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A comprehensive approach to the automatic re�nement

and veri�cation of access control policies

Manuel Cheminodb, Luca Duranteb, Lucia Senob, Fulvio Valenzaa,b,∗, Adriano Valenzanob

aDipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
bCNR-IEIIT, c.so Duca degli Abruzzi 24, Torino I-10129, Italy

Abstract

Access control is one of the building blocks of network security and is often managed by network administrators through

the de�nition of sets of high-level policies meant to regulate network behavior (policy-based management). In this

scenario, policy re�nement and veri�cation are important processes that have to be dealt with carefully, possibly relaying

on computer-aided automated software tools.

This paper presents a comprehensive approach for access control policy re�nement, veri�cation and, in case errors

are detected in the policy implementation, their �xing. The proposed methodology is based on a twofold model able

to describe both policies and system con�gurations and allows, by suitably processing the model, to either propose a

system con�guration that correctly enforces the policies, or determine whether a speci�c implementation matches the

policy speci�cation also providing hints on how possible anomalies can be �xed. Results on the average complexity of the

solution con�rm its feasibility in terms of computation time, even for complex networked systems consisting of several

hundred nodes.

Keywords: Access Control, Policy-Based Network Management, Policy Re�nement, Policy Veri�cation.

1. Introduction

Access control is a major building block of network se-

curity [1], regulating access of legitimate users to resources

of a system. Access control by itself cannot prevent the

occurrence of cyber-attacks, however e�ective protection

schemes cannot abstract from both the de�nition of how

access to system resources shall take place as well as the

correct enforcement of the desired behavior in the system.

As target networked systems can be very complex, ad-

ministrators often rely on policy-based paradigms for ac-
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cess control management (i.e., policy-based management,

PBM [2]). Policies are technology-independent rules which

de�ne the desired network behavior from a high-level per-

spective. As such, they allow to separate the two problems

of speci�cation (i.e., de�nition of the desired network be-

havior) and implementation (i.e., actual enforcement of

the desired behavior in the system) making network man-

agement easier and more �exible.

Access control policies regulate the access of users to

the resources of a networked system by de�ning �who is

allowed to do what on what�. The application of PBM to

access control has been receiving increasing attention by

the scienti�c community since many years, and research

on this topic has been focusing on three main domains,

namely policy analysis (PA), policy veri�cation (PV) and

policy re�nement (PR).
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Policy analysis deals with the ful�llment of speci�c

properties by a set of policies [3]. The goal of PA is the de-

tection of speci�cation inconsistencies, arising when two or

more policies are con�icting. PA only concerns the spec-

i�cation domain (i.e., the policies) and does not consider

the implementation domain, i.e., how policies are actually

enforced in the system.

Policy re�nement bridges the gap between speci�cation

and implementation. Indeed, a PR process translates high-

level policies into low-level system con�gurations [4]. PR

is a critical task that, if not carefully performed, may lead

to either incorrect or sub-optimal implementations, thus

a�ecting important network performance indexes such as

throughput and even jeopardizing the overall system se-

curity. When PR is performed by hand the risk of errors

increases. The Verizon Data Breach Investigation Report

points out that 14% of breaches in 2017 were caused by

human errors in network con�guration [5]. For this reason,

computer-aided automatic or semi-automatic tools are def-

initely needed to assist administrators in the translation

of access control policies.

Finally, PV deals with checking whether a set of poli-

cies is correctly enforced in a system or, in other words,

whether the system implementation actually matches the

policy semantics and no anomalies are present. As an ex-

ample, policies may state that �administrators can login

in all nodes�, but a mismatched �rewall con�guration may

result in cutting o� some server. PV can also be used to

validate a hand-made re�nement. Note that, sometimes,

performing a full re�nement of access control policies is not

convenient. In particular, when policies change in large

networks, administrators verify whether the new policies

are already correctly enforced with the current system con-

�guration and, only if the result is negative, they introduce

the required modi�cations. In this case the veri�cation

process plays a crucial role.

In this paper we present a comprehensive approach to

automatic access control (AC) policy re�nement and ver-

i�cation. Our proposal builds on both the twofold model

introduced in [6], which enables the description of high-

level AC policies and low-level implementation details of a

target networked system, and some promising results de-

scribed in [7].

While the solution in [6] was only meant for a poste-

riori policy veri�cation, the technique shown in this pa-

per extends [6] by focusing on credential assignment as a

means to enforce AC policies. This is leveraged to solve

the following problems, commonly tackled by security ad-

ministrators:

1. Is there a user credential assignment which allows the

implemented system to satisfy the policies? (policy

re�nement);

2. Can a partial user credential assignment be com-

pleted so that the system behavior ful�lls the policy

speci�cation? (constrained policy re�nement);

3. Does a speci�c user credential assignment make the

system behavior match the policy speci�cation? (pol-

icy veri�cation);

4. How should the credential assignment be modi�ed

to �x anomalies (i.e., discrepancies between speci�-

cation and implementation)? (anomaly �xing).

In practice, questions above refer to three di�erent sit-

uations, that is:

1. no credential has been granted yet;

2. some credentials have already been assigned (con-

strained credentials);

3. all credentials have been assigned.

Rough connections to the state of a system development

are then: under design, partially implemented and fully

implemented.

The paper is structured as follows: Sect. 2 summa-

rizes the characteristics of the twofold model employed
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for policy and system description. Sect. 3 and 4, respec-

tively, formally present the proposed approach (and how

to solve the considered problems) and provide conceptual

work�ows describing how administrators can be assisted

in managing access control for their network in di�erent

circumstances. Sect. 5 describes some optimizations intro-

duced in the actual implementation of the proposed so-

lution and Sect. 6 deals with the automated tool and its

performance. Finally, Sect. 7 considers some related works

and Sect. 8 draws some conclusions and provides hints on

future work.

2. Background

The twofold model presented in [6] enables the de-

scription of both a set of high-level access control policies

(through a Speci�cation Model S) and the �ne-grained de-

tails of a target networked system (through an Implemen-

tation Model I). Model I, in particular, stores informa-

tion about the system structure, components and con�g-

urations, i.e., nodes and their interconnections, communi-

cation protocols, physical places where nodes are placed

(e.g. rooms and cabinets), doors between adjacent spaces,

software applications running on nodes, available and ex-

ploited access control mechanisms, credentials owned by

users, etc.

By suitably processing models S and I, three sets of

pairs, S+, S− and I can be computed such that

S+, S−, I ⊆ Users × Actions (1)

where Users and Actions are sets identifying, respectively,

all users u possibly interacting with the system and all

actions α that can be performed in the system.1 In the

following, we use u and α to mean a generic element of set

Users and Actions, respectively.

1In [6], Actions is the set of all pairs obtained by combining el-
ements of sets Operations and Objects, describing all objects of the
system and all operations that can be performed on at least one
object in the system.

Sets S+ and S− derive from S and de�ne, respectively,

allowed and denied users actions. Basically, whenever a

pair (u, α) ∈ S+ it means that, according to the policies,

user u is allowed to perform action α on the system. Con-

versely, if (u, α) ∈ S−, according to the policies, user u must

not be able to perform action α on the system.

In the following, S+ũ and S−ũ are the sets of allowed and

denied actions speci�ed for user ũ ∈ Users, i.e.

S+/−
ũ

:= {(u, α) ∈ S+/− | u = ũ} (2)

Clearly, S+/− =
⋃

u∈Users S+/−u . Moreover, we assume S+ ∩

S− = ∅ and, consequently, S+u ∩ S−u = ∅ ∀ u ∈ Users, (i.e.,

policies are supposed to be coherent and, as such, con�ict

free).

The Implementation set I is derived from I, and pairs

belonging to I describe all actions that users are actually

allowed to perform on the system, as determined by its

current implementation.

Set I is only a portion of the information obtained by

processing model I. Indeed, by suitably combining I with

a set of purposely de�ned inference rules, a collection of

automata Au can be computed (one automaton for each

user u ∈ Users), such that

Au = (Qu, Σu, δu, q0
u) (3)

Equation (3) adopts the traditional notation for Determin-

istic Finite State Automata (DFSA) [8] where Qu is the set

of states qu, q0
u ∈ Qu is the initial state, Σu ⊆ Actions is the

set of events, i.e. user's actions, and δu is the transition

function of the automaton. Overall each automaton Au

stores the sequences of actions α allowed to user u, given

a speci�c system implementation described by I, and how

her/his state varies accordingly.

Inference rules describe the way user/system interac-

tions take place (e.g., how a user can move, stepping a

door, between adjacent rooms or how s/he can access a

�le if s/he is logged on its host and has the required privi-
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leges and/or credentials). Each automaton Au is computed

by considering the interaction of user u with the system

and applying all inference rules to register actions s/he is

able to perform and how this a�ects her/his state (i.e., the

room s/he is in, access to local resources s/he gains).

Automata Au are used to derive sets Iu. Each Iu con-

sists of all pairs (u, α) obtained by combining user u with

all α appearing in at least one transition of Au. The im-

plementation set I can then be obtained as

I =
⋃

u∈Users

Iu

The problem of policy veri�cation can formally be as-

sessed by comparing sets S+, S− and I. In particular, by

de�ning the anomaly sets containing all actions respec-

tively allowed and denied to users in violation of the poli-

cies as

S̄+ := S+ \ I S̄− := S− ∩ I (4)

we obtain that the implementation satis�es the policy spec-

i�cation if and only if

S̄+ = ∅ ∧ S̄− = ∅ (5)

Note that for the implementation to match the speci-

�cation, I = S+ is not a necessary condition. Indeed, the

high-level speci�cation of policies may put into evidence

only a subset of actions that are possible in the systems.

In other words I may contain pairs not explicitly consid-

ered in the policies de�ned by the network administra-

tors. As an example, I may contain a pair (u, α) where

α = (login, PC). This kind of actions is useful to describe

how access to some of the system resources actually takes

place (e.g., a user, for accessing a speci�c software appli-

cation running on PC, may �rst need to login on the PC

itself). Often, these actions are not taken into account

by policies, which in turn, do not have any knowledge of

where applications are actually installed. Policies may ex-

plicitly state that u shall be able to access a speci�c soft-

ware application without mentioning logging in on the PC

hosting the application itself. If not otherwise speci�ed in

the denied action set, this means that for a correct im-

plementation it is not important whether user u is able to

login on PC or not.

Since automata are built on a per-user basis, an easy

way to check the correctness of the policy implementation

is by computing (4) and checking (5) ∀ u ∈ Users individ-

ually, i.e.:

S̄+u := S+u \ Iu S̄−u := S−u ∩ Iu (6)

S̄+u = ∅ ∧ S̄−u = ∅ (7)

3. Formal description of the approach

Approach in [6] only focused on policy veri�cation and,

in particular, on computing sets S̄+ and S̄− and checking

(5), to possibly highlight the need for changes in the cur-

rent implementation. However, such a technique was un-

able to provide hints on how these system modi�cations

had to be carried out, leaving this critical task completely

to the network administrators.

This work extends the scope of [6] by including both

policy re�nement and veri�cation in the proposed solution

and by automatically suggesting �xings for the detected

anomalies. Modi�cations to the implementation (re�ect-

ing on I), may, in principle, involve di�erent aspects of

the target system (e.g., network topology, node con�gura-

tions, etc.). Of course, some changes are very complex and

may a�ect the system functionality. In this paper we take

into account only changes pertaining to user credential as-

signments, as they are easy to manage and often help with

�xing a large number of detected anomalies.

The main idea is determining relations among actions

α and credentials needed to perform them, i.e., what se-

quences of actions and, consequently, what sets of creden-
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tials allow users to gain privileges enabling the execution of

a speci�c action. This information is already present in I

[6], as it is necessary to check whether an inference rule can

�re, leading to a state transition in (3). In the following C

is the set of all credentials in I, and set Cu ⊆ C ∀ u ∈ Users

stores the credentials owned by user u. When a transition

can �re in Au (3), the user's credential c ∈ Cu allowing the

corresponding action is known, even though it was not in-

cluded in the transition label in [6] because of its restricted

goal.

By contrast, credentials are also used here to �x anoma-

lies detected through sets (6), and this imposes managing

c allowing α explicitly in the corresponding automaton

transition labels. More formally, from now on, each tran-

sition of any automaton Au is associated with an event

e ∈ Σu ⊆ Actions × (C ∪ {ε}). Thus, in general, event e has

the form (α, c), i.e. it is a pair combining an action and a

credential requested to perform that action (if any). Sym-

bol ε means �no credential�, i.e., whenever a transition is

labeled with e = (α, ε), no speci�c credential is necessary

to carry out α. All algorithms presented in [6] to build

automata Au still work properly here, considering events

as described above.

To minimize the computational e�ort, we compute a

single automaton Au referring to a hypothetical super-user

u = sup. Superuser sup is de�ned as the user who is as-

signed all credentials existing in the system, i.e. Csup = C.

Automaton Asup = (Qsup, Σsup, δsup, q0
sup) is built exactly

in the same way as automata Au. While each automaton

Au describes the interactions between the system and a

speci�c user u, automaton Asup represents the most pow-

erful interaction allowed by the system characteristics. In-

deed, as it models the interaction achievable by owning all

possible credentials, Asup generates a maximum language

consisting of all sequences of actions any user can perform

in the system. As such, Asup describes the system global

behavior and is useful to examine dependencies among ac-

tions avoiding the computation of as many Aus as u ∈ U.

Information about any user u ∈ U can easily be derived

directly from Asup whenever needed.

The following sections deal with the computation, from

automaton Asup, of expressions specifying whether a user

is enabled to carry out an action depending on the creden-

tials s/he has. Moreover, we also discuss how these expres-

sions can help in tackling the re�nement, constrained re-

�nement and veri�cation problems. In more detail, start-

ing with a generic DFSA, section 3.1 shows how to com-

pute a collection of sets of enabling events ∀ e ∈ Σ, such

that e can be impeded by disabling at least one event in

each set. Section 3.2, instead, makes use of sets of en-

abling events for automaton Asup to determine ∀ e ∈ Σsup a

boolean function (enabling function) expressing what cre-

dentials are needed to perform the action guarded by e.

Finally, sections 3.3, 3.4 and 3.5 apply enabling functions

to policy re�nement, constrained re�nement and veri�ca-

tion respectively.

3.1. Enabling events

Let us consider the simple automaton G = (Q, Σ, δ, q0)

shown in Fig. 1, where events e ∈ Σ are (α, c) pairs men-

tioned above. G is a super-user automaton computed for

an example system where:

• two adjacent rooms (A and B) are connected through

a door which can be opened with key kAB;

• two system nodes (host H1 and server S1), connected

through the network infrastructure, are located in B;

• two di�erent passwords (user and admin) can be used

to sign in on H1;

• whenever a user is logged in as an administrator on

H1, s/he can perform the backup action (e.g., invoke

a backup service), while simple users are not allowed

to do so;

• any user logged in H1 can access, remotely through

the network, a database hosted by S1.
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q0 q1

q2

q3

q4

q5

a

b

c

d
d

b

a

b

a

c, y

d, c, x, y

y

x, y

Short label Complete event label
a (enter , A), kAB

b (enter , B), kAB

c (login, H1), pw_uh1
d (login, H1), pw_ah1
x (backup, H1), ε
y (access, DB), pw_db

Figure 1: Example automaton G

For sake of simplicity short labels have been used for edges

in G, i.e., Σ = {a, b, c, d, x, y}, while corresponding (com-

plete) labels obtained through the computation of the au-

tomaton from I are listed in the table below the automa-

ton, e.g. event a stands for a pair (α, c) where action α

is (enter, A) whereas credential c is kAB. L(G) is the lan-

guage generated by automaton G.

De�nition 1. Given an event set Σ and a string s ∈ Σ∗,

we de�ne operator E(·) : Σ∗ → 2Σ as:

E(s) = {e ∈ Σ | ∃ t, v ∈ Σ∗ : s = tev}

Given a string s of events of Σ, operator E(·) returns

the set of all events in s. For instance, if we consider

strings s1 = accyby, s2 = aba and s3 = ε belonging to

L(G) in Fig. 1 and apply E(·) to each one of them, we

obtain E(s1) = {a, c, y, b}, E(s2) = {a, b} and E(s3) = {ε},

respectively.

De�nition 2. Given an automaton G = (Q, Σ, δ, q0) and

an event e ∈ Σ, a set of events E ⊆ Σ \ {e} enables event e

in G (E � e) as:

E � e :=



∃ s ∈ Σ∗ :


se ∈ L(G)

∧

E(s) = E

∧

� s′ ∈ Σ∗ :


s′e ∈ L(G)

∧

E(s′) ⊂ E

(8)

Basically, a set of enabling events for an event e is the

smallest set of events whose combined occurrence enables

event e.

For instance, considering G in Fig. 1, we have {a}� b,

{a} � c, {a} � d, and {a, d} � y, while {a, d, x} 6� y being

{a, d} ⊂ {a, d, x}.

De�nition 3. Given an automaton G = (Q, Σ, δ, q0) and

an event e ∈ Σ, we de�ne operator En(·) : Σ→ 2Σ as:

En(e) = {E ⊆ Σ | E � e in G} (9)

Given a generic automaton modeling a system, any

event e in its set Σ is characterized by a (possibly empty)

set of sets of enabling events En(e). From the de�nitions

above it follows that for e to occur, all events in at least

one of sets E ∈ En(e) must happen and, consequently, to

prevent e from happening at least one element in each

set E ∈ En(e) must be disabled. Moreover, from (8), any

pair of sets E1, E2 ∈ En(e) may share some elements but

E1 ⊂ E2 is never true. Note that the set of enabling events

for e ∈ Σ may be En(e) = {{ε}} meaning that e can occur

directly in the initial state of G (i.e., it is not enabled by

other events). Moreover, En(e) = {{ε}} is di�erent from

En(e) = ∅, as the latter means that e ∈ Σ can never happen

in G (i.e., no state having an outgoing transition labeled

as e is reachable from q0).

The computation of En(e), ∀e ∈ Σ for G in Fig. 1 leads

6



to:

En(a) = {{ε}} En(b) = {{a}}

En(c) = {{a}} En(d) = {{a}}

En(x) = {{a, d}} En(y) = {{a, c}, {a, d}}

3.2. Enabling functions

The following de�nitions apply to automata having the

characteristics of Asup. In particular, given an event e =

(α, c) ∈ Σ, we de�ne C(·) : Σ → (C ∪ {ε}) and A(·) : Σ →

Actions such that:

C(e) = c A(e) = α

Each event e = (α, c), can be disabled for user u either

directly (by denying credential c to u), or indirectly (by

disabling at least one event in any set belonging to E ∈

En(e) for u). Note that events e where C(e) = ε can be

disabled only indirectly.

In this condition, an event e can happen only if a user

owns credential c for e together with the credentials for

all events in at least one of the sets in En(e). This can be

described by means of a boolean expression where a vari-

able is associated to each credential, whenever the value

of the variable is 0 it means that the credential is not pro-

vided to the user, while, on the contrary, when the variable

assumes value 1 the user is assigned the corresponding cre-

dential. A sum of variable products is then speci�ed for

each E ∈ En(e).

As an example, let us consider event y in Fig. 1: En(y) =

{{a, c}, {a, d}}. The corresponding action (access, DB) can

be performed only by users who own the credential for y

together with those allowing (a and c) or (a and d), i.e.

pw_dB · kAB · pw_uh1 + pw_dB · kAB · pw_ah1 (10)

Any assignment of variables making expression (10)

true corresponds to a set of credentials enabling u to per-

form action (access, DB) in the example.

More in general, for each e = (α, c) ∈ Σsup, given its

set of sets of enabling events En(e), we build a boolean

function F(α) (enabling function) as sketched above.

De�nition 4. Given the set C of all credentials in I, we

de�ne a set of boolean variables

V = {vc | c ∈ C} (11)

where vc is the variable associated to credential c.

For the example automaton in Fig. 1, we have that set

V = {pw_db, kAB, pw_uh1, pw_ah1}, where each variable

has been named according to the associated credential.

De�nition 5. Given an automaton Asup = (Qsup, Σsup,

δsup, q0
sup) and an event e ∈ Σsup, f (e) is the boolean ex-

pression

f (e) := vc ·
©«

∑
E∈En(e)

∏̃
e∈E

vC(ẽ)
ª®¬ (12)

For instance, f (y) for system G in Fig. 1 is equation (10).

Event e = (α, c) can occur only if the user has credential c,

i.e. f (e) cannot be true if vc is false. In addition, the user

must own all credentials requested for all events in at least

one E ∈ En(e), i.e. the corresponding variable product

must be true.

In the example system G, action (login,H1) appears in

both events c and d, and credentials pw_uh1 and pw_ah1

are respectively needed to enable them. This situation,

which happens frequently in real systems, has to be han-

dled explicitly as policies deal with actions irrespectively

of the credentials needed to carry them out.

De�nition 5 can then be extended to de�ne how action

α can be performed whatever the credential requested for

it:

De�nition 6. Given an automaton Asup and an action α

such that (α, c) ∈ Σsup

F(α) :=
∑

c∈C | (α,c)∈Σsup

f (α, c) (13)

7



Once again let us consider action (login,H1): from (12)

we have:

f (login,H1, pw_uh1) := pw_uh1 · kAB

f (login,H1, pw_ah1) := pw_ah1 · kAB

and by applying (13) we obtain:

F(login,H1) := pw_uh1 · kAB + pw_ah1 · kAB

Basic de�nitions above are useful to address the policy

re�nement, constrained re�nement, and veri�cation and

�xing problems. Re�nement means �nding a user's cre-

dential assignment allowing u to carry out all actions in

S+u , and preventing u from performing any α ∈ S−u . Con-

strained re�nement is similar and consists of completing a

partial credential assignment already provided by network

administrators, while veri�cation and (possibly) �xing is

when a complete, already available assignment has to be

checked for correctness.

Some actions α belonging to Actions might not appear

in some e ∈ Σsup. When this happens, i.e. α is not present

in Asup, F(α) = 0 by de�nition:

De�nition 7. Given an automaton Asup and an action

α | � (α, c) ∈ Σsup

F(α) := 0 (14)

3.3. Policy re�nement

Our solution for policy re�nement is meant to deter-

mine a user credential assignment such that the system

implementation matches the policy speci�cation, i.e., (5)

holds true. The process works on a per-user basis and tries

to select values for variables of V , such that each user is

enabled to perform all allowed actions (i.e., all (u, α) ∈ S+u )

while is prevented from performing all denied actions (i.e.,

all (u, α) ∈ S−u ).

From (13) and (14) u is able to perform all allowed

actions if and only if:

F(α) = 1 ∀ α | (u, α) ∈ S+u

Similarly, the system prevents u from performing any of

the denied actions if and only if:

F(α) = 1 ∀ α | (u, α) ∈ S−u

By combining conditions above, a suitable credential as-

signment for u is such that

©«
∏
α∈S+u

F(α)ª®¬ · ©«
∏
α∈S−u

F(α)ª®¬ = 1 (15)

Consequently we can assert that, in our case, solv-

ing the re�nement process means �nding, for each user

u, an assignment of values for variables in V such that

(15) holds.

Note that such an assignment is partial with respect

to V , since values are only found for variables explicitly

appearing in (15). Variables not appearing in (15) can be

safely set to 0 without a�ecting the policy implementation

for user u. Thus a complete assignment σu : V → {0, 1},

is obtained by simply assigning default values to variables

not present in (15).

When no solution is found, there is no way for the cur-

rent system implementation I to satisfy the policies by

acting on the credential assignment only, and the problem

is marked as unsat, i.e. no σu(·) is de�ned. In this case,

administrators have either to change other elements of the

data model (i.e., system topology, �rewall and service con-

�gurations and so on) or relax some policy constraints if

this is compatible with the system security requirements.

3.4. Policy constrained re�nement

Sometimes administrators have already identi�ed a par-

tial credential assignment for user u, i.e., a function σc
u :

Vu → {0, 1} such that any vc ∈ Vu ⊂ V is bound to an un-

changeable value σc
u (vc). The re�nement process should

8



then complete the assignment so as to make (5) true.

Solving the constrained re�nement problem means �nd-

ing for each user u an assignment for {vc} = V \ Vu, such

that (15) holds when each vc ∈ Vu is replaced by σu(vc).

Even in this case, the solution satisfying (15), if any,

can be used to build σu : V → {0, 1}, by joining it to σc
u (·),

and setting all variables which are not bound by σc
u and

do not appear in (15) to the default value (0).

3.5. Policy veri�cation

A complete credential assignment for user u is a func-

tion σV
u : V → {0, 1} where each vc ∈ V is bound to either 0

or 1. Thus, solving the veri�cation problem means check-

ing, for each user u, whether a credential assignment σV
u (·)

enables a correct implementation of policies in the system.

In particular, sets S̄+u and S̄−u in (6) can be computed

by means of the enabling functions as:

S̄+u = {(u, α) | F(α)|σV
u
= 0 ∧ (u, α) ∈ S+u }

S̄−u = {(u, α) | F(α)|σV
u
= 1 ∧ (u, α) ∈ S−u }

(16)

where notation F(α)|σV
u
stands for �F(α) where each vari-

able vc is replaced by σV
u (vc)�.

Three additional formal de�nitions are used in the fol-

lowing sections:

De�nition 8. Given an action α, Vα ⊆ V is the set of

all boolean variables vc appearing in the enabling function

F(α)

Vα = {vc | vc is a variable in F(α)} (17)

De�nition 9. Given an automaton Asup and a user u, Ǩu

is the set of all actions:

Ǩu :=
{
A(e) | e ∈ Σsup, (u,A(e)) < S̄+u ∪ S̄−u

}
(18)

In practice, Ǩu is the set of actions which, allowed or

denied under the current system con�guration, are not

identi�ed as anomalies.

Figure 2: Work�ow: o�ine phase

De�nition 10. Given Ǩu, V̌u is the set of all variables:

V̌u :=
⋃
α∈Ǩu

Vα (19)

Basically, V̌u is the set of variables vc associated to cre-

dentials enabling actions in Ǩu.

4. Work�ow

This section shows how the approach formally pre-

sented in Sect. 3 is put at work, while most signi�cant

details about the implementation of our technique are pro-

vided in Sects. 5 and 6.

From a practical point of view, we can distinguish two

di�erent operating phases, which are respectively referred

to as o�ine and online. The o�ine phase (see Fig. 2)

aims at modeling and analyzing the whole system and,

consequently, is computation intensive and can be rather

time-consuming. Fortunately, it is seldom carried out in

practice, since changes in the system characteristics such

as i.e., host locations, network topology, installed services

etc. do not occur frequently with respect to modi�cations

of access control policies. The online phase (see Fig. 3),

instead, should be performed every time administrators

con�gure or change some access control policies for any

given user/group of users, or whenever the correctness of

con�gurations has to be rechecked.

More speci�cally, the o�ine process (Fig. 2) is respon-

sible for computing the set of actions whose execution en-

ables action α. Starting from I and a set of prede�ned in-

ference rules automaton Asup is generated and stored into

9



Figure 3: Work�ow: online phase

a database (automaton generator block in Fig. 2). The

second step of the o�ine phase (functions computation)

consists of visiting Asup to compute the enabling functions

F(α) in (13) for all possible actions in the system.

The online phase works on a per-user basis and in-

cludes two distinct sub-processes, i.e. re�nement and ver-

i�cation and �xing in Fig. 3.

4.1. Re�nement process

Re�nement aims at identifying a credential assignment

σu(·) for any user u (or group of users), as requested to

correctly enforce the policies. Note that this problem may

have one, many or no solution at all.

By assuming that all solutions are equivalent, a Satis-

�ability Modulo Theories (SMT) solver [9] is used to �nd

either a correct assignment or a proof that no satisfactory

assignment exists. In details, the re�nement process (RP)

tries to solve equation (15) by taking both the enabling

(boolean) functions F(α) and the user policies (S+u and S−u )

as inputs. RP returns either a set of credentials σu(·),

that correctly enforce the policies, or a counter-example for

non-satis�ability. The counter-example is then reported to

the administrators along with the set of con�icting poli-

cies. It is up to the administrators analyzing results and

possibly introduce changes in either the polices or the data

model (that is the system).

When dealing with constrained re�nement, RP takes

the administrator-de�ned credential assignment σc
u (·) as

additional input (dotted block in Fig 3) and binds the

relevant credentials to the prede�ned values. Of course,

the larger the number of bounded variables the smaller the

solution space and, consequently, the higher the likelihood

of unsatis�ability.

Typically, the problem of constrained re�nement arises

when administrators directly assign some credentials for

practical or business-related reasons, e.g., employees are

usually directly assigned the password for accessing their

workstations or administrators are assigned credentials for

logging in as superusers on some hosts. In all these cases

credential assignment is already partially de�ned.

4.2. Veri�cation and Fixing

Given a credentials assignment σV
u (·) for each user u,

possible anomalies are detected by computing (16) so as

to produce sets S̄+u and S̄−u .

Moreover, when anomalies are detected, a possible �x-

ing (if any) is automatically suggested to administrators.

The �xing computation is based on a constrained re�ne-

ment, where the credential assignment for actions not be-

longing to S̄+u ∪ S̄−u is left unchanged. Credentials only

concerning actions in the anomaly sets (i.e., not belonging

to set V̌u in (19)) are left unbound, and a re�nement is

then searched. Roughly speaking, the �xing process (FP)

tries to leave as many credentials as possible unassigned,

and puts back into the game only those variables that are

directly involved in anomalies, i.e. credentials enabling ac-

tions belonging to the anomaly sets. In case no solution

is found, administrators can take di�erent actions such as

modifying the initial credential assignment or exploiting

other characteristics of I. Options available to adminis-

trators when the automatic �xing fails are not in the scope

10



of this paper.

5. O�ine phase optimization

Some properties of Asup can be leveraged to tackle the

problem of computing F(α) and to solve it e�ciently.

The computation of an enabling function F(α) relies on

the identi�cation of sets of enabling events En(e). Finding

En(e), in a generic automaton G, means �nding all those

paths2 p such that pe ∈ L(G) and E(p) ∈ En(e).

This leads to an enumeration problem whose complex-

ity depends on the size and structure of G. Unfortunately,

given the number of events |Σ |, the number of paths to the

target event e can be as large as |Σ |!. Actually, the worst

case condition occurs when e is enabled by a combina-

tion of all the other events disjointedly. The computation

complexity in the worst case is O(|Σ |!), so an optimiza-

tion strategy is needed to make the problem manageable.

The main idea we followed is splitting the problem into

two simpler parts (divide et impera approach), solve them

individually and then recombine the partial results to ef-

�ciently obtain En(e) for each e ∈ Σ.

5.1. Divide et impera

Given its characteristics, Asup can be split into two

simpler automata Ar and AL (Ar � Asup and AL �

Asup), where Ar = (Qr, Σr, δr, qr0) and AL = (QL, ΣL, δL, qL
0 ).

Their combination by means of the standard parallel op-

eration [8], returns Asup (Ar | |AL = Asup). This enables

the computation of two enabling sets of events for Ar and

AL (respectively Enr (e) and EnL(e) in the following) which

can be combined to build En(e).

Automata Ar and AL are built by considering com-

plementary aspects of the system. Indeed, Ar takes into

account both the physical interactions of a user with the

nodes in the system and her/his movements between rooms.

2Since a string s ∈ Σ∗ is a sequence of events, every path p in G
corresponds to a string in L(G) and we may refer to p as either a
path or a string indi�erently.

Instead AL only deals with aspects concerning the ac-

quisition and exploitation of logical accesses to the de-

vices/services. In building AL we assume that the user

can reach, moving from the initial state, all locations that

have been explored while building Ar (see Axiom 1 in the

following).

In general, actions α ∈ Actions belong to three disjoint

groups: θI, θII and θIII. Actions in θI depend on the user

physical position and can change it. Actions in θII depend

on the user's position and, possibly, let her/him gain access

to a device. Finally, actions in θIII depend on the set of

logical accesses already acquired by the user and, possibly,

let her/him enlarge it with a new element.

The construction of Ar combines only α in θI and θII,

while AL takes into account θII and θIII. Events that are

in both Σr and ΣL belong to θII, and Ar describes how

sequences of θI actions can enable a subset of θII. Similarly,

AL shows how the subset of θII can trigger sequences in

θIII.

For example, G in Fig. 1 can be obtained by the par-

allel composition of the two automata Ar and AL shown

in Fig. 4 and Fig. 5 respectively. In this case Actions =

{a, b, c, d, x, y}, θI = {a, b}, θII = {c, d} and θIII = {x, y}.

q′0 q′1

a

b

c, d

Figure 4: Example Ar

q′′0

q′′1

q′′2

c

d

d

c, y

c, d,

x, y

Figure 5: Example AL

Let Γ(q) be the set of events enabled in state q: Γ(q) =

{e ∈ Σ | δ(q, e) is de�ned}. For instance, Γ(q′′0 ) = {c, d}

and Γ(q′′1 ) = {c, y, d} in Fig. 5.

The complete and formal de�nition of the procedures

used to build A, Ar and AL has been provided in [6]. Some

useful properties, referred in the following as axioms, stem

from the characteristics of the data model and the infer-

ence rules. Axioms, allow to derive three new properties

needed to build En(e) from Enr (·) and EnL(·) in a very
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e�cient way.

Axiom 1. All actions α ∈ θII that are allowed in Ar belong

to AL as well and, in particular, are enabled in the AL

initial state qL
0 .

∀e ∈ Σr ∩ ΣL, e ∈ Γ(qL
0 ), EnL(e) = {{ε}}

Axiom 2. Given a state q ∈ QL, each event e ∈ Γ(q) is

also enabled in any state q′ reachable from q (e ∈ Γ(q′)).

Axiom 3. Any action in θIII is enabled by a single logical

access (and not by a simultaneous combination of multiple

logical accesses acquired by the user).

From Axiom 2 and Axiom 3 we have:

Property 1. Given any two events e1, e2 in some set E

in the enabling set En(e) of a target event e, either e1 is

in the enabling set of e2 or e2 is in the enabling set of e1.

E ∈ En(e), {e1, e2} ⊆ E ⇒

∃E ′ ∈ En(e2), e1 ∈ E ′ ⊕ ∃E ′ ∈ En(e1), e2 ∈ E ′

From Axiom 1 and Property 1 we have:

Property 2. For any event e in ΣL and any E ∈ EnL(e)

two distinct events {e1, e2} ⊆ E both belonging to Σr ∩ ΣL

can never exist.

Moreover, in building AL we exploit only actions be-

longing to θII and θIII. Remembering that θIII events only

depend on logical accesses conditions already gained by

the user, and the initial set of such conditions for any user

is empty, any logical access in AL can be acquired only by

means of a θII action, that is events in Σ
r ∩ ΣL. As such,

any sequence of events leading to e ∈ ΣL \ Σr starts with

some speci�c action ẽ ∈ Σr ∩ ΣL. Since all e ∈ Σr ∩ ΣL are

included in Γ(qL
0 ), we can conclude that:

Property 3. For any event e in AL, there is exactly one

event ẽ in each E ∈ EnL(e), such that it also belongs to Σr :

∀e, ∀E ∈ EnL(e), ∃!ẽ ∈ E | ẽ ∈ Σr ∩ ΣL (20)

Because of the above properties, a simple procedure

allows to combine Enr (·) and EnL(·) to build En(e) for

each e in Σr ∪ ΣL.

Given e ∈ Σr , En(e) is simply de�ned by Enr (e). In

fact, if e ∈ Σr \ ΣL clearly EnL(e) = ∅, while if e ∈ Σr ∩ ΣL,

EnL(e) = {{ε}} for Property 1.

Instead, for every event e ∈ ΣL \ Σr , Property 3 asserts

that there is one event ẽ in any E ∈ EnL(e) which is enabled

in the initial state of AL by the sets of events identi�ed in

Enr (ẽ). Thus for any E included in some EnL(e) we de�ne

X(E) as the �extended E�, that is the set of sets built from

the combination of all sets in Enr (ẽ) and E itself.

X(E) = {E ∪ E ′ | ∀E ′ ∈ Enr (ẽ), ẽ ∈ E ∩ Σr } (21)

In di�erent words, any set of events E is replaced by a

set of sets of events that combines both events in E and

all events in Enr (ẽ) (that is, the enabling events of ẽ).

Finally, we build En(e) for any e ∈ Σr ∪ ΣL as:

En(e) =


Enr (e), e ∈ Σr

|EnL (e) |⋃
i=1

X(E), E ∈ EnL(e), e ∈ ΣL \ Σr

(22)

By applying this procedure to the example in Figs. 4

and 5, we compute sets Enr (·) and EnL(·) for Ar and AL

and then combine the obtained results to build En(y).

Enr (·) and EnL(·) are the following:

Enr (a) = {{ε}} EnL(c) = {{ε}}

Enr (b) = {{a}} EnL(d) = {{ε}}

Enr (c) = {{a}} EnL(x) = {{d}}

Enr (d) = {{a}} EnL(y) = {{c}, {d}}

Then, since y ∈ ΣL \ Σr , by (22), we have to compute

X(E1) and X(E2), where EnL(y) = {E1, E2} and E1 = {c},

E2 = {d}.
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For X(E1), ẽ ∈ E1
⋂
Σr and ẽ = c. Since Enr (c) = {{a}},

then X(E1) = {{c} ∪ {a}} = {{c, a}}. Similarly, for E2 we

have ẽ ∈ E2
⋂
Σr , ẽ = d and Enr (d) = {{a}}, then X(E2) =

{{d} ∪ {a}} = {{d, a}}. Finally, En(y) = {X(E1) ∪X(E2)} =

{{c, a}, {d, a}}

5.2. EnL computation optimization

The divide et impera technique greatly facilitates the

En computation, because the enumeration of all paths in

both Ar and AL is simpler (the size of both automata is

considerably smaller than Asup). However, the worst case

complexity is still O(|Σr !|) and O(|ΣL!|) for the computa-

tion of Enr and EnL respectively.

A further improvement in evaluating En can be ob-

tained by observing that, in general, Ar � AL, or Ar is

much smaller than AL in terms of number of states and

transitions. In a typical system, in fact, the number of

rooms and actions requiring the physical proximity of a

user to a device is signi�cantly smaller then the number

of actions that can be performed remotely (|θI | + |θII | �

|θII |+ |θIII |). Thus making the enumeration of paths in AL

faster brings signi�cant advantages.

A main consequence of properties introduced in Sect. 5.1

is that, given a target event e and a set of events E en-

abling two events a and b (E ∈ En(a) and E ∈ En(b)),

E ∪ {a, b} < En(e) is always true. This means that we can

neglect further sequences including both a and b, so dra-

matically reducing the space of states in the automaton

exploration.

A solution, which is able to exploit these properties,

is shown by Algorithm 1. The algorithm takes the au-

tomaton AL and the target event e as inputs and pro-

duces EnL(e) of (9) as a result. The solution is based on a

breadth-�rst approach where open states are accumulated

in a queue T . A state t in the queue is de�ned as a triple

(q, p, cut) where q is a state in Q, p is the path from q0 to

q and cut is the set of events to be excluded from Γ(q).

The exploration of AL starts from state (q0, ε, {}), where

Algorithm 1 Enumeration of EnL(e) for AL

1: Input: AL = (Q, Σ, δ, q0), e
2: Output: EnL(e)
3: T = {};EnL(e) = {};
4: t = (q0, ε, {})

5: enqueue(t,T)
6: while T , {} do
7: (q, p, cut) = dequeue(T)
8: if e ∈ Γ(q) then
9: EnL(e) = EnL(e) ∪ E(p)
10: else

11: for all e′ ∈ Γ(q) \ cut do
12: if δ(q, e′) , q then

13: q′ = δ(q, e′)
14: cut ′ = cut ∪ Γ(q)
15: t = (q′, pe′, cut ′)
16: enqueue(t ′,T)
17: end if

18: end for

19: end if

20: end while

the path to q0 is empty (i.e. ε) as well as the set cut.

(q0, ε, {}) is added to T and, as long as the queue is not

empty, a state (q, p, cut) is extracted from T and processed.

If the target event e is in Γ(q) this means that pe ∈

L(AL). In this case, the exploration of the current branch

is concluded and E(p) is stored in EnL(e). Otherwise, for

all events e′ ∈ Γ(q) that are not in cut and are not loops

(δ(q, e′) , q), a new state t ′ = (q′, pe′, cut ′) is generated,

where q′ = δ(q, e′) and cut ′ includes all events in cut plus

all those enabled in state q.

In summary, at each step of the AL exploration, Algo-

rithm 1 builds a path p and stores a set of events cut that

are no longer considered in the current branch, since they

have already been taken into account in some previous

step. This set grows with every step, thus reducing signi�-

cantly the number of events that have still to be evaluated

in the following iterations.

The total number of paths depends on the number of

new events available at each exploration step. Of course,

the best case is when Γ(q0) = Σ. |Σ | one event-long paths

are then built since, for each state q′ = δ(q0, e′), the set

cut is equal to Γ(q0).

Instead, the worst case occurs when new events be-
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come available and have to be considered at each step of

the exploration procedure. In particular, the structure of

the automaton with n states is such that: 1. the set Σ is

partitioned in Σ1, Σ2, · · · , Σn−1 subsets, i.e. |Σ | =
∑n−1

i=1 |Σi |

and 2. for each e ∈ Σi, e labels a transition from qi−1 to

qi. In this condition the number of paths that lead to the

�nal state qn is equal to
∏n−1

i=1 |Σi |. The maximum value

is obtained when the product of all partition sizes is max-

imum and is approximately equal to 3 |Σ |/3 [10]. Thus, the

complexity of Algorithm 1, in the worst case, is O(3 |Σ |/3).

Algorithm 1 is suitable for exploring AL and is able to

build EnL(e) for each e ∈ Σ. It is worth remembering that

the same approach cannot be followed to build Enr (e) as

properties of AL do not hold for Ar . Fortunately, Ar is

much smaller than AL in practice, so that Enr (e) can be

constructed by complete enumeration.

6. Implementation and performance

The methodology introduced in the previous sections

has been implemented in a prototype software tool. The

Functions computation block in Fig. 2 carries out the op-

erations in Algorithm 1 by means of a purposely developed

Java application, able to read the description of AL and

Ar (Ar | |AL = Asup) and build the enabling functions F(α).

Blocks in the online phase (Fig. 3), have been implemented

by two custom Java-based modules, one devoted to re�ne-

ment and �xing and the other to veri�cation.

In particular, the re�nement/�xing modules also in-

clude the �Z3� o�-the-shelf SMT solver [9]. In this case,

module inputs are the F(α) formulas, that is boolean ex-

pressions as needed by the Z3 library.

To provide some preliminary performance evaluation

of the proposed approach, some tests were run using a

number of synthetically generated scenarios, so as to have

a rough estimation of processing times with di�erent sized

systems. Test scenarios were generated starting with a

small real use case, which is able to stress main aspects of

the solution, and by replicating the basic (partial) scheme

Figure 6: Basic system adopted for tests.

so as to create several more complex systems of increasing

size.

6.1. Basic target system

Fig. 6, shows a number of o�ce areas interconnected

through a global network. The number of nodes and high-

level policies was progressively incremented by both repli-

cating the basic area and introducing minor adaptations.

Fig. 6 also shows some details about the basic building

block structure, that is a simpli�cation of a real use case.

A and B are two adjacent rooms and B includes a cabinet

CAB. Access to the A and B areas is controlled through

speci�c credentials (i.e. physical keys, badges, pin codes,

and so on). Room A hosts some general-purpose user work-

stations (Hi, i = 1, 2, ...6), while a special node (Ha) is re-

served to administrators for network management activi-

ties. Services o�ered by each Hi are login (accessible either

physically or remotely) and backup, while Ha provides an

additional (reserved) functionality for remote management

of workstations.

Nodes in room B are machines for corporate-level ser-

vices (i.e., web pages Sw, e-mail Sm, database Sdb and code

repository Sc). Several service functions can be invoked re-

motely and access to them is guarded by �rewall FW . Ac-

tually, FW is con�gured so as to enable accesses to Sdb and

Sc from Ha only. Moreover, critical servers are physically

con�ned in cabinet CAB. O is the physical environment

external to the system, which also includes (part of) the
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1 4 11 51 42 7 126 0.01 0.01
2 7 22 101 83 12 448 0.04 0.02
3 10 33 151 124 19 1260 0.26 0.04
4 13 44 201 165 30 3248 0.93 0.08
5 16 55 251 206 49 7980 2.94 0.14
6 19 66 301 247 84 18984 6.95 0.19
7 22 77 351 288 151 44100 14.06 0.32
8 25 88 401 329 282 100576 26.38 0.42
9 28 99 451 370 541 226044 57.01 0.52

10 31 110 501 411 1056 502040 94.80 0.77

Table 1: Performance measurements

global interconnection network.

At the beginning any user is assumed to be in O, that is

outside the system. In this example we consider two di�er-

ent kinds of users: an administrator adm and a generic em-

ployee empl, characterized by di�erent permissions. Both

adm and empl can access Sw and Sm, but only the ad-

ministrator has total control over Sc and Sdb. In practice,

50 possible actions are de�ned for each basic o�ce area,

and the administrator should be able to perform each one

of them, while a smaller set is available to normal users

(S−
empl

, ∅).

6.2. Performance evaluation

Though the adoption of our methodology relies on all

blocks in Figs. 2 and 3, in this paper we focus on the

Functions computation and Re�nement/�xing elements.

Indeed, the experimental evaluation of the time necessary

for policy veri�cation showed that, even though it linearly

depends on the number of policies, it is almost negligible.

As an example, in the worst case, the veri�cation of �ve

hundred policies has proven to take less than 1 ms. The in-

terested reader can �nd more details about the Automaton

generator block and its implementation in [6].

Moreover, when measuring the time needed to carry

out the re�nement process, performance �gures for empl

and adm were very similar. Indeed, the complexity of

the re�nement process performed by the �Z3� solver de-

pends on the number of formulas included in equation (15),

which, in turn, corresponds to the number of policies de-

�ned for the user (cardinality of Su+ and S−u ). In our case,

it is the same for both users empl and adm. For these

reasons, and to stress the re�nement module capabilities,

we reported the performance measures for user empl also

varying the actual number of policies (S+
empl

, S−
empl

) at each

test. The ratio (|S+ |+ |S− |)/|Actions | was changed by de�n-

ing four policy sets involving 25%, 50%, 75%, and 100%

of possible actions respectively.

All tests were performed on a machine equipped with

an Intel i7-67000 processor running at 3.40 GHz, 16 GB

RAM, and the MS-Windows 10 operating system. Several

experiments were carried out to evaluate the Functions

computation and Re�nement modules, with progressively

larger target systems and policy sets, based on the com-

position of the basic elements discussed above.

A summary of the obtained results is reported in Tab. 1.

The �rst column of the table shows the number of replicas

of the basic blocks. The next four columns respectively

contain the number of rooms, devices, total actions and

credentials for the analyzed scenarios, followed by the to-

tal number of states and transitions for both Ar and AL.

Finally, the two rightmost columns report the total time

(in seconds) necessary for the computation of functions

F(α) and for performing the re�nement process with the

set of policy covering 100% of actions.

Similar data are also shown in Figs. 7 and 8, where

the computation time, measured varying the ratio (|S+ | +

|S− |)/|Actions | between 25% and 100%, is plotted versus

the number of actions.

It is worth noting that, despite the time for computing

the enabling functions grows non-linearly given the size of

the test case, the feasibility of the approach is con�rmed as

even with a rather complex scenario including 500 actions,

the prototype implementation is able to perform its task

in less than 3 minutes on the test machine. In addition,
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Figure 7: Performance of the Functions computation module.

the Re�nement procedure is much faster (by two orders of

magnitudes) and takes less than one second for the largest

test case and the full set of policies.

Figure 8: Performance of the Re�nement module.

Note that the Functions computation is carried out

only once for the entire system and is not dependent on

the number of users. Conversely, the Re�nement proce-

dure has to be performed for each user. However, the

result of the re�nement procedure for one user (i.e., the

credential assignment computed for that user) does not

a�ect the re�nement procedure for a di�erent user in any

way. This means that the processing time for re�nement

is linearly dependent on the number of users.

6.3. Worst case performance

We also checked the Functions computation module

performance in the worst case scenario as discussed in Sec-

tion 5.2. In particular, several automata were generated

Figure 9: Performance of the Functions computation module in the
worst case scenario.

with increasing number of actions and a structure able to

maximize the number of paths computed for a target event

e, which is enabled in the �nal state of each automaton.

Experimental results are shown in Fig. 9, where the

number of actions x varies in the range 5 to 35. The curve

f (x) = a + b ∗ 3(x∗c), which best �ts the experimental data,

is also plotted in the �gure, with a = 9015.639, b = 0.470

and c = 0.405. The measured values are in good agree-

ment with the worst-case asymptotic behavior identi�ed

in Section 5.2.

7. Related Works

Several works can be found in the literature concerning

policy analysis, re�nement and veri�cation. Our contribu-

tion mainly focuses on the last two areas.

7.1. Policy Analysis

The main contributions in the area of policy analysis

mostly deal with anomaly analysis and policy evaluation.

Anomaly analysis3 looks for incorrect policy speci�ca-

tions that administrators may introduce in the network.

It includes checks for potential errors, con�icts and sub-

optimizations a�ecting either a single policy or a set of

security policies [3]. Several works have been proposed to

3Sometimes anomaly analysis is also referred to as either con�ict
analysis or policy validation.
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perform anomaly analysis for access control policies, that

leverage di�erent techniques such as model checking [11],

binary decision diagrams (BDDs) [12], graph theory [13],

DFSA [14], First Order Logic (FOL) [15] and geometrical

model [16].

Policy evaluation, instead, checks whether a request is

satis�ed/unsatis�ed by a set of policies [17]. A typical

example of policy evaluation is the change-impact anal-

ysis, used to verify the e�ective impact of inserting, re-

moving and/or modifying a policy. This means comparing

original and modi�ed policies. Relevant works on change-

impact analysis are [18] and [19], that use BDDs to rep-

resent access control policies and perform the analysis for

their modi�cations.

7.2. Policy Veri�cation

Besides systematic literature reviews [20, 21], the num-

ber of papers dealing with the veri�cation of access control

policies is not large, especially when it is compared to the

amount of literature dealing with policy analysis. Notable

works in this area are [22, 23, 24, 25, 26].

In [22, 23], authors propose the automatic veri�cation

of access control policies against a set of properties. Ver-

i�cation is carried out by translating properties into a

boolean satis�ability problem to be managed by means of

a SAT solver. Di�erently from our approach, [22] and [23]

model the target system in terms of access control policies

and check if properties are violated by policies. Our so-

lution, instead, builds on a �ne-grained model of the real

system where policies have to be veri�ed. The SAT solver

is used for re�nement and �xing. In [26] authors propose a

complete methodology based on BDD for the speci�cation,

veri�cation and enforcement of access control policies. Dif-

ferently from our approach, authors do not propose any

methodology to �x the identi�ed anomalies. Other tools

such as NP-View and PolicyGlobe, respectively described

in [24] and [25], allow for checking global policy imple-

mentations by processing information about the network

topology and con�guration. Unfortunately, this is limited

to systems where policy enforcement mechanisms are as-

sumed to be available. This reduces the tools usefulness

as, for instance, they can produce meaningful results only

for systems consisting of nodes running SE-Linux.

Note that, at the moment our approach does not al-

low to model and check the correct implementation of

policies that require counting the number of times a cer-

tain action is performed by one or multiple users (similar,

e.g., to history-based policies [27, 28, 29]). Indeed, our

approach is meant to be used for a priori system veri-

�cation/con�guration and not as a runtime tool for ac-

cess control. As such, while the model is able to capture

action dependencies determined by system characteristics

and con�guration, it does not describe either multiple user

interactions nor the �owing of time.

7.3. Policy Re�nement

Although re�nement is one of most ambitious goals

in policy-based management when access control is con-

sidered, relatively few works have been published in the

last decade, with particular focus in this area. Re�ne-

ment of access control policies was originally introduced

in [30, 31, 32], but little or no development has appeared

since then.

More recently, with the advent of both the software de-

�ned networking (SDN) and network function virtualiza-

tion (NFV) paradigms, interest in policy re�nement tech-

niques has revived [33, 34, 35]. It is worth noting that

while other proposals aim at de�ning high-level speci�-

cation languages, which are able to describe access con-

trol policies and translate them into low-level con�guration

commands, our solution exploits re�nement techniques to

search all sets of credentials that satisfy the policies au-

tomatically. If no solution is found, changes in either the

policy speci�cation or the system structure become the

only viable alternatives.

17



8. Conclusions and Future work

In this paper, a comprehensive approach has been pre-

sented to solve some common problems faced by network

administrators when dealing with access control through

policy-based management. The proposed approach can be

exploited to:

1. �nd a user credential assignment that correctly en-

forces a set of access control policies (policy re�ne-

ment);

2. complete a partial user credential assignment so that

results correctly enforce the speci�ed policies (con-

strained policy re�nement);

3. check whether a speci�c user credential assignment

makes the system behavior match the policy speci-

�cation (policy veri�cation). If this is not the case,

the approach can be used to introduce automatic

changes to �x the highlighted discrepancies between

the actual and desired behavior (i.e. anomaly �x-

ing).

Our technique is based on the de�nition of models for

both the access control policies and the target networked

system (in terms of topology, s/w and h/w resources and

how they are accessed by users). The system model is then

processed to deduce what sequences of actions are needed

to perform a speci�c operation. The resulting information

is used to determine the minimal sets of credentials (if any)

that shall be owned by users to perform all and only the

actions assigned to them by the policies.

The feasibility of the approach has been veri�ed by

means of a prototype s/w tool, which is based on Java

and the Z3 library, an o�-the-shelf SMT solver. The tool

performance was tested in a number of realistic network

scenarios and its scalability also checked (the tool is able

to provide solutions in a very short time even for networks

consisting of several hundred nodes and target resources).

In the future, we plan to extend the expressiveness of

the model to take into account further types of network

devices, such as VPN gateways and intrusion detection

systems (IDSs). Furthermore, we intend to apply this

methodology so as to consider not only user credential

assignments but also other aspects of network con�gura-

tion (e.g., �rewall rules). Finally, it is our intention to

perform some empirical assessment to evaluate the ability

of the model to capture the nature of real networks and

the e�ectiveness of the approach in helping administrators

managing access control in their networks.
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