + (vF τ)2

(40)

is an effective length scale involving both the space extension ∆ and the time duration
τ of the pulse. At long times (t � τ) and away from the region of applied pulse
(σx� ∆), the argument of Error function is large, and one can find the asymptotic
expression

∆n↑,↓(x, t) ' ±
eE0

2π~
τ∆
√

2π√
∆2 + (vF τ)2

e
− (x∓vF t)

2

2(∆2+(vF τ)
2) , (41)

which describes two spin-polarised photoexcited wave packets propagating rightwards
and leftwards, respectively. Notice that the shape of the electron densities ∆n↑,↓ is
Gaussian. However, the space extention

∆el =
√
∆2 + (vF τ)2 (42)

depends on both the space extension ∆ and the time duration τ of the electric pulse,
and is bigger than ∆.

4.3 Spatial δ-pulses

In the particular limit where the electric pulse is applied over a short region,∆� vF τ ,
equation (39) can be treated as a spatial δ-pulse, E(x, t) = E0 δ(x) exp(−t2/2τ2) upon

identifying E0 = E0∆
√

2π. In this case the spatial extension (42) of the photoexcited
electron density profile is only given by ∆el ' vF τ , where τ is the pulse duration. This
is a particular case of a spatial δ-pulse. Let us thus analyze this situation in more
general terms, allowing for a generic time dependence V(t) for the spatial δ-pulse
centered around x = 0,

E(x, t) = δ(x)V(t) (43)
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where [V] = voltage. Among all possible gauges reproducing the electric pulse
equation (43), two are worth being mentioned,

(pure A-gauge)

{
V = 0

A(x, t) = −c δ(x)
∫ t
−∞V(t′) dt′

(44)

(pure V -gauge)

{
V (x, t) = θ(−x)V(t)
A = 0.

(45)

The photoexcited density profiles are obtained by inserting equation (43) into the
general result (21) and (22), obtaining

∆n↑,↓(x, t) = ± e

2π~vF
θ(±x)V

(
t∓ x

vF

)
, (46)

whence we see that the spatial shape of two counter-propagating spin polarized
wavepackets is determined by the time profile V of the pulse.

The phases induced by the electromagnetic field are obtained from the general
results (16) and (17) and, in particular for the two gauges (45) and (44), one gets

(pure A-gauge) φ↑,↓(x, t) = − e

~
θ(±x)

∫ t∓ x
vF

−∞
V(t′′) dt′′ (47)

(pure V -gauge) φ↑,↓(x, t) = − e

~
θ(±x)

∫ t∓ x
vF

−∞
V(t′) dt′ ∓ e

~
θ(−x)

∫ t

−∞
V(t′) dt′ (48)

while the gauge invariant phase difference equation (29) determining the photoin-
duced energy correlations through equation (31) is given by

∆φes↑,↓(t, t
′;x) = − e

~
θ(±x)

∫ t∓ x
vF

+ t′
2

t∓ x
vF
− t′2

V(t′′) dt′′. (49)

4.3.1 The case of a localized Lorentzian pulse

Let us consider as a specific example the case of spatial δ-pulse (43) with a Lorentzian
time shape,

V(t) =
2~u0

e

τ

t2 + τ2
(50)

where u0 is a dimensionless amplitude parameter and τ is the duration timescale.
The photoexcited density profiles are straightforwardly obtained from

equation (46)

∆n↑,↓(x, t) = ±θ(±x)
u0
πvF τ

(vF τ)2

(x∓ vF τ)
2

+ (vF τ)2
(51)

and are depicted in Figure 1, where the different curves refer to various time snap-
shots. We emphasize that, from the general result of reference [32] presented in
Section 3.1, the density profile (51) is temperature independent for arbitrary u0.
This was also confirmed for the case u0 = 1 in reference [44].
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Fig. 1. Photoexcited electron density profiles, generated by a spatial δ-pulse with Lorentzian
time profile characterized by τ = 1ps [see Eqs. (43) and (50)], and are plotted as a function
of the distance along the QSH edge from the location of the pulse x = 0, at different time
snapshots, t = 0.2 ps (black dashed curve), t = 1.5 ps (red dash-dotted curve) and t = 3 ps
(blue solid curve). The two wavepackets propagate in opposite directions with opposite
spin. Their space profile maintains unaltered without dispersion and is independent of the
temperature of initial equilibrium state, due to the linearity of QSH helical edge states
spectrum. The value vF = 5× 105 m/s is taken for the QSH edge Fermi velocity.

As one can see, two spin-polarised wavepackets are gradually generated at the
origin x = 0, where the pulse is applied, and start to travel in opposite directions
with a Lorentzian spatial shape with a spatial extension vF τ . We emphasize that (i)
the photoexcited density profile preserves its shape without any dispersion and (ii) is
independent of the temperature and the chemical potential of the initial equilibrium
state [32]. Both these features are due to the linearity of the massless Dirac spectrum
of QSH edge states. Indeed similar features have been recently found in metallic
carbon nanotubes [64] also described by a similar model.

Let us now consider the energy correlations induced by the photoexcitation. To
this purpose, we first derive from equation (49) the gauge invariant phase difference,
obtaining

∆φes↑,↓(t, t
′;x) = −2u0θ(±x)

(
arctan

(
t+ t′

2

τ

)
− arctan

(
t− t′

2

τ

))
(52)

and then insert it in equation (31). From equation (52) we note that ∆φes↑ (t, t′;x) =

∆φes↓ (t, t′;−x) and we can then deduce from equation (31) the general relation

∆G↓(E − µ, Ẽ;x) = −∆G↑(µ− E, Ẽ;−x). (53)

It is therefore enough to compute only ∆G↑. In particular, we shall focus on the diag-

onal limit Ẽ → 0 [see Eq. (32)], which describes the photoexcited energy distribution,
i.e., the deviation from the equilibrium Fermi distribution (8). The result is plotted
in Figure 2 as a function of energy deviation from the equilibrium Fermi level, for two
values of the Lorentzian amplitude parameter, u0 = 0.7 in panel (a) and u0 = 1 in
panel (b). Two important aspects emerge. The first one can be deduced by inspecting
the various curves, which describe the behavior of ∆ν↑(E;x) for different values of
temperatures. The photoexcited energy distribution ∆ν↑(E;x) does depend on the
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Fig. 2. The energy distribution equation (32) of the spin-↑ electrons photoexcited by a space
δ-pulse is plotted as a function of the energy deviation from the initial equilibrium chemical
potential µ, in units of 2τ/~. The time shape of the pulse is Lorentzian, equation (50),
with time parameter τ = 1 ps and amplitude parameter u0 = 0.7 [panel (a)], and u0 = 1
[panel (b)]. The various curves refer to different temperatures, whose values are indicated in
the legenda, and are essentially independent of the location x, due to the fact that the pulse
is applied over a very narrow δ-like region. In both cases it appears that ∆ν↑(E;x) depends
on temperature, quite differently from the spatial density profile (see Fig. 1) and that the
integral of ∆ν↑(E;x) over energy is not vanishing: the photoexcitation process does not
simply redistribute electrons from below to above the Fermi level, a clear signature of the
chiral anomaly effect characterizing QSH edge states. In particular, the case (b) describes
purely particle excitations, also known as Levitons, whose zero temperature expression is
given by equation (55).

temperature T and on the chemical potential µ of the initial equilibrium state. On the
one hand, this can easily be understood from the fact that the equilibrium distribu-
tion characterizing the initial state occupancy determines which states are available
for the photoexcitation process. On the other hand, this is quite different from the
photoexcited density profiles ∆n↑,↓(x, t) [see Eqs. (21) and (22)], which are temper-
ature independent. This means that, for QSH edge states, despite the redistribution
induced by the photoexcitation process on the energy depends on the initial state, it
always occurs in such a way that the corresponding density profile is insensitive to
such initial state. For the sake of clarity, it is worth recalling that the photoexcited
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energy distribution is not the Fourier transform of the photoexcited density space
profile (which a local quantity in space and time), as the former takes into account
also the correlations at different times at that space point. This is why the essential
difference in terms of the temperature behavior emerges.

The second noteworthy aspect emerging from Figure 2a is that, although the
curves in general display a depletion (hole excitations) below the Fermi energy
and and enhancement (particle excitations) above the Fermi level, the integral of
∆ν↑(E;x) over energy is typically not zero. This means that, in general, the photoex-
citation process in QSH edge states does not simply generate particle-hole excitations
by reshuffling states from below to above the Fermi level and viceversa. Indeed,
besides this particle-hole contribution, there exists a net charge ‘creation’ effect for
spin-↑ electrons. This appears clearly in the case u0 = 1, shown in Figure 2b, where
the photoexcitation generates purely particle excitations above the Fermi level, with-
out holes. Such effective creation effect is a result of the infinite number of states
characterizing the ground state of Dirac fermions: the applied electric pulse pulls
up states from the depth of the Fermi sea so that, in comparison with the equilib-
rium state, a net charge is generated. This ‘creation’ is of course compensated by
the annihilation effect of spin-↓ electrons, ∆ν◦↓(E − µ;x) = −∆ν◦↑(µ−E;−x), as can

be deduced by equation (53), consistently with the fact that no net charge can be
created by an electromagnetic pulse (the careful treatment of gauge invariance pre-
cisely guarantees that the total charge of the system is conserved). This is the gist of
the chiral anomaly effect characterizing massless Dirac fermions [53]. Although the
two spin components are not coupled directly by the electromagnetic field, they are
coupled indirectly via the infinite depth of the Fermi sea. This physically means that,
above the QSH bulk gap, the edge channels get coupled through the bulk states of
the QSH quantum well. A similar situation occurs in one-dimensional ballistic chan-
nels of a 2DEG, where only near the Fermi level can the parabolic spectrum be well
approximated by two decoupled linear branches of right- and left-moving electrons.
However, near the band bottom such decoupling is not well defined and the hole left
at the bottom of the Fermi sea by a (say) photoexcited right-moving electron can be
occupied by a left-moving electron, which in turn leaves a hole at the other Fermi
point [40].

The peculiarity of the case u0 = 1 shown in Figure 2b was first noticed by Levitov
and coworkers [38–40], and can be rigorously proven by noticing that, in such case,

the exponential factor e−i∆φ↑(t,t
′;x) appearing in equation (28) reduces to

e−i∆φ↑(t,t
′;x)
∣∣∣
u0=1

=
∏
r=±

t′ + 2rt− 2iτ

t′ + 2rt+ 2iτ
, (54)

which is an analytical function in the upper half-plane of t′. Thus, when E < µ, a
closing of the integral contour of equation (28) in such half-plane only leaves the equi-
librium contribution. A non vanishing photoexcited local energy distribution can only
be found above the equilibrium Fermi level (purely particle excitation). Explicitly, at
zero temperature and u0 = 1 one finds

∆ν↑(E;x)|T=0 ;u0=1 = θ(x) θ(E − µ) 2τ
~ e−2|E−µ|τ/~ (55)

and, more in general, for the photoexcited energy correlations

∆G↑,↓(E, Ẽ;x)
∣∣∣
T=0 ;u0=1

= ±θ(±x) θ(±(E − µ)) e∓iẼx/~vF 2τ
~ · e

−2|E−µ|τ/~

×
(

sgn[2|E − µ|+ Ẽ] + sgn[2|E − µ| − Ẽ]
)
/2

(56)
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Note that equation (56) is independent of the position x. The existence of such
minimal excitations, also called Levitons, is currently on the spotlight in electron
quantum optics [41–46], especially after their experimental observation in ballistic
channels of a 2DEG [47–50] and the proposal of their detection in QH systems [65].

5 Interplay between photoexcitation and Rashba spin–orbit
coupling

In QSH systems, besides the bulk spin–orbit coupling underlying the topological
transition and giving rise to the very existence of the edge states, Rashba spin–orbit
coupling (RSOC) can emerge along the edge either because of disorder effects, due to
the random ion distribution in the heterostructure doping layers and to the random
bonds at the quantum well interfaces [66,67], or by intentional deformation of the
boundary curvature [68–72] or also by the electric field itself applied to local metallic
gate electrodes, e.g., to generate the electric pulse for the photoexcitation [73–76]. For
these reasons, we wish to address the interplay between RSOC and photoexcitation.
In the presence of RSOC, the electronic term appearing in (2) becomes

Ĥ◦ = Ĥkin + ĤR (57)

where the Rashba-coupling term

ĤR =
1

~

∫
dxΨ†(x)

1

2
{αR(x), px}σ2 Ψ(x) (58)

is characterised by a profile αR(x) and depends linearly on the momentum px. As a

consequence, the current operator Ĵ appearing in the electromagnetic coupling (3) is
modified into

Ĵ = vFΨ
†(x)

(
σ3 +

αR(x)

~vF
σ2

)
Ψ(x) = vF

[
n̂↑ − n̂↓ +

iαR(x)

~vF
(ψ†↓ψ↑ − ψ

†
↑ψ↓)

]
(59)

in order to ensure charge conservation. The Hamiltonian (2) can be compactly rewrit-

ten as Ĥ =
∫
dxΨ†(x)H(x)Ψ(x), where the first-quantized Hamiltonian density

is

H(x) =
vF
2

{
σ3 + tan θR(x)σ2 , px −

e

c
A(x, t)

}
+ eV (x, t)σ0, (60)

with σ0 denoting the 2 × 2 identity matrix and θR ∈ [−π/2; +π/2] is the Rashba
angle, defined as

θR(x)
.
= arctan

αR(x)

~vF
. (61)

Due to the RSOC, the Hamiltonian (60) is no longer diagonal, and the dynamics
of the spin components ψ↑ and ψ↓ is coupled. This suggests that the field Ψ , i.e.,
the basis of spin components, is not the most suitable one to obtain the dynamical
evolution. Instead, it is worth switching to another basis, by re-expressing the electron
field spinor Ψ as a rotation around σ1 by the space-dependent Rashba angle θR(x)

Ψ(x)
.
= e+

i
2σ1θR(x) X(x) (62)
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where

X(x) =

(
χ+(x)

χ−(x)

)
(63)

is called the “chiral” field spinor. The rotation (62) enables one to rewrite the

Hamiltonian (2) as Ĥ =
∫
dxΨ†(x)H(x)Ψ (x) =

∫
dxX†(x)Hχ(x)X(x), where

Hχ(x) =
1

2

{
v(x), px −

e

c
A(x, t)

}
σ3 + eV (x, t)σ0 (64)

is the Hamiltonian of massless Dirac fermions travelling with a space-dependent
velocity profile

v(x) =
vF

cos θR(x)
= vF

√
1 +

(
αR(x)

~vF

)2

≥ vF (65)

and exposed to the electromagnetic field. In the chiral basis (63) the RSOC, encoded
in the profile (65), always increases the velocity with respect to the bare value of
Fermi velocity vF , regardless of the sign of αR. Furthermore, in the chiral basis
the density (4) and the current density (6) acquire simple expressions, namely

n̂(x) = X†(x) X(x) = n̂+ + n̂− and Ĵ(x) = v(x) X†(x)σ3 X(x) = v(x)(n̂+− n̂−), with

n̂±
.
= χ†±χ±. Finally we emphasise that, since Hχ is diagonal in the chiral basis

[see Eq. (64)], the two components χ± of equation (63) are dynamically decoupled,
even when the electromagnetic field is applied and the RSOC is present. This fea-
ture implies that, in striking contrast with the original spin components ψ↑ and ψ↓,
which have a well defined propagation direction only away from the Rashba inter-
action region, the chiral components χ+ and χ− describe genuine right-moving and
left-moving electrons, respectively, even in the regions where Rashba interaction is
present. This is the origin of the term “chiral” and the reason for considering X as
the “natural basis” for Rashba-coupled states.

In the chiral basis it is now easy to generalize the results obtained in Section 2 to
the case of an inhomogeneous velocity. The dynamical evolution of the electron field
operator is given by(

∂t ± v(x)∂x ±
1

2
∂xv(x)

)
χ± = − ie

~

(
V (x, t)∓ v(x)

c
A(x, t)

)
χ±, (66)

whose solution is [33]

χ±(x, t) = e±iφ±(x,t) χ◦±(x, t). (67)

Here

χ◦±(x, t) =
1√

2π~ v(x)

∫
dE e

−iE~
(
t∓
∫ x
xr

dx′′
v(x′′)

)
ĉE± (68)

is a solution for the pulse-free case, equation (57), where the exponential phases
clearly show that χ◦± are genuine right- and left-moving electrons, respectively, prop-
agating with the inhomogeneous velocity (65), while ĉE+ and ĉE− denote fermionic

operators for right- and left-moving electrons at the energy E, fulfilling {ĉE± , ĉ
†
E′±}
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= δ(E − E′), and xr denotes an arbitrarily fixed reference point, such as the space
origin or the geometrical center of the RSOC profile. Furthermore, in equation (67)

φ+(x, t) =
e

~c

∫ x

−∞
dx′
(
A− c

v(x′)
V

)(
x′, t−

∫ x

x′

dx′′

v(x′′)

)

φ−(x, t) =
e

~c

∫ ∞
x

dx′
(
A+

c

v(x′)
V

)(
x′, t−

∫ x′

x

dx′′

v(x′′)

) (69)

describe the phases induced by the electromagnetic field, and generalize the expres-
sions (16) and (17) obtained without RSOC. The result (67) thus describes exactly –
within the assumption of independent electrons – the electron dynamics in the pres-
ence of both the RSOC and the electromagnetic field.

Proceeding in a similar way as was done in Section 3, one obtains the expressions
for the right- and left-moving photoexcited density profiles ∆n±, namely

∆n+(x, t) = +
e

2π~v(x)

∫ x

−∞
dx′E(x′, t−

∫ x

x′

dx′′

v(x′′)
) (70)

∆n−(x, t) = − e

2π~v(x)

∫ ∞
x

dx′E(x′, t−
∫ x′

x

dx′′

v(x′′)
), (71)

which are shown in Figure 3, where the interplay of a Gaussian electric pulse (39)
with a RSOC region (grey area) is described. Because of the inhomogeneous Fermi
velocity (65) induced by the RSOC, the electrons photoexcited inside and outside
the RSOC region have different Fermi velocities, generating the fuzzy shape of the
wavepackets. This interplay shows that the RSOC can be exploited to tailor the
shape of photoexcited wavepackets. Other examples and a thorough discussion of
these effects can be found in reference [33].

6 Proposal for experimental realisations

Two main realisations of QSH systems presently exist, namely in HgTe/CdTe
[18–22] and in InAs/GaSb [23–26] quantum wells. In their topological phase, con-
ducting helical edge states appear and exhibit a linear dispersion with a Fermi
velocity vF ' 5 × 105m/s and vF ' 2 × 104m/s, respectively [20,25], within a bulk
gap Eg ∼ 30 meV. The phase breaking length Lφ, i.e., the length scale for which the
analysis carried out in this paper is valid, is of the order of a few micrometers at
Kelvin temperatures.

A localised electromagnetic pulse can be generated with two techniques. The first
one is the use of near field scanning optical microscopy operating in the illumination
mode: an optical fiber with a thin aperture of tens of nanometers, positioned near the
edge, excites a strong electric field at the tip apex [77–81]. With this sophisticated
technique one obtains localised pulses, whose spatial center can also be easily dis-
placed. The second approach to create a localised electromagnetic pulse is somewhat
more straightforward: it consists in utilising side finger gate electrodes, deposited
close to a boundary of the QSH bar and biased by time-dependent voltages experi-
enced by the electrons in the edge [82], similarly to what has been proposed for a
2DEG [11,40,47–50]. In this case the spatial extension of the electric pulse is deter-
mined by the lateral width of the finger electrode, ∼100 nm, which can be biased
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Fig. 3. The photoexcitation process induced by a Gaussian electric pulse (39) (thin black
solid line) partially overlapping with a RSOC region (grey area): the profile of the photoex-
cited densities is plotted as a function of the spatial coordinate x along the QSH edge, at
different time snapshots. The parameters of the Gaussian pulse (39) are ∆ = 500 nm and
τ = 0.1 ps. The inhomogeneous Fermi velocity (65) induced by the RSOC leads to a fuzzy
shape of the wavepackets, resulting from a combination of the photoexcitation inside and
outside the RSOC region, where electrons have different Fermi velocities. The RSOC can
thus be exploited to tailor the shape of photoexcited wavepackets.

by a time-dependent gate voltage V(t). Note that the pure photoexcitation process
does not involve any electron tunneling from the finger electrodes, differently from
the case of electron pumps [2,4,7,10,14,15,83]. The recent advances in pump-probe
experiments and photo-current spectroscopy [6,11,47,84–89], make the time-resolved
detection of the photoexcited wave packets realistically accessible nowadays.

7 Conclusions

In conclusion, we have shown that, while in the customary far field regime verti-
cal electric dipole transitions are forbidden in QSH edge states, an electric pulse
localised in space and/or time and applied at the edge of a QSH system can pho-
toexcite electron wavepackets by intra-branch electrical transitions, without invoking
the bulk states or the Zeeman coupling. Several interesting features are found. First,
the wavepackets are spin-polarised and propagate in opposite directions. Their den-
sity profile depends linearly on the amplitude of the electric pulse, is independent
of the initial equilibrium temperature and does not disperse during propagation [see
Fig. 1]. This result, quite different from the one obtained in usual Schrödinger sys-
tems described by a parabolic spectrum, is exact and does not rely on any linear
response approximation. It is due to the linearity of the spectrum. Secondly, we have
analyzed the energy correlations and in particular the photoinduced energy distri-
bution. We have shown that such quantity does depend on temperature and on the
amplitude of the applied pulse in a highly non-linear way [see Fig. 2]. Furthermore
in energy domain the photoexcitation process does not merely amount to a redistri-
bution of states from below to above the Fermi level, rather it also involves a net
creation of charge on one branch (compensated by the annihiliation on the other
branch). This effect, which is the gist of the chiral anomaly characterizing massless
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Dirac electrons, is particularly evident in the case of a Lorentzian pulse with ampli-
tude parameter u0 = 1 [see Fig. 2b] that describes minimal particle excitations known
as Levitons [38–40]. These results may pave the way to the observation of Levitons
in QSH, whose existence has been so far experimentally proven in ballistic channels
in 2DEG [47–50]. Also, we have discussed the effects of Rashba spin–orbit coupling
on the photoexcitation process, showing that the former can be exploited to tailor
the shape of photoexcited wavepackets [see Fig. 3]. Finally, we have proposed possi-
ble experimental realizations. These results support the idea that QSH edge states
might be successfully exploited in the near future as a promising alternative platform
for electron quantum optics [27–33], which is nowadays mostly limited to quantum
Hall systems [4–15] with the unavoidable drawback of the strong magnetic fields.
In contrast, time-reversal topological insulators, which are based on spin–orbit cou-
pling, are immune to such drawback and offer the additional possibility of generating
spin-polarised electron wave packets.

Inspiring discussions with E. Bocquilllon, R. C. Iotti, and A. Montorsi are greatly
acknowledged.
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