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Abstract: Data on occupational accidents are usually stored in large databases by worker
compensation authorities, and by the safety and prevention teams of companies. An analysis of these
databases can play an important role in the prevention of accidents and the reduction of risks, but it
can be a complex procedure because of the dimensions and complexity of such databases. The SKM
(SOM K-Means) method, a two-level clustering system, made up of SOM (Self Organizing Map) and
K-Means clustering, has obtained positive results in identifying the dynamics of critical accidents
by referring to a database of 1200 occupational accidents that had occurred in the wood industry.
The present research has been conducted to validate the recently presented SKM methodology
through the analysis of a larger data set of more than 4000 occupational accidents that occurred in
Piedmont (Italy), between 2006 and 2013. This work has partitioned the accidents into groups of
different accident dynamics families and has quantified the severity and frequency of occurrence
of these accidents. The obtained information may be of help to Company Managers and National
Authorities to better address preventive measures and policies concerning the clusters that have been
identified as being the most critical within a risk-based decision-making framework.

Keywords: clustering; SOM; accident database analysis; accident prevention; safety; risk-based
decision making

1. Introduction

Occupational accidents have an important effect on the economies of the whole world, as pointed
out by Hamalainen et al. [1].

Reporting and analyzing occupational accidents in order to improve the data available for
prevention purposes have been safety management requirements since 1923, when the First
International Conference of Labor Statisticians firs defined standards for accident classification.
Since 1989, the EU has promoted various policies to reduce the frequency of occupational accidents.
The Treaty on the Functioning of the European Union (article 153) in fact states: ‘[ . . . ] the Union shall
support and complement the activities of the Member States in the following fields: (a) improvement in particular
of the working environment to protect workers’ health and safety; [ . . . ]’. In January 1990, the European
Union launched a European Statistics study on Accidents at Work (ESAW), based on the International
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Labor Organization (ILO) standards. As a result of this project, the ‘European Statistics on Accidents at
Work–Methodology, was published by Eurostat in 2001 and a revised edition was released in 2013 [2].

ESAW describes each occupational accident by means of several parameters, and provides
information about the dynamics, time, place, working situation and workers involved.

This large amount of information is analyzed by the EU National Health and Safety Authorities by
means of traditional statistical methods, according to Regulation 1338/2008 and Regulation 349/2001
on Community statistics pertaining to public health and health and safety at work.

The results of this approach are published regularly in official reports, by National Health
and Safety Authorities, and they highlight such useful and general information on the trends of
occupational accidents as: The classes of workers most exposed to accidents, gender effects, the role of
the educational level, the age of the injured and various other parameters. In addition, ESAW data
have also been analyzed, with reference to a specific field of activity, through a statistics approach to
analyze the cause-effect mechanism [3], and information about the trend of accidents and “typical”
accidents have been reported in the recent work by Dzwiarek et al. [4] and Kogler et al. [5]. However,
these kinds of analyses are only useful to a certain extent to enhance the prevention of accidents in
the work environment, as observed by Palamara et al. [6] and Comberti et al. [7], because they do not
produce a risk assessment outcome [8].

In addition, the statistical analysis of data characterized by non-numerical variables, such as
ESAW data, makes the analysis very difficult, and it requires many a-priori assumptions and tests on
the nature of the data distribution (e.g., a CHI-coefficient test). An alternative approach, to overcome
the use of statistics, is that of resorting to data mining methods [9,10], which include several different
data analysis techniques. Some interesting results, related to ESAW data, have in fact been obtained
with Multi Correspondence Analysis (MCA) [8] and Pattern Identification [11], which have allowed
the most important accident scenarios to be identified, together with a quantification of the frequency
of accidents, but they have not produced a quantification of the associated risk.

A powerful method that has been used in different analysis fields to support risk assessments is the
SOM (Self Organizing Map): An unsupervised learning algorithm that is used to generate topologies,
while preserving transformations from a high-dimensional data vector space to a low-dimensional
map space. In other words, with SOM, it is possible to view a set of multiple-dimension data in
a 2-dimensional space. This possibility facilitates data analysis.

SOM algorithms have been applied to different risk-classification problems. Gevrey used SOM to
estimate the risk of the establishment of invasive species [12], Liang [13] proposed SOM to classify
pipeline sections with the same risk level into different risk patterns, and Asgary [14] used SOM to
classify and assess the risk levels of structural fire accidents.

Palamara et al. [6] proposed combining SOM with a clustering algorithm, as previously proposed
by Vesanto and Alhoniemi [15], to identify the most critical groups of occupational accidents from
ESAW data. This work produced promising results, but suffered from several numerical stability
problems—the results were strongly fluctuant when the analysis was repeated.

In 2015, these limits were solved by Comberti et al. [7], who published a sensitivity analysis and
set up a revised method named “SKM” (SOM K-Means method). SKM also allows a quantification
of the risk, made on the basis of clustering partition, to be associated to the qualitative figures that
are represented by SOM maps, and allows the results to be used as a decision making support for
prevention purposes, as suggested by Demichela et al. [16], and adopted by Murè et al. [17] and
Comberti et al. [18].

This paper describes a research project that has focused on the application of SKM to a large
database of occupational accidents that have occurred in the wood industry. The aims of the work
have been to test the effectiveness of SKM with a larger data set than in the previous works and
to identify occupational accident families, together with a quantification of an awareness of their
occurrence and frequency. As discussed in Top et al. [19], the wood industry is mainly characterized by
small and medium-sized enterprises—SMEs—whose operators are exposed to multiple hazard factors.
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The analysis of the dynamics of accidents that have occurred can help support occupational risk
managers identify which hazard have led to the most occupational accidents, and which factors have
contributed to the different dynamics—thus guiding prevention actions. Accident-dynamics data are
in fact crucial for risk assessments and risk-based decision making, as discussed in Leva et al. [20] and
Demichela et al. [16] for high voltage equipment; in Darabnia and Demichela [21,22] for the analysis of
human and organizational factors pertaining to maintenance optimization; in Gerbec et al. [23,24] for
the design of critical operations, or more in general, for a total safety management, as dealt with in
Leva et al. [25,26].

A description of the methodology is given in Section 2. Its application to the wood industry data
and the relevant results are shown in Section 3. A discussion and conclusions complete the paper.

2. Materials and Methods

2.1. The SKM Method

SOM is applied in SKM to coded data obtained from an occupational accident database. SOM can
represent the occupational data set in a two-dimension map. This process reflects the data similarity
within occupational databases: Accidents with similar descriptive parameters are projected into the
next units and very different accidents are projected into distant units.

SKM has here been implemented in Matlab® 7.0 (7.0, MathWorks, Natick, MA, USA) coding with
an interface designed in Excel® (Excel 2013, Microsoft, Redmond, WA, USA). SKM has been structured
in three phases:

1. A pre-processing procedure that pre-treats available data for the subsequent numerical processing;
2. SOM elaboration, which returns a visual map of the occupational accident domain;
3. K-Means calculation, which leads to the final clusters and accident partition.

The SKM structure is shown in Figure 1.

2.1.1. Pre-Processing Phase

The data set used in this study was taken from the INAIL (Italian institution for insurance against
accidents at work) database, where accidents are reported according to the ESAW taxonomy.

Each accident is described by more than 20 variables, that is: Geographical location of the
accident, time of occurrence, details about the injured party (activity, age . . . ), dynamics of the
accident (deviation from normal procedures, contact and mode of injury) and circumstances of the
accident (workstation, working environment).

The combination of the number of elements and the huge number of descriptive variables requires
a great calculation effort. Furthermore, most of the variables are categorical elements, whereas the
algorithms for SOM and K-Means calculation require numerical ones.

The method requires a pre-processing phase to adapt the data from the occupational accident
database to the algorithm characteristic. The pre-processing phase overcomes these two drawbacks by
means of a two-step coding procedure.

The first step is focused on the construction of an Accident Matrix (AM). The AM contains the
occupational accidents that have to be processed; this matrix has a dimension D, which is obtained from:

D = n × m, (1)

where n is the accident number, and m is the number of variables selected from among those available
in the ESAW classification to describe each accident.

Each variable can assume different values but, to limit the computational efforts, these values are
limited with respect to the hierarchical structure of the ESAW classification. Table 1 shows part of the
ESAW taxonomy for the “Activity” variable: According to the coding procedure, the labels from 41 to
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49, pertaining to “handling of objects”, will be replaced by the upper level label 40, while the labels
from 61 to 69, pertaining to “movement”, will be replaced by label 60.

The second step involves numerical coding; each accident is coded from a sequence of categorical
information to a sequence of numbers.
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Table 1. European Statistics study on Accidents at Work (ESAW) hierarchical classification, the upper
and lower levels.

40 Handling of Objects 60 Movement
41 Manually taking hold of, grasping, seizing, holding, placing—on a
horizontal level 61 Walking, running, going up, going down, etc.

42 Tying, binding, tearing off, undoing, squeezing, unscrewing,
screwing, turning 62 Getting in or out

43 Fastening, hanging up, raising, putting up—on a vertical level 63 Jumping, hopping, etc.
44 Throwing, flinging away 64 Crawling, climbing, etc.
45 Opening, closing (box, package, parcel) 65 Getting up, sitting down
46 Pouring, pouring into, filling up, watering, spraying, emptying,
baling out 66 Swimming, diving

47 Opening (a drawer), pushing (a warehouse/office/cupboard door) 67 Movements on the spot

49 Other group 40 type Specific Physical Activities not listed above 69 Other group 60 type Specific Physical Activities
not listed above

As reported in Palamara et al. [6], each parameter is coded in a numerical vector that contains
a sequence of zeros and a single 1. The union of the vectors that describe the variables used for the
analysis leads to the complete coding of each accident.
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The resulting vector will have as many 1s as the variables and as many 0s as the total number of
categories for all the variables, less the number of variables.

The “Input matrix” (IM) contains all the accidents coded into numerical vectors; its dimension
(Dinput) is obtained from:

Dinput = n × p, (2)

where n is the number of accidents and p is obtained from the number of variables multiplied by the
number of categories used to describe them.

Let us assume that an accident is described by 4 variables and each variable can have 5 possible
different categories. The parameter p will thus have a value of 20.

This coding procedure is run automatically through the use of conversion tables that allow an
univocal correspondence between categorical values and numerical vectors to be achieved, as shown
in Table 2.

Table 2. Coding table for the ESAW “contact” variable.

Contact Categories Numeral Coding

1 Contact with energy 1 0 0 0 0 0 0 0 0
2 Crushing 0 1 0 0 0 0 0 0 0
3 Impact with pitched material 0 0 1 0 0 0 0 0 0
4 Collision with transport system 0 0 0 1 0 0 0 0 0
5 Contact with cutting tool 0 0 0 0 1 0 0 0 0
6 Snugged/sprained 0 0 0 0 0 1 0 0 0
7 Physical effort 0 0 0 0 0 0 1 0 0
8 Violent bump 0 0 0 0 0 0 0 1 0
9 No information 0 0 0 0 0 0 0 0 1

At the end of the pre-processing phase, the AM that originally contained a group of selected
occupational accidents is coded into the IM that contains an equivalent number of numerical vectors.

2.1.2. SOM Elaboration

With reference to Figure 1, the first level of SKM contains the Self Organizing Map (SOM)
algorithm, which allows multidimensional vectors to be represented in a two-dimensional space, while
preserving the topology of the multidimensional space.

SOM is based on a neural network scheme that is formed by two layers: The first layer is made
up of the input vectors; the second layer is a map that is characterized by several units that are set by
the user.

There are several ways of calculating SOM; SKM is configured with the “batch SOM”
approach [27], which guarantees faster and more efficient performances for complex data sets than the
traditional approach.

This approach uses an iterative calculation of matrices and it depends on the initial condition, as
will be discussed later on.

The input data are fed as a single block, that is, “batch” [27], and the algorithm assigns a random
vector of equal size as the input data, called “weight”, to each unit during the initialization phase.

In the training phase, the algorithm calculates the Hamming distance [28] between IM elements
and all the unit weights.

This is an iterative process in which, at each iteration, the input data set is presented as a batch to
the SOM, and the algorithm calculates the distance between each input vector and each unit weight
vector. As in a competitive learning algorithm, the units in the map layer compete to represent the
input data and, for each input data, the unit whose weight vector is closest to it wins the competition.
This unit is called the ‘Best Matching Unit’ (BMU).

The weight vector values of the winning units are updated, at each iteration, in order to make each
output unit representative of a particular kind of input [29], together with those of the surrounding
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units. The magnitude of this update depends on the distance between the winning unit in the network
and the other units, according to the Gaussian neighborhood function.

The value of the neighborhood function decrees with the distance from the winning unit. In this
way, the weight of the units around the winner is modified, while it remains almost unaltered for
distant units.

This ensures that the data projected into the next units are similar.
The process ends when each input data is coupled with a BMU.
As mentioned above, this iterative process depends on the initial condition; in order to deal

with this dependency, the SKM allows several independent initializations, named seeds, to be made,
and these produce several different rough maps.

SKM evaluates, for each map, the topology preservation accuracy that describes how well the
data, which are close in the input space, are projected to close units in the SOM.

The topology preservation accuracy is pointed out by the topographic error, which is given by the
following equation:

εq =
1
N

N

∑
1

u(xi), (3)

where N is the data number, xi is the ith input data and u(xi) is equal to 1, if the first and the second
best matching units are not adjacent units, otherwise it is zero.

The topographic error minimization leads to the identification of the best map among all
those generated.

At the end of the training process, the map has organized itself by mapping input data into SOM
units and, in particular, by connecting similar input data to neighboring units.

The number of units has to be chosen by the user. There is not an objective criterion to set it up
and, as discussed in Comberti et al. [7], a rule of thumb is to set it with a lower value than the number
of analysed occupational accidents.

The output of the training process is a bi-dimensional map and a numerical output that is
represented by a matrix called SMap.

SMap contains the numerical code of the map and the dimension of this matrix, which is
obtained from:

DSMap = U × p, (4)

where U is the number of the unit of the map and p is the same as for Equation (2).
Each element is characterized by a sequence of real numbers that represent the weights of each

unit, which is also called prototype vector [15]. The weights are basically proportional to the number
and type of data that are projected into the corresponding unit, consequently, all the units without
projected data are characterized by a similar prototype vector.

SKM defines a new matrix, called Clustering Matrix (CM), from SMap.
CM contains a number of elements that is equal to the number of IM elements, and the prototype

vector of the corresponding activated unit defines each element.
The CM matrix and the Cluster number, evaluated from the SOM map interpretation, are the

input data for the second level of the method.

2.1.3. K-Means Elaboration

As mentioned in the introduction, the second level of clustering is based on a K-Means algorithm.
K-Means is based on the concept of cluster centers, which are called ‘centroids’. A centroid is

a point in the data space that represents a cluster. The algorithm finds the positions of the cluster
centroids in the input space, and minimizes an objective function E, the ‘square-error distortion’.

After each data has been assigned, the centroid of each cluster has clearly changed, on the basis of
the positions of the data in the space and on the random initial position of the centroid.
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Therefore, a new cluster centroid is calculated in such a way that the sum of the squared distances
is minimized.

The process continues with the calculation of the new distances between each input data and
each centroid and re-assigning the data to the nearest centroid. This process is repeated until no more
changes occur. In other words, the algorithm ends when all the data have been assigned to their
nearest centroids.

The K-Means algorithm requires three user-specified parameters: A number of clusters K, cluster
initialization and a distance metric.

The most critical choice is K. Although no perfect mathematical criterion exists, several heuristics
criteria [30] are available to choose K.

The value of K in SKM is obtained from a SOM map visual evaluation. The CM matrix constitutes
the input data for the K-Means algorithm.

The clustering phase provides a data partition that is summarized in a chart, where each
occupational accident is attributed to a specific cluster, and a graphical output, dedicated to clustering
visualization, is drawn, as shown in Figure 2.

The graph shows the distribution of activated units in the SOM map domain. Each unit is
described by different colors, depending on the membership cluster. Each unit is marked by its own
number (see the green circle in Figure 2), the number of projected elements (blue circle), and the cluster
to which the unit belongs (red circle).
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Figure 2. Partition output.

This graphical elaboration makes the comparison between several partitions easier, thus the
evaluation of clustering accuracy becomes more immediate and intuitive.

With this visualization, it is also possible to carry out a comparison with the corresponding
SOM map.
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2.2. Case Study

This work has focused on the analysis of the occupational accident domain of the wood
manufactory industry in the north of Italy (the Piedmont Region).

The occupational accident data set was provided by INAIL (Italian National Compensation
Authority) and was made up of more than 6000 elements.

Unfortunately, some reports were inaccurate as a great deal of information was missing, and this
required a preliminary check of all the available data.

The analysis of the accident database related to the wood manufacturing sector was carried out
according to the following criteria:

1. The scope of the study was linked to the accident dynamics analysis in order to define preventive
measures and, as a result, the selected descriptive variables were:

• Activity;
• Deviation;
• Material of deviation;
• Contact;
• Injured body part;
• Age of worker involved;

The first five variables were selected because they are closely linked to the accident event; the “Age
of worker” was selected to investigate whether there was a possible correlation between the worker’s
age and the dynamics of the accident.

2. In order to be selected for the AM matrix definition, it was necessary for the first four variables to
all be populated at the same time in the accident record.

On the basis of these two criteria, the original data set provided by INAIL led to an AM matrix of
4600 acceptable events.

2.2.1. Coding

The second step involves the transition from AM to IM matrix with the coding phase.
According to the criteria described at Section 2.1.1., 9 possible values were assumed for each

variable and they were coded in a numerical sequence, as shown in Table 2; the whole coding table is
reported in Appendix A (Ref. Table A1).

The dimension of the IM matrix, according to Equation (2), is:

Dinput = 4600 × 6 × 9 = 248,400 cells

2.2.2. SOM Elaboration and Analysis

The SOM was generated, according to the strategy to maximizing the map accuracy, as
summarized hereafter:

1. The number of map units was set lower than the number of IM elements;
2. Several initialization seeds were tested, and the map was selected on the basis of a topographic

error minimization criterion;
3. A balance between the elaboration time and accuracy was considered, according to the

analyst’s experience.

The SOM obtained for the case study with 25,000 seeds and 10,000 map units is shown in Figure 3.
The visual analysis suggests the presence of at least 18 groups of similar occupational accidents. This
value was used to set the K value required for the K-Means algorithm.
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2.2.3. K-Means Clustering and Cluster Identification

As discussed above, numerical clustering is an iterative process, and it was here started from the
K value that was obtained from the SOM visual analysis.

The final result is a chart of all the accidents clustered into groups on the basis of their numerical
similarity; furthermore, a graphic view of the partition is obtained, as shown in Figure 2.

Several independent repetitions of clustering can provide results with a level of variability in the
accident cluster attribution that generally involves 8–15% of the data.

In order to manage this numerical variability, two indices can be adopted, as defined in
Comberti et al. [7]: “Sequence stability” (Ss) and “sequence membership” (Sm).

The Sm index is calculated for each element. It represents the cluster attribution sequence of that
element related to multiple repetitions.

The Ss index represents the number of elements that have the same Sm index.
Table 3 shows an example of the calculation of the Sm and Ss indices for a five element cluster.

Table 3. Sequence membership.

Record Clustering Repetition

1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 7◦

5 A A A A A A A
2 A A A A B A C
3 A A A A B A A
4 A A A A B A A
1 A A A A A A A

The Sm index for record n. 5 is: AAAAAAA, while the Sm for record n. 2 is AAAABAC.
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All the elements that have an Sm without any changes in attribution are represented by an Ss
level of 100%. In other words, all the elements that are denoted by a stable sequence of clustering, have
an Ss of 100%.

An Ss level equal to 85% corresponds to the number of elements that have an Sm with at least one
variation in the cluster attribution.

A total of 85% of the examined data with a stable attribution had an Ss index level of 100%;
the amount of stable attribution reached a coverage of 93% of the data for an Ss level equal to 85%.

The use of these indexes allows the clustering stability to be quantified and helps the analyst
in the clustering identification. This process leads to a new definition of the clusters as a “group of
elements with an assigned sequence stability”.

Considering the AM matrix of 4600 occupational accidents in the wood manufacturing sector,
and the SOM map obtained that suggested 18 clusters, the K-Means algorithm phase run on three
repetitions led to a cluster identification of 21 groups on the basis of an Ss index of 85%, which is
represented in Figure 4.

An total of 93% of the data were automatically included in the identified clusters.
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3. Results

The application of SKM to the described data set led to the identification of 21 clusters. It was
possible to describe all of the clusters according to the level of homogeneity of the data contained within
each cluster. For example, Cluster 3 (CL3), which is summarized in Table 4, contains 486 accidents,
94% of which are characterized by “Working with hand tools” as their “Activity”.
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Table 4. CL3 description.

Variable Category %

Activity Working with hand tools 94
Deviation Losing control. 91

Deviation material
Hand tools 73

No information available 15
Contact Contact with cutting tool 83

Injured body part Hands 82
Age Various -

A total of 91% of the “Deviation” variables is focused on “Losing control” and 73% of the Deviation
Material” variables is focused on “Hand Tools”. A total of 83% of the “Contact” variables is focused
on “Contact with Cutting Tool” and 82% of the “Injured Body Part” is represented by “Hands”.

Tables that show the clustering descriptions with a measure of their homogeneity are reported
in the annex (Appendix B, Tables A2–A7): The most frequent values of the six descriptive variables
selected in the problem definition phase are shown for each cluster.

Some other results could be found by analyzing the number of events of each cluster and the
related average days of prognosis.

Figure 5 shows the number of occupational accidents allocated to each cluster. This parameter
falls between a minimum value of 40 for cluster 1-1 to a value of 486 for cluster 3. This parameter can
be used to estimate the major or minor frequencies of the accident dynamics pertaining to each cluster.

The “Other” label contains a set of heterogeneous accidents that were not assigned to any of the
defined clusters.
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Figure 5. Number of events per cluster.

Figure 6 shows the average number of days of prognosis calculated for each cluster. This parameter
showed a variability that ranged from 14.8 days/event for the “CL1-1” cluster to 54.5 days/event
for the “CL17” cluster. The average days of prognosis may be used to express the severity of the
accidents associated to each cluster, while the frequency of accidents and severity may be used to
address preventive measures and policies for those clusters that are characterized by a higher risk.
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Figure 6. Average days of prognosis.

Figure 7 shows the average age of the workers. It allows the accident types to be associated with
the age of the workers. Company managers could thus focus on preventive (as training) or protective
(as personal protective devices) measures according to the average age of the workers on the basis of
the most relevant accident dynamics characterizing the cluster.

Safety 2018, 4, x FOR PEER REVIEW  12 of 23 

 

 
Figure 6. Average days of prognosis. 

Figure 7 shows the average age of the workers. It allows the accident types to be associated with 
the age of the workers. Company managers could thus focus on preventive (as training) or 
protective (as personal protective devices) measures according to the average age of the workers on 
the basis of the most relevant accident dynamics characterizing the cluster. 

 

 
Figure 7. Average age of the workers of each cluster. 

4. Discussion 

4.1. Opportunities for Prevention: SKM Data Clustering 

The results reported in the previous sections highlighted useful information about the ability of 
SKM to group occupational accidents into clusters. 

As far as the cluster descriptions are concerned, Tables A2–A7 show that most of the 21 clusters 
can easily be characterized by 1 or 2 values of three of the six descriptive parameters, according to 
their numerousness within the element descriptors. 

14.8 

24.7 25.4 
27.4 

29.1 29.9 31.0 32.2 32.6 32.8 33.9 
36.0 36.2 36.3 36.8 

39.5 41.0 42.4 
44.2 

48.1 

52.8 
54.5 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

CL
1-1

 
CL
7 

CL
10

 

Ot
he
r 

CL
9 

CL
15

 
CL
13

 

CL
6-1

 
CL
3 

CL
14

 
CL
12

 
CL
6 

CL
7-1

 
CL
8 

CL
4 CL

5 
CL
1 

CL
2 

CL
11

 

CL
11
-1 

CL
16

 
CL
17

 

Pr
og

no
sis

 a
ve

ra
ge

 (d
ay
s/
ev

en
t) 

42.6 

41.5 

38.7 

40.8 

37.5 

42.7 

38.7 

40.7 

39.5 39.3 

38.0 

39.4 39.5 

38.7 

41.2 

39.8 

41.6 41.5 

40.6 

43.8 

40.7 

38.7 

34.0 

35.0 

36.0 

37.0 

38.0 

39.0 

40.0 

41.0 

42.0 

43.0 

44.0 

45.0 

CL
1 

CL
1-1

 
CL
2 

CL
3 

CL
4 

CL
5 

CL
6 

CL
6-1

 
CL
7 

CL
7-1

 
CL
8 

CL
9 

CL1
0 

CL1
1 

CL
11
-1 

CL1
2 

CL1
3 

CL1
4 

CL1
5 

CL1
6 

CL1
7 

Ot
he
r 

W
or
ke

rs
 Y
ea

rs
 

Figure 7. Average age of the workers of each cluster.

4. Discussion

4.1. Opportunities for Prevention: SKM Data Clustering

The results reported in the previous sections highlighted useful information about the ability of
SKM to group occupational accidents into clusters.

As far as the cluster descriptions are concerned, Tables A2–A7 show that most of the 21 clusters
can easily be characterized by 1 or 2 values of three of the six descriptive parameters, according to
their numerousness within the element descriptors.

Activity, Deviation and Contact are generally polarized in one value, and in some cases, they
can cover even 90% of the cluster elements, for example, the “CL10” cluster where 99% of the
occupational accidents showed the “Handling” label for the “Activity” variable. “CL11” is less
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polarized: The “Working with machinery” label covers 69% of the occupational accidents, while the
“Manual transport” label covers 23%.

A more distributed division was observed for the “Deviation material”, “Age” and “Injured body
part” variables.

The results reported in the tables in Annex B suggest that SKM may be used to identify families
of occupational accidents that differ according to their accidental dynamics, even though they share
the same “Activity”. For example, clusters 4, 5 and 16 had the same “activity” value: “Motion”.

“CL4” grouped accidents characterized by “Stress movements” as main “Deviation” and “Physical
effort” as “Contact”. “CL5” grouped accidents characterized by “Fall” as major “Deviation” and
“Crushing” for “Contact” and “CL16” identified accident dynamic similar to “CL5”, but characterized
by a “Contact” value that was polarized to “Contact with cutting tool”.

The provided clustering description can easily be compared with additional information
calculated for each cluster, with reference to the specific phenomenology of the wood industry.

Figure 5 shows the number of elements for each cluster. “CL3”, “CL14” and “CL15” are
characterized by the highest number of accidents.

This parameter can be assumed as an estimation of the frequency of accidents and, consequently,
can be used to decide on the resources and measures necessary for those clusters identified as the
most critical. Another piece of useful information that can be used to support Safety Managers is the
average days of prognosis, as summarized in Figure 6.

As far as the above described “CL4”, “CL5” and “CL16” clusters, which are taken as an example,
are concerned, the average days of prognosis passed from 36.8 days/event (“CL4”—stress movements
due to physical efforts) to 39.5 (“CL5”—Falls), and showed a maximum value of 52.8 days/event for
“CL16”, that is, occupational accidents due to contact with cutting tools. On the other hand, the “CL4”
and “CL16” clusters are only moderately populated, while “CL5” is one of the most populated, thus
the dynamics therein are among the most frequent in the wood industry. Moreover, with reference
to Figure 7, it appears that the accidents resulting from contact with tools can be ascribed to older
operators, while those related to movement can be attributed to the younger workers, thus the
prevention and protective measures may also be addressed according to age.

According these results, the SKM method is able to distinguish groups of occupational accidents,
characterized by different dynamics, and it is able to associate a different quantification of occupational
accident frequency and seriousness to each group.

As a consequence, a Risk index was calculated according to the following equation:

R = F × S, (5)

where R is the risk, F is the frequency of occurrence, calculated as number of occupational accidents
divided by day, and S is the seriousness, calculated as the average days of prognosis.

Equation (5) in Table 5 summarizes the Risk estimation for all the identified clusters.

Table 5. Risk assessment.

Clusters Frequency (Event/Day) Seriousness (Day/Event) Risk

CL1 0.04 41 1.5
CL1-1 0.03 15 0.4
CL2 0.05 42 2.0
CL3 0.37 33 12.0
CL4 0.12 37 4.3
CL5 0.28 40 10.9
CL6 0.19 36 7.0

CL6-1 0.05 32 1.5
CL7 0.15 25 3.6
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Table 5. Cont.

Clusters Frequency (Event/Day) Seriousness (Day/Event) Risk

CL7-1 0.07 36 2.4
CL8 0.24 36 8.6
CL9 0.13 29 3.8

CL10 0.14 25 3.7
CL11 0.09 44 4.0

CL11-1 0.08 48 3.6
CL12 0.15 34 5.0
CL13 0.13 31 4.0
CL14 0.28 33 9.3
CL15 0.29 30 8.6
CL16 0.15 53 8.2
CL17 0.08 55 4.5
Other 0.06 27 1.6

Risk shows a wide range of variation, that is, from 1.6 for “CL1-1” to 12 for “CL3”.
SKM has been able to identify clusters of accidents in the wood industry and to classify them, in

terms of minor or greater risk levels. For example, the most critical clusters were “CL3” and “CL5”,
which are related to manual work with hand-tools (“CL3”) and to falls during manual transport
or movements (“CL5”). The association of a Risk assessment to each cluster may in fact represent
a support to any decision-making process focused on preventive measurement planning.

For example, the high risk of “CL5” suggests there is a need to review the design of the workplace
organization in order to optimize the workers’ movements inside the working area.

4.2. Opportunities for Prevention: Traditional Data Analysis

Economic and technical resources can be defined to prevent occupational accidents on the basis
of the information achievable with the SKM method.

This result cannot be achieved directly with a traditional statistical approach, as mentioned in the
introduction. In fact, a statistical analysis performed on an occupational accident database pertaining
to the wood industry [31] provided many diagrams and graphical views of the distribution of all the
variables used in an ESAW classification. However, this large amount of information did not lead
to the identification of occupational accident clusters and did not have the purpose of drawing up a
risk quantification, as SKM did. An example of this is shown in Figure 8, where the distribution of
three variables that affected the accident dynamics is reported.

Compared to other ESAW data mining techniques, such as MCA [8], the use of SKM offers two
main advantages:

1. The here performed SKM analysis was based on six parameters (as described in Section 2.2), but
all the other accident details included in the database remained linked to each single accident
and could be used to describe the identified clusters. This was done, in the proposed study, with
“days of prognosis parameters” and it led to a risk assessment classification, but it could also be
done with all the other connected parameters, such as “number of workers employed”, “time of
accident occurrence”, and so on, thus making it possible to conduct several quantified analyses.

2. SKM is a friendly-user method, as it does not require any specific expertise in statistics or data
analysis. In fact, once the data set has been coded automatically to the SKM required format,
the SKM user simply has to set the number of “SOM units”, the number of interaction cycles,
and the number of clusters into which dividing the data set should be divided on the basis of the
SOM map. This makes the SKM method easier to apply to ESAW data than other more complex
data mining techniques.
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5. Conclusions

This paper has focused on the validation of a numerical methodology to deal with an occupational
accident database (DB) in order to better address the data analysis, to achieve a reduction in risks and
to support the definition of preventive measures.

A data set of more than 4000 occupational accidents that had occurred in the wood industry was
selected as a case study, and it was analyzed with the SKM method. SKM was able to successfully
identify a set of 21 clusters of accidents based on six variables related to the occurrence dynamics,
the injured body part and the age of the involved workers.

The variable distribution of each cluster highlighted that the partition was steered by the four
dynamic-related ones, while the variable distributions of the age of the workers and of the injured
body part were observed to be more scattered. Some other parameters related to the consequences of
each accident (number of days of prognosis) and the number of events (number of accidents) were
calculated and associated to each cluster, and this allowed a Risk assessment evaluation to be made.

The two most critical clusters, according to the risk assessment, were related to “manual activity
with hand tools” and to “free movements/manual transport” in the working area. This information
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suggests, for example, the need to design a different working organization in order to reduce the
workers’ movements inside the working place.

The results highlight that the proposed methodology represents an advancement in the analyses
of occupational accident DBs, since it allows not only the distribution of single parameters, such as
statistics, to be identified, but also to rank the dynamics of families of accidents according to such
relevant parameters as severity or risk.

More in general, the SKM can help Company Management and the National Authorities to
address preventive measures and policies pertaining to those clusters that have been identified as the
most critical on the basis of the risk quantification. This additional information represents a useful
piece of knowledge that can be used to support risk-based decision-making processes, because it
represents a quantification of risk linked to the defined occupational accident groups.
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Abbreviations

AM Accident Matrix
BMU Best Matching Unit
CM Clustering Matrix
CL Cluster
DB Database
EU European Union
ESAW European Statistics on Accidents at Work
INAIL Istituto Nazionale Assicurazione contro gli Infortuni sul Lavoro
IM Input Matrix
Sm Sequence membership
Ss Sequence stability
SOM Self Organizing Map
SKM SOM K-Mean Method

Appendix A

In this Appendix is reported the encoding table used for the data analyses.

Table A1. Coding table for ESAW variable.

Variable Categories Numeral Coding

Activity

Working with machinery 1 0 0 0 0 0 0 0 0
Working with hand tools 0 1 0 0 0 0 0 0 0

Driving 0 0 1 0 0 0 0 0 0
Handing 0 0 0 1 0 0 0 0 0

Not compiled 0 0 0 0 1 0 0 0 0
Presence 0 0 0 0 0 1 0 0 0

Manual transport 0 0 0 0 0 0 1 0 0
Movement 0 0 0 0 0 0 0 1 0

Other 0 0 0 0 0 0 0 0 1
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Table A1. Cont.

Variable Categories Numeral Coding

Deviation

Energy release (fire, explosion, . . . ) 1 0 0 0 0 0 0 0 0
Release 0 1 0 0 0 0 0 0 0

Material breaking 0 0 1 0 0 0 0 0 0
Control loosing 0 0 0 1 0 0 0 0 0

Fall 0 0 0 0 1 0 0 0 0
Incorrect movement 0 0 0 0 0 1 0 0 0

Stress movement 0 0 0 0 0 0 1 0 0
Violence or surprise 0 0 0 0 0 0 0 1 0

Not information 0 0 0 0 0 0 0 0 1

Deviation
material

Surface 1 0 0 0 0 0 0 0 0
Stored and carved materials 0 1 0 0 0 0 0 0 0

Absence of deviation material 0 0 1 0 0 0 0 0 0
Hand tools 0 0 0 1 0 0 0 0 0
Machinery 0 0 0 0 1 0 0 0 0

Transport system 0 0 0 0 0 1 0 0 0
Scraps, dangerous product 0 0 0 0 0 0 1 0 0

Person or animal 0 0 0 0 0 0 0 1 0
No information available 0 0 0 0 0 0 0 0 1

Contact

Contact with energy 1 0 0 0 0 0 0 0 0
Crushing 0 1 0 0 0 0 0 0 0

Impact with pitched material 0 0 1 0 0 0 0 0 0
Collision with transport system 0 0 0 1 0 0 0 0 0

Contact with cutting tool 0 0 0 0 1 0 0 0 0
Snugged/sprained 0 0 0 0 0 1 0 0 0

Physical effort 0 0 0 0 0 0 1 0 0
Violent bump 0 0 0 0 0 0 0 1 0

No information 0 0 0 0 0 0 0 0 1

Injured
body
part

Head/neck 1 0 0 0 0 0 0 0 0
Internal body parts 0 1 0 0 0 0 0 0 0

Spinal column 0 0 1 0 0 0 0 0 0
Arms 0 0 0 1 0 0 0 0 0
Hands 0 0 0 0 1 0 0 0 0
Legs 0 0 0 0 0 1 0 0 0
Feet 0 0 0 0 0 0 1 0 0

Eyes and ears 0 0 0 0 0 0 0 1 0
Chest 0 0 0 0 0 0 0 0 1

Age

Under 18 1 0 0 0 0 0 0 0 0
19–27 0 1 0 0 0 0 0 0 0
28–35 0 0 1 0 0 0 0 0 0
36–44 0 0 0 1 0 0 0 0 0
45–55 0 0 0 0 1 0 0 0 0
55–60 0 0 0 0 0 1 0 0 0
61–70 0 0 0 0 0 0 1 0 0

Over 70 0 0 0 0 0 0 0 1 0
No information 0 0 0 0 0 0 0 0 1

Appendix B

In this Appendix the clusters description is reported.
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Table A2. Clusters description (Activity).

Cluster First Category % Second Category %

CL1 Manually transport 35 Working with hand tools 25
CL1-1 Handling 70
CL2 Driving 63 Movements 19
CL3 Working with hand tools 94
CL4 Movements 83 Manual transport 13
CL5 Movements 71 Manual transport 12
CL6 Working with hand tools 31 Working with machinery 25

CL6-1 Working with hand tools 89
CL7 Working with hand tools 98

CL7-1 Working with hand tools 95
CL8 Driving 95
CL9 Manual transport 98
CL10 Handling 99
CL11 Working with machinery 69 Manual transport 23

CL11-1 Working with machinery 94
CL12 Manual transport 58 Handling 37
CL13 Handling 89
CL14 Handling 92
CL15 Handling 78
CL16 Movements 69 Handling 20
CL17 Driving 95

Table A3. Clusters description (Deviation).

Cluster First Category % Second Category %

CL1 Material breaking 98
CL1-1 Release 73 Material breaking 23
CL2 Violence or surprise 100
CL3 Control loosing. 91
CL4 Stress Movement 79 Incorrect movement 21
CL5 Fall 93
CL6 Incorrect movement 100

CL6-1 Incorrect movement 100
CL7 Control loosing. 98

CL7-1 Control loosing. 98
CL8 Control loosing. 93
CL9 Control loosing. 61 Stress Movement 14
CL10 Incorrect movement 87
CL11 Control loosing. 86

CL11-1 Control loosing. 79 Incorrect movement 17
CL12 Stress Movement 90
CL13 Material breaking 85
CL14 Material breaking 94
CL15 Material breaking 84
CL16 Fall 53 Material breaking 38
CL17 Control loosing. 84
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Table A4. Clusters description (Deviation material).

Cluster First Category % Second Category %

CL1 Scraps, dangerous product 40 Surfaces 29
CL1-1 Scraps, dangerous product 93
CL2 Absence of deviation material 50 Person or animal 19
CL3 Hand tools 73 No information available 15
CL4 Absence of deviation material 54 Surfaces 26
CL5 Surfaces 58 Stored and carved materials 13
CL6 Absence of deviation material 78

CL6-1 Hand tools 60 No information available 10
CL7 Stored and carved materials 30 Surfaces 21

CL7-1 Stored and carved materials 73
CL8 Transport system 95
CL9 Stored and carved materials 81
CL10 Absence of deviation material 72 No information available 11
CL11 Machinery 36 Stored and carved materials 31

CL11-1 Machinery 43 No information available 42
CL12 Stored and carved materials 48 No information available 13
CL13 Scraps, dangerous product 52 Hand tools 15
CL14 Hand tools 43 Scraps, dangerous product 25
CL15 Stored and carved materials 99
CL16 Surfaces 79
CL17 Transport system 91

Table A5. Clusters description (Contact).

Cluster First Category % Second Category %

CL1 Impact with pitched material 88
CL1-1 Contact with energy 73 Impact with pitched material 23
CL2 Collision with transport system 55 Violent bump 16
CL3 Contact with cutting tool 83
CL4 Physical effort 87
CL5 Crushing 99
CL6 Contact with cutting tool 59 19

CL6-1 Contact with cutting tool 69 Snugged/sprained 11
CL7 Contact with cutting tool 43 Collision with transport system 20

CL7-1 Impact with pitched material 70
CL8 Collision with transport system 89
CL9 Impact with pitched material 39 Snugged/sprained 20
CL10 Contact with cutting tool 41 Crushing 16
CL11 Snugged/sprained 47 Contact with cutting tool 27

CL11-1 No information 56 Violent bump 33
CL12 Physical effort 95
CL13 Contact with cutting tool 89
CL14 Contact with cutting tool 68 Collision with transport system 11
CL15 Contact with cutting tool 67 Impact with pitched material 13
CL16 Contact with cutting tool 82
CL17 Crushing 67 Contact with cutting tool 20



Safety 2018, 4, 51 20 of 22

Table A6. Clusters description (Injured body part).

Cluster First Category % Second Category %

CL1 Arms 25 Chest 21
CL1-1 Eyes and ears 60 Head/neck 15
CL2 Hands 27 Scattered
CL3 Hands 82
CL4 Legs 56 Hands 18
CL5 Scattered
CL6 Hands 79

CL6-1 Hands 77
CL7 Hands 68

CL7-1 Scattered Scattered
CL8 Spinal column 47 Hands 16
CL9 Hands 54
CL10 Hands 53 Arms 12
CL11 Hands 81

CL11-1 Hands 92
CL12 Spinal column 36 Hands 15
CL13 Scattered
CL14 Hands 91
CL15 Hands 50
CL16 Legs 38 Scattered
CL17 Legs 25 Hands 24

Table A7. Clusters description (Age).

Cluster First Category % Second Category %

CL1 36–44 33 Scattered
CL1-1 36–44 35 44–55 23
CL2 Scattered
CL3 Scattered
CL4 36–44 37 Scattered
CL5 Scattered
CL6 Scattered

CL6-1 36–44 31 Scattered
CL7 45–55 31 Scattered

CL7-1 36–44 30 Scattered
CL8 Scattered
CL9 Scattered
CL10 36–44 28 44–55 25
CL11 28–35 30

CL11-1 36–44 31
CL12 45–55 29 36–44 28
CL13 Scattered
CL14 Scattered
CL15 Scattered
CL16 Scattered
CL17 Scattered
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