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On Distributed Optimal Control of Traffic Flows in
Transportation Networks

Christian Rosdahl1, and Gustav Nilsson1, Giacomo Como1,2

Abstract— We propose and analyze distributed computation
algorithms for finite-horizon optimal control problems in trans-
portation networks. We model traffic flow dynamics by the
cell-transmission model and focus on two problems: system-
optimum dynamic traffic assignment (where the routing is part
of the optimization) and freeway network control (where the
routing is exogenous and the optimization is confined to speed
limits and ramp-metering controls). While these are non-convex
problems, we focus on some recently proposed provably exact
convex relaxations and apply Alternating Direction Method of
Multipliers techniques. We present fully distributed iterative al-
gorithms and implement them on some transportation network
testbeds, testing their convergence speed and accuracy.

I. INTRODUCTION

With the pervasive diffusion of interconnected GPS-based
devices and novel intelligent traffic control actuators, and
with connected and autonomous vehicles around the corner,
it is now possible to both obtain traffic state data and provide
real-time route guidance to drivers. Ideally, this data, together
with traffic control and route guidance possibilities, should
be used to reduce congestion, in order to decrease both travel
times for the users and pollution. This has renewed the
interest of the control systems community for the analysis
and synthesis of transportation networks.

Two classical optimal traffic flow control problems are the
Dynamic Traffic Assignment (DTA) and the Freeway Network
Control (FNC) problems. The former, originally introduced
in [2], [3], has been widely studied by the transportation
research community [4]. In its system-optimum version (as
opposed to the user-optimum framework), it entails the
minimization of a global cost of the whole network assuming
that one has the ability to control the drivers’ route choices
(something that might be achievable, e.g., through route
guidance with GPS unit, or proper incentives and pricing). In
the latter, see, e.g., [5], [6], [7], the traffic flow in the network
is controlled by variable speed limits on the freeways and
ramp-metering to achieve a system optimal flow in the
network.
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In this paper, we follow the approach in [8] and consider
formulations of the DTA and FNC problems in network
flow dynamics modeled by the Cell Transmission Model
(CTM) [9], [10] and their exact convex relaxations gener-
alizing [6] and [11]. Our main contributions are distributed
optimization algorithms solving such convexified DTA and
FNC problems, based on the Alternating Direction Method of
Multipliers (ADMM) method [12]. The proposed algorithms
are fully distributed, in the sense that each road segment only
needs information from its neighboring segments to com-
pute the optimal speed limit, ramp-metering signal or route
choices for the outgoing vehicles. Moreover, our method
is scaleable, so when the controlled network grows, only
segments connected to the newly built area need to update
their algorithms. We then present numerical implementations
of these algorithms for both the DTA and the FNC problem.

Another distributed algorithm for solving the considered
DTA problem is proposed in [13]. Except for that both
methods are inspired by ADMM, the approaches are quite
different. In [13], the constraints on the decision variables
are not included in the Lagrangian, and must thus instead be
taken into account when solving the distributed subproblems.
This allows for dividing the the decision variables into two
groups and performing the Lagrangian minimization in two
steps. In contrast, our method includes the constraints in the
Lagrangian. By performing the Lagrangian minimization in
more steps, this still allows the algorithm to be distributed,
while each subproblem can be solved easily and efficiently.

The paper is organized as follows. In the rest of this section
we will introduce some basic notation. In Section II we
present the dynamical model we use for the transportation
network together with the optimization problems we want
to solve and their convex relaxations. In Section III, the
distributed algorithm is presented, and simulations of it for
one DTA problem and one FNC problem are shown in
Section IV. The paper is concluded in Section V.

We let R(+) denote the (non-negative) reals. For a set A,
we denote the vector indexed by A as RA(+). We let G =
(V, E) denote a directed multigraph, where V is the set of
nodes and E the set of directed links. For a link i = (n,m) ∈
E , we denote its head ωi = m ∈ V and its tail τi = n ∈ V .

II. PROBLEM FORMULATION

In this section, we first introduce the controlled traffic flow
dynamics model as a discrete-time control system that can
be thought of as a generalized version of Daganzo’s CTM.
We then formulate the FNC and DTA problems as finite-
horizon optimal control problems for this model. Finally,



we present exact convex relaxations of these problems and
prove their tightness, i.e., that every optimal solution of the
relaxed problem can be mapped into an optimal solution of
the original problem. Both the presented setup and tightness
results are to be considered the discrete-time analogue of [8].

We model the transportation network topology as a di-
rected multigraph G = (V, E), where V is the set of nodes
and E is the set of links. Every link i ∈ E is directed from
its tail node τi ∈ V to its head node ωi ∈ V \ {τi}. Notice
that we allow for the possibility of parallel links, i.e., links
with the same tail node and head node, hence the prefix
in ‘multigraph’, but we do not allow for selfloops, i.e., links
whose head node coincides with its tail node. Each link i ∈ E
represents a cell, i.e., a portion of road. One particular node
w ∈ V represents the external world, with cells i such that
τi = w representing onramps and cells i such that ωi = w
representing offramps. We shall denote by

R = {i ∈ E : τi = w} , S = {i ∈ E : ωi = w} ,

the sets of onramps and offramps, respectively. Throughout,
we shall assume that every link i ∈ E lies on a cycle in
G that passes through node w. This assumption amounts to
saying that every cell is reachable from at least one onramp
and that from every cell at least one offramp can be reached.
The network topology is typically illustrated by omitting the
external world node w and letting sources have no tail node
and sinks have no head node. We shall denote the set of
adjacent pairs of cells by L = {(i, j) ∈ E2 : τj = ωi 6= w},
so that direct flow from a cell i to another cell j is possible
only if (i, j) ∈ L. We let the exogenous inflow to an onramp
i ∈ R be denoted by λi ≥ 0 and let µi ≥ 0 denote the
outflow from an offramp i ∈ S towards the external world.
Conventionally, we shall set λi = 0 for every non-onramp
cell i ∈ E \R, and µi = 0 for all non-offramp cells i ∈ E \S.

We consider a controlled traffic flow dynamics model
describing the evolution of the traffic volume among the
different cells. The traffic volume in every cell i ∈ E is
denoted by the variable xi ≥ 0, while we use the notation
ui ∈ [0, 1] to denote a local control variable. Every cell
i ∈ E is equipped with a supply function si(xi) that returns
the maximum possible inflow to the cell when the current
traffic volume on it is equal to xi ≥ 0, as well as with
a controlled demand function di(xi, ui) that returns the
maximum possible outflow from the cell when the current
traffic volume on it is equal to xi ≥ 0 and the local control
variable is set to the value ui.

On every non-onramp cell i ∈ E \ R, the supply function
si(xi) is assumed to be continuous, non-increasing, and
concave for values of the traffic volume xi in the interval
[0, xjam

i ], where xjam
i = sup{xi ≥ 0 : si(xi) > 0} is the jam

traffic volume. Conventionally, for all onramp cells i ∈ R,
we set si(xi) = +∞. On the other hand, we assume that the
controlled demand functions have the following structure.
Every cell i ∈ E is equipped with a flow capacity Ci > 0
and a continuous, strictly increasing, concave function di(xi)
such that di(0) = 0, to be referred to as the uncontrolled
demand function. The uncontrolled demand function, flow

traffic volume

flow

di(xi) si(xi)

xjam
i

Ci

Fig. 1. Trapezoidal fundamental diagram in Example 1.

capacity, and supply function of a cell can be interpreted as
the rising, constant, and decreasing parts of a fundamental
diagram. A standard case is illustrated below.

Example 1: Consider a non-onramp cell i ∈ E \ R with
linear uncontrolled demand function di(xi) = vixi and affine
supply function si(xi) = −wixi + xjam

i wi. This leads to a
standard trapezoidal fundamental diagram (see Fig. 1). Here,
the constants vi > 0 and wi > 0 are referred to as the free-
flow speed and the shock-wave speed, respectively.

Then, the controlled demand function is set equal to

di(xi, ui) = min{di(xi), uiCi} , i ∈ R (1)

on the onramp cells and to

di(xi, ui) = min{uidi(xi), Ci} , i ∈ E \ R (2)

on the non-onramp cells. Equation (1) is to be interpreted as
the possibility of implementing ramp-metering by setting up
the maximum outflow from an onramp i ∈ R to an arbitrary
value uiCi between 0 and the maximum flow capacity Ci.
On the other hand, (2) is to be interpreted as the possibility to
control the speed limit in a non-onramp cell i by rescaling the
uncontrolled demand function di(xi). Indeed, for trapezoidal
fundamental diagrams as in Example 1, (2) is equivalent to
the modulation of the free-flow speed uivi.

We assume that the system is sampled at times 0 = t0 <
t1 < . . . that are equally spaced at distance h > 0 from
each other, so that tk = hk for k = 0, 1, . . .. At the k-th
time instant tk, the state of the network is a nonnegative
vector xk ∈ RE+ whose entries xki represent the current
traffic volumes in the cells i in E , while the control is the
vector uk ∈ [0, 1]E , whose entries uki represent the the local
control variables currently actuated at the cells i. Moreover,
the split rates at the k-th time instant are reported in the
routing matrix Rk ∈ RE×E+ whose entries Rkij represent the
fraction of outflow from cell i that moves towards cell j.
To satisfy mass-conservation and topological constraints, the
routing matrix Rk is assumed be such that

Rkij ≥ 0 , i, j ∈ E ,
∑

j
Rkij = 1 , i ∈ E \ S , (3)

supported on the set of adjacent pairs L, i.e., such that

Rkij = 0 , ∀ (i, j) /∈ L . (4)

We denote the exogenous inflow vector at the k-th time
instant by λk ∈ RE+, with the property that λki = 0 for all
non-onramp cells i ∈ E \R for all k ≥ 0. For a given initial
state x0, the traffic flow dynamics update rule then reads

xk+1
i = xki + h

(
λki +

∑
j
Rkjiz

k
j − zki

)
, (5)



for every i ∈ E and k ≥ 0, where

zki = βki di(x
k
i , u

i
k) (6)

is the total outflow from cell i and

βki = sup
{
β ∈ [0, 1] :

β · max
l∈E :
Rkil>0

∑
h∈E

Rkhldh(x
k
h, u

k
h)− sl(xkl ) ≤ 0

}
.

(7)
We are now ready to formulate the DTA and the FNC

as optimization problems. In the former, we assume that,
given the initial traffic volume and the exogenous inflows,
we can control both the demand functions as in (1)–(2)
and the routing matrix within the constraints (3)–(4). In the
latter, we assume that the routing matrix is exogenous and
the control action is limited to the demand functions, i.e.,
onramp metering and speed limits. We shall consider a finite
time horizon kmax > 0 and convex separable costs ψi(xi)
of the traffic volumes. Given initial traffic volumes x0 and
exogenous inflows {λk}kmax

k=0 , the DTA problem then reads

min
{xk, uk, zk, Rk}kmax

k=0 :
(3), (4), (5), (6), (7)

kmax∑
k=0

∑
i∈E

ψi(x
k
i ) . (8)

On the other hand, given initial traffic volumes x0, exoge-
nous inflows {λk}kmax

k=0 , and an exogenous routing matrix
{Rk}kmax

k=0 satisfying (3)–(4), the FNC problem reads

min
{xk, uk, zk}kmax

k=0 :
(5), (6), (7)

kmax∑
k=0

∑
i∈E

ψi(x
k
i ) . (9)

We now present convex relaxations of the problems above.
For this, we introduce the flow variables fkij and µki for i, j ∈
E , k = 0, . . . , kmax, that satisfy the constraints

µki ≥ 0 , i 6= S =⇒ µki = 0 , (10)

fkij ≥ 0 , τj 6= ωi =⇒ fkij = 0 , (11)∑
j
fkji ≤ si(xki ) ,

∑
j
fkij ≤ min{di(xki ), Ci} . (12)

We then rewrite the dynamics as

xk+1
i = xki + h

(
λki +

∑
j
fkji −

∑
j
fkij

)
. (13)

For given x0 and {λk}kmax

k=0 , we consider the following
relaxation of the DTA problem

min
{xk, µk, fk}kmax

k=0 :
(10), (11), (12), (13)

kmax∑
k=0

∑
i∈E

ψi(x
k
i ) . (14)

Analogously, given x0, {λk}kmax

k=0 , and {Rk}kmax

k=0 satisfying
(3)–(4), we consider the additional constraint

fkij = Rkij(µ
k
i +

∑
l
fkil) (15)

and the following relaxation of the FNC problem

min
{xk, µk, fk}kmax

k=0 :
(10), (11), (12), (13), (15)

kmax∑
k=0

∑
i∈E

ψi(x
k
i ) . (16)

We then have the following result that mirrors the continuous
time results in [8, Propostion 1].

Propostion 1: Let G = (V, E) be a network topology, k =
0, 1, . . . , kmax where kmax > 0 is the time horizon, x0 ∈ RE+
a vector of initial traffic volumes, and λki exogenous inflows
to the onramps i ∈ R at time k. Then:

(i) for every feasible solution {xk, fk, µk}kmax

k=0 of the
convex optimization problem (14), let

zki = µki+
∑

j
fkij , uki =

{
zki /di(x

k
i ) if i /∈ R

zki /Ci if i ∈ R ,
(17)

and Rkij = fkij/(µ
k
i +
∑
j f

k
ij), for all i, j ∈ E , with the

convention that uki = 1 if di(xki ) = zki = 0 on a non-
onramp cell i ∈ E \R, and that, if zki = 0, then Rkij =
|{l ∈ E : τl = ωi}|−1 for all j ∈ E such that τj = ωi.
Then, for all k = 0, . . . , kmax, the matrix Rk satisfies
the constraints (3)–(4) and xk satisfies the controlled
traffic dynamics (5)–(7), so that {xk, uk, zk, Rk} is a
feasible solution of the DTA problem (8).

Moreover, let {Rk}kmax

k=0 be routing matrices satisfying (3)-
(4). Then:

(ii) for every feasible solution {xk, fk, µk}kmax

k=0 of the
convex optimization (16), let zk and uk be as in (17).
Then, xk satisfies the controlled traffic dynamics (5)–
(7), so that {xk, uk, zk}kmax

k=0 is a feasible solution of
the DTA problem (9).

III. DISTRIBUTED ALGORITHM

If the standard augmented Lagrangian method is used to
solve the relaxed DTA and FNC problems, the algorithm can
not be implemented in a fully distributed manner. However,
as we will now show, it is possible to obtain a distributed
solution method by introducing copies of the variables, and
force those copies to be equal through additional constraints.

In [13], another algorithm inspired by ADMM for solving
the DTA problem distributively is presented. Our approach
solves the same problem and is also inspired by ADMM,
but differs significantly from the one in [13]. There, the
constraints on the decision variables are not included in
the Lagrangian, and must be handled when solving the
distributed subproblems. This allows, by a suitable partition-
ing of the variables, for the Lagrangian minimization to be
carried out in two steps in each subproblem. In contrast, our
approach starts with a Lagrangian which directly includes the
constraints for the optimization problem. By choosing vari-
ables suitably and carrying out the Lagrangian minimization
in a few more steps, this still yields a distributed method.
Also, in our case, each subproblem becomes very simple.

For the problems, we separate the outflows from each cell
and the inflows to each cell. This is done for the DTA by
introducing the matrix g ∈ RL×(kmax+1)

+ and imposing the



additional constraint f = g. Each variable gkij is considered
as an outflow from cell i to cell j at time k, and is associated
with cell i, while each variable fkij is thought of as an inflow
to cell j from cell i at time k, and is associated with cell j.
By updating the variables in f and g separately, we obtain
a cell-wise decoupling of the optimization problem, where
only the variables associated with a particular cell and its
neighboring cells are needed in order to update the variables
for the cell in question. To decouple the equations in time,
we introduce the matrix y ∈ RE×(kmax+1)

+ whose entries are
required to fulfill yki = xk+1

i for 0 ≤ k < kmax and i ∈ E .
By updating x and y separately, only variables associated to
the previous and next time points are needed to update the
variables associated with a specific time point.

For the DTA problem, the optimization problem becomes

min
{xk}kmax

k=1

{yk,µk,fk,gk}kmax
k=0

kmax∑
k=0

∑
i∈E

ψi(y
k
i )

subject to fk = gk, xk+1 = yk,

yki = xki + h
(
λki − µki +

∑
j f

k
ji −

∑
j g

k
ij

)
,

λki +
∑
j f

k
ji ≤ si(xki ) , µki +

∑
j g

k
ij ≤ di(xki ) ,

for i ∈ E , and µki = 0 for i /∈ S.
For the FNC problem, the turning ratios Rij are pre-

determined. This can be taken into account by adding the
extra constraint gkij = Rkij

∑
j g

k
ij . The corresponding aug-

mented Lagrangian at time k is then

Lkρ(x
k, xk+1, yk, fk, gk, µk; νk, σk, ξk, ηk) =

∑
i
ψi(x

k
i )

+
∑

i
γki

(
yki − xki − h

(
λki − µki +

∑
j
fkji −

∑
j
gkij

))
+
∑

(i,j)
νkij(f

k
ij − gkij) +

∑
i
σki (y

k
i − xk+1

i )

+
∑

i
ξki

(
λki +

∑
j
fkji − si(xki )

)
+
∑

i
ηki

(
µki +

∑
j
gkij − di(xki )

)
+
ρ

2
Mk ,

where Mk consists of penalty terms which have been added
to the Lagrangian. These are zero when the constraints are
satisfied and positive otherwise. This procedure is described
in [12] for equality-constrained problems, but here we have
applied the analogous idea for inequality constraints as
well. Note that the penalty terms are squared, so that the
augmented Lagrangian is differentiable. Then,

Mk =Mk(xk, xk+1, yk, fk, gk, µk)

=
∑

i

(
yki − xki − h

(
λki − µki +

∑
j
fkji −

∑
j
gkij

))2

+
∑

(i,j)
(fkij − gkij)2 +

∑
i
(yki − xk+1

i )2

+
∑

i

(
max

{
0, λki +

∑
j
fkji − si(xki )

})2

+
∑

i

(
max

{
0, µki +

∑
j
gkij − di(xki )

})2

.

Furthermore, γk, σk ∈ RE , νk ∈ RL, and ξk, ηk ∈ RE+
are dual variables for the problem and ρ > 0 is an penalty
parameter to be chosen. Note that for the last time step, k =
kmax, the two sum terms containing xk+1

i must be removed
from the augmented Lagrangian. For the FNC problem, the
additional terms∑

i
θki

(
gkij −Rkij

∑
j
gkij

)
+
∑

i

ρ

2

(
gkij −Rkij

∑
j
gkij

)2

are added to the augmented Lagrangian, where θk ∈ RE
are dual variables for the extra constraint. The augmented
Lagrangian for the whole optimization problem is then, in
the DTA case, given by

Lρ(x, x, y, f, g, µ; ν, σ, ξ, η) =
kmax∑
k=0

Lkρ(x
k, xk+1, yk, fk, gk, µk; νk, σk, ξk, ηk) .

In the augmented Lagrangian method, constrained opti-
mization problems are solved by iteratively minimizing the
augmented Lagrangian for given dual variables and then
updating the dual variables by taking a step in the gradient
direction of the dual function. In ADMM, as described
in [12], a similar approach is employed, with the difference
that the primal variables are divided into two sets and that
the Lagrangian is minimized with respect to one of these sets
at a time, while keeping the remaining variables constant. It
is this idea that allows the ADMM to be used distributively,
in difference form the augmented Lagrangian method. Since
the problems we are considering yield couplings between
variables both for different cells and different time points,
we are making use of the idea to minimize the augmented
Lagrangian in several steps, but generalize it to five steps
instead of two. This enables a decoupling both between
cells and between time points. The resulting optimization
algorithm for the DTA problem thus consists in an iterative
procedure in which first the following steps are performed

f+ := argmin
f

Lρ(x, y, f, g, µ; γ, ν, σ, ξ, η) ,

g+ := argmin
g

Lρ(x, y, f
+, g, µ; γ, ν, σ, ξ, η) ,

µ+ := argmin
µ

Lρ(x, y, f
+, g+, µ; γ, ν, σ, ξ, η) ,

y+ := argmin
y

Lρ(x, y, f
+, g+, µ+; γ, ν, σ, ξ, η) ,

x+ := argmin
x

Lρ(x, y
+, f+, g+, µ+; γ, ν, σ, ξ, η) .

In each iteration, these steps are then followed by dual
variable updates according to

(γki )
+:= γki +ρ

(
yki − xki − h

(
λki − µki +

∑
j
(fkji − gkij)

))
(νkij)

+ := νkij+ρ(f
k
ij−gkij) , (σki )

+ := σki +ρ(y
k
i −xk+1

i ) ,

(ξki )
+ := max

{
0, ξki + ρ

(
λki +

∑
j
fkji − si(xki )

)}
,

(ηki )
+ := max

{
0, ηki + ρ

(
µki +

∑
j
gkij − di(xki )

)}
.



Note that the dual variables ξki and ηki always are non-
negative, which is required in the solution of the dual
problem. For the FNC problem, the augmented Lagrangian
is a function of the extra dual variables θk ∈ RE as well,
and also these variables must be updated in the end of each
iteration according to

(θki )
+ := θki + ρ

(
gkij −Rkij

∑
j
gkij

)
.

The fact that the algorithm is distributed can, e.g. in the
case of updating the variable fkj1i (an inflow to cell i), be
seen as(

fkj1i
)+

= argmin
fkj1i

Lρ(x, y, f, g, µ; γ, ν, σ, ξ, η) =

argmin
fkj1i

Lkρ(x
k
i , y

k
i , f

k
ji, (g

k
ji, g

k
ij), µ

k
i ; γ

k
i , ν

k
ji, 0, ξ

k
i , 0) .

It follows that in order to compute the new flow from
cell j1 to cell i at time k, only information about state
variables and Lagrange multipliers associated with cell i and
its neighboring cells are needed. Furthermore, only variables
at time step k are needed. In general, for all the variable
updates, variable values for the adjacent time points k − 1
and k+1 are also needed, but not for any other times. Thus,
only information associated to neighboring cells and time
points is needed to update the primal variables.

The total number of variables needed in the optimization
problem is proportional to the number of time steps as well
as the number of cells or the number of adjacent cells. The
number of adjacent cells are in practice not increasing fast
with the size of the network, since each cell typically has at
most two or three adjacent cells in each direction.

IV. SIMULATION RESULTS

In this section, we present simulations for both the DTA
and FNC problem, on two different networks.

A. DTA

The algorithm for solving the DTA problem is tested on
a setup obtained from [8]. In this example, the single-source
single-sink network in Fig. 2 is considered. The network
is initially assumed to be empty, and the time horizon
is chosen as 250 seconds with time discretization interval
h = 10. The exogenous inflow at cell 1 is prescribed to
be λ1

1 = 0.8, λ2
1 = 1.6, λ3

1 = 0.8 and λk1 = 0 for
k ≥ 4, and exogenous outflow is only allowed at cell 10.
Furthermore, the supply and demand functions are given by
si(xi, k) = min

{
wi(x

jam
i − xi)/Li, Cki

}
and di(xi, k) =

min
{
vixi/Li, C

k
i

}
, where vi, wi, Cki , Li and xjam

i are
the free-flow speed, the speed of the congestion wave, the
capacity (at time step k), the cell length and the jam traffic
volume for cell i respectively. In the simulations we set
vi = wi = 50 feet/s, Li = 500 feet for all cells i. Moreover,
for cell 1, 2, 9 and 10 we let the Cki = 1.2 vehicles/s for
all k and xjam

i = 20 vehicles. For all other cells, xjam
i = 10

vehicles and Cki = 0.6 for all k, apart from cell 4 where
C5

4 = C6
4 = 0 vehicles/s and C7

4 = C8
4 = 0.3 vehicles/s.

1 2

3 4

5

6

7 8

9 10

Fig. 2. Network used for test of the DTA solving algorithm.

TABLE I
RESULTS FOR TESTS OF THE DTA ALGORITHM.

ρ 0.1 1 10 100
nbr. of itr. 1 000 000 100 000 11 285 100 000
comp time. [s] 84 835 6 962 765 6 837
rel. cost err. εψ 3.5 · 10−6 34 · 10−6 13 · 10−6 168 · 10−6

mean err. ε̄y 69 · 10−6 674 · 10−6 6.7 · 10−3 12 · 10−3

max err. εmax
y 497 · 10−6 4.8 · 10−3 47 · 10−3 170 · 10−3

feasibility res. 2.9 · 10−6 29 · 10−6 5.6 · 10−6 10 · 10−3

duality gap 5.1 · 10−3 5.2 · 10−3 1.0 · 10−3 16 · 10−3

This is in order to simulate a time dependent bottleneck in
the traffic network. The cost function associated with each
cell at each time point is chosen to be ψi(xi) = x2

i .
An optimal solution is found when a set of feasible

decision variables are found such that the duality gap, i.e., the
difference between the cost function and the dual function
of the constrained optimization problem, is zero. Thus, the
algorithm iterations should continue until these criteria are
fulfilled within some small error tolerance. To check the
duality gap criterion we consider an approximation of the
duality gap obtained by approximating the dual function as
the Lagrangian evaluated at the primal variables obtained
in the last iteration, and then evaluating the cost function
and the dual function approximation for the primal and dual
variables obtained in the last iteration. Both the feasibility
and duality tolerances were chosen to 10−3.

In order to verify that the correct results are obtained from
the algorithm, the optimization problem is also solved in a
centralized manner by CVX [14]. Values that are compared
are the relative error in the cost function, εψ , the mean error
(over all time points and cells) in the cell traffic volumes, εy ,
as well as the maximal error in any cell traffic volume at any
time, εmax

y . Tab. I shows the performance of the algorithm
for different values of ρ. The algorithm was iterated either
until the stopping criteria were fulfilled or until a maximal
threshold (106 for ρ = 0.1 and 105 otherwise) of the number
of iterations was reached. Changes of the cost function, of
the feasibility residual, and of the duality gap with number
of iterations for different values of ρ are presented in Fig. 3.
From these results, we can conclude that the algorithm
manages to find the optimal decision variables for the tested
DTA problem with high accuracy, as long as ρ is sufficiently
small.

B. FNC

In order to test the FNC algorithm for a realistic trans-
portation network, a network inspired by the freeway system
in Los Angeles is used. The topology is a slightly modified
version of the one described in [15].
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Fig. 3. Cost function, feasibility residual and duality gap for the DTA
problem with different penalty parameters ρ. In the plots ρ = 0.1 is red,
ρ = 1 is green, ρ = 10 is blue and ρ = 100 is violet.
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Fig. 4. Cost function, feasibility residual and duality gap for the FNC
problem. After an initial decrease, the cost increases until it corresponds to
a feasible solution.

The supply and demand functions are chosen as the affine
functions si(xi) = wi(x

jam
i −xi)/Li and di(xi) = vixi/Li,

where wi, Li, vi, x
jam
i are the wave speed, the cell length,

the free-flow vehicle speed and the jam mass on cell i,
respectively. We let the intersection between the supply and
demand function determine the maximum flow capacity. The
routing matrix is chosen such that 10% of the vehicles leave
the network at each offramp, while the traffic is equally
distributed among the other out-links in each intersection.

The initial state, consisting of the initial cell traffic vol-
umes, is chosen as the equilibrium obtained by running
CTM without any controls applied for the constant inflow
λi = 0.05 vehicles per second at each source cell. For
the optimization horizon, the inflow at each source cell is
assumed to be λi = 0.1 vehicles per second. The time
horizon is chosen as 1 minute and the time discretization
interval as h = 10 seconds, fulfilling the CFL-condition
maxe

veh
Le

< 1. The used penalty parameter is ρ = 10.
When running the algorithm on this setup, the resulting

evolution of the cost function, feasibility residual and duality
gap are as shown in Fig. 4. Note that the cost function
increases after an initial decrease until the obtained cost
corresponds to a feasible solution. The obtained cost, with
the cell cost functions ψi(x) = x2, is 25 204. When the
same setup is simulated with CTM without any control,
the corresponding cost is 30 434. Thus, the optimal control
manages to achieve a 17% decrease of the cost.

V. CONCLUSION

We presented a distributed algorithm for the optimal traffic
flow control in transportation networks. By applying the
algorithm to test scenarios, we demonstrated that it can be
used for solving both the DTA and the FNC problems.

For future development, it would be desirable to formally
prove under which conditions the algorithm converges by,
e.g., giving an upper limit of the penalty ρ and to further
examine is how many iterations are necessary to yield
a solution with sufficient accuracy. Finally, it would be
interesting to study stability and robustness of the resulting
optimal controls with respect to dynamic routing [16], [17].
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