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Abstract: Stereolithography 3D printing is today recognized as an effective rapid prototyping 

technique in the field of polymeric materials, which represents both the strengths and the 

weaknesses of this technique. The strengths relate to their easy handling and the low energy 

required for processing, which allow for the production of structures down to the sub-micrometric 

scale. The weaknesses are a result of the relatively poor mechanical properties. Unfortunately, the 

choice of the right material is not sufficient, as the printing parameters also play a crucial role. For 

this reason, it is important to deepen and clarify the effect of different printing conditions on final 

product characteristics. In this paper, the behavior of commercial Standard Blend (ST Blend) acrylic 

resin printed with stereolithography (SL) apparatus is reported, investigating the influence of 

printing parameters on both the tensile properties of the printed parts and the build accuracy. 

Twenty-four samples were printed under different printing conditions, then dimensional analyses 

and tensile tests were performed. It was possible to find out the optimum printing setup to obtain 

the best result in terms of mechanical resistance and printing accuracy for this kind of resin. Finally, 

a micrometric spring was printed under the optimal conditions to demonstrate the possibility of 

printing accurate and tiny parts with the commercial and inexpensive STBlend resin. 

Keywords: SL process; hatching effect; post-curing time; pigment; mechanical resistance; build 

accuracy 

 

1. Introduction 

The term “additive manufacturing” refers to a layer-by-layer building method for prototypes 

3D printing. Stereolithography (SL), selective laser sintering (SLS), and fused deposition modelling 

(FDM) are some examples of additive manufacturing technologies.  

Among the cited techniques, SL is surely the oldest one if we consider the pioneering work of 

Charles W. Hull in 1986, in which he outlined a system for building objects from a liquid medium [1]. 

Since then, many researchers have studied methods to improve this approach and to exploit this 

technology with broad-spectrum applications. Nowadays, SL is involved in several application 

fields, such as bioengineering (prostheses [2] and pre-surgical phantoms [3], interfaces for the human 

body [4]), microfluidics [5], labs-on-chip (LOC) [6,7], Micro Electro Mechanical System (MEMS) [8], 
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chemical laboratory analysis, and electronic and mechanical devices (circuit-like structures [9,10], 

electronic components [11], electrochemical cells case [12], antennas [13,14], energy harvesters [15], 

dampers, connectors, etc.). The goal is to further enlarge the family of SL applications finding the 

optimal printing procedure for each case, which mainly relies on material composition and printing 

parameters. With this in mind, the commercial acrylic resin STBlend from FunToDo was 

characterized after SL printing and optimal printing parameters were found. The low-cost STBlend 

resin was chosen for some of its interesting properties, also reported in literature. Indeed, STBlend 

can be employed to prepare fiber-reinforced matrixes [16,17], and it was demonstrated to be a good 

scatterer for ultrasound applications [18] and inert for standard polymerase chain reaction (PCR) 

analyses [6]. Moreover, as reported in [6], parts printed with STBlend are suitable for high-

temperature applications (up to 100 °C). This paper aims to add information about STBlend resin 

when polymerized with different printing parameters, pushing its performance in reproducing 

strong and microscopic parts (e.g. to be integrated in micro electro-mechanical systems, or MEMS) to 

the limit. Furthermore, a test examining how coloring pigment inside the resin affects object 

properties is reported. Indeed, it is known that, even in optimized commercial resins, the color is 

given by a pigment that might settle if the blend is not periodically mixed. Considering that pigment 

competes with photoinitiator during polymerization [19], it is likely it has an influence on 

dimensional accuracy and mechanical properties. Very few works have examined such issues in the 

field of stereolithography resins, limiting study to the investigation of curing characteristics and color 

[20] or final hardness properties [21]. Other works, like the one of Macarie and Ilia [19], focused 

mainly on acrylic coatings. In this work, by printing samples before and after pigment settling, more 

information is added about the influence of coloring pigment on dimensional and mechanical 

characteristics of the same stereolithography resin.  

Overall, this work aims not only to enrich the knowledge about a specific resin, but also adds 

data to the literature related to SL printing parameters. Indeed, it was observed that many researchers 

have worked on finding the optimal printing conditions for SL process in order to obtain high quality 

parts, both in terms of mechanical properties and dimensional accuracy (Table A1 summarizes the 

most relevant works in this field, highlighting the parameters considered and the material). But the 

influence of process parameters on dimensional accuracy and mechanical properties has never been 

considered together. Moreover, most of works have considered only epoxy-based resins. Epoxy-

based resins are blends of epoxides with acrylate components. This mixture leads to the creation of 

interpenetrating networks during polymerization and is typical for commercial resins optimized for 

high printing accuracy. Indeed, epoxies are characterized by a slow cationic polymerization different 

from high reactive acrylates which polymerize following a fast, radical polymerization. Therefore, 

the presence of epoxides induces a lower stress due to shrinkage, resulting in more dimensionally 

accurate objects. However, epoxy-based resins are not always the right choice, from among the 

alternatives, due to their slow reaction and their exothermic polymerization process. These are some 

reasons why acrylate resins are sometimes preferred. 

2. Materials and Methods 

2.1. CAD Modeling 

A tensile test sample in accordance with ISO527 [1–5] was designed to be used both for a 

dimensional check and, subsequently, a mechanical tensile test. It has a characteristic shape and it is 

usually called “dog-bone tensile piece”. As shown in Figure 1a, each sample is composed of two 

shoulders and one central part called “gauge” or “gage”. It is recommended the total length of the 

gage be at least four times the diameter (or the width) to avoid effects from the shoulders. 

The sample geometry was generated in Solidworks® and then converted in *.STL (Standard 

Triangulation Language) taking into account the dimensional constraints and the available printing 

area. 

2.2. Printing Equipment and Material 
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In this work, customizable 3D printing equipment designed and fabricated by Microla 

Optoelectronics s.r.l. (Turin, Italy) was used. This printer enables the user to manually set the laser 

power and layer thickness (from 20 to 200 µm). Moreover, hatching direction, hatching spacing and 

hatching speed can be tuned. In particular, hatching speed can be set differently for each layer, as 

well as for its edges and its internal area. It has a 170 mm × 200 mm working area and exploits a 405 

nm laser source to trigger the polymerization. The laser is mounted on a galvo-scanner and the final 

spot diameter focused on the building platform is 100 µm. Model slicing, setting of the parameters, 

and writing the instructions for G-code, were performed using the software BeamConstruct by HA 

Laser System (München, Germany). 

The material used was the acrylic resin STBlend-Black from FunToDo (Alkmaar, The 

Netherlands), which is characterized by a 100 cP viscosity and 1016 g·dm−3 density. 

2.3. Printing of the Samples 

The SL process considered starts with a preparation step in which the vat is properly filled with 

liquid resin. After that, the object is built by polymerizing the resin layer-by-layer, thanks to the data 

provided by the slicing program. Twenty-four samples with different printing conditions were 

produced. Hatching direction (H-dir) and post-curing time (PCT) parameters, known to have an 

effect on the final mechanical properties, were varied in order to evaluate the influence on both 

dimensional accuracy and mechanical properties. As regards H-dir, along sample axis (x-dir) and 

orthogonal to sample axis (y-dir) were the two chosen levels. The selection of post-curing times was 

initially based on literature: indeed, 60 min PCT occurs frequently and was also found to be the best 

value for epoxy-based resins [22]. Then, a quicker PCT was chosen (14 min), aiming to shorten the 

whole printing process. Moreover, considering that the resin used was dark, thanks to a black 

pigment dispersed inside it, the effect of pigment, and thus resin transparency (Tr), was investigated 

by printing with a more opaque (Op) and pigmented resin (before pigment settling) and a clearer 

(Cl), less pigmented resin (after one month pigment settling, to ensure almost complete deposition). 

A design of experiment (DOE) with two levels for each parameter was introduced, as reported in 

Table 1.  

Table 1. Design of experiment (DOE): Considered printing parameters and respective values setting. 

Parameter* Level 1 Level 2 

PCT 14 min (7 min per side) 60 min (30 min per side) 

Tr Op Cl 

H-dir 

x-dir 

 

y-dir 

 
 

* Legend: PCT = post curing time; Tr = transparency; H-dir = hatching direction. 

According to the DOE parameters, the eight combinations reported in Table 2 were attained for 

the fabrication of samples. For each combination, three samples were built and listed in the same 

table. Hence, twenty-four tensile pieces were obtained and identified by different numbers. 

Table 2. Combination (Comb) of constructive settings for samples according to DOE. 

Comb. # H-dir PCT Tr Samples # 

1 x 14 min Op 1 to 3 

2 x 60 min Op 4 to 6 

3 y 14 min Op 7 to 9 

4 y 60 min Op 10 to 12 

5 x 14 min Cl 13 to 15 
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6 x 60 min Cl 16 to 18 

7 y 14 min Cl 19 to 21 

8 y 60 min Cl 22 to 24 

Other printing parameters, typical for SL process, were set constant. A layer thickness equal to 

0.1 mm was chosen in accordance to Cho et al. [23] to reduce error on dimensional accuracy. Indeed, 

they found that once the hatch overcure parameter is fixed, by choosing the higher hatch spacing 

with the lower layer thickness, it is possible to obtain a low absolute error related to nominal 

dimensions. Therefore, they suggested a layer thickness equal to 0.1 mm and a hatch spacing higher 

than 0.22 mm. In this study, a lower hatch spacing (0.05 mm) was selected in order to obtain a tougher 

part. This choice was determined by the absence of printing supports, which caused adhesion of the 

sample first layer to the building platform and, therefore, a considerable effort to detach the object 

from the platform. The other fixed parameters, optimized for the resin in use, were: laser power 

density equal to 5.97 W·mm−2, scanning velocity (SV) for edges equal to 1000 mm·s−1, and SV for 

internal area equal to 2000 mm·s−1. 

2.4. Post-Curing Treatment 

Once the object printing was completed, the building platform was removed from the printer to 

detach the object and clean it with isopropyl alcohol (IPA), which allows the proper removal of 

uncured resin. Even if thermal post-curing produces the highest degree of curing [24] reducing 

heterogeneity and anisotropy [25], UV post-curing (with a 120 W nominal power UV lamp) was 

chosen because thermal post-curing induces undesired higher shrinkage strains [26] and represents 

an accelerated ageing mechanism [27]. Moreover, in order to overcome possible shrinkage during the 

static UV post-curing step, each specimen was exposed for half the post-curing time and then turned 

upside down to complete the curing. 

2.5. Dimensional Characterization 

Samples shoulder width (S), gauge width (G), and thickness (T) were measured as described in 

Figure 1b to evaluate dimensional errors. A micrometer gauge (Mitutoyo, range 0–25 mm, resolution 

0.01 mm) was used. In detail, for each sample, the performed measurements were two for shoulder 

width and one for each shoulder. Three measurements were taken for gauge width: one in the middle 

of the gauge and the other two on its extremities. Five measurements were taken for thickness. 

Finally, average values for T, S, and G were calculated. 

 

Figure 1. Tensile sample details. (a) Nominal dimensions (expressed in millimeters). (b) Measured 

thickness (T), gauge width (G), and shoulder width (S). 

2.6. Mechanical Characterization 

After dimensional characterization, the stress-strain curve was recorded for each of the twenty-

four samples. Tests were performed at 0.5 mm/min velocity in controlled displacement mode at room 

temperature (25 °C) with a 10 kN load cell. Each tensile sample was properly clamped and tested 
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using an MTS QTest 10 machine. Mechanical testing equipment acquires data at 10 Hz frequency and 

plots a real-time graph. Each point in the chart describes the load variation (expressed in Newtons) 

vs. the upper grip displacement (expressed in millimeters). Load and displacement data were 

processed to obtain a stress (σ) - strain (ε) curve for each specimen, according to Equation 1 and 

Equation 2. 

 � =
����

����
 (1) 

 

� =
������������

�����ℎ
 

 

(2) 

According to nominal dimensions reported in Figure1a, area is equal to 32 mm2 while length is 

equal to 51 mm.  

From the stress-strain curve, the characteristic Young’s modulus (E) was extrapolated.  

2.7. Statistical Analysis of the Results 

Analysis of variance (ANOVA) was performed to observe the influence of printing parameters 

on the final properties of the part. The influence of parameters on dimensional accuracy and Young’s 

modulus (E) was investigated since the aim was to find the optimal condition to build micrometric 

and mechanically strong parts. Thus, ANOVA was performed by observing the mean values (Vavg) 

of E, T, S, and G, calculated as reported in Equation 3. Standard deviation was used to estimate the 

error (err), calculated as reported in Equation 4. 
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First of all, results from dimensional and mechanical characterization were sorted to define 

twelve sample groups, as reported in Table 3. Each of the groups was made up of six samples 

characterized by two fixed printing parameters (according to the parameters combination reported 

in Table 2). Thus, the influence of the variable printing parameter could be evaluated by calculating 

the factor of influence (F) for E, T, S, and G measurements.  

Table 3. Sample groups for ANOVA. 

Parameters 

combination 

Fixed values  

H-dir PCT Tr  

x y 14 60 Op Cl Group Comb. # 

Factor of 

influence 

(F) 

H-dir 

        a 1-3 

        b 5-7 

        c 2-4 

        d 6-8 

PCT         e 1-2 
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        f 5-6 

        g 3-4 

        h 7-8 

Tr 

       i 1-5 

       l 2-6 

       m 3-7 

       n 4-8 

 

Considering each group separately, comprising two subgroups, F was calculated by dividing the 

variance among the group (vamong2) with the variance inside each sub-group (vinside2). vamong2 and vinside2 

were calculated as reported in Equation 5 and Equation 6. 

 

������
� =  

1
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(5) 
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(6) 

Where sg is the number of subgroups (always equal to 2 in this case), s is the number of samples 

for each subgroup (always equal to 3 in this case),  and  are respectively the mean value for 

subgroup k and the mean value of the group, stot is the total number of samples in the group (always 

equal to 6 in this case), and Dk is the deviance inside subgroup k. 

Finally, the influence of each printing parameter was evaluated by comparing the F values 

calculated for its groups (e.g., for H-dir the F values calculated for groups a, b, c, and d) with critical 

value extrapolated from the F-distribution table for level of significance α=0.05 taking into account 

the degrees of freedom associated to F, (1,4) in this case. Thus, for each printing parameter, if in more 

than 5% of cases F values are higher than the critical value (always equal to 7.71 in this study), it is 

said that the printing parameter has an influence on the printed part characteristic observed (E, T, S, 

or G in this case). 

2.8. Micrometric Spring Printing 

The main goal of this work was to find a printing parameter setup to accurately build tiny parts. 

Thus, a small spring, which integrates a 500 µm diameter coil, was printed with the optimized 

printing parameters. The spring has an external diameter equal to 4.5 mm and is 5 mm high. The 3D 

geometry is reported in Figure 2. 

 

Figure 2. 3D geometry of the micrometric spring. Dimension is expressed in mm. 
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3. Results 

The inaccuracies intrinsically connected with SL processing are mainly due to various sources 

[28]: integration of CAD/CAM (Computer Aided Design/Computer Aided Manufacturing), materials 

behavior after polymerization, laser spot diameter, manufacturing parameters, and post-processing 

steps, associated also to accidental and systematic errors.  

Previous works demonstrated that dimensional accuracy in SL is worse along z-direction than 

on the x-y plane [29]. These inaccuracies are mainly due to shrinkage, a complex phenomenon that 

may interest the object both during printing and post-processing steps [23]. For the printing process 

considered in this study, shrinkage can firstly occur during polymerization in the resin vat causing 

the so-called “curl distortion” [30]. If the parameters are optimized and a sufficient curing degree is 

reached within the printing process, the shrinkage induced by post-curing treatment will be less 

relevant. Indeed, the higher the curing during printing, the lower the shrinkage during post-curing 

[31]; the latter has a large influence on mechanical resistance of final objects [22] leading to higher 

values of elastic modulus than green samples [24]. 

3.1. Dimensional Characterization 

Two of the dog-bone tensile samples obtained after printing and post-curing are reported in 

Figure 3, one for Op resin (Figure 3a) and one for Cl one (Figure 3b). 

 

Figure 3. Two examples of dog-bone tensile samples. (a) Sample printed with Op resin. (b) Sample 

printed with Cl resin 

The plots collected in Figure 4, show the mean values for T (Figure 4a), S (Figure 4b), and G 

(Figure 4c) with corresponding error bars, and they are plotted by processing measurement data of 

the three samples related to each of the cases reported on horizontal axis. A comparison between Op 

and Cl resin is also performed and the results are collected in the same plots.  
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Figure 4. Plot of mean values of (a) T, (b) S, and (c) G both for Op and Cl resin. On the y axis, the same 

2.5 units value span is reported to allow comparisons. 

One of the aims of the study was to observe the dimensional accuracy of the printed objects and 

its dependence on the printing parameters set. It seems that no evidence of hatching direction or post-

curing time influence on T, S, or G could be reported. Instead, resin transparency affects dimensional 

accuracy inducing a wider polymerized strand with respect to darker resin, resulting in wider objects. 

This effect seems to compensate for the effect of shrinkage, obtaining sample widths closer to the 

nominal values. Finally, using the same value span along the y-axis of the three histograms in Figure 

, it is possible to prove that, also for the printing setup employed here, major errors occur along z-

direction (thickness), as reported elsewhere [29]. Indeed, all samples (independently from the resin 

type and process parameters considered) show that T measurements have a higher standard 

deviation than S and G measures.  

3.2. Mechanical Characterization 

As for dimensional measurements, data were collected in plots showing the mean values of the 

Young’s modulus (Figure 5b). Figure 5a shows a typical stress-strain curve obtained from the tensile 

testing. 
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Figure 5. Results from mechanical characterization. (a) Typical stress-strain curve for the tested 

samples (here the one relative to sample #4). (b) Plot of mean values for Young’s modulus. 

The mechanical characterization of material properties, according to the reported DOE, revealed 

that all samples (independently from the resin type and process parameters considered) showed a 

brittle behavior with low permanent deformation after sample break. For all tensile specimens, the 

hatching direction seems to have no influence on mechanical properties. A similar result has been 

obtained with epoxy-based resins and is in accordance with previous studies [32] which have 

demonstrated that object layout (if it is built flat or on edge) is more influential than object orientation 

on the horizontal plane, which has almost no influence. Instead, the post-curing time seemed to have 

an effect on mechanical behavior: for both clear and opaque resin, the higher the post-curing time, 

the higher the Young’s modulus. This is in line with the study of Chockalingam et al. [22] in which, 

for an epoxy resin, it was found that a 60 min PCT is the best choice for enhanced tensile strength of 

SL parts. In addition, resin transparency affects the mechanical properties, resulting in higher mean 

Young’s modulus values for clear resin, regardless of printing direction and post-curing time.  

3.3. Statistical Analysis of the Results 

The F values obtained for Young’s modulus (Figure 6a), thickness (Figure 6b), shoulder width ( 

Figure 6c), and gauge widths (Figure 6d) are schematically reported in Figure 6. The comments 

previously reported are all proved: post-curing time and transparency have a significant impact on 

the final Young’s modulus of the STBlend printed objects (with respective F mean values equal to 

124.37 and 42.13). As regards printing accuracy, polymer transparency is influential for planar 

dimensions, thus impacting on shoulder and gauge width (with respective F mean values equal to 

54.38 and 55.71). 
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Figure 6. ANOVA: plot of the F values computed for (a) Young’s modulus, (b) thickness, (c) shoulder 

width, (d) gauge width. 

3.4. Micrometric Spring Printing 

Following the previous results, the spring was printed with Op resin, which showed more 

repeatable results than Cl resin, setting y-dir and 60 min post-curing time to have the higher Young’s 

modulus. As visible is Figure 7a, the geometry appears almost identical to the CAD drawing; 

moreover, the spring can be compressed (Figure 7b) and is finally able to recover its shape (Figure 

7c). 
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Figure 7. SL printed micrometric spring. (a) Geometry details, (b) compression, (c) release. 

For this kind of application, a lower layer thickness would be suggested; indeed, from Figure 7a, 

the layers are clearly visible along the coil. 

4. Discussion 

At the end of this work, we can state that the first hypotheses deduced from the experimental 

results were verified by the analysis of variance. As regards the mechanical properties of the objects 

printed with STBlend resin, they were found to be mainly affected by post-curing time and resin 

transparency. During the printing process, the laser does not stimulate the complete polymerization 

of the resin but creates a sort of “scaffold” with the desired shape in order to speed-up the printing 

process. Then, a post-curing step is required in order to fully cure the un-polymerized blend trapped 

in the printed scaffold. Thus, the longer the post-curing time, the higher the curing degree and the 

polymer strength, until complete polymerization is reached. Therefore, surely the post-curing process 

induces a further hardening of the resin, both for clear and opaque resin. The higher values of 

Young’s modulus for clear resin could be due to both the small number of weakening resin/pigment 

interfaces but also to the better UV light penetration inside the object, which allows for a higher curing 

degree at higher depths inside the parts (if compared with the dark resin layers which can act as a 

shield for the inner volumes of the object). As regards printing accuracy, a possible explanation of 

the influence of resin transparency on the planar dimensions of the samples came from experimental 

observation. All the measured values of shoulder width and gauge width for clear resin were higher 

than for the opaque ones. Again, UV light penetration inside the resin seems to be the reasonable 

explanation. During SL printing process, a laser spot hits the surface of the resin and continuously 

polymerizes the blend along a pre-determined path (which at the end generates the layer geometry). 

The width of the path is strictly dependent on the laser spot and the transferred energy; it is known 
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for the spot to have a gaussian energy distribution, with higher values around its center and lower 

values at the boundaries. Therefore, there is an energy threshold value that determines the activation 

of the photoinitiator dispersed inside the resin. In the case of opaque resin, the pigment, as previously 

stated, could act as a shield for UV light, meaning only the volume directly around the center of the 

laser spot will have a sufficient energy dose to polymerize the resin. Thus, the area polymerized in 

opaque resin will be tighter than the one polymerized with the same printing parameters in clear, 

and almost transparent, resin. 

In conclusion, the pigment seems to allow for a more accurate and spatially controlled 

polymerization, thus resulting in more similar printed parts and more repeatable results. 

5. Conclusions 

In this study, the commercial resin STBlend in two different forms (Op and Cl, depending on 

pigment sedimentation stage) was analyzed. 

Dimensional accuracy and mechanical behavior were evaluated tuning printing parameters. It 

was observed that dimensional accuracy is higher on the x-y plane than along z-direction. Moreover, 

in the presented printing setup, hatching direction and post-curing time parameters seem not to 

influence dimensional accuracy, which conversely is affected by resin transparency. As regards 

mechanical properties of printed samples, post-curing time and resin transparency have an impact 

on mechanical properties, while hatching direction has almost no effect. 

Finally, the performances of the resin treated with the optimized parameters was assessed by 

printing a micrometric spring, which could be suitable for integration inside a millimetric mechanical 

actuation system. 
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Appendix A 

Table A1. Literature review on influence of printing parameters on mechanical properties and 

dimensional accuracy. 

Literature Investigated parameters*  

Influence on: Year Author LT HS SV O HO LP PC 
Resin 

used 

Mechanical 

properties 

1992 Jacobs [33] x  x x  x  NR* 

1997 Schaub et al. [34] x   x x   NR 

2004 Hague et al. [27]    x   x 
Epoxy-

based 

2006 
Chockalingam et al. 

[35] 
x   x   x 

Epoxy-

based 

2008 
Chockalingam et al. 

[22] 
x   x   x 

Epoxy-

based 

2009 Salmoria et al. [25]  x     x 
Epoxy-

based 

2014 Raju et al. [36] x x  x    
Epoxy-

based 

2014 Bangalore et al.[37] x x  x    
Epoxy-

based 

Dimensional 

accuracy 
1997 Rahmati et al. [38] x x   x   

Epoxy-

based 
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1998 Onuh et al. [39] x x   x   
Acrylic-

based 

2000 Zhou et al. [28] x x   x   NR 

2000 Cho et al. [23] x x   x   
Epoxy-

based 

2001 Lee et al. [40] x x   x   NR 

2016 
Chockalingam et al. 

[41] 
x x   x   

Epoxy-

based 

* Legend: LT =layer thickness, HS = hatching spacing, SV = scanning velocity, O = orientation, HO = 

hatching overcure, LP = laser power, PC = post-curing, NR = not reported. 
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