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An adaptive hp-DG-FE Method for Elliptic Problems.

Convergence and Optimality in the 1D Case

Dedicated to the memory of Professor Ben-yu Guo

Paola Antonietti∗ Claudio Canuto† Marco Verani‡

Abstract

We propose and analyze an hp-adaptive DG-FEM algorithm, termed hp-ADFEM,
and a realization of it in one space dimension which is convergent, instance optimal, and
h- and p-robust. The procedure consists of iterating two routines: one hinges on Binev’s
algorithm for the adaptive hp-approximation of a given function, and finds a near-best
hp-approximation of the current discrete solution and data to a desired accuracy; the
other one improves the discrete solution to a finer but comparable accuracy, by iteratively
applying Dörfler marking and h-refinement.

1 Introduction

The design and analysis of adaptive hp-type finite element methods for elliptic problems
is significantly more challenging than for h-type methods. Indeed, as demonstrated e.g.
by some examples given in [6, Sect.1], one should include in the adaptive procedure the
possibility of stepping back from an early choice between h-refinement and p-enrichment:
while the true structure of the solution reveals itself along the iterations, one should be
able to re-distribute the allocated degrees of freedom between h- and p-resolution. The
existence of (rather) pathological situations has not prevented the development of practical
hp-adaptive algorithms that work (see e.g. [9] and the references therein), but in most
cases these procedures are not supported by a sound mathematical theory, which assesses
the optimality, and even the convergence, of the method (unless a-priori assumptions on
the structure of the solution are made).

The crucial issue is an approximation problem: how can we build an hp-finite element
space of minimal dimension in which a given function can be approximated with a pre-
scribed accuracy? A constructive answer to this question has been given by P. Binev in
the past few years (see [5]), who designed a greedy hp-algorithm, which is incremental
with respect to the dimension and has instance optimality properties (see Sect. 2.3).

With a good answer to such an approximation problem, one may think of recursively
applying the hp-adaptive algorithm to a sequence of Galerkin discrete solutions of the
elliptic problem, built in a way to get closer and closer to the exact solution. This idea
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has been implemented in [6], where a general framework for adaptive hp-discretizations has
been devised, and an adaptive algorithm termed hp-AFEM has been proposed, which
guarantees convergence and instance optimality of the sequence of generated Galerkin
solutions. The algorithm is both h- and p-optimal in one space dimension, whereas in
higher dimensions p-robustness is lost, partly due to the need of going from the non-
conforming meshes produced by Binev’s algorithm to the conforming ones needed in a
continuous Galerkin method, and partly due to the use of a residual-based error estimator
(the latter obstruction may be removed by resorting to equilibrated flux estimators, as
done in [7]).

Since Binev’s algorithm produces non-conforming meshes and discontinuous approxi-
mations, it is quite natural to associate to it a Discontinuous, rather than a Continuous,
Galerkin discretization of the elliptic problem. The purpose of this paper is to take a step
forward in this direction. In particular, hereafter we propose an hp-adaptive DG-FEM
algorithm, termed hp-ADFEM, and a realization of it in one space dimension which
is convergent, instance optimal, and h- and p-robust. No restriction on the relative size
of neighboring elements, nor on the polynomial degrees used on them, is required. In
building a discrete solution that matches a prescribed accuracy, we extend to the hp-case
the approach developed in [4] for h-type DG methods, using in the analysis several results
on hp-type a posteriori error estimators (see e.g. [8] and the references therein). The
multi-dimensional case is currently under investigation [1]; while our general convergence
theorem holds in any dimension, proving p-robustness seems to require a grading property
in the distribution of polynomial degrees over the partition, which is not guaranteed by
the algorithm proposed in [5].

The paper is organized as follows. In Sect. 2, we introduce our general framework
for the hp-approximation of a given function, and we present Binev algorithm. Sect. 3
describes the hp-DG discretizations that we consider, and collects some of their proper-
ties. Sect. 4 contains the general convergence and instance optimality result, based on
the concatenation of Binev’s algorithm and a procedure to compute DG-solutions with
polynomial data, matching a prescribed tolerance. Finally, in Sect. 5 we illustrate a pos-
sible realization of this procedure, which is based on the classical SOLVE → ESTIMATE
→ MARK → REFINE paradigm.

The following notation will be used thoughout the paper. By A . B we will mean
that A can be bounded by a multiple of B, independently of parameters which A and B
may depend on. Likewise, A ' B is defined as both A . B and B . A.

C.C. wishes to remember the long-lasting friendship and mutual esteem with Professor
Ben-yu Guo, a person of great humanity and a devoted scientist.

2 hp-partitions and hp-approximations

Let Ω be a bounded open interval of the real line. In view of the hp-adaptive discretization
of a boundary-value problem therein, we introduce some notation concerning partitions
in Ω and function spaces built on them.

2.1 Partitions of the domain

We assume that we are given an essentially disjoint initial partition K0 of Ω̄ into finitely
many closed subintervals, which will be the initial geometric elements; the initial subdivi-
sion may depend upon the data of the problem at hand. Then, we apply subsequent dyadic
subdivisions, by halving each element K that we encounter into two closed subintervals
K ′ and K ′′ of equal size, the ‘children’ of K, such that K = K ′ ∪K ′′ and |K ′ ∩K ′′| = 0.
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The set K of all these geometric elements forms an infinite binary ‘master tree’, having as
its roots the elements of the initial partition of Ω̄. A subtree of the master tree is a finite
subset of K that contains all roots and for each element in the subset both its parent and
its sibling are in the subset. The leaves of a subtree form an essentially disjoint partition
of Ω̄. The set of all such geometric partitions, or ‘h-partitions’, will be denoted as K. For
K, K̃ ∈ K, we call K̃ a refinement of K, and denoted as K ≤ K̃, when any K ∈ K̃ is either
in K or has an ancestor in K.

Starting from an h-partition K ∈ K, we obtain an hp-partition D by associating an
integer p ∈ N0 = N∪{0} to each element K ∈ K. This integer will represent a polynomial
degree, which will identify certain finite dimensional spaces of polynomial functions defined
in K. A pair D = (KD, pD) ∈ K×N0 formed by a geometric element KD and an integer pD
will be termed an hp-element. Thus, a collection D = {D = (KD, dD)} of hp-elements is
an hp-partition provided K(D) := {KD : D ∈ D} ∈ K; the latter will be the associated h-
partition. The collection of all hp-partitions is denoted as D. Since p+1 is the dimension of
the space Pp(K) of the univariate polynomials of degree ≤ p in K, we define the dimension
of the hp-partition D as the integer

#D :=
∑
D∈D

(pD + 1).

For D, D̃ ∈ D, we call D̃ a refinement of D, and write D ≤ D̃, when both K(D) ≤ K(D̃),

and dD̃ ≥ dD, for any D ∈ D, D̃ ∈ D̃ with KD being either equal to KD̃ or an ancestor
of KD̃.

2.2 Approximation spaces on hp-partitions

Let Z be a normed space of vector-valued functions z : Ω→ Rm (m ≥ 1), which is relevant
for our application. For any geometric element K ∈ K, let ZK be the space collecting the
restrictions z|K to K of all functions z ∈ Z. Then, for any geometric partition K ∈ K, we
define

ZK := {z : Ω→ Rm : z|K ∈ ZK ∀K ∈ K} =
∏
K∈K

ZK ; (1)

obviously, Z ⊆ ZK. In the sequel, we will work with functions that belong to ZK for some
partition K ∈ K; therefore, we set

Z :=
⋃
K∈K

ZK.

We assume that for any K ∈ K, the space ZK contains all polynomial functions of
any degree, and this set of functions is dense in ZK . Then, for p ∈ N0 we assume we
have chosen finite dimensional spaces ZK,p ⊂ ZK of polynomial functions on K of degree
related to p, satisfying ZK,p ⊂ ZK,p+1 and ZK,p ⊂ ZK′,p × ZK′′,p (K ′ and K ′′ being the
children of K). For any D = (KD, pD) ∈ K × N0, we set ZD := ZKD,pD

. Then, given an
hp-partition D, we define

ZD := {z : Ω→ Rm : z|KD
∈ ZD ∀D ∈ D} =

∏
D∈D

ZD , (2)

which obviously satisfies ZD ⊂ ZK(D). We will use the notation zD to indicate a function
in ZD. Note that no interelement continuity is imposed in the definition of ZD. Also note
that the dimension of ZD is proportional to the cardinality #D.

For all D ∈ K × N0, we assume a local projector QD : Z → ZD, and a local error
functional eD = eD(z) ≥ 0, that, for any z ∈ Z gives a measure for some function of the
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distance between z|KD
and its local approximation zD := QD(z). We assume that this

error functional is non-increasing under both ‘h-refinements’ and ‘p-enrichments’, in the
sense that

eD′ + eD′′ ≤ eD when KD′ , KD′′ are the children of KD, and pD′ = pD′′ = pD;

eD′ ≤ eD when KD′ = KD and pD′ ≥ pD.
(3)

Given any hp-partition D ∈ D, we define the global projector QD : Z → ZD as
QD(z) := (zD)D∈D, and the global error functional

ED(z) :=
∑
D∈D

eD(z), (4)

which is a measure for the distance between z and its projection zD := QD(z). Note that
(3) is equivalent to

E
D̃

(z) ≤ ED(z) ∀D̃ ≥ D. (5)

2.3 The instance optimal hp-approximation algorithm

Herafter, we present the greedy algorithm proposed by P. Binev [5] to produce a near-
best adaptive hp-approximation of a function z ∈ Z, based on the associated local error
functionals eD = eD(z) and global error functional ED = ED(z) introduced above.

Denote by R ≥ 1 the cardinality of the initial geometric partition K0. Using property
(3), Binev’s algorithm builds a sequence of hp-partitions DN , N ≥ R, satisfying #DN =
N ; the construction is incremental, in that going from DN to DN+1 one exploits the work
already done to build DN . The main feature of the algorithm is its instance optimality,
expressed as follows.

Theorem 2.1 ([5]). For n ≥ R let

σn := inf
#D≤n

ED

be the smallest error achievable with an hp-partition of cardinality ≤ n. Then, the hp-
partitions DN produced by Binev’s algorithm yield error functionals EDN

satisfying the
bounds

EDN
≤ 2N

N − n+ 1
σn ∀n ≤ N. (6)

Binev’s construction can be easily used to produce an instance optimal hp-partition
for which the error functional is below a given threshold.

Corollary 2.1 ([6]). Let B > 1 arbitrary. Given ε > 0, let D ∈ D be the first partition

in Binev’s sequence for which E
1
2

D ≤ ε. Then, setting b = 1
2 (1− 1

B ) < 1, it holds

#D ≤ B#D̂

for all partitions D̂ ∈ D satisfying E
1
2

D̂
≤ bε.

This result motivates the introduction of the following routine, which will constitute
one of the two major building blocks of our proposed hp-adaptive algorithm.
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• [D, zD] := hp-NEARBEST(ε, z)

The routine hp-NEARBEST takes as input ε > 0, and z ∈ Z, and outputs D ∈ D
as well as zD ∈ ZD such that ED(z)

1
2 ≤ ε and, for some constants 0 < b < 1 < B,

#D ≤ B#D̂ for any D̂ ∈ D with E
D̂

(z)
1
2 ≤ bε.

The approximation zD of the input z is just the element-wise projection given by the
operator QD associated with the partition D, i.e., we set

zD := QD(z). (7)

3 Discontinuous Galerkin hp-discretizations

We are interested in solving numerically the model boundary-value problem

Au = f in Ω, u = 0 on ∂Ω (8)

with Au := −(νux)x + ξu, where ν ∈ L∞(Ω) satisfies essinfΩ ν > 0, ξ ∈ L2(Ω) satisfies
ξ ≥ 0 a.e. in Ω, f ∈ L2(Ω). We actually assume that ν, ξ are piecewise-H1 functions,
precisely that ν|K , ξ|K ∈ H1(K) for each element K of the initial partition K0 introduced
in Sect. 2.1; we will write ν, ξ ∈ H1(Ω;K0). It will be convenient to refer to a triple g :=
(ν, ξ, f) as to a “data” of our problem; we thus have g ∈ G(Ω) := (H1(Ω;K0))2 × L2(Ω).
The solution u ∈ H1

0 (Ω) of Problem (8) for given data g will be indicated by u(g).
The following notation will be useful in the design of a DG discretization of our prob-

lem. For any element K ∈ K, let (v, w)K denote the L2-inner product in K, with corre-
sponding norm ‖v‖K . For any geometric partition K ∈ K, let us set

VK := {v ∈ L2(Ω) : v|K ∈ H1(K) ∀K ∈ K}. (9)

For v ∈ VK, it will be convenient to denote by ṽx the function in L2(Ω) such that (ṽx)|K =
(v|K)x for all K ∈ K; thus, ‖ṽx‖2Ω =

∑
K∈K ‖(v|K)x‖2K . Let us denote by EK the set of

all endpoints of elements in K, and let us define the jumps and averages of a piecewise
smooth function φ on K as follows: if e ∈ EK is shared by two contiguous elements K−

and K+, then we set

[[φ]]e := φ|K−(e)− φ|K+(e), {{φ}}e :=
1

2
(φ|K−(e) + φ|K+(e)),

whereas if e is the left/right boundary point of Ω, we set [[φ]]e = +/−φ(e) and {{φ}}e = φ(e).
For any hp-partition D ∈ D let us set

VD := {v ∈ L2(Ω) : v|KD
∈ PpD

(KD) ∀D ∈ D} ⊂ VK(D). (10)

If D ∈ D, let hD := |KD| denote the size of the element KD. If e ∈ ED := EK(D), we
define the weight

σD,e := max
( p2

D−

hD−
,
p2
D+

hD+

)
(11)

if e ∈ KD− ∩KD+ , and σD,e :=
p2
D

hD
if e ∈ ∂Ω ∩KD.

It is convenient to introduce the inner product (φ, ψ)ED
:=
∑

e∈ED
φeψe in R|ED|

between two quantities φ = (φe) and ψ = (ψe) indexed in ED. The corresponding norm
will be denoted by ‖φ‖ED

.
At this point, we are ready to introduce the symmetric bilinear form aD defined on

VD × VD as

aD(w, v) := (ν w̃x, ṽx)Ω + (ξ w, v)Ω

− ({{ν wx}}, [[v]])ED
− ({{ν vx}}, [[w]])ED

+ γ (σD[[w]], [[v]])ED
,

(12)
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where γ > 0 is a sufficiently large stabilization parameter, as well as the DG-norm defined
on VD as

‖v‖D :=
(

(ν ṽx, ṽx)2
Ω + γ ‖σ1/2

D [[v]] ‖2ED

) 1
2

. (13)

It is well-known (see [2, 3]) that aD is a continuous form with respect to the DG-norm, and
it is coercive provided γ is chosen large enough, with coercivity and continuity constants
independent of D; in the sequel, we will assume that this condition is satisfied.

Since aD depends on the choice of coefficients ν and ξ, and since in the adaptive
algorithm we will consider a sequence of DG discretizations with changing (piecewise
polynomial) data, sometimes we will prefer the more precise notation aD(w, v; ν, ξ) to
indicate the right-hand side of (12).

Problem 8 with data g = (ν, ξ, f) ∈ G(Ω) is then discretized by the following Simmetric
Interior Penalty Discontinuous-Galerkin method ([2]):

uD ∈ VD : aD(uD, vD; ν, ξ) = (f, vD)Ω ∀vD ∈ VD. (14)

We will write uD = uD(g) when we want to stress the dependence of uD upon the given
data g.

3.1 Approximation spaces and error functionals

Hereafter, we specify the choice of approximation spaces and error functionals, introduced
in a general setting in Sect. 2.2, that is tailored to the discretization problem of interest.

Since we will deal with approximations of a specific solution of Problem 8, and ap-
proximations of the corresponding data, our functions z will be of the form z = (v, g) =
(v, ν, ξ, f). Then, a natural choice for the “base” space Z is Z = H1(Ω) × G(Ω) =
H1(Ω)× (H1(Ω;K0))2 × L2(Ω). Note that for K ∈ K, the local spaces ZK that form the
global space ZK according to (1) are given by ZK = (H1(K))3 × L2(K).

For any element K ∈ K and integer p ∈ N0, we set

ZK,p = VK,p×GK,p with VK,p = Pp(K) and GK,p = Pp+1(K)×Pp+1(K)×Pp−1(K).

Then, for any D ∈ D, we define ZD according to (2); it is easily seen that ZD =: VD ×
GD, where VD has been already introduced in (10). We will write zD = (vD, gD) =
(vD, νD, ξD, fD) for the generic element in ZD.

In order to define the projectors QD, let Π0
K,p : L2(K)→ Pp(K) be the L2-orthogonal

projector, and let Π1
K,p : H1(K)→ Pp(K) be the projector such that

(Π1
K,pv)x = Π0

K,pvx and

∫
K

Π1
K,pv =

∫
K

v, ∀v ∈ H1(K).

The latter definition can be extended to functions v that are just piecewise-H1 on K,
by replacing vx with ṽx in the L2-projection. Then, for z = (v, g) = (v, ν, ξ, f) ∈ Z and
D = (KD, pD) we set

QD(z) = (Π1
KD,pD

v|KD
,Π1

KD,pD+1ν|KD
,Π1

KD,pD+1ξ|KD
,Π0

KD,pD−1f|KD
).

The corresponding local error functional is defined as

eD(z) := e1,D(v) +
1

κ2
osc2

D(g) =: e1,D(v) +
1

κ2

(
e1,D(ν) + e1,D(ξ) + e0,D(f)

)
, (15)

where for ϕ = v, ν, ξ

e1,D(ϕ) := ‖(I−Π0
KD,pD

)(ϕ̃x)|KD
‖2KD

, e0,D(f) :=
hD
pD
‖(I−Π0

KD,pD
)f|KD

‖2KD
,
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and κ > 0 is a (sufficiently small) penalization parameter to be chosen later on.
Finally, for a given hp-partition D ∈ D, the global projector QD : Z → ZD and the

global error functional ED(z) = ED(v, g) are defined as in Sect. 2.2 (see (4)).

We now establish some properties involving the functional ED, that will be useful in
the sequel.

Property 3.1. There exists a constant C0 > 0 such that for any z = (v, ν, ξ, f) ∈ Z and
for any partition D ∈ D one has

‖ν − νD‖L∞(Ω) + ‖ξ − ξD‖L∞(Ω) ≤ C0κED(z)
1
2 ,

where zD = (vD, νD, ξD, fD) = QD(z).

Proof. For any D ∈ D and any D ∈ D, set ψ := (ν − νD)|KD
. Since by construction ψ

vanishes at a point in KD, we have for any x ∈ KD

|ψ(x)| ≤ h1/2
D ‖ψx‖KD

≤ |Ω| e1,D(ν)1/2,

from which the bound for ‖ν − νD‖L∞(Ω) easily follows. The coefficient ξ can be treated
similarly.

At this point, let us fix once and for all the data of interest g? = (ν?, ξ?, f?) ∈ G(Ω)
for Problem (8), and let u? := u(g?) be the corresponding solution.
Let us set ν0 :=ess infΩ ν? > 0.

Assumption 3.1. Let D0 denote the root partition K0 endowed with polynomials of degree
1 in each element. Setting z0 := (0, g?) ∈ Z, we assume that D0 is chosen to satisfy

C0κED0(z0)
1
2 ≤ ν0

λ
, where λ := 2 +

1√
2
|Ω|.

Recalling (5), this assumption together with Property 3.1 guarantees that for any
D ∈ D (which trivially satisfies D ≥ D0), Problem 8 with approximate data νD and ξD is
coercive in H1

0 (Ω), precisely one has

(νDvx, vx)Ω + (ξDv, v)Ω ≥
ν0

2
‖vx‖2Ω ∀v ∈ H1

0 (Ω). (16)

This easily follows using the bound ‖v‖Ω ≤ 1
2
√

2
|Ω| ‖vx‖Ω.

The following result is fundamental for establishing the convergence of our adaptive
algorithm.

Proposition 3.1. i) There exists a constant C? > 0 with the following property: for
all D ∈ D and all z ∈ Z of the form z = (v, g?), let zD = (vD, gD) := QD(z), and let
u(gD) ∈ H1

0 (Ω) be the solution of Problem 8 with data gD; then, it holds

‖u? − u(gD)‖H1
0 (Ω) ≤ C?κED(z0)

1
2 ≤ C?κED(z)

1
2 , (17)

where κ is the penalization parameter introduced in (15).
ii) For all D ∈ D, v ∈ VK(D), w ∈ H1

0 (Ω) and g ∈ G(Ω), it holds

|ED(v, g)
1
2 − ED(w, g)

1
2 | ≤ ‖v − w‖D . (18)

The proof follows step by step the proof of Proposition 3 in [6], to which we refer.
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4 The adaptive algorithm hp-ADFEM

As anticipated in the Introduction, the algorithm we propose consists in alternating be-
tween a stage in which a new hp-partition is found, which is near-optimal for the current
accuracy, and a stage in which this partition is further refined to guarantee a higher accu-
racy for the corresponding DG discrete solution; the data used in the latter stage to define
the DG problem are approximations of the exact data, provided by the former stage.

The first stage will be accomplished by a call to the routine hp-NEARBEST intro-
duced in Sect. 2.3. The second stage will be realized through a routine DG-SOLVE
that we present now, postponing to Sect. 5 the detailed description of the underlying al-
gorithm and the analysis of its properties. Essentially, starting from a given hp-partition
and a corresponding data approximation, several DG problems are solved on subsequently
refined partitions, whose generation is driven by an a posteriori error estimator, until a
contraction property guarantees that the discretization error is brought below a prescribed
threshold. In this stage, optimality is not an issue for the output partition, provided its
cardinality remains comparable to that of the input partition.

• [D̄, ū] :=DG-SOLVE (ε,D, zD)

The routine DG-SOLVE takes as input ε > 0, D ∈ D, and zD = (vD, gD) ∈ ZD.
It outputs D̄ ∈ D with D ≤ D̄ and ū := uD̄(gD) ∈ VD̄ such that ‖u(gD)− ū‖D̄ ≤ ε.

We recall that uD̄(gD) denotes the solution of the following DG problem (see (14)):
for gD = (νD, ξD, fD) ∈ GD,

uD̄ ∈ VD̄ : aD̄(uD̄, vD̄; νD, ξD) = (fD, vD̄)Ω ∀vD̄ ∈ VD̄. (19)

The input function vD ∈ VD may be used in the algorithm to define the starting point of
the adaptive iterations.

Assumption 4.1. Let b < 1 < B be the constants that appear in the statement of
the instance optimality property for the routine hp-NEARBEST. We assume that the
penalization parameter κ in (15) is chosen small enough, so that it holds

C?κ < b.

We are ready to present our algorithm hp-ADFEM. Let us introduce the parameters
and the input data.

Parameters: two real numbers η ∈ (0, 1), ω > 0 satisfying

C?κ < b(1− η) and ω ∈
(

1

b
,

1− η
C?κ

)
.

(Note that such a choice of ω is equivalent to bω − 1 > 0 and C?κω + η < 1, which are
two quantities that will appear below.)

Input data: g? ∈ G(Ω), ε0 > 0, and ū0 ∈ VD̄0
for some D̄0 ∈ D such that ‖u?−ū0‖D̄0

≤ ε0.

Algorithm hp-ADFEM(ε0, ū0, g?)
for i = 1, 2, . . . do

[Di, (vDi
, gDi

)] :=hp-NEARBEST(ωεi−1, (ūi−1, g?))
[D̄i, ūi] :=DG-SOLVE (ηεi−1,Di, (vDi , gDi))
εi := (C?κω + η)εi−1

end do

8



Theorem 4.1. Under Assumptions 3.1 and 4.1, the sequences (ūi), (Di) produced by
hp-ADFEM satisfy the following properties:

‖u? − ūi‖D̄i
≤ εi ∀i ≥ 0, EDi(u?, g?)

1
2 ≤ (ω + 1)εi−1 ∀i ≥ 1, (20)

and
#Di ≤ B#D for any D ∈ D with ED(u?, g?)

1
2 ≤ (bω − 1)εi−1. (21)

Proof. The bound ‖u? − ū0‖D̄0
≤ ε0 is valid by assumption. For i ≥ 1, the tolerances

used for hp-NEARBEST and DG-SOLVE, together with (17) show that

‖u? − ūi‖D̄i
≤ ‖u? − u(gDi)‖H1

0 (Ω) + ‖u(gDi)− ūi‖D̄i

≤ C?κEDi
(ūi−1, g?)

1
2 + µεi−1 ≤ (C?κω + µ)εi−1 = εi.

(22)

The first statement follows for all i ≥ 0. Using this and (18) implies the second assertion

EDi
(u?, g?)

1
2 ≤ EDi

(ūi−1, g?)
1
2 + ‖u? − ūi−1‖D̄i−1

≤ (ω + 1)εi−1 ∀i ≥ 1.

Finally, let D ∈ D with ED(u?, g?)
1
2 ≤ (bω−1)εi−1. Then, again by (18), ED(ūi−1, g?)

1
2 ≤

bωεi−1 and so #Di ≤ B#D because of the optimality property of hp-NEARBEST.

The main result of Theorem 4.1 can be summarized by saying that hp-ADFEM is
instance optimal for reducing ED(u?, g?) over D ∈ D.

5 The routine DG-SOLVE

The purpose of this section is the description and analysis of a realization of the routine
DG-SOLVE. It is based on an iterative procedure of the form SOLVE → ESTIMATE
→ MARK → REFINE, in which ESTIMATE uses a residual-type estimator, whereas
REFINE applies a dyadic splitting of each marked element while preserving the polynomial
degree. The procedure satisfies a contraction property, which guarantees the reduction
of a suitable “error” by a fixed amount at each iteration. Our construction is strongly
inspired by [4], whose arguments are hereafter extended to cover the hp-case.

In the sequel, the input partition D will be denoted by Din, whereas the symbol D
will be used to denote any refinement of Din generated by the procedure. Similarly, the
input function will be denoted by zin = (vin, gin). To avoid cumbersome notation, we
will actually write gin =: g = (ν, ξ, f), but we will recall that g is a piecewise polynomial
approximation on the input partition Din of the given data g? = (ν?, ξ?, f?) ∈ G(Ω).
Coherently, the exact solution of Problem (8) with input data g will be denoted by u =
u(g), whereas for any hp-partition D ≤ Din, uD = uD(g) will be the solution of the
corresponding DG Problem (14).

For the analysis of the procedure, following [3], we extend the definition of the DG
form aD given in (12) on VD×VD to the infinite dimensional space VK(D)×VK(D) (recall
(9)). To this end, we introduce the lifting operator LD : VK(D) → VD such that for all
w ∈ VK(D)

LDw ∈ VD : (νv, LDw)Ω = ({{ν v}}, [[w]])ED
∀v ∈ VD. (23)

Then, on VK(D) × VK(D) we define the bilinear form

aD(w, v) := (ν w̃x, ṽx)Ω + (ξ w, v)Ω

− (ν w̃x, LDv)ED
− (ν ṽx, LDw)ED

+ γ (σD[[w]], [[v]])ED
,

(24)

which is readily seen to coincide with (12) on VD × VD.
The lifting operator satisfies the following stability bound.
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Property 5.1. There exists a constant C1 > 0 independent of D such that

‖LDw‖Ω ≤ C1‖σ1/2
D [[w]]‖ED

∀w ∈ VK(D). (25)

Proof. If K is any interval of length h and e is one of its endpoints, the inverse inequality
|φ(e)| . p

h1/2 ‖φ‖K holds for any φ ∈ Pp(K). Then, the result easily follows by choosing
v = LDw in (23).

Using (25), one proves the existence of a constant γ0 > 0 independent of D such that
for any γ ≥ γ0 the bilinear form aD is continuous and coercive in VK(D) with respect to
the DG norm ‖v‖D, uniformly in D. For future references, let us denote by 0 < α∗ ≤ α∗

the coercivity and continuity constants. Since aD is symmetric, it defines an inner product
in VK(D); the corresponding norm will be denoted by ‖v‖a,D and is uniformly equivalent
to the DG norm ‖v‖D introduced in (13).

It is well-known that while the DG-solution uD ∈ VD satisfies the variational equations

aD(uD, vD) = (f, vD)Ω ∀vD ∈ VD, (26)

the exact solution u ∈ H1
0 (Ω) need not satisfy aD(u, v) = (f, v)Ω for all v ∈ VK(D)

(inconsistency of the DG formulation). However, we do have the partial consistency
property

aD(u, v) = (f, v)Ω ∀v ∈ H1
0 (Ω). (27)

This motivates the introduction of the conforming subspace V c
D := VD ∩ H1

0 (Ω). Then,
by subtraction of (26) from (27), we obtain the partial orthogonality property

aD(u− uD, vD) = 0 ∀vD ∈ V c
D. (28)

It is useful for the sequel to introduce the orthogonal decomposition

VD = V c
D ⊕ V ⊥D , (29)

where V ⊥D is the orthogonal complement of V c
D with respect to the inner product aD(w, v).

Any vD ∈ VD will be split according to (29) as vD = vcD + v⊥D.

Property 5.2. There exists a constant C2 > 0 independent of D for which the following
bound on the DG discretization error holds:

‖u− uD‖D ≤ C2

(
inf

wD∈V c
D

‖u− wD‖H1
0 (Ω) + ‖u⊥D‖D

)
.

Proof. For any wD ∈ V c
D, using (28) we have

aD(uD − wD, uD − wD) = aD(uD − wD, u
c
D − wD) + aD(uD − wD, u

⊥
D)

= aD(u− wD, u
c
D − wD) + aD(u⊥D, uD − wD)

= aD(u− wD, uD − wD)− aD(u⊥D, u− uD),

whence, by the coercivity and continuity of the form aD,

‖uD − wD‖2D . ‖u− wD‖D‖uD − wD‖D + ‖u⊥D‖D‖u− uD‖D.

We conclude by the triangle inequality.

We also introduce an approximation operator ID : VK(D) → V c
D that will be useful

in the sequel. For any D ∈ D, set KD =: [el, er] and let PD : H1(KD) → PpD
(KD) be

defined as follows:

(PDv)(x) := v(el) +

∫ x

el

(Π0
KD,pD−1vx)(s) ds

10



(recall that Π0 means L2-orthogonal projection). Furthermore, consider the Legendre
Gauss-Lobatto grid in KD containing pD + 1 nodes, and let ψD,el and ψD,er denote the
Lagrange basis functions of degree pD on this grid, associated with the boundary nodes.
Then, we define (IDv)|KD

:= IDv|KD
, where

IDv := PDv − τel [[v]]elψD,el + τer [[v]]erψD,er (30)

with τe = 1 if e ∈ ∂Ω, τe = 1
2 otherwise. Checking that IDv ∈ V c

D is straightforward.

Property 5.3. The following error estimates hold for any v ∈ H1
0 (Ω):

‖(v − IDv)ω
−1/2
D ‖KD

≤ 1

(pD(pD + 1))1/2
‖vx‖KD

, ‖(IDv)x‖KD
≤ ‖vx‖KD

, (31)

where ωD is the quadratic bubble function in KD, defined as ωD(x) = (x− el)(er − x).
The following error estimates hold for any v ∈ VD:

‖v − IDv‖KD
.
h

1/2
D

pD
([[v]]el + [[v]]er ), ‖(v − IDv)x‖KD

.
pD

h
1/2
D

([[v]]el + [[v]]er ). (32)

The latter inequality implies the bound

‖ṽx − (IDv)x‖Ω . ‖σ1/2
D [[v]]‖ED

∀v ∈ VD. (33)

Proof. The first inequality in (31) can be found in [10], whereas the second one is just the
stability of the orthogonal projection. The inequalities (32) easily follow from the bounds

‖ψD,e‖KD
' h

1/2
D

pD
and ‖(ψD,e)x‖KD

. p2
D

hD
‖ψD,e‖KD

.

Corollary 5.1. There exists a constant C3 > 0 independent of D such that for any
v = vc ⊕ v⊥ ∈ VD = V c

D ⊕ V ⊥D one has

‖v⊥‖D ≤ C3 γ
1/2‖σ1/2

D [[v]]‖ED

Proof. One has

‖v⊥‖D ' ‖v⊥‖a,D = inf
w∈V c

D

‖v − w‖a,D ' inf
w∈V c

D

‖v − w‖D ≤ ‖v − IDv‖D,

then one concludes by (33).

5.1 The residual estimator

Given any v ∈ VD and any D ∈ D, let us define the local residual

resD(v) := (f −Av)|KD
;

for any e ∈ ∂KD, let us define the jump of the flux at e

Je(v) = [[ νvx ]]e.

Then, the (squared) local error estimator is defined as follows

η2
D(v) :=

1

pD(pD + 1)
‖resD(v)ω

1/2
D ‖

2
KD

+
∑

e∈∂KD

σ−1
D,eJ

2
e (v),

11



where ωD denotes the quadratic bubble function introduced in Property 5.3 above. The
(squared) global error estimator is

η2
D(v) :=

∑
D∈D

η2
D(v),

whereas its restriction to a subset D′ ⊆ D of elements will be denoted by

η2
D(v;D′) :=

∑
D∈D′

η2
D(v).

We show that ηD(uD) is a reliable estimator for our DG problem in two steps.

Proposition 5.1. There exists a constant C4 > 0 independent of D such that

aD(u− uD, u− uD) ≤ C4

(
η2
D(uD) + γ ‖σ1/2

D [[uD]]‖2ED

)
.

Proof. We adapt the proof of [4], Lemma 3.1, to our hp setting. Let us split the DG
solution as uD = ucD + u⊥D and let us set e := u− uD and w := u− ucD ∈ H1

0 (Ω), so that
e = w − u⊥D. Then, recalling (27) and (28),

aD(e, e) = aD(e, w)− aD(e, u⊥D) = aD(e, w − IDw)− aD(e, u⊥D)

= (f, w − IDw)Ω − aD(uD, w − IDw)− aD(e, u⊥D),

Integrating back by parts, we get

aD(uD, w − IDw) =
∑
D∈D

(AuD, w − IDw)KD
+ (LDuD, ν(w − IDw)x)Ω,

whence

aD(e, w) =
∑
D∈D

(resD(uD), w − IDw)KD
+ (LDuD, ν(w − IDw)x)Ω.

Writing (resD(uD), w− IDw)KD
= (resD(uD)ω

1/2
D , (w− IDw)ω

−1/2
D )KD

and using (31) as
well as (25), we obtain

aD(e, w) ≤ (ηD(uD) + C1‖σ1/2
D [[uD]]‖ED

)‖wx‖Ω,

where the last norm can be bounded using the coercivity of the form aD:

‖wx‖Ω = ‖w‖D ≤ ‖e‖D + ‖u⊥D‖D ≤ α
1/2
∗ aD(e, e)1/2 + ‖u⊥D‖D.

By Young’s inequality, we obtain for a suitable constant C > 0

aD(e, w) ≤ 1

4
aD(e, e) + C

(
η2
D(uD) + ‖u⊥D‖2D + ‖σ1/2

D [[uD]]‖2ED

)
.

It remains to bound the term aD(e, u⊥D), which is easily done using the continuity of aD:

aD(e, u⊥D) ≤ aD(e, e)1/2aD(u⊥D, u
⊥
D)1/2 ≤ aD(e, e)1/2(α∗)1/2‖u⊥D‖D ≤

1

4
aD(e, e)+α∗‖u⊥D‖2D.

We obtain the desired result by invoking Corollary 5.1.
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Proposition 5.2. There exists a constant C5 > 0 independent of D such that for any γ
large enough, say γ ≥ γ1 ≥ γ0, one has

γ ‖σ1/2
D [[uD]]‖ED

≤ C5ηD(uD).

Proof. Here, we adapt the proof of [4], Lemma 3.3, to our hp setting. By the coercivity
of the form aD applied to uD − IDuD, we have

γ ‖σ1/2
D [[uD]]‖2ED

≤ α−1
∗ aD(uD − IDuD, uD − IDuD) (34)

since [[IDuD]] = 0. For simplicity, let us set w := uD − IDuD and v := IDuD ∈ H1
0 (Ω).

Then,
aD(w,w) = (f, w)Ω − aD(v, w)

and, using LDv = 0 several times, we have

aD(v, w) = (νvx, w̃x)Ω + (ξv, w)Ω − (LDuD, νvx)Ω

= (νũD,x, w̃x)Ω + (ξuD, w)Ω − ‖ν1/2w̃x‖2Ω − ‖ξ1/2w‖2Ω − (LDuD, νvx)Ω.

Using in this identity

(νvx, w̃x)Ω = −
∑
D∈D

((νuD,x)x, w)KD
+ ([[νuD,x]], {{w}})ED

+ ([[w]], {{νuD,x}})ED

and observing that ([[w]], {{νuD,x}})ED
= (LDw, νũD,x)Ω, we obtain

aD(w,w) =
∑
D∈D

(resD(uD), w)KD
+ (JD(uD), {{w}})ED

+ ‖ν1/2w̃x‖2Ω + ‖ξ1/2w‖2Ω + (LDuD, νw̃x)Ω.

(35)

By (32) we have

‖w‖KD
≤

∑
e∈∂KD

h
1/2
D

pD
| [[uD]]e | =

∑
e∈∂KD

h
1/2
D

pD
σ
−1/2
D,e σ

1/2
D,e| [[uD]]e | ≤

hD
p2
D

∑
e∈∂KD

σ
1/2
D,e| [[uD]]e |,

whence

(resD(uD), w)KD
≤ hD

p2
D

‖resD(uD)‖KD

∑
e∈∂KD

σ
1/2
D,e| [[uD]]e |

.
1

pD
‖resD(uD)ω

1/2
D ‖KD

∑
e∈∂KD

σ
1/2
D,e| [[uD]]e | ≤ ηD(uD)

∑
e∈∂KD

σ
1/2
D,e| [[uD]]e | ,

where we have used the inverse inequality ‖φ‖KD
. pD

hD
‖φω1/2

D ‖KD
which holds for all

polynomials of degree ' pD, since resD(uD) is such a polynomial. Thus, we obtain∑
D∈D

(resD(uD), w)KD
. ηD(uD) ‖σ1/2

D [[uD]]‖ED
.

Concerning the second term on the right-hand side of (35), we observe that by construction
of IDuD, one has w(e) = 1

2 [[uD]]e at any internal inter-element point e, whereas w(e) = 0
at the boundary points of Ω. Thus,

(JD(uD), {{w}})ED
.

∑
e∈ED

|Je(uD)| | [[uD]]e | =
∑
e∈ED

σ
−1/2
D,e |Je(uD)|σ1/2

D,e| [[uD]]e |

≤ ηD(uD) ‖σ1/2
D [[uD]]‖ED

.
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Finally, using (32) and (25), the three last terms on the right-hand side of (35) can be

bounded by C‖σ1/2
D [[uD]]‖2ED

. Substituting all the previous bounds in (34), we obtain

γ ‖σ1/2
D [[uD]]‖2ED

.
(
ηD(uD) ‖σ1/2

D [[uD]]‖ED
+ ‖σ1/2

D [[uD]]‖2ED

)
,

where the constant implied by the symbol . is independent of γ. Therefore, choosing γ
large enough, we get the desired result.

Corollary 5.2. There exists a constant C6 > 0 independent of D such that for any γ ≥ γ1,
one has

aD(u− uD, u− uD) ≤ C6 η
2
D(uD).

5.2 The adaptive iterations

The routine DG-SOLVE iterates the mapping

(D, uD, ηD(uD)) → (D∗, uD∗ , ηD∗(uD∗)) , (36)

where D∗ is a refinement of D obtained by first applying a Dörfler marking to the elements
of D based on the error estimator ηD(uD), and then performing a dyadic subdivision to
the marked elements and its neighbors.

To be precise, let ϑ ∈ (0, 1) be the Dörfler parameter. Let us order the local error
estimators ηD(uD), D∈D, by decreasing value, and let us choose a set M ⊆ D of minimal
cardinality for which

ηD(uD;M) ≥ ϑ ηD(uD). (37)

Let ∂M ⊆ D denote the set of elements D that share an interface with an element in M.
Then, we replace each D = (KD, pD) ∈M ∪ ∂M by the two elements D′ = (K ′D, pD) and
D′′ = (K ′′D, pD), where K ′D and K ′′D are the two children of KD. Thus, the new partition
D∗ is defined by

D∗ = {D′, D′′ : D ∈M ∪ ∂M} ∪ {D : D ∈ D \ (M ∪ ∂M)}. (38)

Our aim is to prove that a suitable combination of (squared) DG error and error
estimator, i.e.,

‖u− uD‖2a,D + β η2
D(uD)

for some β > 0, is reduced by a fixed rate % ∈ (0, 1) in performing the mapping (36). The
proof, which extends [4] to our hp-setting, will be based on the following results.

Lemma 5.1. There exists a constant C7 > 0 independent of D such that for any real
λ ∈ (0, 1), one has

η2
D∗

(uD∗) ≤ (1 + λ)(1− ϑ2

2
) η2

D(uD) +
C7

λ
‖uD∗ − uD‖2D∗ .

Proof. We first establish a few results about the Lipschitz continuity of the local error
estimators. Assume that v, w ∈ VD and let D ∈ D. By Minkowski’s inequality,

|ηD(v)−ηD(w)| ≤

(
1

p2
D

‖(resD(v)− resD(w))ω
1/2
D ‖

2
KD

+
∑

e∈∂KD

σ−1
D,e|Je(v)− Je(w)|2

)1/2

.
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One has

‖(resD(v)− resD(w))ω
1/2
D ‖KD

≤ ‖(ν(v − w)x)x ω
1/2
D ‖KD

+ ‖ξ(v − w)ω
1/2
D ‖KD

. pD‖ν(v − w)x‖KD
+ hD‖ξ(v − w)‖KD

. pD‖(v − w)x‖KD
+ hD‖(v − w)‖KD

,

where we have used the inverse inequality ‖φx ω1/2
D ‖KD

. pD‖φ‖KD
, which holds for all

polynomial φ of degree ' pD in KD, as well as the bound ‖ω1/2
D ‖L∞(KD) ≤ hD.

On the other hand, for each e ∈ ∂KD, let us denote by D′ the element in D sharing
the interface e with D. Then,

|Je(v)− Je(w)| ≤ |ν(v − w)x|KD
(e)|+ |ν(v − w)x|KD′

(e)|
. |(v − w)x|KD

(e)|+ |(v − w)x|KD′
(e)|

.
pD

h
1/2
D

‖(v − w)x‖KD
+
pD′

h
1/2
D′

‖(v − w)x‖KD′

≤ σ
1/2
D,e

(
‖(v − w)x‖KD

+ ‖(v − w)x‖KD′

)
,

where we have used the inverse inequality |ψ(e)| . pD

h
1/2
D

‖ψ‖KD
, which holds for all poly-

nomial ψ of degree ' pD in KD. We conclude that

|ηD(v)− ηD(w)| . ND(v − w), with N2
D(φ) :=

∑
D′

‖φx‖2KD
+
h2
D

p2
D

‖φ‖2KD
,

where summation is extended to all D′ ∈ D such that KD′ ∩KD is nonempty; this implies

η2
D(v) ≤ (1 + λ) η2

D(w) +
C

λ
N2

D(v − w) (39)

for a suitable constant C > 0 independent of D.
We now apply these bounds, with v = uD∗ and w = uD, to the partition (38) generated

by the refinement procedure. If D ∈M, let Dm, m = 1, 2 be the two children in which D
is split. We have ωDm(x) ≤ 1

2ωD(x) for all x ∈ Dm. By definition of refinement, we have
hDm = 1

2hD as well as hD′m = 1
2hD′ for any neighborhood D′ ∈ D of D, which implies

σ−1
D∗,e

≤ 1
2σ
−1
D,e for any e ∈ ∂KD. Hence, we immediately have

∑2
m=1 η

2
Dm

(uD) ≤ 1
2η

2
D(uD)

and
∑2

m=1 NDm
(uD∗ − uD) ≤ ND(uD∗ − uD), whence

2∑
m=1

η2
Dm

(uD∗) ≤
1

2
(1 + λ) η2

D(uD) +
C

λ
N2

D(uD∗ − uD).

If D ∈ ∂M, we can only say that σ−1
D∗,e

≤ σ−1
D,e for any e ∈ ∂KD, whence

2∑
m=1

η2
Dm

(uD∗) ≤ (1 + λ) η2
D(uD) +

C

λ
N2

D(uD∗ − uD).

Finally, for any unsplit D ∈ D \ (M ∪ ∂M), we just have

η2
D(uD∗) ≤ (1 + λ) η2

D(uD) +
C

λ
N2

D(uD∗ − uD).

Summing-up all contributions and using the marking condition, we obtain

η2
D∗

(uD∗) ≤ (1 + λ)

(
η2
D(uD)− 1

2
η2
D(uD;M)

)
+
C

λ

∑
D∈D

N2
D(uD∗ − uD)

≤ (1 + λ)(1− ϑ2

2
)η2

D(uD) +
C

λ

∑
D∈D

N2
D(uD∗ − uD).
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It remains to prove that
∑

D∈D N2
D(uD∗ − uD) . ‖uD∗ − uD‖2D∗ . Setting now w :=

uD∗ − uD, we have ∑
D∈D

N2
D(w) = ‖w̃x‖2Ω +

∑
D∈D

h2
D

p2
D

‖w‖2KD
.

Writing, for a.e. x ∈ Ω,

w(x) =
∑

e∈ED∗ ,e<x

[[w]]e +

∫ x

min Ω

w̃x(s) ds =
∑

e∈ED∗ ,e<x

σ
−1/2
D∗,e

σ
−1/2
D∗,e

[[w]]e +

∫ x

min Ω

w̃x(s) ds ,

we have
w2(x) .

( ∑
e∈ED∗

σ−1
D∗,e

) ∑
e∈ED∗

σD∗,e[[w]]2e + |Ω| ‖w̃x‖2Ω.

Since
∑

e∈ED∗
σ−1
D∗,e

≤ |Ω|, we easily obtain the desired bound.

Lemma 5.2. There exists a constant C8 > 0 independent of D such that for any real
δ ∈ (0, 1) and any γ ≥ γ1, one has

‖u− uD∗‖2a,D∗ ≤ (1 + δ)‖u− uD‖2a,D −
α∗
2
‖uD∗ − uD‖2D∗ +

C8

δγ

(
η2
D∗

(uD∗) + η2
D(uD)

)
.

Proof. Let us set w∗ := u − uD∗ , w := u − uD, d := uD∗ − uD, dc := ucD∗ − u
c
D and

d⊥ := u⊥D∗ − u
⊥
D. Observing that aD∗(w∗, d

c) = 0 by the partial orthogonality property
(28), one easily gets

‖w∗‖2a,D∗ = aD∗(w∗, w∗) = aD∗(w∗ + dc, w∗ + dc)− aD∗(dc, dc).

Using uD = ucD + u⊥D and uD∗ = ucD∗ + u⊥D∗ , one has w∗ + dc = w − d⊥, whence

aD∗(w∗ + dc, w∗ + dc) = aD∗(w,w)− 2aD∗(w, d
⊥) + aD∗(d

⊥, d⊥)

≤ ‖w‖2a,D∗ + 2(α∗)1/2‖w‖a,D∗‖d⊥‖D∗ + α∗‖d⊥‖2D∗ ,

where we have used the uniform continuity of the form aD∗ with respect to the DG-norm.
Using the uniform coercivity and the triangle inequality, we get

aD∗(d
c, dc) ≥ α∗‖dc‖2D∗ ≥ α∗

(
1

2
‖d‖2D∗ − ‖d

⊥‖2D∗

)
.

Collecting these inequalities and using Young’s inequality, we obtain

‖w∗‖2a,D∗ ≤ (1 + δ)‖w‖2a,D∗ −
α∗
2
‖d‖2D∗ +

C

δ
‖d⊥‖2D∗ . (40)

At this point, we observe that ‖u⊥D‖2D∗ ≤ 2‖u⊥D‖2D. Indeed, ‖u⊥D‖2D∗ = ‖(u⊥D)∼x ‖2Ω +

γ
∑

e∈ED∗
σD∗,e[[u

⊥
D]]2e, but the jumps of u⊥D occur only at the interfaces e ∈ ED, and

σD∗,e ≤ 2σD,e by definition of the refinement strategy. Thus, using Corollary 5.1, we get

‖d⊥‖2D∗ . ‖u⊥D∗‖
2
D∗

+ ‖u⊥D‖2D . γ‖σ1/2
D∗

[[uD∗ ]]‖2ED∗
+ γ‖σ1/2

D [[uD]]‖2ED
. (41)

It remains to replace ‖w‖2a,D∗ by ‖w‖2a,D. To this end, let us write

aD∗(w,w) = aD(w,w)+2(LD∗w, νw̃x)Ω−2(LDw, νw̃x)Ω−γ‖σ1/2
D [[w]]‖2ED

+γ‖σ1/2
D∗

[[w]]‖2ED∗
.
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Using Property 5.1 and the coercivity of the form aD, one gets

(LD∗w, νw̃x)Ω . ‖σ1/2
D∗

[[w]]‖ED∗aD(w,w)1/2 . ‖σ1/2
D [[uD]]‖ED

aD(w,w)1/2.

A similar bound holds for (LDw, νw̃x)Ω. Therefore, using once more Young’s inequality,
we arrive at

‖w‖2a,D∗ ≤ (1 + δ)‖w‖2a,D +
C

δ
γ‖σ1/2

D [[uD]]‖2ED
. (42)

Replacing (41)-(42) into (40), we obtain

‖u− uD∗‖2a,D∗ ≤ (1 + δ)2‖u− uD‖2a,D −
α∗
2
‖uD∗ − uD‖2D∗

+
C

δ
γ
(
‖σ1/2

D∗
[[uD∗ ]]‖2ED∗

+ ‖σ1/2
D [[uD]]‖2ED

)
.

The desired result follows from Proposition 5.2, after replacing δ by δ/3.

We are ready to establish the main result of this section.

Theorem 5.1. Consider the mapping (36) defined above. There exist constants β > 0
and % ∈ (0, 1), independent of D, such that, choosing γ > 0 large enough in the definition
(24), one has

‖u− uD∗‖2a,D∗ + β η2
D∗

(uD∗) ≤ %
(
‖u− uD‖2a,D + β η2

D(uD)
)
.

Proof. Let us simplify our notation by setting E2
∗ := ‖u− uD∗‖2a,D∗ , E

2 := ‖u− uD‖2a,D,

e2
∗ := ‖uD∗ − uD‖2D∗ and η2

∗ := η2
D∗

(uD∗), η
2 := η2

D(uD). Then, the inequalities of
Lemmas 5.2-5.1 read as follows:

E2
∗ ≤ (1 + δ)E2 − α∗

2
e2
∗ +

C8

δγ
(η2
∗ + η2)

η2
∗ ≤ (1 + λ)(1− ϑ2

2
) η2 +

C7

λ
e2
∗.

Thus, for any real β > 0,

E2
∗ + βη2

∗ ≤ (1 + δ)E2 − α∗
2
e2
∗ +

(
β +

C8

δγ

)
η2
∗ +

C8

δγ
η2

≤ (1 + δ)E2 − α∗
2
e2
∗ +

(
β +

C8

δγ

)(
(1 + λ)(1− ϑ2

2
) η2 +

C7

λ
e2
∗

)
+
C8

δγ
η2.

Writing 1 − ϑ2

2 =
(

1− ϑ2

4

)
− ϑ2

4 and using E2 ≤ C6η
2 from Corollary (5.2), we easily

obtain for γ ≥ γ1

E2
∗ + βη2

∗ ≤
[
(1 + δ)−

(
β +

C8

δγ

)
1 + λ

C6

ϑ2

4

]
E2 +

[(
β +

C8

δγ

)
C7

λ
− α∗

2

]
e2
∗

+

[
(1 + λ)

(
1− ϑ2

4

)
+

C8

βδγ

(
1 + (1 + λ)

(
1− ϑ2

4

))]
βη2

=: %1E
2 + %2 e

2
∗ + %3 βη

2.

At this point, we first choose λ sufficiently small to have (1 + λ)
(

1− ϑ2

4

)
< 1. Next, we

choose δ sufficiently small to have %1 < 1 for γ = γ1, hence for any γ ≥ γ1. Then, the
parameter β > 0 is determined by imposing %2 = 0, which is possible provided γ is large
enough, say γ ≥ γ2 ≥ γ1. Finally, for γ even larger, say γ ≥ γ3 ≥ γ2, the second addend
in %3 can be made so small that %3 < 1. In conclusion, the desired result holds for all
γ ≥ γ3 with % := max(%1, %3).
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Corollary 5.3. Denote by {(Dk, uDk
, ηDk

(uDk
)) : k ≥ 0} the sequence produced by iter-

ating the mapping (36) from the input partition D0 := Din. Then,

‖u− uDk
‖2Dk
≤ α−1

∗ %k
(
‖u− uD0‖2a,D0

+ β η2
D0

(uD0)
)
.

The latter result guarantees that the target accuracy ‖u−uDk
‖2Dk
≤ ε2 of DG-SOLVE

can be matched provided the iterations are stopped at a sufficiently large k. In particular,
if there exists a constant C9 > 0 such that

‖u− uD0
‖2a,D0

+ β η2
D0

(uD0
) ≤ C9 ε

2, (43)

then the number K of iterations in DG-SOLVE is bounded independently of ε. In
this case, since the mapping (36) at most doubles the cardinality of the partition, i.e.,
|D∗| ≤ 2|D|, we conclude that the cardinality of the output partition Dout := DK is
uniformly bounded by the cardinality of the input partition Din, precisely

|Dout| ≤ 2K |Din|.

Remark 5.1. (Arithmetic complexity) According to [5], if N := #D denotes the car-
dinality of the current hp-partition, the arithmetic complexity of hp-NEARBEST is
O(N2) (or O(N logN) in some specific situations). On the other hand, DG-SOLVE per-
forms a bounded numbers of solutions of DG problems, which can be achieved in linear
complexity.

5.3 Initialization

Let us discuss a possible strategy to fulfill (43). Recall that we enter DG-SOLVE at
iteration i of hp-ADFEM with input partition Di and data gDi . This means that, with
the notation of hp-ADFEM, condition (43) reads

‖u(gDi
)− uDi

‖2a,Di
+ β η2

Di
(uDi

) ≤ C9 ε
2
i . (44)

The first term on the left-hand side can be bounded from above by using the uniform
continuity of the form aDi

and the bounds given in Property 5.2, Corollary 5.1 and
Proposition 5.2. This yields

‖u(gDi)− uDi‖2a,Di
+ β η2

Di
(uDi) ≤ C10 inf

wDi
∈V c

Di

‖u(gDi)− wDi‖2H1
0 (Ω) + C11η

2
Di

(uDi)

for constants C10, C11 > 0 independent of Di. We now show that the infimum on the
right-hand side can be bounded by a multiple of ε2

i .

Property 5.4. There exists a constant C12 > 0 independent of Di such that

inf
wDi
∈V c

Di

‖u(gDi)− wDi‖H1
0 (Ω) ≤ C12εi

Proof. For simplicity, set again u := u(gDi). Then, for any wDi ∈ V c
Di

, let us write
u− wDi = (u− u?) + (u? − ūi−1) + (ūi−1 − wDi). Using (17), we get

‖u− u?‖H1
0 (Ω) = ‖u(g?)− u(gDi)‖H1

0 (Ω) ≤ C?κEDi(ūi−1, g?)
1
2 ≤ C?κωεi−1. (45)

On the other hand, recalling (20), we have

‖u? − ūi−1‖D̄i−1
≤ εi−1. (46)
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Let us define wDi
as follows. Set ψ := (ūi−1)∼x ∈ L2(Ω) and let q ∈ L2(Ω) be the

piecewise polynomial function such that q|KD
= Π0

KD,pD−1ψ|KD
for all D ∈ Di. Notice

that, recalling the definition (15), we have

‖ψ − q‖2Ω =
∑

D∈Di

‖ψ − q‖2KD
≤
∑

D∈Di

eD(ūi−1, g?) = EDi
(ūi−1, g?) ≤ ω2ε2

i−1.

On the other hand, it holds∫
Ω

q =

∫
Ω

ψ =
∑

D∈D̄i−1

∫
KD

ūi−1,x = −
∑

e∈ED̄i−1

[[ūi−1]]e = −
∑

e∈ED̄i−1

σ
−1/2

D̄i−1,e
σ

1/2

D̄i−1,e
[[ūi−1]]e,

whence(∫
Ω

q

)2

≤
( ∑
e∈ED̄i−1

σ−1
D̄i−1,e

)
‖σ1/2

D̄i−1
[[ūi−1]]‖2ED̄i−1

≤ |Ω| ‖σ1/2

D̄i−1
[[ūi−1]]‖2ED̄i−1

≤ |Ω|
γ
ε2
i−1

by (46). Therefore, if we set

wDi
(x) =

∫ x

x0

q(s) ds− (x− x0)

∫
Ω

q

where x0 = min Ω, we realize wDi ∈ V c
Di

and ‖(ūi−1)∼x −wDi,x‖Ω ≤ Cεi−1. This concludes
the proof, since εi−1 ' εi.

By Property 5.4, we get the bound

‖u(gDi)− uDi‖2a,Di
+ β η2

Di
(uDi

) ≤ C13ε
2
i + C11η

2
Di

(uDi
).

At this point, we may proceed as follows. Assume that we have chosen, once and for all,
an absolute constant Ĉ > 0. We check the validity of

η2
Di

(uDi) ≤ Ĉε2
i .

• In the affirmative case, uDi does satisfy condition (44), and we can start the itera-
tions of DG-SOLVE.

• In the negative case, we discard uDi
and compute ûcDi

∈ V c
Di

, the (continuous)
Galerkin approximation of u(gDi

) on the partition Di. For such an approximation,
it is known that the residual estimator is both reliable and efficient; hence, resorting
once more to Property 5.4,

ηDi
(ûcDi

) ' ‖u(gDi
)− ûcDi

‖a ' ‖u(gDi
)− ûcDi

‖H1
0 (Ω) ≤ C12εi.

Therefore, condition (44) is satisfied with uDi
replaced by ûcDi

, and we start the
iterations of DG-SOLVE from this approximation.
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