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Abstract. This paper is devoted to the study and implementation of real-time techniques for the estimation
of time-varying, contingently correlated quantities, and relevant uncertainty. An estimation algorithm based
on a metrological customization of the Kalman filtering technique is presented, starting from a Bayesian
approach. Moreover, a fuzzy-logic routine for real-time treatment of possible outliers is incorporated in the
overall software procedure. The system applicability is demonstrated by results of simulations performed
on dimensional measurement models.
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1 Introduction

In the context of in-process metrology, accurate statistical
analyses are important to optimize real-time estimation of
measurands and related uncertainties. The, Kalman filter-
ing (KF) technique [1] is optimal under diverse criteria [2].
Moreover, it is widely used long since and it is successfully
being applied in several fields (see, e.g., [2–5]).

In [6] and [7] a novel application of KF was developed
in the field of dimensional metrology. In [6], such a cus-
tomization is applied to coordinate measuring machines
(CMMs). In [7], the measurands are vectorial quantities
that can vary during time, according to some specified
patterns. Some simulations are executed in order to dis-
cuss the algorithm performance. Both papers consider the
measurands as unknown parameters, modelled in term of
mutually independent normal random variables (RVs). In
the present paper, the model is improved by taking into
account possible correlations among RVs, so to manage
dependence among measurands.

The problem is approached using the covariance ma-
trix, which is an established technique in the KF (see,
e.g., [8–10]). Finally, a routine is proposed to perform an
outlier treatment based on fuzzy logics (applicability of
fuzzy logics in uncertainty treatment is dealt with in [11]).

Even if the KF is robust by design (against, e.g., initial
uncertainty and round-off errors) its performance could be
affected by occurrence of possible outliers [12]. In [13] a
strategy, based on a fuzzy-logic approach, was proposed
for possible outlier treatment. In the present paper, such
a strategy is embedded in the estimation procedure.
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The paper is organized as follows. Section 2 is devoted
to the algorithm formulation. A metrological customiza-
tion of the KF is derived starting from the Bayes theo-
rem by using Gaussian multivariate distribution functions
(MDFs) and managing correlations (if any) via Gaussian
copula (Sect. 2.1). The fuzzy outlier treatment presented
in [13] is briefly recalled and embedded in the KF estima-
tion algorithm (Sect. 2.2).

Section 3 presents the overall software (SW) architec-
ture by means of a SimulinkTM diagram.1 In Section 4,
some application examples are shown, where the estima-
tion targets are two rectangular surfaces with a common
edge. Section 5 contains some concluding remarks.

2 Algorithm formulation

2.1 Metrological customization of KF technique

The standard KF is a recursive technique to estimate
the state vector xk = (xk(1), . . . xk(i) . . . , xk(m)) (i =
1, . . . , m, where m is the vector dimension, and 0 � k � L
the discrete time) of a linear process described by the
equation:

xk+1 = Akxk + Bkuk + ηk (1)

where xk, uk (optional control input), and ηk (white
noise) are vectors, and Ak, Bk are matrices which relate
the process state at the step k + 1 with the kth process

1 Identification of commercial products in this paper does
not imply recommendation or endorsement, nor does it imply
that the products identified are necessarily the best available
for the purpose.
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state and with the kth control input, respectively. The
(indirect) measurement zk of xk is modeled as follows:

zk = Hkxk + vk (2)

where the vector vk is introduced due to the measure-
ment uncertainty and Hk relates the (observable) out-
put vector zk with the (internal) state xk. In metrology
terms, zk and xk represent the measured quantity val-
ues and the theoretical measurand, respectively. The vec-
tor uk is used to track the time-evolution of the theoretical
pattern of xk+1. In these terms, the model is translated
into the context of measurement science. The estimation
is provided balancing the measured quantity zk with an
a-priori estimation vector x−

k by using the Kalman gain
matrix Kk:

yk = x−
k + Kk(zk − Hkx−

k ), 0 � k � L (3)

where yk is the estimation of xk provided by the KF and

x−
0 = y−1 (4a)

x−
k = Ak−1yk−1 + Bk−1uk−1, 1 � k � L (4b)

where y−1 is an a-priori expert judgment of the measur-
and vector at the initial state. The gain matrix Kk is con-
structed using the covariance matrix of the RVs relevant
to the components of the vector xk. Kk is obtained by
minimizing the mean-square-error E[(yk−xk)(yk−xk)T ]
where E[·] stands for expectation and superscript T for
transposition.

In [6], the KF technique has been customized for
metrology usage, dealing with scalar time-invariant quan-
tities. In [7], such an approach has been generalized to
time-varying measurand vectors, whose components were
supposed mutually independent.

In the present paragraph, the approach is further de-
veloped, so to take into account possible correlations
among the measurand vector components; moreover, an
outlier treatment incorporated in the estimation proce-
dure is developed in Section 2.2.

Let X and Z represent the stochastic counterparts
of xk− and zk, respectively. The Kalman gain matrix Kk

can be derived by using the Bayes theorem:

f(X |Z) = f(Z|X)f(X)
[∫

Δ

f(Z|X)f(X)dX

]−1

(5)

where f is a probability density function (PDF), f(X |Z)
is the posterior density, f(X) is the prior density, f(Z|X)
is the likelihood, and the integration (over the domain of
definition Δ of X) gives rise to a normalization factor (the
denominator).

The following treatment will be based on the hypoth-
esis of Gaussian RVs to model the vector measurands. In
order to manage possible correlations, the Gaussian copula
is a useful tool to obtain Gaussian MDFs from any vector
of univariate cumulative distribution functions (CDFs):
a copula is a function that couples univariate (marginal)

cumulative distributions into a joint MDF, whose expres-
sion includes original correlations among marginal univari-
ates [14].

Let N(μ, Σ) denote a Gaussian MDF, where μ is the
vector of mean values and Σ is the covariance matrix.
A Gaussian copula C is a particular family of copulas
such that, given n marginals h1, . . . , hn, C(h1, . . . , hn) =
GΣ(g−1(h1), . . . , g−1(hn)) = N(μ, Σ), where GΣ is the
n-variate Gaussian CDF with covariance matrix Σ and g
is the univariate standard Gaussian.

Let f(X) = N(x−
k , P k−1), f(Z|X) = N(zk, R) and

P−1 = Π−1, P k = (P−1
k−1 + R−1)−1, 1 � k � L (6)

with Π−1 and R symmetric covariance matrices initial-
ized according to prior knowledge (based on an expert
judgment): diagonal entries can be used for type B un-
certainty treatment (see guide [15]) and other non-zero
entries represent mutual correlation coefficients. Equa-
tion (5) states that f(X |Z) is proportional to N(yk,
P k) = N(x−

k , P k−1)N(zk, R), where

yk = (P−1
k−1 + R−1)−1(P k−1

−1
x−

k + R−1zk), 0 � k � L.
(7)

The final estimates are provided in terms of E(f(X |Z))
together with standard uncertainty (after square roots of
diagonal entries from the covariance matrix) evaluated
at k = L (see [7, 16]). Equations (4)–(7) form the re-
cursive algorithm used in this paper for KF metrological
customization.

2.2 Fuzzy logic-based modeling of outlier
detection and treatment

The algorithm is enriched by a routine for real-time treat-
ment of possible outliers that can affect the estimation re-
sults. Several statistical tests have been proposed to man-
age this problem, such as Dixon’s test and Grubbs’ one: a
standard also deals with such a problem [17].

However, tests of orthodox statistics kind – besides be-
ing prone to Bayesian criticism – are also subject to sta-
tistical hypotheses, mainly randomness and independence
of observations [18] that impose applicability limitation in
order to preserve consistency.

In [13] a fuzzy approach is proposed aiming at coping
with this situation, by modeling the problem of outliers in
terms of fuzzy sets, so to treat the processed observations
by means of purposely defined “outlierness” degrees.

The fuzzy strategy, based on a 2-input/1-output in-
ference scheme [13], operates component-wise on involved
vectors, by use of the following scalar quantities: z a mea-
surand observation, η an a-priori estimation of the mea-
surand, d(z, η) = |z − η| their relative distance, and σ the
a-priori estimation uncertainty.

In the inference scheme (Mamdani model [19, 20]),
one input is the fuzzyfication of the distance d(z, η)
and the other input is the fuzzyfication of the percent-
age uncertainty σ% = 100σ/η, both obtained by prop-
erly defined fuzzy sets and related membership functions
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Fig. 1. SimulinkTM diagram (a) and blocks: (b) “u evaluation”; (c) “P update”; (d) “R update”; (e) “compute estimates”.

(see [13] for details). The output is the outlierness degree
0 � ρ(z) � 1 relative to the possible outlying observa-
tion z, which is obtained by application of the centroid
defuzzification method (ten composition rules are used
after [13]). The fuzzy treatment is activated if the con-
dition 2σ<d(z, η)<5σ is satisfied, otherwise: if d(z, η) �
2σ, z is defined a “full inlier” (thus ρ(z). = 0); else,
if d(z, η) � 5σ, z is defined a “full outlier” (so that
ρ(z) = 1). After this, for estimation purpose, the outlier-
ness degree is conveniently translated into an outlierness
weight w(z) = 1 − ρ(z).

In the present paper – moving from mono-dimensional
(the case-study in [13]) to multi-dimensional measurands –
this kind of weight is used for estimation of time-varying
vector quantities after integration in the KF routine. In
the KF routine described in the previous subsection, at
the step k, the vector zk is the measurand observation,
x−

k is the a-priori measurand estimation, and P k−1 is the
covariance matrix elaborated to deduce the uncertainty
related to x−

k .

To apply the outlier fuzzy treatment to vectorial quan-
tities, a component wise treatment can be performed. For
every i = 1, . . . , m, let zk(i) and x−

k (i) be the ith com-
ponent of zk and x−

k respectively, and let Pk−1(i, i) be
the ith diagonal entry of the matrix P k−1. The outlier
fuzzy treatment is embedded in the KF by use of z =
zk(i), η = xk(i), σ2 = Pk−1(i, i). For the measurement
vector zk, an outlierness weight wk(i) is associated to the

measurement zk(i), giving rise to the outlierness weight
vector wk = (wk(1), . . . wk(i) . . . , wk(m)).

After evaluation, the weight wk must be incorpo-
rated in the KF routine. Equation (7) that provides
the estimation yk in terms of a weighted mean of x−

k

and zk can be rewritten yk = (P−1
k−1x

−
k +R−1zk)(P−1

k−1+
R−1)−1, making clear that R−1 is the weight matrix
of zk(R and its inverse R−1 are diagonal matrices, i.e.,
mutual independence of measurement vector components
is assumed).

For fuzzy treatment purpose, R−1 must be scaled in
terms of a diagonal matrix Q, to take into account wk as
follows:

Q(i, i) = R−1(i, i)wk(i), 1 � i � m. (8)

Therefore, the measurand estimation in the KF is given by

yk = (P−1
k−1 + Q)−1(P−1

k−1x
−
k + Qzk), 0 � k � L. (9)

3 Software architecture

The algorithm developed in Section 2 has been im-
plemented to simulate real-time estimation of multi-
dimensional time-varying measurands. The realized SW
architecture is illustrated in Figure 1 by means of a
SimulinkTM diagram. In the implemented SW procedure,



140 International Journal of Metrology and Quality Engineering

Fig. 2. Rectangular surfaces S1 and S2 (measurands).

the measurands are time-varying quantities, which are
supposed to evolve according to patterns specified through
the input “Pattern tag” in the diagram.

The possible patterns so far available are linear, saw-
tooth, triangular wave, square wave, and sine wave, ex-
ponential and parabolic shapes [7]. The inputs y−1, P−1,
and R must be pre-set by an expert operator to initialize
the routine.

At each step k the routine operates as depicted in Fig-
ure 1a. The routine is fed by a measurement zk. The
vector x−

k is evaluated putting in equation (4) Ak−1 =
Bk−1 = I(I identity matrix); uk−1 is built in the “u eval-
uation” block according to the selected pattern: in Fig-
ure 1b, an example (for the exponential shape) is shown.
In the “P update” block (Fig. 1c), the matrix P k−1 is eval-
uated according to equation (6); P k is then used to com-
pute the standard deviations, square roots of Pk−1(i, i).
The matrix R is transformed into Q (“R update” block
in Fig. 1d), see equation (8); wk is evaluated in the
block “weight evaluation (fuzzy outlier treatment)” (see
Sect. 2.2). Finally, equation (9) is implemented in the
“compute estimates” (Fig. 1e) block whose output pro-
vides the measurand estimation yk.

4 Simulation: a case-study

The algorithm behavior is presented and discussed
with application to some simulations performed in
MATLABTM. The SW system performance is tested on a
case-study where measurands are the areas of two rectan-
gular surfaces S1 and S2 with a common edge x3 (Fig. 2):
use of x3 to calculate both areas introduces correlations
between the components of the measurand vector (S1, S2).
Since S1 = S2x1/x2, a linear correlation (Pearson coeffi-
cient) can properly describe such a model. However, tak-
ing into account randomness, the routine is able to process
also different correlations (Spearman and Kendall coeffi-
cients), which can be entered in the non-diagonal entries
of P−1 by an expert operator.

Table 1. Measured (z), theoretical (x), and estimated (y)
vectors of Figure 3.

y− = (2.97, 6.21)

k zk xk yk

0 (2.70, 4.42) (2.99, 5.81) (2.66, 5.43)

1 (4.50, 4.80) (5.02, 5.81) (4.69, 5.22)

2 (5.16, 5.43) (5.18, 5.81) (4.94, 5.28)

3 (3.57, 6.74) (3.33, 5.81) (3.11, 5.56)

4 (1.46, 6.92) (1.17, 5.81) (0.92, 5.78)

5 (1.24, 4.83) (0.69, 4.87) (0.50, 4.62)

6 (2.76, 4.57) (2.32, 4.87) (2.31, 4.62)

7 (4.88, 5.60) (4.57, 4.87) (4.74, 4.72)

8 (5.43, 4.92) (5.37, 4.87) (5.58, 4.74)

9 (4.14, 5.36) (3.98, 4.87) (4.10, 4.79)

Table 2. Measured (z), theoretical (x), and estimated (y)
vectors of Figure 4.

y−1 = (1.35, 4.56)

k zk xk yk

0 (4.83, 3.51) (2.49, 3.09) (3.62, 4.05)

1 (1.30, 1.36) (2.45, 3.10) (2.55, 2.87)

2 (1.02, 3.92) (2.41, 3.12) (2.10, 3.18)

3 (1.02, 2.40) (2.37, 3.15) (1.81, 3.02)

4 (1.46, 3.49) (2.33, 3.19) (1.71, 3.15)

5 (3.50, 2.38) (2.29, 3.25) (1.94, 3.10)

6 (1.46, 1.63) (2.25, 3.32) (1.82, 2.97)

7 (1.17, 3.43) (2.21, 3.40) (1.70, 3.12)

8 (2.44, 3.04) (2.17, 3.50) (1.74, 3.22)

9 (4.18, 2.51) (2.13, 3.60) (1.92, 3.28)

Measurements of x1, x2, x3 are modeled by indepen-
dent RVs and the measurement vector zk is (indirectly)
obtained by S1 = x1x3 and S2 = x2x3. While x3 is sup-
posed a non-varying quantity for the seek of simplicity,
x1 and x2 are supposed time-varying quantities due to,
e.g., temperature fluctuations: S1 and S2 follow the same
patterns of x1 and x2, respectively.

Figures 3 and 4 (whose simulation data are contained
in Tables 1 and 2, respectively) show the algorithm behav-
ior without outlier treatment. Figures 3a and 4a represent
the first component of the measurand vector (surface S1)
time-varying with sine and linear pattern, respectively.
Figures 3b and 4b represent the second component (sur-
face S2), which follows a square wave and an exponential
shape pattern, respectively.

For simulation purpose, measurements of x1, x2,
and x3 are obtained at each step by random genera-
tors, as follows: in Figure 3, x1, x2, and x3 are sampled
from normal marginal distributions and Pearson coeffi-
cient has been used; in Figure 4 (with Kendall coefficient),
x1 and x2 are obtained from uniform marginal distribu-
tions, for x3 a gamma marginal distribution has been
used. The entries of 2 × 2 matrices P−1 and R are:
as regards Figure 3: P−1(1, 1) = P−1(2, 2) = 0.40,
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Fig. 3. Cyclic patterns for S1 (a) and S2 (b): simulation results.

Table 3. Measured (z), theoretical (x), and weight (w) vectors of Figure 5; Estimated vectors (y) of Figures 5a and 5b;
Estimated vectors (y∗) of Figures 5c and 5d.

y−1 =(4.33, 6.95)

k zk xk yk y∗k wk

0 (3.61, 6.28) (4.23, 6.60) (4.39, 6.84) (4.39, 6.84) (1.00, 1.00)

1 (2.72, 5.46) (4.22, 6.41) (3.84, 6.45) (4.12, 6.55) (0.50, 0.50)

2 (8.37, 6.90) (4.21, 6.22) (4.66, 6.32) (4.18, 6.44) (0.00, 1.00)

3 (3.34, 7.83) (4.20, 6.13) (4.32, 6.37) (3.40, 6.44) (1.00, 0.50)

4 (4.10, 4.66) (4.19, 6.32) (4.31, 6.45) (4.02, 6.60) (1.00, 0.22)

5 (6.63, 0.05) (4.18, 6.51) (4.56, 6.25) (4.11, 6.74) (0.20, 0.00)

6 (2.70, 1.16) (4.17, 6.50) (4.32, 5.94) (4.01, 6.70) (0.50, 0.00)

7 (2.37, 5.74) (4.16, 6.31) (4.14, 5.74) (3.90, 6.47) (0.50, 1.00)

8 (1.06, 3.82) (4.14, 6.12) (3.84, 5.42) (3.90, 6.25) (0.00, 0.00)

9 (6.33, 4.35) (4.13, 6.23) (4.11, 5.50) (3.91, 6.32) (0.22, 0.22)

P−1(1, 2) = P−1(2, 1) = 0.43; R(1, 1) = R(2, 2) = 0.5,
R(1, 2) = R(2, 1) = 0; as regards Figure 4: P−1(1, 1) =
0.84, P−1(2, 2) = 0.75, P−1(1, 2) = P−1(2, 1) = 0.39;
R(1, 1) = R(2, 2) = 0.35, R(1, 2) = R(2, 1) = 0.

Uncertainties relative to prior estimate and measure-
ments are close to each other in the case of Figure 3, while
in Figure 4, measurements uncertainty is less than that of
prior estimate. Activation of the fuzzy outlier treatment
is recommended when measurement uncertainty is signif-
icantly greater than prior estimate uncertainty: for this
reason it is not activated in the simulations reported in
Figures 3 and 4.

In these simulations, the algorithm is convergent and
efficient, so that most estimated values are closer than
measured ones and prior knowledge to the theoretical mea-
surand pattern.

In Figure 5 (see Tab. 3 for data), measurements un-
certainty is as large as required to activate the fuzzy out-
lier treatment in the KF routine. The criterion for outlier
detection is based on matching zk against x−

k : thus a ma-
jority of outlying values may result during a simulation,
as in Figures 5c and 5d. Measurements are obtained by
use of normal random functions and the Spearman coef-
ficient describes correlations between S1 and S2; the en-
tries of 2 × 2 matrices P−1 and R are: P−1(1, 1) = 30,

P−1(2, 2) = 0.20, P−1(1, 2) = P−1(2, 1) = 0.94; R(1, 1) =
0.9, R(2, 2) = 1, R(1, 2) = R(2, 1) = 0.

A comparison between the algorithm performance with
and without outlier treatment is shown in the panels
of Figure 5. Figure 5a (surface S1, linear pattern) and
Figure 5b (surface S2, triangular wave) display the algo-
rithm trend when the treatment is off. In Figure 5c (sur-
face S1, linear pattern) and Figure 5d (surface S2, trian-
gular wave), the treatment is on. Comparing Figures 5a
and 5c, it can be noted that at k = 1, k = 2, k = 5,
and k = 8 the effect of outlierness weights is to main-
tain the estimates in Figure 5c closer to the theoretical
measurand. Similarly, by contrasting Figures 5b and 5d
at k = 8 and k = 9, a better performance can be noted
in Figure 5d.

5 Conclusion

An integrated software system for real-time estima-
tion and candidate outlier treatment has been devel-
oped with application to time-varying multi-dimensional
measurands.
– The estimation strategy implements a metrological

customization of the KF technique, taking into account
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Fig. 4. Acyclic patterns for (a) S1 and (b) S2: simulation results.

Fig. 5. Comparison between KF routine with fuzzy outlier treatment off (a, b) or on (c, d).

possible statistical correlation of measurands and re-
lated uncertainty evaluation.

– Occurrence of suspected outliers in dynamic measure-
ments is modeled in fuzzy-logic terms for real-time de-
tection and processing.

– The overall SW performance is tested by means of
simulation results based on dimensional measurement
data: the system’s efficiency and convergence are
demonstrated.
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