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Asymptotic stability in probability for

StochasticBooleanNetworks ?

Corrado Possieri a and Andrew R. Teel b

aDipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma Tor Vergata, 00133, Roma, Italy.

bElectrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106-9560.

Abstract

In this paper, a new class of Boolean networks, called Stochastic Boolean Networks, is presented. These systems combine some
features of the classical deterministic Boolean networks (the state variables admit two operation levels, either 0 or 1) and
of Probabilistic Boolean Networks (at each time instant the transition map is selected through a random process), enriching
the set of admissible dynamical behaviors, thanks to the set–valued nature of the transition map. Necessary and sufficient
Lyapunov conditions are given to guarantee global asymptotic stability (resp., global asymptotic stability in probability) of
a given set for a deterministic Boolean network with set–valued transition map (resp., for a Stochastic Boolean Network). A
constructive procedure to compute a Lyapunov function (resp., stochastic Lyapunov function) relative to a given set for a
deterministic Boolean network with set–valued transition map (resp., Stochastic Boolean Network) is reported.

1 Introduction

The study of the relation between the expression of a
gene and the synthesis of a particular biochemical prod-
uct is one of the most challenging problems in modern
molecular biology (Perdew et al. 2014). In the litera-
ture, different frameworks have been proposed to model
and analyze this complex relationship, such as: cluster
analysis (Eisen et al. 1998), Bayesian networks (Fried-
man et al. 2000, Yu et al. 2004), information–theoretic
approaches (Margolin et al. 2006), and Ordinary Differ-
ential Equations (Bansal et al. 2006). Among these ana-
lytical models, Boolean networks are receiving growing
interest (Grieb et al. 2015, Kaushik & Sahi 2015).

A Boolean network is a discrete–time nonlinear sys-
tem described by variables with binary operation levels
(Kauffman 1969). At each time instant, the state of the
system is updated by using a logic function of the current
variables. In fact, each gene can have two states: 1, when
it is expressed, and 0, when it is not. Similarly, each bio-
chemical product can have two states, 0 or 1, depending
on its presence above or below a certain concentration
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threshold, respectively. This kind of structure can cap-
ture the behavior of complex regulatory networks (Al-
bert & Barabási 2000, Harris et al. 2002). In the litera-
ture, many different approaches have been proposed to
characterize the dynamical behavior of this class of sys-
tems. For instance, in Cheng & Qi (2010), a mathemat-
ical framework has been proposed to convert a Boolean
network into a classical discrete–time, time–invariant
system, and it is shown that, by analyzing the transition
matrix of such a system, one can identify some features of
the Boolean network such as: the number of fixed points,
the number of cycles of given length, the transient pe-
riod for all points to enter the set of attractors, and the
basin of attraction for each attractor. On the other hand,
in Hinkelmann et al. (2011), an algebraic geometry ap-
proach has been proposed to identify attractors. Alge-
braic geometry techniques have been used also to com-
pute Darboux polynomials (Menini & Tornambe 2013a)
and to design observers for Boolean networks (Menini &
Tornambe 2013b). Even if these systems have been first
used to model biological relationships, they are receiv-
ing most attention also in other fields such as: financial
markets (Caetano & Yoneyama 2015), electronics (Rosin
2015), and industrial networks (Easton et al. 2008).

One of the most important limitations of classical
Boolean networks is their determinism (somehow miti-
gated in Thomas (1973) by the introduction of Boolean
networks with asynchronous updates). In Shmulevich
et al. (2002b), Probabilistic Boolean Networks (briefly,
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PBN) have been introduced; they share the appealing
structure of Deterministic Boolean Networks, but are
also able to cope with uncertainty both in the data and
in the model selection. Namely, a PBN is a discrete–time
system that shares the structure of a classical Boolean
network (i.e., the state variables admit two operation
levels), but the transition from a state to another one is
governed by a random process. In fact, a PBN involves
a set of possible Boolean maps for each state variable
and, at each update time, the process of choosing a cer-
tain map rather than another is governed by a random
process (for further details and the formal definition of
a PBN, see Section 2.2). The interest in these systems
arises from the advent of gene expression microarrays
that yield quantitative and semi-quantitative data on
the cell status in a specific condition and time (Bansal
et al. 2007). However, many times, the available data
are not sufficient to estimate all the parameters that are
present in the system (e.g., when the number of vari-
ables involved in the process is higher than the number
of available measures, or when some essential variables
are unmeasurable). In these cases, it may be preferable
to have a probabilistic description of the process being
analyzed.

In this paper, a new class of Boolean networks, called
Stochastic Boolean Networks (briefly, SBN), is pre-
sented. This kind of system admits state variables with
binary operation levels as classical Boolean networks
and the transition from a state to the following one is
governed by a stochastic process as in PBNs. The differ-
ence between these systems and PBNs is that, at each
time instant and for each outcome of the random pro-
cess, the map from the current state to the subsequent
one needs not be single–valued, but can be set–valued.
The advantage of this feature is that, when the number
of possible states is too large for precise estimation or
when some essential variables are either not measurable
or unknown, it is not necessary to restrict the number
of considered values to an essential set that defines a
function. In fact, a whole branch of behaviors can be
encoded by a single SBN. Moreover, the structure of
SBNs allows to cope with biological dynamical models
having non–unique solutions (Conte et al. 2004, Kaitala
& Heino 1996, Kaitala et al. 2000, Upadhyay 2003).
Two motivating examples are given in Section 2.

2 Notation and Preliminaries

Let Z and R denote the set of integers and real numbers,
respectively. Given k ∈ Z, let Z>k := {z ∈ Z : z > k},
R>k := {r ∈ R : r > k}, and Z<k := {z ∈ Z>0 : z < k}.
A functionα : R>0 → R>0 is of classK, denotedα ∈ K, if
it is continuous, strictly increasing and α(0) = 0. A func-
tion α : R>0 → R>0 is of class K∞, denoted α ∈ K∞, if
α ∈ K and it is unbounded. Let (K, d) be a metric space.
Since d is a metric for K, the concept of convergence is
well defined. Namely, a sequence {xν}∞ν=0 is said to con-

verge to x, denoted xν → x, if for every ε > 0 there exists
N ∈ Z>0 such that ν > N implies d(xν , x) 6 ε. A set–
valued mapping S : K⇒ K is a left–total relation assign-
ing to each element x ∈ K a set S(x) ⊂ K. A set–valued
mapping S : K ⇒ K is outer semicontinuous at x̄ ∈ K
if lim supx→x̄ S(x) ⊂ S(x̄), where lim supx→x̄ S(x) :=
{y ∈ K : ∃xν → x̄, ∃yν → y, with yν ∈ S(xν)}. A map-
ping S : K ⇒ K is locally bounded if, for each bounded
set K ⊂ K, S(K) :=

⋃
x∈K S(x) is bounded. A mapping

S : K1 ⇒ K2 is measurable if, for every open set O ⊂ K2,
the set S−1(O) := {y ∈ K1 : S(y) ∩ O 6= ∅} is measur-
able. Given A ⊂ K, a continuous function % : K → R>0

is of class PD(A), denoted % ∈ PD(A), if %(x) = 0, for
all x ∈ A and %(x) > 0, for all x ∈ K \ A. Given a finite
set Ψ ⊂ K, the symbol P(Ψ) denotes the power set of
Ψ, i.e., the set of all the subsets of Ψ. The symbols ¬,
∨, ∧, and ⊕ represent the entry wise logical “not”, “or”,
“and”, and “exclusive or” operators, respectively. The
symbol (·)+ denotes the next value.

2.1 The Galois field F2

Let F2 := {0, 1} denote the Galois field of order 2 (Lidl
& Niederreiter 1994). The set of all the n–dimensional
vectors whose entries are in F2 is denoted Fn2 . Note that
each vector in Fn2 is essentially an n–bit digital num-

ber [ x1 x2 · · · xn ]>, whose decimal equivalent is given

by πn : Fn2 → Z>0, πn(x) =
∑n
i=1 2i−1ψ−1(xi), where

ψ−1 : F2 → {0, 1} ⊂ Z maps each x ∈ F2 to the corre-
sponding integer value in {0, 1} ⊂ Z. In the following,
π−1
n denotes the inverse map of πn. Let a point y ∈ Fn2 be

given. For each x ∈ Fn2 , the distance between x and y is
d(x, y) : Fn2 × Fn2 → Z>0, d(x, y) :=

∑n
i=1 ψ

−1(xi ⊕ yi),
where xi, yi ∈ F2, because x, y ∈ Fn2 . The distance
d is usually known in coding theory as Hamming dis-
tance (Hamming 1950), when applied to strings of equal
length. On the other hand, letting A ⊂ Fn2 , the distance
between x and A is |x|A := miny∈A d(x, y). The follow-
ing lemma, whose proof is well known (Bourbaki 1998),
states that the function d is a metric on Fn2 and hence the
definitions given at the beginning of this section apply
to such a field, when the distance d is used as a metric.

Lemma 1 The pair (Fn2 , d) constitutes a metric space.

Since the pair (Fn2 , d) is a metric space, it is possible to
define the open ball of radius r > 0 about x ∈ Fn2 as
B(x, r) = {y ∈ Fn2 : d(y, x) < r}. A set A ⊂ Fn2 is open
if, for every x ∈ A, ∃r > 0 such that B(x, r) ⊂ A. A set
A ⊂ Fn2 is closed if Fn2 \ A is open. For any set A and
ε > 0, letA+B(0, ε) = {x ∈ Fn2 : |x|A < ε}. Next lemma
characterizes the topology of the metric space (Fn2 , d).

Lemma 2 Each set A ⊂ Fn2 is both open and closed.

Proof. By Lemma 1, (Fn2 , d) constitutes a metric space.
Hence, the open ball B(x, r) is well defined. Consider the
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set Ai = {x̄}, with x̄ ∈ Fn2 . The set Ai is open because
B(x̄, 1) ⊂ A. Hence, since every set A ⊂ Fn2 is such that
A =

⋃
i∈I Ai, for some finite I, A is open (Bourbaki

1998, § 2.6, § 2.7). Consider now Bi := Fn2 \ Ai. The set
Bi is closed, because it is the complement of an open set.
Since every set Ai =

⋂
i∈I Bi for some finite I, the set

Ai is closed. Therefore, since each set A =
⋃
i∈I Ai, for

some finite I, and the union of finitely many closed sets
is closed, the set A is closed. �

2.2 Classes of Boolean Networks

A map g : Fn2 → F`2 is called Boolean and can be defined
by assigning to each of the 2n elements of Fn2 one of
the 2` elements of F`2. A Deterministic Boolean Network
(briefly, DBN ) is a discrete–time system of the form

x+ = g(x) (1)

where x ∈ Fn2 and g : Fn2 → Fn2 is a Boolean map.

In order to deal with non–unique solutions (see the sub-
sequent Examples 1 and 2), the concept of DBN can be
extended through the notion of Boolean network with
set–valued transition map, written formally as

x+ ∈ G(x), (2)

with G : Fn2 ⇒ Fn2 having nonempty values for every
x ∈ Fn2 .

The following lemma states that the number of dynami-
cal behaviors modeled by a Boolean network is bounded.

Lemma 3 Let M := 2n and N := (2M − 1)M . There
exist MM different g : Fn2 → Fn2 and N different G :
Fn2 ⇒ Fn2 such that G(x) is nonempty for each x ∈ Fn2 .

Proof. The first part of the proof follows trivially by
Cheng & Qi (2010). On the other hand, a set–valued
mapping G : Fn2 ⇒ Fn2 maps each x ∈ Fn2 into G(x) ⊂
Fn2 . The statement follows by the fact that the number of
points in Fn2 equalsM and that the number of nonempty
sets G(x) ⊂ Fn2 equals 2M − 1. �

A Probabilistic Boolean Network (briefly, PBN) consists
of a set of Boolean vector maps {f1, f2, . . . , fK}, f` :
Fn2 → Fn2 , ` = 1, . . . ,K, governing the state transitions
of the discrete–time system (Shmulevich et al. 2002a).
At each time instant, a random decision (with prob-
ability q) is made on whether to switch the network
function to the next transition, where the probability
q is a parameter of the PBN. If a decision is made to
switch the network function, then a new function among
f1, f2, . . . , fK is chosen, with c` being the probability of
choosing the function f`, ` = 1, . . . ,K. Namely, each f`
determines a DBN, and the PBN dynamics are the same

ones of a DBN, until a random decision (with probabil-
ity q) is taken. Hence, a new function f` is chosen among
f1, . . . , fK , with c` being the probability of choosing the
function f`, and the Boolean network is updated as the
DBN defined by such f` (Shmulevich et al. 2002b).

LetM := 2n andN := (2M−1)M . A Stochastic Boolean
Network (briefly, SBN ) is a stochastic discrete–time sys-
tem written formally as

x+ ∈ G(x,w), µ(·), (3)

where G : Fn2 × Z<N ⇒ Fn2 is the transition map,
G(x,w) 6= ∅, for each (x,w) ∈ Fn2 × Z<N . The distribu-
tion µ is derived from a probability space (Ω,F ,P) and a
sequence w := {wj}∞j=0 of independent, identically dis-
tributed (i.i.d.) input random variables wj : Ω→ Z<N ,
j ∈ Z>0, defined on (Ω,F ,P). Note that, by Lemma 3,
there is not loss of generality in considering random vari-
ables wj : Ω→ Z<N , because the set of all the possible
SBNs has cardinality N . Hence, for each A ∈ P(Z<N ),
w−1
j (A) := {ω ∈ Ω : wj(ω) ∈ A} ∈ F . Since, for ev-

ery A ∈ P(Z<N ), P(ω ∈ Ω : wj(ω) ∈ A) is independent
of j, the distribution µ : P(Z<N ) → [0, 1] is defined as
µ(A) := P(ω ∈ Ω : wj(ω) ∈ A) (Fristedt & Gray 1997,
Sec. 2.1 and 11.1). Let Fj denote the collection of sets
{ω ∈ Ω : (w0(ω), . . . ,wj(ω)) ∈ A}, A ∈ P((Z<N )j+1),
which are all the sub–σ–fields ofF that form the minimal
filtration of w (Fristedt & Gray 1997, Sec. 11.3, Def. 4).

The next two examples motivate the interest in Boolean
networks with set–valued transition map.

Example 1 Consider the reaction system depicted in
Figure 1, which includes the main reactions of glycolysis
and some adjacent reactions occurring, for example, in
liver cells (Heinrich & Schuster 2012).

Gluc
4

G6P

ATP ADP

AMP ADP

8

G1P

9

5
F6P

F2,6P2

ATP

ADP

2 3

ATP ADP

6

1

7
TP

TP

Pyr

2ADP 2ATP

Figure 1. Scheme of the main reactions of glycolysis and
some adjacent reactions (Heinrich & Schuster 2012).

In Heinrich & Schuster (2012, Sec. 3.2.2) such a chem-
ical system has been characterized through the analysis
of the corresponding stoichiometric matrix. It turns out
that, in this reaction system, there are multiple behaviors
that can occur and hence the main reactions of glycoly-
sis cannot be modeled by a DBN that admits unique so-
lutions. However, a SBN, that admits non–unique solu-
tions, can be used to model this chemical reaction. Note
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that, in the reaction system depicted in Figure 1, the
metabolite ATP appears multiple times, to take into ac-
count its different sources. A SBN modeling such a re-
action system can be obtained by considering, instead, a
single source of ATP and assuming that each chemical
reaction consumes all its sources. Namely, by inspect-
ing the chemical network depicted in Figure 1 and letting
x1 = Gluc, x2 = G1P, x3 = F6P, x4 = G6P, x5 =
F2, 6P2, x6 = TP, x7 = Pyr, x8 = ATP, x9 = ADP,
x10 = AMP, a SBN modeling such a reaction system is

x1 ∈ {¬x8 ∧ x1},[
x2

x3

]
∈

{[
x4

x5

]
,

[
0

x4 ∨ x5

]}
,[

x4

x5

]
∈

[
(x1 ∧ x8) ∨ x2

0

]
∨

{[
x3

0

]
,

[
x3 ∧ ¬x8

x3 ∧ x8

]}
,

x6 ∈ {x3 ∧ x8},
x7 ∈ {(x9 ∧ x6) ∨ x7},
x8 ∈ {x9},
x9 ∈ {x8 ∨ x10},
x10 ∈ {x9},

with the understanding that xi = 1, if the corresponding
chemical species is present above a certain concentration
threshold, and xi = 0, otherwise, i = 1, . . . , 10. 4

Example 2 Typical Boolean models (as, for instance,
the ones given in Albert & Othmer (2003), Kauffman
et al. (2003)) assume synchronous updates of the Boolean
state of the system. Namely, at predetermined time in-
stants, all the nodes exchange information about their
current state with all the other nodes and update their
state according to such information. The assumption un-
derlying these models is that the time scales of all the
involved processes are similar. In reality the time scales
of transcription, translation, and degradation can vary
widely from gene to gene and can be anywhere from min-
utes to hours (Chaves et al. 2005). Hence, Boolean mod-
els allowing asynchronous updates are receiving increas-
ing interest (Albert et al. 2008, Ghysen & Thomas 2003,
Thomas 1973). The framework of SBN presented here
allows to deal with Boolean networks with asynchronous

updates. Namely, let τ = [ τ1 · · · τh ]> ∈ Fh2 , and con-

sider the Boolean counter discrete–time system

τ+ = ψh(τ),

where ψh : Fh2 → Fh2 , ψh(τ) = [ ψ1,h(τ) · · · ψh,h(τ) ]>,

ψh,h(τ) = τh ⊕ 1, ψi,h(τ) = τi ⊕ (τh ∧ · · · ∧ τi+1), i =
1, . . . , h− 1. We denote such a systems as “counter” be-
cause, by construction, πh(τ+) = πh(τ)+1, for each τ ∈
Fh2 such that πh(τ) < 2h − 1, and πh(τ+) = 0 if πh(τ) =

2h − 1, for each h ∈ Z>0. Hence, consider the SBN with

state [ x> t> q> ]>, x ∈ Fn2 , t = [ t>1 · · · t>n ]>, ti ∈ Fhi
2 ,

hi ∈ Z>0 i = 1, . . . , n, , q = [ q1 · · · qn ]> ∈ Fn2 ,

x+
i ∈ {(qi ∧ gi(x)) ∨ (¬qi ∧ xi)}, i = 1, . . . , n,

t+i ∈ {¬qi ∧ ψhi(ti)}, i = 1, . . . , n,

q+
i ∈

{
{0, 1}, if πhi

(ti) < Ti,

{1} otherwise,
i = 1, . . . , n,

(4)

where Ti ∈ Z>0 is a fixed constant imposing a maxi-
mum dwell–time for the jumps of the state xi (that is, at
most Ti amount of time passes between two consecutive
intervals on which there are no jumps of the state xi),
i = 1, . . . , n, and g : Fn2 → Fn2 is a Boolean function.
The SBN (4) is able to encode the structure of Boolean
network with asynchronous updates (Bertsekas & Tsit-
siklis 1989, Chaves et al. 2005). As a matter of fact, the
updates of the states of the SBN (4) need not be syn-
chronous, but each state xi may or may not be updated at
time j+ 1, according to the value of the decision variable
qi ∈ F2 at time j. In fact, if qi = 1, then the state xi is
updated, otherwise, if qi = 0, xi is not updated. 4

The following proposition states that every mapping
G : Fn2 × Z<N ⇒ Fn2 satisfies the Stochastic Hybrid Ba-
sic Conditions (Teel 2013, Ass. 1.1–3), establishing, with
the subsequent Assumption 1, existence of random so-
lutions.

Proposition 1 Every set–valued mapping G : Fn2 ×
Z<N ⇒ Fn2 is locally bounded and, for each w ∈ Z<N ,
x 7→ G(x,w) is outer semicontinuous.

Proof. Every set–valued mapping G : Fn2 × Z<N ⇒ Fn2
is globally bounded, because d(g, 0) < 2n, for all g ∈
G(x,w) and (x,w) ∈ Fn2 × Z<N (Rockafellar & Wets
2009, Def. 5.14). Moreover, for each w ∈ Z<N , Gw :
Fn2 ⇒ Fn2 , Gw(x) = G(x,w), is such that graphGw :=
{(x, y) ∈ Fn2 × Fn2 : y ∈ Gw(x)} ⊂ Fn2 × Fn2 , whence, by
Lemma 2, graphGw is closed. Therefore, for each w ∈
Z<N , the mapping x 7→ G(x,w) is outer semicontinuous
(Goebel et al. 2012, Lem. 5.10). �

3 Stability of Boolean networks with set–valued
jump map

In this section, we characterize the stability properties
of A ⊂ Fn2 for Boolean networks of the form (2).

A sequence x is a solution to (2) starting at x, denoted
x ∈ S(x), if xj+1 ∈ G(xj), and x0 = x. It is worth
noticing that system (2) with this concept of solution
is essentially a finite automaton whose alphabet is com-
posed by singletons and whose final–state set is empty.

4



A set A ⊂ Fn2 is globally stable for (2) if there exists
a function α ∈ K∞ (Khalil 1996, Def 4.2) such that,
lettingx = {xj}∞j=0,x ∈ S(x), x ∈ Fn2 , |xj |A 6 α(|x|A),
∀j ∈ Z>0. A set A ⊂ Fn2 is attractive for (2) if, for
each ε > 0 and R > 0 and x = {xj}∞j=0, x ∈ S(x),
|x|A 6 R, there exists T > 0 such that |xj |A 6 ε, for
every j ∈ Z>T . The setA is globally asymptotically stable
(briefly, GAS ) for (2) if it is both stable and attractive
for (2) (Goebel et al. 2012, Def 3.6).

Define the inverse mapping G−1 : Fn2 ⇒ Fn2 , G−1(x) =
{y ∈ Fn2 : x ∈ G(y)}. The following two lemmas show
that the global stability of A ⊂ Fn2 for (2) is equivalent
to the strong forward invariance of A for (2) (Goebel
et al. 2012, Def. 6.25), and that a set A is GAS if and
only if it strongly forward invariant and the solutions to
(2) converges to A in finite time.

Lemma 4 Let the system (2) and A ⊂ Fn2 be given. The
set A is stable for (2) if and only if

G(A) :=
⋃
a∈AG(a) ⊂ A. (5)

Proof. If (5) holds, then for each ε > 0, there exists
δ > 0 such that, letting x ∈ S(x), if |x|A < δ, then
|xj |A < ε. As a matter of fact, it is enough to choose
δ = 1, for every ε > 0, to satisfy such an inequality.
Hence, by Khalil (1996, Lem. 4.5), the function α ∈ K∞,
α(s) = 2ns is such that, |xj |A 6 α(|x|A), ∀j ∈ Z>0.

On the other hand, assume that A is stable and that (5)
does not hold. Hence, for some x ∈ A, there exists y ∈
G(x) such that y /∈ A. Since y /∈ A, the distance |y|A >
0. This contradicts the hypothesis that A is stable. As
a matter of fact, there exists x ∈ S(x), x := {xj}∞j=1,
such that x1 = y, whence |x1|A > α(|x|A) = 0. �

Lemma 4 essentially states that, in this context, the con-
cepts of global stability, stability and forward invariance
of A ⊂ Fn2 for (2) are the same. In the following lemma,
we provide a method to verify whether A ⊂ Fn2 is GAS.

Lemma 5 Let the system (2) and A ⊂ Fn2 be given. The
set A is GAS if and only if it is globally stable for (2)
and there exists T ∈ Z>0 such that |xT |A = 0, for any
x := {xj}∞j=0 ∈ S(x), x ∈ Fn2 .

Proof. If ∃T ∈ Z>0 such that, for each x ∈ Fn2 , x ∈
S(x), |xT | = 0 and the set is stable, then |xj |A = 0,
∀j ∈ Z>T , and thus A is GAS.

On the other hand, if A is GAS, then A is strongly for-
ward invariant and globally stable (Lemma 4). More-
over, by the definition of global asymptotic stability of
A for R = 2n and ε = 1, ∃T ∈ Z>0 such that, for any
x ∈ Fn2 and x ∈ S(x), |xT | = 0. �

The set A is the smallest GAS set for (2) if, letting Q
be any GAS set for (2), A ⊂ Q. Since the set F2 is GAS
and the intersection of two nonempty GAS sets is GAS
and nonempty, then, for each Boolean network (2), there
exists a unique, nonempty smallest GAS set.

The function V : Fn2 → R>0 is a Lyapunov function for
(2) (Goebel et al. 2012, Def. 3.16 and Thm. 3.18) if there
exist α1, α2 ∈ K∞ and % ∈ PD(A) such that, ∀x ∈ Fn2 ,

α1(|x|A) 6 V (x) 6 α2(|x|A), (6a)

V (g)− V (x) 6 −%(x), ∀g ∈ G(x). (6b)

The following theorem gives necessary and sufficient con-
ditions for global asymptotic stability of the set A for
(2), together with a constructive procedure to build a
Lyapunov function V and % ∈ PD(A) for this systems.

Theorem 1 Let A ⊂ Fn2 and the system (2) be given.
The set A is GAS for (2) if and only if there exists a
Lyapunov function V for (2).

Proof. If A = Fn2 , the proof is trivial. Hence, assume
that A 6= Fn2 is GAS for (2). Hence, by Lemma 5, there
exists T ∈ Z>0 such that, for any x ∈ S(x), x ∈ Fn2 ,
|xT | = 0, and G(A) ⊂ A. Thus, consider the set I1 =
G−1(A) \ A. Since A is attractive and G(A) ⊂ A, the
set I1 is nonempty. Note that, since A is attractive, for
any x ∈ S(x), x /∈ A, there exists T1 ∈ Z>0 (depending
on x), such that xT1

∈ I1. Thus, define Iν = G−1(Iν−1),
ν = 2, . . . , 2n − 1, and

Θν = Iν ∩
(

Fn2 \
(⋃2n−1

h=ν+1 Ih ∪ A
))

ν = 1, . . . , 2n − 1. Since the set A is attractive, whence
(G−1)h(A) := G−1 ◦ G−1 ◦ · · · ◦ G−1(A) = Fn2 , for suf-

ficiently large h,
⋃2n

ν=1 Θν ∪A = Fn2 . Hence, since Θν1 ∩
Θν2 = ∅, for ν1 6= ν2, and Θν ∩A = ∅, ν = 1, . . . , 2n, the
sets Θν , ν = 1, . . . , 2n, and A, form a partition of Fn2 .

Moreover, each set Θν is such thatG(Θν) ⊂
⋃ν−1
h=1 Θh∪A

(namely, by construction, each set Θν is the set of all the
points in Fn2 that reaches A in at most ν time instants).
Note that if A is GAS, it is reached by all the points in
Fn2 at most in 2n− 1 steps. Therefore, a Lyapunov func-
tion for (2), satisfying (6), is given by V : Fn2 → Z>0,

V (x) =

{
0, if x ∈ A,
ν, if x ∈ Θν , ν = 1, . . . , 2n − 1.

which is well defined over Fn2 , because Θν and A form a
partition of Fn2 . As a matter of fact, V satisfies (6a), with
α1 : r 7→ 2−nr and α2 : r 7→ 2nr. Moreover, V satisfies
(6b), with %(x) = 1− IA(x), where IA(·) is the indicator
function of A (Fristedt & Gray 1997, Chap. 2, Def. 8),

because, for each x ∈ Θν , G(x) ⊂
⋃ν−1
h=1 Θh ∪A, whence

V (g) 6 V (x) − 1, ∀g ∈ G(x), ∀x /∈ A. Note that, by
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Menini et al. (2017, Thm. 3), there exists a polynomial
υ : Fn2 → Z>0, such that υ(x) = V (x), for all x ∈ Fn2 .

Sufficiency follows from Goebel et al. (2012). �

Remark 1 The technique given in the proof of Theo-
rem 1 allows to determine whether a given set A ⊂ Fn2
is GAS for (2). In fact, by computing Θ1, . . . ,Θp,Θp+1

as in such a proof, where p+ 1 6 2n is such that Θp 6= ∅
and Θp+1 = ∅, one has that A is GAS for (2) if and only
if G(A) ⊂ A and A,Θ1, ...,Θp partition Fn2 . �

Remark 2 In order to determine if the set A is GAS
for (2) either the statement of Lemma 5 or the proce-
dure given in the proof of Theorem 1 can be used. The
complexity of these two methods is, in the worst case,
1
32n−1(4n−1) and 2n−1(2n−1), respectively. Therefore,
the latter is more effective. �

Remark 3 The constructive procedure given in the proof
of Theorem 1 to build a Lyapunov function for (2) with
respect to A ⊂ Fn2 can be interpreted in a graph the-
oretic framework. Namely, consider the directed graph
(W,E), where W := {0, . . . , 2n − 1} is the vertex set
and E := {(x, y) ∈ {0, . . . , 2n − 1} × {0, . . . , 2n − 1} :
π−1
n (y) ∈ G(π−1

n (x))} is the edge set. In the follow-
ing, we refer to the graph (W,E) as transition graph. A
strongly connected component (briefly, SCC) of (W,E)
is a maximal set of vertices C ⊂ W such that, for every
pair of vertices u, v ∈ C, there exists a path from u to
v and a path from v to u. In Cormen (2009, Sec. 22.5)
a procedure is given to compute all the SCCs compo-
nents of a given graph. A SCC is said to be terminal if
no other SCC can be reached from it. The condensation
digraph of a (W,E), denoted by C((W,E)), is defined
as follows: the nodes of C((W,E)) are the strongly con-
nected components of (W,E), and there exists a directed
edge in C((W,E)) from node H1 to node H2 if and only
if there exists a directed edge in (W,E) from a node of
H1 to a node of H2 (Bollobás 2013). By construction,
the graph C((W,E)) is acyclic. The set of all the ter-
minal SCCs can be obtained by applying the topological
sort algorithm (Cormen 2009, Sec. 22.4) to C((W,E)).
By Lemma 5, it can be easily argued that the union of all
the terminal SCCs of the transition graph corresponds
to the unique smallest GAS set A for (2), provided that
the graph (W,E) \ (A, {(x, y) ∈ E : x ∈ A ∨ y ∈ A})
is acyclic. The constructive procedure given in the proof
of Theorem 1 to build a Lyapunov function for (2) is re-
lated to such a procedure. As a matter of fact, the method
given in the proof of Theorem 1 to construct the sets Iν
and Θν , ν = 1, . . . , 2n − 1, translates in the Boolean
framework of this paper the DFS(G) algorithm given
in Cormen (2009, Sec. 22.3) that is employed in the
TOPOLOGICAL–SORT(G) algorithm given in Cor-
men (2009, Sec. 22.4) to carry out the topological sort of
a given directed acyclic graph. �

The advantage of having at one’s disposal a Lya-

punov characterization of global asymptotic stability of
Boolean networks with set–valued transition map relies
on the concept of Control Lyapunov Function (briefly,
CLF). Namely, let a Boolean Control Network (i.e.,
a DBN where the transition map g : Fn2 × Fm2 → Fn2
depends on an input variable u ∈ Fm2 ) of the form

x+ = g(x, u), (7)

be given. Hence, following the idea of the proof of The-
orem 1, a feedback u ∈ κ(x) such that the set A ⊂ Fn2
is GAS for the closed loop system can be obtained by
determining V : Fn2 → R>0 such that (6a) holds and

min
u
{V (g(x, u))− V (x)} 6 IA(x)− 1, ∀x ∈ Fn2 .

If such a function exists, then u ∈ arg minu{V (g(x, u))−
V (x)} is such that the set A ⊂ Fn2 is GAS for the closed
loop system, otherwise there does not exist a feedback
policy u ∈ κ(x) such that the set A ⊂ Fn2 is GAS for the
closed loop system. The possibly non–unique value of
the function arg min(·) highlights once more the interest
in Boolean networks with set–valued transition map.

4 Random solutions and stability properties of
Stochastic Boolean Networks

Consider the SBN (3). Let Sc,m(x) denote the set
of maximal random solutions to (3) starting at x
that are causal, measurable functions of the inputs.
That is, φ ∈ Sc,m(x), if φ comprises a sequence
of measurable functions φj : domφj → Fn2 , with
domφj ⊂ (Z<N )j , j ∈ Z>0 and φ0 = x, such that
φj+1(w0, . . . , wj) ∈ G(φj(w0, . . . , wj−1), wj), for all
j ∈ Z>0 and all (w0, . . . , wj) ∈ domφj+1

A random process x from x ∈ Fn2 is a sequence of random
variables xj : Ω → Fn2 , j ∈ Z>0, with x0 = x, for all
ω ∈ Ω. A random process x is adapted to the natural
filtration ofw if xj+1 isFj–measurable for each j ∈ Z>0.
A random process x from x ∈ Fn2 that is adapted to
the natural filtration of w (i.e.,, x−1

j+1(F ) ∈ Fj , for each

F ∈ P(Fn2 )) is a random solution to (3) if xj+1(ω) ∈
G(xj(ω),wj(ω)), for all ω ∈ domxj+1 and j ∈ Z>0

(Subbaraman & Teel 2013). A random solution x from
x ∈ Fn2 is said to be maximal, denoted x ∈ Sr(x), if it
cannot be extended, i.e., there does not exist another
random solution y from x such that domxj ⊂ domyj
for all j ∈ Z>0, yj(ω) = xj(ω), for all ω ∈ domxi and
all j ∈ Z>0, and domxj 6= domyj for some j ∈ Z>0.
Define graph (x(ω)) :=

⋃
j∈Z>0

{j} × xj(ω).

A set A ⊂ Fn2 is Lyapunov stable in probability for (3) if,
for each ε > 0 and % > 0, there exists δ > 0 such that

|x|A < δ,x ∈ Sr(x) =⇒
P(graph (x) ⊂ (Z>0 × (A+ B(0, ε)))) > 1− %. (8)
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A set A ⊂ Fn2 is Lagrange stable in probability for (3) if
for each δ > 0 and % > 0, there exists ε > 0 such that
(8) holds. The set A is globally stable in probability for
(3) if it is both Lyapunov stable and Lagrange stable in
probability for (3). The set A is attractive in probability
for (3) if for each ε > 0, % > 0, there exists τ > 0 such
that, for any x ∈ Fn2 and x ∈ Sr(x),

P((graph (x) ∩ (Z>τ × Fn2 )) ⊂
(Z>τ × (A+ B(0, ε)))) > 1− %. (9)

A set A ⊂ Fn2 is globally asymptotically stable (briefly,
GAS ) in probability for (3) if it is both globally stable
and attractive in probability for (3). Informally, a set
A ⊂ Fn2 is GAS if the probability that all the solutions
starting nearby A stay nearby A is greater that 1 − ρ,
for each ρ > 0, while A is GAS if it is stable and the
probability that all the solutions reach the set A tends
to 1 as time goes to infinity.

The following lemma shows that a set A ∈ Fn2 is stable if
and only if it is strongly forward invariant in probability
for (3), i.e., if it is such that the subsequent (10) holds.

Lemma 6 Let the system (3) and A ⊂ Fn2 be given. The
set A is globally stable in probability for (3) if and only if

x ∈ A,x ∈ Sr(x) =⇒
P(graph (x) ⊂ (Z>0 ×A)) = 1. (10)

Proof. Every set A ⊂ Fn2 is clearly Lagrange stable,
because |x|A 6 2n, for each x ∈ Fn2 . Hence, if (10) holds,
then (8) is satisfied with δ = 1. Thus, since A is both
Lyapunov and Lagrange stable in probability for (3), A
is globally stable in probability for (3).

Assume now that A is globally stable in probability for
(3). Consider that if (8) holds for some δ > 0, it holds
also for δ = 1. As a matter of fact, one has |x|A < δ, for
some δ ∈ (0, 1), if and only if x ∈ A, and x ∈ A if and
only if |x|A < 1. Hence, since A + B(0, ε) = A and (8)
holds for all % > 0, the set A is such that (10) holds. �

Lemma 6 essentially states that the set A ⊂ Fn2 is glob-
ally stable in probability for (3) if and only if the proba-
bility that all the solutions starting inA stay inA equals
1. The proof of the following lemma follows from (9).

Lemma 7 Let the system (3) and A ⊂ Fn2 be given. The
set A is attractive in probability for (3) if and only if

lim
τ→∞

P((graph (x)∩(Z>τ×Fn2 )) ⊂ (Z>τ×A)) = 1. (11)

The following assumption guarantees that the integrals
appearing in the study of (3) are well defined (Subbara-

man & Teel 2013) and existence of random solutions
to (3) (Teel et al. 2014, Prop. 1).

Assumption 1 (Stochastic Basic Condition) The
mapping w 7→ graph (G(·, w)) is measurable, where
graph (G(·, w)) = {(x, y) ∈ Fn2 × Fn2 : y ∈ G(x,w)}.

Note that, since, for each G : Fn2 × Z<N ⇒ Fn2 , the
domain of w 7→ graph (G(·, w)) is countable (and hence
measurable), Assumption 1 holds for each SBN (Teel
et al. 2014). The following fact states that our formalism
allows to encode the dynamical behavior of PBNs.

Fact 1 Let a PBN be given, let Ñ := 2n2n

. There exists
g : Fn2 × Z<Ñ → Fn2 such that

x+ = g(x,w), µ(·), (12)

is a discrete–time representation of the PBN, where the
probability measure µ(·) depends on the data of the PBN.

Proof. In Datta et al. (2003), Pal et al. (2005), an ex-
pression for the transition probability from state ix̄ ∈ Fn2
to state kx̄ ∈ Fn2 , i, k ∈ {0, 1, . . . , 2n−1} is derived from
the data of a PBN. Note that, since Fn2 is composed
by 2n different elements, the transition probability from
any state ix̄ ∈ Fn2 to any state kx̄ ∈ Fn2 can be encoded
into a 2n × 2n matrix P (Pal et al. 2005). Namely, by
ordering the points in Fn2 so that ix̄ < kx̄ if and only if
πn(ix̄) < πn(kx̄), i, k ∈ {0, 1, . . . , 2n − 1}, (which is a
total, well ordering on the points in Fn2 ), the transition
probability from ix̄ to kx̄, i, k ∈ {0, 1, . . . , 2n − 1}, for
the PBN constitutes the (i+ 1, k+ 1)–th entry Pi+1,k+1

of the matrix P . By Lemma 3, there exist Ñ := 2n2n

transition maps updating the Boolean network state,
at each time j ∈ Z>0. The probability of selecting one

of these Ñ transition maps can be easily obtained by
P (e.g., the probability of choosing the map x 7→ x is

given by
∏2n

i=1 Pi,i). Moreover, the probability distribu-
tion is independent of the time and of the previous se-
lections. By this reasoning, for each PBN, there exists
g : Fn2 × Z<Ñ → Fn2 such that (12) is a discrete–time
representation of the PBN, where w = {wj}∞j=1 is a se-
quence of i.i.d. input random variables. �

The following example, which employs the tools used in
the proof of Fact 1, shows how to define a SBN encoding
the dynamical behavior of a given PBN.

Example 3 Consider the PBN given in Shmule-
vich et al. (2002b, Ex. 1) consisting of three genes
(i.e., x ∈ F3

2). On the basis of the truth table given
in (Shmulevich et al. 2002b, p. 267), define the fol-

lowing Boolean maps for all x ∈ F3
2, ĝ

(1)
1 (x) =

ĝ
(2)
1 (x) = f

(1)
1 (x) = (x2 ∧ x3) ⊕ x2 ⊕ x3, ĝ

(3)
1 (x) =

ĝ
(4)
1 (x) = f

(2)
1 (x) = (x1 ∧ x2 ∧ x3) ⊕ x2 ⊕ x3,

7



ĝ
(1)
2 (x) = ĝ

(2)
2 (x) = ĝ

(3)
2 (x) = ĝ

(4)
2 (x) = f

(1)
2 (x) =

(x1 ∧ x2 ∧ x3) ⊕ (x1 ∧ x3) ⊕ x1 ⊕ x2 ⊕ x3, ĝ
(1)
3 (x) =

ĝ
(3)
3 (x) = f

(1)
3 (x) = (x1∧x2)⊕ (x1∧x3)⊕ (x2∧x3), and

ĝ
(2)
3 (x) = g

(4)
3 (x) = f

(2)
3 (x) = x1∧x2∧x3. Hence, letting

ĝ(i) = [ ĝ
(i)
1 ĝ

(i)
2 g

(i)
3 ]>, ĝ(i) : F3

2 → F3
2, the probability

Pi that the state of the PBN is updated according to the
Boolean map g(i) is given by Shmulevich et al. (2002b,
(7)), i = 1, . . . , 4. Hence, a SBN encoding the proba-
bilistic behavior of such a PBN is given by (12), with
g : F3

2 × Z<4 → F3
2, g(x,w) = ĝ(w)(x), w : Ω → Z<4,

µ({w}) = Pw+1, for all (x,w) ∈ F3
2 × Z<4. 4

Example 3 highlights the interest arising from the anal-
ysis of SBNs, showing that these systems can encode
the dynamical behavior of PBNs. Moreover, SBNs en-
rich the set of dynamical behaviors that can be modeled
by PBNs, thanks to the set–valued transition map G.

As already done for non–stochastic Boolean networks
with set–valued transition map, we can frame global sta-
bility of the SBN (3) in terms of a nonnegative function.

Proposition 2 LetA ⊂ Fn2 and the system (3) be given.
Then,A is globally stable for (3) if and only if there exists
V : Fn2 → R>0 such that there exist α1, α2 ∈ K∞,

α1(|x|A) 6 V (x) 6 α2(|x|A), (13a)
N−1∑
w=0

sup
g∈G(x,w)

V (g)µ({w}) = 0, ∀x ∈ A. (13b)

Proof. By Lemma 6, the set A is stable for (3) if and
only if (10) hold, i.e. if and only if (Teel 2013)

x ∈ A,x ∈ Sr(x) =⇒ P(xj ∈ A, j ∈ Z>0) = 1. (14)

Note that, if V is such that (13a) holds, then V (x) = 0,
for all x ∈ A, and V (x) > 0, for all x ∈ Fn2 \ A. Assume
that (14) holds but (13b) does not. Thus, there exists
w ∈ Z<N such that µ({w}) 6= 0 and supg∈G(x,w) V (g) 6=
0, for some x ∈ A, i.e., for such aw, lettingM : Fn2 ⇒ Fn2 ,
M(x) = G(x,w), M(A)∩(Fn2 \A) 6= ∅. Hence, (14) does
not hold, leading to a contradiction.

On the other hand, if (13b) holds, then there ex-
ists no w ∈ Z<N , with µ({w}) 6= 0, such that
supg∈G(x,w) V (g) > 0, for some x ∈ A, i.e., for all w

such that µ({w}) 6= 0, G(x,w) ⊂ A, for any x ∈ A.
Therefore, (14) holds. �

A function V : Fn2 → R>0 is a stochastic Lyapunov func-
tion relative to A ⊂ Fn2 for (3) if exist α1, α2 ∈ K∞,
% ∈ PD(A), such that, for all x ∈ Fn2 , (13a) holds and

N−1∑
v=0

sup
g∈G(x,v)

V (g)µ(v) 6 V (x)− %(x). (15)

The following theorem follows from Teel et al. (2014,
Thm. 1) and from the fact that all the maps w 7→
graph (G(·, w)) have measurable domains.

Theorem 2 The set A ⊂ Fn2 is GAS in probability for
(3) if and only if there exists a stochastic Lyapunov func-
tion relative to A for (3).

In the following, a constructive procedure, similar to the
one given in Possieri & Teel (2016), is given to compute
a stochastic Lyapunov function. Recall the definition of
the map πn : Fn2 → Z>0, πn(x) =

∑n
i=1 2i−1ψ−1(xi).

Let N := {w ∈ Z<N : µ({w}) 6= 0} = {w1, . . . , wH},
and let Gw : Fn2 ⇒ Fn2 be the set–valued mappings
defined as Gw(x) = G(x,w), for each x ∈ Fn2 , for all
w ∈ N . For each i ∈ {0, . . . , 2n − 1}, j ∈ {1, . . . ,H},
let Λi,j := {y ∈ Z>0 : ∃z ∈ G(π−1

n (i), wj) such that y =

πn(z)}. Define vectors v = [ v0 · · · v2n−1 ]>, ρ =

[ ρ0 · · · ρ2n−1 ]> of unknowns, and the constant vector

γ = [ µ({w1}) · · · µ({wH}) ]> ∈ RH . Let S be a matrix

of unknowns, whose (i, j)–th entry is defined as

Sij := max
k∈Λi−1,j

vk, i = 1, . . . , 2n, j = 1, . . . ,H.

Consider the following problem:

Sγ + ρ 6 v,

vi = 0, ρi = 0, ∀i such that π−1
n (i) ∈ A,

vi > 0, ρi > 0, ∀i such that π−1
n (i) /∈ A,

(16)

The following theorem shows that there exists a stochas-
tic Lyapunov function for (3) if and only if there exists
a solution to the problem given in (16).

Theorem 3 Let the SBN (3) be given. The set A ⊂ Fn2
is GAS in probability for (3) if and only if there exists a
solution to the problem given in (16).

Proof. By Theorem 2, A is GAS in probability for (3) if
and only if there exists a stochastic Lyapunov function

relative to A for (3). If there exists [ v0 · · · v2n−1 ]> ∈
R2n

that solves (16), then let V : Fn2 → R>0,

V (x) = vπn(x), x ∈ Fn2 .

Such a function is such that (13a) holds, because V (x) =
0, ∀x ∈ A and V (x) > 0, ∀x /∈ A, whence there ex-
ist functions α1, α2 ∈ K∞ such that (13a) holds. More-
over, the function V is such that (15) holds, with %(x) =
ρπn(x), for all x ∈ Fn2 , and % is such that % ∈ PD(A), be-
cause %(x) = 0 for all x ∈ A and %(x) > 0 for all x /∈ A.
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On the other hand, assume that there exists a
function V such that (13a) and (15) hold, but
there exists no solution to the problem given in
(16). Thus, let vi = V (π−1

n (i)), ρi = %(π−1
n (i)),

i = 0, . . . , 2n − 1. Since (15) holds, the real numbers vi
are such that

∑H
j=1 maxk∈Λi−1,j

{vk}µ̂(wj) 6 vi − ρi,
i = 0, . . . , 2n − 1. Moreover, since the function V is
such that (13a) holds, vi = 0, ∀i such that π−1

n (i) ∈ A,
vi > 0, ∀i such that π−1

n (i) /∈ A. Furthermore, since
% ∈ PD(A), ρi = 0, ∀i such that π−1

n (i) ∈ A,
ρi > 0, ∀i such that π−1

n (i) /∈ A. Therefore, vectors

v = [ v0 · · · v2n−1 ]> and ρ = [ ρ0 · · · ρ2n−1 ]> are a

solution to (16). By this reasoning, if there exists a
function V such that (13a) and (15) hold, then there
exists a solution to the problem given in (16). �

Remark 4 A solution to the problem given in (16) can
be obtained by computing the feasible region of a finite set
of linear programming problems (Luenberger 1973), by
considering all the possible inequality relation between the
elements belonging to each entry Sij of the matrix S. As a
matter of fact, assuming that, for each i ∈ {0, . . . , 2n−1},
j ∈ {1, . . . ,H}, a certain vkij , kij ∈ Λi,j, is greater
than or equal to vqij , for all qij ∈ Λi,j, corresponds to
add a finite set of linear constraint to the problem given
in (16). Note that, with these assumptions, the problem
given in (16) is a linear programming problem. Hence, by
considering all the permutations of these assumptions,
a solution to the problem given in (16) can be actually
computed. Note that, even if each linear programming
problem can be solved in polynomial time (Karmarkar
1984), in the worst case, the computational complexity
of the problem given in (16) is O((2n− 1)!). As a matter
of fact, in the worst case, all the orderings of the vari-
ables vi, i = 0, . . . , 2n − 1, have to be taken into con-
sideration. However, in many cases of practical interest,
such a complexity is substantially lower, because only a
small subset of the possible orderings of the variables vi,
i = 0, . . . , 2n − 1, has to be taken into account. �

The following example shows how the solution to the
problem given in (16) can be used to compute a stochas-
tic Lyapunov function relative to a set A ⊂ Fn2 for (3).

Example 4 Consider the SBN depicted in Figure 2, with
G : F3

2 × F2 ⇒ F3
2, µ({0}) = 2/3, and µ({1}) = 1/3.

Clearly, the set A = {[ 1 1 1 ]>} is GAS in probabil-

ity for the SBN. Define the vectors v = [ v0 · · · v7 ]>,

ρ = [ ρ0 · · · ρ7 ]>. Hence, the vector γ is defined as

γ =

[
2/3

1/3

]
, while S =


v1 v3
v2 v0
v3 v7
v0 v1

max{v5,v7} v7
v6 v1
v7 v7
v7 v7

.

[ 0 0 0 ]>

[ 0 0 1 ]> [ 0 1 0 ]>

[ 0 1 1 ]>

[ 1 0 0 ]>

[ 1 0 1 ]> [ 1 1 0 ]>

[ 1 1 1 ]>

(a) Map G(x, 0).

[ 0 0 0 ]>

[ 0 0 1 ]> [ 0 1 0 ]>

[ 0 1 1 ]>

[ 1 0 0 ]>

[ 1 0 1 ]> [ 1 1 0 ]>

[ 1 1 1 ]>

(b) Map G(x, 1).

Figure 2. SBN with three states.

By considering that π−1
n (7) = [ 1 1 1 ]> ∈ A, v7 = 0,

whence, since vi > 0, i = 0, . . . , 7, max{v5, v7} = v5. A
solution to the problem given in (16) is

v = [ 48 43 35 49 15 19 2 0 ]>,

ρ = [ 1 1 1 1 1 1 1 0 ]>.

Therefore, by Menini et al. (2017) and Theorem 3,

V (x) = −25ψ−1 (x2)ψ−1 (x3)ψ−1 (x1) +

9ψ−1 (x3)ψ−1 (x1)− 33ψ−1 (x1)− 13ψ−1 (x2) +

19ψ−1 (x2)ψ−1 (x3)− 5ψ−1 (x3) + 48

is such that (15) holds, with %(x) = 1− IA. Moreover, V
is such that (13a) holds, with α1(s) = 1

2 (s), α2(s) = 48s.
Thus, V is a stochastic Lyapunov function for the SBN.

0 10 20 30 40 50 60 70
[ 0 0 0 ]>

[ 0 0 1 ]>

[ 0 1 0 ]>

[ 0 1 1 ]>

[ 1 0 0 ]>

[ 1 0 1 ]>

[ 1 1 0 ]>

[ 1 1 1 ]>

j

x = [ 0 0 0 ]>

x = [ 0 0 1 ]>

x = [ 0 1 0 ]>

x = [ 0 1 1 ]>

x = [ 1 0 0 ]>

x = [ 1 0 1 ]>

x = [ 1 1 0 ]>

x = [ 1 1 1 ]>

Figure 3. Numerical simulations of the solution to the SBN.

Numerical simulations have been carried out to analyze
the dynamical behavior of the SBN depicted in Figure 2.
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Namely, 104 simulation have been carried out from each
initial condition x ∈ F3

2. Figure 3 depicts the results of
such simulations, showing the expectation E(x). 4

Note that the existence of a stochastic Lyapunov func-
tion relative to a set A ⊂ Fn2 guarantees the asymp-
totic stability in probability of such a set with respect to
causal perturbations (Grammatico et al. 2013). The fol-
lowing (negative) example, recalling Grammatico et al.
(2013, Ex. 1), shows that the existence of a stochastic
Lyapunov function for system (3) does not imply asymp-
totic stability in presence of “non causal” selections.

Example 5 Consider the SBN with state x ∈ F2
2

x+
1 ∈ {0, 1}, (17a)

x+
2 = (x1⊕w)x2, (17b)

and assume that the random input w ∈ F2 has probabil-
ity measure µ(·) such that µ({0}) = µ({1}) = 1

2 . The
transition map of the SBN (17) is depicted in Figure 4.

[ 0 0 ]>

[ 0 1 ]> [ 1 0 ]>

[ 1 1 ]>

(a) Transition map G(x, 0).

[ 0 0 ]>

[ 0 1 ]> [ 1 0 ]>

[ 1 1 ]>

(b) Transition map G(x, 1).

Figure 4. Transition map of the system (17).

Define the set A := {[ 0 0 ]>, [ 1 0 ]>}, the vectors v :=

[ v0 · · · v3 ]>, ρ := [ ρ0 · · · ρ3 ]>, γ := [ 1/2 1/2 ]>, and

S :=

[
max{v0,v2} max{v0,v2}
max{v0,v2} max{v1,v3}
max{v0,v2} max{v0,v2}
max{v1,v3} max{v0,v2}

]
.

A solution to the problem given in (16) is v = [ 0 7 0 6 ]>,

ρ = [ 0 1 0 1 ]>. Therefore, the function

V (x) := 7ψ−1(x2)− ψ−1(x1x2)

is a stochastic Lyapunov function relative to A for (17).
Hence, by Menini et al. (2017, Thm. 3) and Theorem 3,
the set A is GAS in probability for (17). However, by
admitting “non causal” solutions, one has that the set
A is not GAS in probability for (17). In fact, the “non
causal” solution x1(ω) := w(ω)⊕1 is such that x+

2 = x2,
whence the set A is not GAS in probability. We refer to
the solution x1(ω) := w(ω) + 1 as non causal because x1

depends on the current value of w. 4

Remark 5 In Example 1, a Boolean network with set–
valued transition map modeling the main reactions of gly-
colysis is given. The set–valued transition map G : Fn2 ⇒
Fn2 of such an example has been obtained by inspection of
the network diagram corresponding to the stoichiomet-
ric matrix of such a reaction. However, a wholly prob-
abilistic procedure can be employed to obtain the tran-
sition map G : Fn2 × Z<N ⇒ Fn2 and the distribution
function µ(·) from biological data. Namely, following the
idea of Busetto & Lygeros (2014), let G be the set of
all the set–valued transition maps G : Fn2 ⇒ Fn2 . By
Lemma 3, the cardinality of the set G is finite and equals
(22n − 1)2n

. Assume that the modeler can measure the
readout vector y ∈ Fr2, that consists of realizations of
the random variable Yt, yj ∼ H(Yj |xj), where H is
an experiment–dependent and task specific measurement
distribution function. Hence, letD := {yj}Tj=1, T ∈ Z>0,
be the set of measures available to reconstruct the transi-
tion map G : Fn2 × Z<N ⇒ Fn2 . The modeler starts with
a prior distribution function p(G), G ∈ G (possibly uni-
form, if the modeler has no previous knowledge on the
system). Thus, by employing Bayes’ Theorem (Jaynes
2003), the prior distribution p(G) can be updated as

p(G|D) =
p(D|G)p(G)

p(D)
(18)

where p(D) =
∑
G∈G p(D|G)p(G). Note that, in (18),

the likelihood function p(D|G) relates the models to the
data and is specified by the known distribution H. Hence,
by enumerating the set–valued mappings in G so that
G = {G0, · · · ,GN−1}, a SBN modeling the observed data
in a wholly probabilistic framework is given by (3), where
G : Fn2 × Z<N ⇒ Fn2 , G(x,w) = Gw(x), for all (x,w) ∈
Fn2 × Z<N , and µ({w}) = p(Gw|D), w = 0, . . . , N − 1.
Even if the cardinality of G may be very large, usually
the modeler is interested in a much smaller subclass of
models, that are considered interesting on the basis of
previous experiments or domain experience. Thus, the
method proposed here to build SBNs from real data is
tractable in many cases of practical interest. �

5 Conclusions

In this paper a new class of Boolean networks, called
Stochastic Boolean Networks is presented. In these sys-
tems the state variables admit two operation levels (ei-
ther 0 or 1), and the transition map, at each time instant,
is selected through a random process. Hence, these sys-
tems enrich the set of admissible dynamical behaviors
already encoded in the classical definition of DBNs and
of PBNs, thanks to the set–valued nature of the transi-
tion map. The interest in SBN arises from the observa-
tion of non–unique dynamical behaviors of certain bio-
logical systems. Lyapunov conditions for the stability of
these systems, together with constructive procedures to
build Lyapunov functions, are given both for determin-
istic Boolean networks with set–valued transition map,
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and for SBNs. A procedure to identify SBN from real
experimental data is proposed.
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