
16 October 2021

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine learning for flux regression in discrete fracture networks / Berrone, S.; Della Santa, Francesco; Pieraccini, S.;
Vaccarino, F.. - In: GEM. - ISSN 1869-2672. - ELETTRONICO. - 12:9(2021). [10.1007/s13137-021-00176-0]

Original

Machine learning for flux regression in discrete fracture networks

Publisher:

Published
DOI:10.1007/s13137-021-00176-0

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2724492 since: 2021-04-13T19:06:45Z

Springer

GEM - International Journal on Geomathematics (2021) 12:9
https://doi.org/10.1007/s13137-021-00176-0

ORIG INAL PAPER

Machine learning for flux regression in discrete fracture
networks

S. Berrone1,3,4 • F. Della Santa1,3,4 • S. Pieraccini2,3 • F. Vaccarino1,4,5

Received: 15 July 2020 / Accepted: 15 April 2021
© The Author(s) 2021

Abstract
In several applications concerning underground flow simulations in fractured media,
the fractured rock matrix is modeled by means of the Discrete Fracture Network (DFN)
model. The fractures are typically described through stochastic parameters sampled
from known distributions. In this framework, it is worth considering the application of
suitable complexity reduction techniques, also in view of possible uncertainty quantifi-
cation analyses or other applications requiring a fast approximation of the flow through
the network. Herein, we propose the application of Neural Networks to flux regres-
sion problems in a DFN characterized by stochastic trasmissivities as an approach to
predict fluxes.

Keywords Discrete fracture network flow simulations • Deep learning • Uncertainty
quantification

Mathematics Subject Classification 65N30 • 68T07 • 68T37 • 76-10 • 86A99 • 76U60

1 Introduction

Characterization of flow and transport in subsurface fractured media is a crucial issue in
several critical and up-to-date applications concerning civil, environmental and indus-
trial engineering: geothermal applications, enhanced oil and gas production, aquifer

B S. Pieraccini
sandra.pieraccini@polito.it

1 Dipartimento di Scienze Matematiche, Politecnico di Torino, Turin, Italy
2 Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
3 INdAM-GNCS group, Rome, Italy
4 SmartData@PoliTO, Politecnico di Torino, Turin, Italy
5 ISI Foundation, Turin, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13137-021-00176-0&domain=pdf
https://orcid.org/0000-0001-8642-4258
https://orcid.org/0000-0002-2202-9600
http://orcid.org/0000-0002-0077-6285
https://orcid.org/0000-0002-0610-9168

 9 Page 2 of 33 GEM - International Journal on Geomathematics (2021) 12:9

monitoring, safety assessment of CO2 or nuclear waste geological storage, just to
mention a few.

A possible approach for modelling fractured media is given by the Discrete Fracture
Network (DFN) model (Adler 1999; Cammarata et al. 2007; Fidelibus et al. 2009):
fractures in the rock matrix are individually described and represented as planar poly-
gons intersecting each other along segments called traces; flux exchanges occur among
fractures through the traces, whereas the surrounding rock matrix is assumed herein to
be impervious. On each fracture the Darcy law is assumed to rule the flux; at all fracture
intersections head continuity and flux balance are assumed. The present assumptions
are correct for fractures that are porous media with a permeability much larger than
the permeability of the surrounding rock matrix.

Flow simulations in DFNs are likely to be quite challenging problems, due to
several issues: the huge size of realistic networks; the geometrical complexity of the
computational domain, in which traces can intersect forming very narrow angles, or
can be extremely close to each other. These features make the meshing process quite
an hard task, whenever conforming meshes are needed, and in recent literature several
new methods have been proposed which use different strategies for circumventing,
either partially or totally, meshing problems. In Pichot et al. (2010, 2012, 2014)
and de Dreuzy et al. (2013) the mortar method is used, possibly in conjunction with
modifications of the geometry. In Nœtinger and Jarrige (2012), Nœtinger (2015) and
Dershowitz and Fidelibus (1999) lower-dimensional problems are introduced in order
to reduce the complexity: fracture connections are represented as a system of pipes
modeling the flux exchange between fractures. In Berrone et al. (2013a, b, 2014, 2015,
2016b, a, 2019) the problem is reformulated as a PDE-constrained optimization, in
such a way that totally non-conforming meshes are allowed, and the meshing process is
therefore quite an easy task which can be independently performed on each fracture. In
Fumagalli and Scotti (2013) a 2D coupling between fractures, represented as segments,
and rock matrix, represented as a 2D domain, is considered. In Hyman et al. (2014)
an approach with conforming finite elements is used. In Jaffré and Roberts (2012) a
mixed finite elements approach is proposed, and in Karimi-Fard and Durlofsky (2014)
a local adaptive upscaling method is proposed.

A deterministic knowledge of hydrogeological and geometrical parameters describ-
ing fracture position, size, orientation, aperture, etc., is typically not available; fractures
in a network are usually described by sampling their geometrical and hydrogeological
features from given distributions. Due to the large amount of uncertainty in the repre-
sentation of DFNs, flow and transport in a real fractured medium are studied from a
statistical point of view, resorting to Uncertainty Quantification (UQ) analyses. These
analyses are likely to involve thousands of DFN simulations; in order to speed up these
analyses, it is worth considering some sort of complexity reduction techniques (see,
e.g., Canuto et al. 2019 for a multi fidelity approach, and Hyman et al. (2017) for a
graph-based reduction technique).

The use of machine learning (ML) has recently attracted a lot of attention in several
frameworks related to the aformentioned problems. In recent contributions (Srinivasan
et al. 2018, 2019), ML techniques have been applied to DFN flow simulations in
conjunction with graph-based methods. Neural Networks (NNs) have been applied
in a UQ framework in Chan and Elsheikh (2018) and Tripathy and Bilionis (2018).

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 3 of 33 9

In Chan and Elsheikh (2018), a data-driven approach is introduced for the estimation
of coarse scale basis functions within a Multiscale Finite Volume method: using a
NN trained on a set of solution samples, the authors obtain a generator of subsequent
basis functions at a low computational cost. In Tripathy and Bilionis (2018), in the
framework of a stochastic elliptic PDE with uncertain diffusion coefficient, inspired by
dimensionality reduction techniques, the authors construct a NN as surrogate model
to replace the forward model solver, while performing Monte Carlo (MC) simulations
for UQ. Finally, it is worth mentioning the approach in Raissi et al. (2019), in which
deep learning is used both for building data-driven approximations of solutions of
PDEs, and for proposing a discovery tool for incomplete models.

In this paper, we consider the application of Multi-Task Neural Networks for flux
predictions in DFNs. NNs are a particular kind of machine learning algorithms based
on regression; they were first introduced more than fifty years ago (see, e.g., McCul-
loch and Pitts 1943; Hebb 1949; Rosenblatt 1958) but only in the last decade they have
started to be used in practice, due to computer hardware improvements and the increas-
ing amount of available data (see Goodfellow et al. 2016 and references therein). In
the problem addressed, we will consider a deterministic geometry of the fractures,
whereas hydrogeological parameters (namely, the fracture transmissivities) will be
modeled as random variables with a known distribution. Vector valued regression will
be performed, through NNs, considering as inputs only the uncertain parameters and
as output the flux exiting the network through some selected boundary fractures. The
outcome of the NN is a function which for a given input vector (namely, for a given
transmissivity value for each fracture) provides a prediction of the corresponding out-
going fluxes.

We will consider several cases, in which the number of fractures with a stochastic
transmissivity is progressively increasing, starting from very few fractures and end-
ing up with 100% of the fractures. We will discuss, in particular, the behavior of the
regression quality with respect to the number of stochastic fractures and to NNs regu-
larization and architecture, showing that NNs can be effective tools for predicting the
flux values in this framework.

The paper is organized as follow. In Sect. 2 the model description, and a sketch of
the numerical method used for the simulations, are presented. In Sect. 3 the main ideas
and concepts behind NN are briefly recalled. A deep analysis about the application of
NN to DFN flow simulation problems is presented in Sect. 4, and in Sect. 5 a sketch
of the application of NNs in support of UQ analysis is given. Section 6 is devoted
to show the robustness of the approach with respect to network size. Finally, some
conclusions are drawn in Sect. 7.

2 Discrete fracture network

In this section we briefly recall the DFN model formulation and we sketch the numer-
ical strategy used for the flow simulations, while referring the reader to Berrone et al.
(2013a, 2014) for full details.

Let Fi denote the i th fracture of the network, with i � I, represented as a planar
polygon. Fractures may intersect each other along lines called traces. Let Sm denote

123

 9 Page 4 of 33 GEM - International Journal on Geomathematics (2021) 12:9

the mth trace, with m � M. For the sake of simplicity, we assume that each trace is
generated by exactly two fractures. The approach can be extended to traces generated
by more than two fractures.

For each couple of intersecting fractures, say Fi and F j , generating a trace Sm , let
us introduce Im = (i, j), where the couple (i, j) is ordered with the convention that
i < j . Denoting by � the whole DFN, we have therefore

� = �i�IFi .

Let �i (xi) denote, for all i � I, a symmetric and uniformly positive definite tensor
representing the fracture transmissivity, where xi refers to a local coordinate system
on Fi . The main unknown of the problem is the hydraulic head Hi on each fracture.

Let us divide each fracture boundary �Fi in a part � D
i , on which a Dirichlet

boundary condition Hi = H D
i is imposed, and in a part� N

i , such that �Fi = � D
i �� N

i ,
� D

i � � N
i = �, on which a Neumann boundary condition �i

� Hi
�n = H N

i is imposed,
where n is an outward unit normal vector. The quantity � Hi

�� := �i
� Hi
�n is usually called

the co-normal derivative of the hydraulic head along the unit vector n, and it represents
the flux entering Fi through � N

i .
Let us introduce the following sets:

�� = �i�I�Fi , � D = �i�I� D
i , � N = �i�I� N

i .

We remark that � D is required to be non-empty, whereas some of the sets � D
i are

allowed to be empty, see Berrone et al. (2014).
Let us collect the traces in the following sets: let

S = �m�MSm

be the set of all traces in the network, and Si � S, for i � I, the subset of traces
belonging to Fi .

As usual, let us denote H1(Fi) the Sobolev space

H1(Fi) = {v � L2(Fi) : �v � [L2(Fi)]2}

and let us introduce �i � I the spaces

Vi = H1
0(Fi) =

�
v � H1(Fi) : v|� D

i
= 0

�

with dual V 	
i , and

V D
i = H1

D(Fi) =
�
v � H1(Fi) : v|� D

i
= H D

i

�
.

If � D
i is empty, Vi = H1(Fi).

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 5 of 33 9

The hydraulic head Hi on each fracture is solution to the following problem: find
Hi � V D

i such that �v � Vi

�

Fi
�i�Hi�vd� =

�

Fi
qivd� +

�

� N
i

H N
i v|� N

i
d� +

�

S�Si

�

S

��
� Hi

��i
S

��

S
v|Sd� , (1)

where qi � L2(Fi) is a source term on Fi ; H N
i is the Neumann boundary condition

imposed on � N
i ; � Hi

��i
S

= (ni
S)

T �i�Hi is the outward co-normal derivative of the

hydraulic head along a fixed unit vector ni
S normal to S, and

��
� Hi
��i

S

		

S
denotes its jump

along ni
S . We remark that the last term in (1) represents the net flow entering/exiting

the fracture through its traces. Continuity of the hydraulic head and flux balance along
the traces are ensured imposing suitable matching conditions at the traces: �m � M,
with i, j � Im ,

Hi |Sm � Hj |Sm = 0, (2)
��

� Hi

��i
Sm

��

Sm

+

��
� Hj

�� j
Sm

��

Sm

= 0. (3)

A PDE-constrained optimization reformulation of problems (1)–(3) was proposed
in Berrone et al. (2013a, b) and further developed in Berrone et al. (2014, 2016a,
2019). Within such reformulation, exact fullfilment of Eqs. (2) and (3) is replaced
by the minimization of a suitable functional measuring flux unbalance and continuity
mismatch at traces. Let us introduce the quantities

U Sm
i :=

��
� Hi

��i
Sm

��

Sm

+�Hi |Sm , U Sm
j :=

��
� Hj

�� j
Sm

��

Sm

+�Hj |Sm , (4)

for each m � M, with Im = (i, j), where � > 0 a fixed parameter. Collecting the
functions U Sm

i in the tuples

Ui = �
Sm�Si

U Sm
i � Ui :=

Sm�Si

H� 1
2 (Sm), U = �

i�I
Ui � U :=

i�I
Ui ,

we introduce the functional

J (H ,U) =
�

m�M

�
||Hi |Sm � Hj |Sm ||2

H
1
2 (Sm)

+ ||U Sm
i + U Sm

j � �
�
Hi |Sm + Hj |Sm

||2

H� 1
2 (Sm)

�
, (5)

123

 9 Page 6 of 33 GEM - International Journal on Geomathematics (2021) 12:9

with Im = (i, j). Taking into account (4), we rewrite Eq. (1) as

�

Fi

�i�Hi�vd� + �
�

m�M

�

Sm

Hi |Sm v|Sm d� =
�

Fi

qivd�

+
�

� N
i

H N
i v|� N

i
d� +

�

m�M

�

Sm

U Sm
i v|Sm

d� (6)

�v � Vi , �i � I. Then, Eqs. (1), (2) and (3) are equivalent to the problem

min J (H ,U)
subject to (6). (7)

By introducing suitable space discretizations on the fractures and on the traces (the
former possibly based on non-conforming meshes), problem (7) is reformulated as
a finite dimensional quadratic programming problem which can be solved via the
conjugate gradient method (see Berrone et al. 2015). This approach has been used in
conjunction with standard FEM, with XFEM for enriching the solution along traces
(Berrone et al. 2017), and with VEM (Benedetto et al. 2014). In all cases the meshing
process is independent on each fracture. An efficient parallel implementation has been
produced and tested (Berrone et al. 2019, 2015). The method has also been effectively
used in massive computations for uncertainty quantification analyses in a geometric
Multi Level Monte Carlo framework (Berrone et al. 2018), taking advantage of the
possibility of using very coarse meshes along all the network, even in presence of
critical geometrical configurations.

Notwithstanding the high deal of flexibility and efficiency of the method, simula-
tions on large scale realistic DFNs may be very costly; if uncertainty quantification
analyses have to be performed, a large number of simulations comes into play, and
this may be a prohibitive task. The approach proposed herein uses NNs as a model
reduction tool, which may be used to speed up, e.g., uncertainty quantification com-
putations.

In the next section we will recall the main ideas behind NNs and sketch their appli-
cation to the DFN flow simulation framework; in particular, a case with deterministic
geometry and random transmissivity will be addressed. The transmissivity tensor is
assumed herein to be homogeneous and isotropic, so that it can be represented, on
each fracture, as a scalar value.

The quite challenging case of stochastic geometry will be deferred to future work.

3 Vector valued regression methods for flux prediction

In this section we describe NNs used to address the problem of flux prediction in
DFNs. We adopt a well assessed methodology for constructing NNs, which we sum-
marize here for the reader’s convenience. After a brief introduction to the mathematical
background of NNs, we will describe the architecture used for tackling the problem,

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 7 of 33 9

sketching the corresponding algorithms, and the performance measures. In particular,
for the following description, we closely follow (Goodfellow et al. 2016).

3.1 Neural networks

NN are learning algorithms described through oriented weighted graphs N = (U , A),
where U is the set of nodes and A � U ×U is the set of edges, represented as ordered
pairs of nodes; each edge ai j = (ui , u j) is endowed with a weight wi j � R. Each
node u � U corresponds to a unit (also called neuron): it performs some selected
operations on the signals received and it sends its output to other units of the network.
Among all the nodes, some input and output units are present.

The behavior of a generic NN unit can be described as follows (see Goodfellow
et al. 2016, chapter 6.3). For each u j � U let Ent(u j) � U be the subset of nodes
connected to u j with an edge entering in it, namely

Ent(u j) = {ui � U |
 ai j = (ui , u j) � A} .

For each ui � Ent(u j), let yi � R be the output of unit ui . Let I j =�
ui �Ent(u j) yiwi j be the input of u j , and let f j : R � R be a function (usually

nonlinear, see Goodfellow et al. 2016, chapter 6.3), called activation function, asso-
ciated to unit u j . Then the output y j � R of unit u j is defined as

y j = f j
�
I j

. (8)

Any NN with n input units and m output units can be written as a function �F(• ;w) :
Rn � Rm given by the composition of all activation functions f j and all linear
functions I j , characterized by weights wi j , here collected in a vector w; in practice,
for each x � Rn and for a given vector of weights w, �F(x;w) returns a vector �z(w),
interpreted as the predicted output corresponding to the input x:

�z(w) = �F(x;w) . (9)

In the present work, we only consider supervised NNs, therefore we focus on the
description of their training principles.

3.1.1 Learning phase in neural networks

Given a function F : Rn � Rm , the main target of supervised NNs (and supervised
ML algorithms in general) is to build a function �F approximating F using a set D of
pairs (xk, zk), k = 1, . . . , D, such that zk = F(xk):

D =
�
(xk, zk) � Rn × Rm | zk = F(xk) for each k = 1, . . . , D

�
, (10)

where D is the cardinality of D (D = |D|). The learning or training phase of supervised
NNs corresponds to the computation of the weights w in order to minimize a given

123

 9 Page 8 of 33 GEM - International Journal on Geomathematics (2021) 12:9

error function. For example, one may consider the problem

min
w

� �F(x;w) � F(x) �2, (11)

for each x � Rn , where � • � denotes the 	2 (i.e., Euclidean) vector norm. The
selection of optimal weights w
 solving (11) is obtained as follows. Let T � D be a
so called training set. Without loss of generality, we assume that T is made of the first
T = |T | elements of D; then, the weights w
 are typically obtained using tailored
versions of the gradient method (thanks to backpropagation algorithm Goodfellow
et al. 2016, chapter 6.5) applied to problem

min
w

ET (w) (12)

where ET (w) = T �1 �T
t=1 Et (w) and Et (w) =� �z(w)

t � zt �2, for t = 1, . . . , T .
Usually, a maximum number cmax of iterations of the gradient method is fixed; for

this reason, each single step is considered as an epoch of the training phase. In order
to improve the learning phase of the NNs, alternative ways of training, the so-called
mini-batch methods (Goodfellow et al. 2016, chapter 8.5), have been introduced; these
methods consider training epochs as composed from more than one step of the gradient
method, each one with a gradient computed with respect to a random subset B � T
instead of T itself.

3.1.2 Regularization methods

Since in supervised NNs the target is to find the best weights w
 that approximate those
that minimize (11), an exact solution w

T of problem (12) (or a too good approximation
of it) actually is not always needed. Indeed, weights too close to w

T typically lead
to overfitting phenomena: very good approximation of F in training points, but poor
everywhere else; on the other hand, a bad approximation of w

T leads to underfitting
phenomena, where the approximation of F has an extremely low accuracy for all
x � Rn .

To avoid both underfitting and overfitting phenomena in ML algorithms, regular-
ization methods are introduced. Let P = D\T be the test set where performance of
the NN is evaluated, computing error EP ; in NNs the regularization methods mainly
consist in favoring modifications of standard training methods, looking for weights,
among those computed in the training phase, that will minimize the test error. To this
aim, a validation set V � T , a sort of test set inside the training set, is considered
and used to predict test error behavior during learning phase. Then, the NN is trained
on T \V , while EV is monitored; weights corresponding to low validation errors EV
are likely to also correspond to low test error values and to provide a NN with good
generalization skills. Following the nomenclature commonly used when validation
sets come into play, from now on we redefine the training set as T = D\P\V .

A very simple regularization method (used not only for NNs but also for more
general supervised ML algorithms) is the early stopping method (Goodfellow et al.
2016, chapter 7.8): the validation error EV is monitored at each epoch, and the training

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 9 of 33 9

phase is interrupted if the error increases for a certain number of epochs. Indeed, since
test error and validation error are expected to behave similarly, stopping the training
when EV is low should guarantee better performances of the model.

Early stopping regularization can be summarized as follows. Let p
 � N, p
 > 0,
be a parameter (called patience parameter); the training is stopped if the validation
error increases for p
 consecutive epochs. An additional advantage of early stopping
regularization is that it speeds up the training, since many unnecessary training cycles
are not computed.

Another simple regularization method, which again can be used in conjunction
with any supervised ML algorithm, is the “minimum validation method” that chooses
as final trained weights w
 those that have minimized the validation error among all
training epochs, namely, the solution to the problem

min
training w

EV (w) . (13)

Herein, we used a combination of the early stopping and “minimum validation
error” regularization methods. The combination of the two methods aims at speeding
up the training time (early stopping method with p
 not too small) and improving the
performance (minimum validation error method).

3.1.3 Fully-connected layers in neural networks

In most NN applications the graph architecture is characterized by layers, subset
of units not connected to each other and connected only to units of other layers.
The standard example of such a network is the fully-connected network (Fig. 1),
characterized by a partition U0, . . . ,Uh+1 of the nodes set U such that, for each
i = 1, . . . , h, each unit in layer Ui is connected only to all units in layers Ui�1 and
Ui+1 with edges oriented in the direction of increasing indexes of partition sets. Layers
U0 and Uh+1 are the sets of input and output units, respectively, and they are called
input layer and output layer; all other subsets U1, . . . ,Uh are called hidden layers,
since they are not directly in touch with input and output data of the problem. The
parameter h is the depth of the network.

Usually, this kind of networks are preferred since they give advantages during the
gradient computation with backpropagation.

3.2 Problem setting

In the test problem addressed in this paper, we consider a DFN with N fractures
characterized by a fixed geometry, whereas fracture transmissivities �1, . . . , �N are
either constant or modeled as random variables with log-normal distribution; more
precisely, for a given n � N , we consider n fractures having

log10 �i � N (�5, 1/3) , � i = 1, . . . , n , (14)

123

 9 Page 10 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Fig. 1 Example of NN with
fully-connected layers (depth 1)

Input Layer

Hidden Layer

Output Layer

whereas for the remaining N �n fractures we set �i = 10�5 = fl� . The transmissivities
values sampled range from �min � 5 • 10�7 to �max � 10�4. Note that without loss
of generality we assume that the fractures with random �i are the first n fractures. In
the analysis several values of n will be considered. We impose boundary conditions
in such a way that a number of fractures act as inlet flow fractures, whereas a number
M act as outflow fractures, independently of the values of the transmissivities (see
Sect. 4 for details). One of the major interests in such kind of applications relies in
the computation of the total exiting flux and of its distribution among the outflow
fractures. Frequently, most of the outflow occurs through a subset of the total number
of exit fractures, so we focus our analysis assuming that a number m � M of outputs
is under investigation.

In the following subsection we describe the NN architecture used to address this
issue.

3.2.1 Architecture

The NN architecture adopted for the flux regression problem is based on the multi-task
learning structure described in Goodfellow et al. (2016), chapter 7.7. Such architectures
are generally used when different tasks (the regression of the m outgoing flows, in our
case) share common input variables (the n fracture transmissivities); the underlying
assumption is that part of the information used for the training is shared by all the tasks,
while other pieces of information are task-specific. These NNs are characterized by
two typologies of layers:

– shared layers: layers shared by all the tasks. These layers are usually the first layers
of the NN after the input layer. The weights of these layers benefit of the training
effects from data associated to all tasks;

– task-specific layers: layers separated from other tasks. These layers are usually
the last layers of the NN, ending in the output layer/unit representing one of the
tasks. The weights of these layers benefit of the training effects only from data of
the corresponding task.

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 11 of 33 9

Input Layer

Hidden Layer 1

Hidden Layer 2

Hidden
Layer 3.2

Hidden
Layer 3.1

Hidden
Layer 4.1

Hidden
Layer 4.2

Output
Layer 2

Output
Layer 1

Fig. 2 Example of NN built for vector valued regression concerning flux prediction (n = 3, m = 2, d = 2)

The idea behind multi-task NN architectures is to build one model for all the tasks,
instead of building a NN model for each task; in particular the idea is that the gen-
eralization ability of the NN can be improved thanks to the shared layers; obviously,
the improvement can be achieved only if a relationship between the different tasks
actually exists.

Let us consider n � N (fixed) fractures with stochastic transmissivities and m � N
(fixed) boundary outflow fractures. Let d � N be a parameter characterizing the depth
of the NN and let us consider the following subnetworks:

– N0: A fully-connected NN of depth (d � 1) in which each layer has n softplus
units;

– N1, . . . , Nm : m fully connected NNs of depth (d � 1) in which each layer has
n softplus units, with the exception of the last (output) layer which has only one
linear unit, characterized by the identity activation function.

The choice of using softplus activation function was made after a preliminary inves-
tigation, comparing the performances obtained also with other activation functions.

Then, the overall multi-task NN is obtained connecting the last layer of N0 to the
first layers of N1, . . . , Nm , resulting in a 2d-depth NN with n inputs and m outputs
(see Fig. 2).

3.2.2 Dataset characterization

Let us introduce the following notation. Let �� = [�1, . . . , �N]� � RN be the vector
collecting all the transmissivities, and let � � Rn be the subvector containing the

123

 9 Page 12 of 33 GEM - International Journal on Geomathematics (2021) 12:9

random transmissivities. Without loss of generality, we assume herein that the deter-
ministic transmissivities are set to the common value fl� = 10�5, and that the fractures
with random transmissivity are the first n, so that �� = [� , fl�, . . . , fl�]�.

Then, let �� = [
1, . . . ,
M]� � RM be the vector collecting all the exit flows, and
� � Rm the subvector containing the m components under investigation, which again
we assume, for the ease of notation, to correspond to the first m components.

Let F : RN � RM be a function defined by

�� = F(��), (15)

that is, the function that provides the vector of outflows associated to the transmissivity
input �� . Then, let Fnm : Rn � Rm be the function that provides the subset of exit
flows under investigation � as a function of the vector of random transmissivities � ,
being the other transmissivities fixed to the value fl� , namely

Fnm(�; fl�) = �. (16)

Let us consider a number D � N of samples �k � Rn , k = 1, . . . , D. The dataset
D used for the creation of the training set, the test set and the validation set is

D =
�
(�k,�k) � Rn × Rm | Fnm(�k; fl�) = �k , � k = 1, . . . , D

�
. (17)

Starting from D, the test set is created as a subset P � D obtained by randomly
picking approximately 30% of the elements in D. The remaining elements are ran-
domly split into two subsets T and V , representing the training set and the validation
set, respectively, and such that |V| � 20% |D\P|.

4 Numerical results

In this section we present numerical results obtained performing vector valued regres-
sion on a given DFN. The DFN is made of fractures immersed in a 3-dimensional
cubic domain D of edge 	 = 1000 m (see Figs. 3, 4). The fractures are represented as
disks (modeled as octagons) and have been randomly generated sampling the geomet-
rical parameters from given distributions, frequently used in the framework of DFN
modeling (Svensk Kärnbränslehantering 2010; Hyman et al. 2016): truncated power
law with cut-off for fracture radii, with exponent � = 2.5 and upper and lower cut-off
ru = 560 and r0 = 50, respectively; Fischer distribution for orientation, along a mean
direction µ = (0.0065, � 0.0162, 0.9998) with dispersion parameter 17.8; uniform
distribution for mass centers. Eight interconnected fractures have been generated with
deterministic position and size, linking two opposite faces of D which will act as
inlet and outlet faces, in order to guarantee that these faces are connected. Then, 400
fractures have been stochastically sampled from the overmentioned distributions and
added to the deterministic fractures; finally, a connectivity analysis is performed in
order to identify fractures disconnected from the network, which do not contribute
to the flow through the network and are therefore removed. After the connectivity

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 13 of 33 9

Fig. 3 DFN107. 3D view of the geometry of the network in the domain D

analysis, the resulting main connected component is made of N = 107 fractures. For
future reference, we label this network DFN107.

We impose boundary conditions in such a way that two opposite faces of D represent
an inlet and outlet face, respectively; with reference to Fig. 3, we impose a Dirichlet
boundary condition H = 10 on fracture edges created intersecting the DFN with
the leftmost face of D, corresponding to x = 0, and H = 0 on the edges obtained
intersecting the DFN with the rightmost face of D (x =).

In test problem DFN107 the total number of outflow fractures is M = 7. Here the
analysis is focused on a subset of m = �M/2� = 4 fractures, which are selected as
those exhibiting the largest average exit flows among all the fracture transmissivity
samplings; referring to the global indexing, they are fractures F8, F33, F62, F105.

123

 9 Page 14 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Fig. 4 DFN107. Graph visualization. Nodes correspond to fractures, and are numbered according to the
fracture numbering. Edges correspond to fracture intersections. Magenta and green markers highlight inlet
and outlet fractures, respectively

Since from now on m is fixed, for the ease of notation we drop the dependence from
m and fl� in (16), so we set Fn(�) := Fnm(�; fl�). For a fixed n � N , we will denote by
�Fn(�) = �Fn(�; �w
) the NN function approximating Fn obtained with the training.

4.1 Dataset preparation

We will consider, in the following, the cases n = 30 (� 30% of the total number of
fractures N), n = 80 (� 75% of N) and n = 107 = N . For each case a dataset Dn is
created with |Dn| = D = 10,000:

Dn =
�
(�k,�k) � Rn × R4 | Fn(�k) = �k , � k = 1, . . . , D

�
. (18)

Then Dn is split as Dn = Pn � Tn � Vn (see Sect. 3.2.2) with |Pn| = P = 3000,
|Vn| = V = 1400 and |Tn| = T = 5600. The values of �k have been obtained
with the method described in Sect. 2. Fluxes and transmissivities here are reported in
mm2s�1 instead of m2s�1, getting rid of a factor 10�6.

For each n = 30, 80, 107, four NNs are built, characterized by the architecture
described in Sect. 3.2.1, with the following parameters:

– depth parameter d = 1, 3 (then NNs have depth varying among values 2d = 2, 6);
– mini-batch size B = |Bn| = 10, 30 (Sect. 3.1.1).

The NNs have been trained using a mini-batch method with mini-batch set Bn � Tn of
cardinality B and characterized by a combination of the early stopping and “minimum
validation error” regularization methods (Sect. 3.1.2). We fixed the maximum number

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 15 of 33 9

of training epochs to cmax = 1000 and the patience parameter for early stopping
method to p
 = 150.

All the NNs have been implemented using the keras (Chollet et al. 2015) machine
learning package in python 3 (tensorflow backend, Abadi et al. 2015), while for data
preparation we mainly used pandas (McKinney 2010) and scikit-learn (Pedregosa
2011) packages. Training of NNs was performed by means of the ADAM optimizer
implemented in keras package, with its default options. ADAM, originally described in
Kingma and Ba (2014), is a stochastic gradient-based optimization method considered
as the state of the art method for training NNs.

From now on, we will refer to these NNs with the following notation:

N B
n,d , � n = 30, 80, 107 , � d = 1, 3 , � B = 10, 30 . (19)

After the training, the performances of all the NNs (19) have been compared (Sect. 4.3)
performing a grid search method (Goodfellow et al. 2016, chapter 11.4.3) with respect
to parameters n, d and B. This method is used in order to choose the hyper-parameters
most suitable for the target of the problem. To this aim, in Sect. 4.2, we introduce the
performance measures necessary for the comparisons.

4.2 Performance measures

We start our analysis presenting some performance measures used to evaluate flux
regression models.

Let � � Rn be an input vector and let � � Rm be the corresponding vector of actual
fluxes (computed via a DFN simulation) and �� the vector of fluxes predicted by a NN
N . We consider the following errors:

ea(��) := |� � ��| = (|
1 � �
1|, . . . , |
m � �
m |) (absolute errors)

er (��) := ea(��) •
1

�M
i=1
i

(relative errors)
(20)

Note that the relative errors are computed with respect to the total exit flow
�M

i=1
i .
In order to assess the performance of regression models, we consider a test set P

and introduce the following error sets:

Ea(N ; P) =
�
ea(�� p) � Rm | � (� p,� p) � P

�
,

ea(N ; P) =
�
ea

j (�� p) � R | � (� p,� p) � P , � j = 1, . . . , m
�

,
(21)

being ea
j (�� p) the j th element of ea(�� p); in practice, ea(N ; P) is the set of all the

components of all vectors ea(�� p) � Ea(N ; P). Similar definitions hold for the
relative errors.

Then, we introduce statistic information on Ea(N ; P) (e.g., expected value, sam-
ple standard deviation, percentiles, etc.) componentwise; for example, the vector of

123

 9 Page 16 of 33 GEM - International Journal on Geomathematics (2021) 12:9

7010803
n

0

0.005

0.01

0.015

0.02

0.025
m

ea
n

re
la

tiv
e

er
ro

r
(%

 o
f t

ot
al

 o
ut

flo
w

 fl
ux

)
d=1, B=10
d=3, B=10
d=1, B=30
d=3, B=30

7010803
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
ea

n
ab

s.
 e

rr
or

d=1, B=10
d=3, B=10
d=1, B=30
d=3, B=30

Fig. 5 DFN107. Mean errors in the flux prediction obtained with N B
n,d versus the number of input units n, for

several values of the depth parameter d and mini-batch size B. Left: mean relative error E[er (N B
n,d ; Pn)];

right: mean absolute error E[ea(N B
n,d ; Pn)]

expected values E[Ea(N ; P)] � Rm is such that

E[Ea(N ; P)] = |Ea(N ; P)|�1
�

(� p,� p)�P

ea(�� p) =
�
E[ea

1(�� p)], . . . , E[ea
m(�� p)]

�� . (22)

On the other hand, statistic information about set ea(N ; P) provides a global
description of absolute errors, with respect to all fractures together; therefore, for
example, expected value E[ea(N ; P)] is the scalar value such that

E[ea(N ; P)] = |ea(N ; P)|�1
�

(� p,� p)�P

m�

j=1

ea
j (�� p) . (23)

Analogous definitions hold for Er (N ; P), er (N ; P) and the corresponding statis-
tic information.

4.3 Regression results and performance comparisons

A first comparison of the performances of the NNs listed in (19) is obtained observing
the mean relative errors on the test sets for all outflow fractures (see Fig. 5), namely

E[er (N B
n,d ; Pn)] , � n = 30, 80, 107 , � d = 1, 3 , � B = 10, 30 . (24)

As seen in Fig. 5, E[er (N B
n,d ; Pn)] is generally increasing with respect to the input

dimension n, whereas it is in general decreasing with respect to d, for fixed n and B,
and increasing with respect to B, for fixed n and d, with few exceptions. However,
we remark that the dependence of the errors on the parameter d is rather moderate,
denoting a good stability of the approach with respect to the depth of the architecture.

As far as the training times and last training epochs are concerned, we can observe
that the number of epochs and the training time generally increase with respect to the

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 17 of 33 9

7010803
n

00:10

00:15

00:20

00:25

00:30

00:35

00:40

00:45

00:50

00:55

01:00
tra

in
in

g
tim

e
(h

h
: m

m
)

d=1, B=10
d=3, B=10
d=1, B=30
d=3, B=30

7010803
n

400

500

600

700

800

900

1000

la
st

 tr
ai

ni
ng

 e
po

ch

d=1, B=10
d=3, B=10
d=1, B=30
d=3, B=30

Fig. 6 DFN107. Training time (left) and training epochs (right) of N B
n,d versus the number of input units

n, for several values of the depth parameter d and mini-batch size B

depth of the network and decrease with respect to mini-batch size B; however, due
to the stochastic nature of the ADAM optimizer and a not small patience parameter
(p
 = 150), these relationships show many exceptions (Fig. 6). These results however
suggest that the choice of the batch size and of the depth can impact on the efficiency,
and a deeper investigation on the hyper-parameters is worth being addressed, in order
to improve efficiency; such investigation is deferred to future work as the main focus
here is on accuracy of the NNs.

In the next section a detailed analysis of N
 := N 10
107,3 is proposed. The choice

is motivated by the fact that the case n = 107 = N is the one in which all fractures
are characterized by a random transmissivity, which is typically the most interesting
case, also in practice; for this value of n, the previous analysis shows that the best
performances are attained with d = 3 and B = 10.

4.4 Detailed analysis of N � neural network

A first glance at the predicting ability of N
 is given by its detailed statistic information
on errors reported in Table 1, both with respect to each outflow fracture and globally;
in particular, in this table, the mean value E, the sample standard deviation � , the
main percentiles and the minimum and maximum values are reported, with respect to
er (N
 ; P107) and for elements of vectors er (�� p) � Er (N
 ; P107) (see (22) and (23)
for descriptions about evaluation of these statistic informations).
The results obtained show that mean values are quite satisfactory: the average error,
considering all the outflow fractures, is � 1.8% of the total exiting flux. The good
predicting ability of N
 can be also observed in Fig. 7, where the regression scatter
plots are reported; the red lines correspond to exact prediction.

For a more detailed analysis of the results obtained with N
, the distributions of the
actual fluxes and of the predicted fluxes are compared. In particular, the dissimilarity
between the two distributions can be quantified by means of two divergence measures,
the Kullback–Leibler divergence (Kullback and Leibler 1951; Kullback 1968) and the
Jensen–Shannon divergence (Amari et al. 1987; Lin 1991).

123

 9 Page 18 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Table 1 DFN107

er (N
 ; P107) Er (N
 ; P107)

(global) (F8) (F33) (F62) (F105)

Number of elements 12,000 3000 3000 3000 3000
E 0.0180 0.0241 0.0188 0.0155 0.0135
� 0.0219 0.0297 0.0201 0.0182 0.0154
Min 0.2e�5 1.5e�5 0.2e�5 0.2e�5 1.1e�5
50th percentile 0.0117 0.0158 0.0134 0.0102 0.0091
75th percentile 0.0230 0.0308 0.0249 0.0198 0.0174
97th percentile 0.0692 0.0952 0.0682 0.0591 0.0513
Max 0.4296 0.4296 0.2808 0.2669 0.1671

Statistic information on relative errors with respect to predictions of N
 (n = N = 107, d = 3, B = 10)
on P107

Fig. 7 DFN107. Fluxes predicted by N
 on inputs of P107 versus the corresponding actual fluxes. Left:
scatter plots for each outflow fracture; right: cumulative plot. Red lines correspond to exact predictions

The Kullback–Liebler (KL) divergence DKL(P||Q) between two continuous dis-
tributions P and Q, defined on the same probability space, with probability density
functions p and q, respectively, is defined by the following integral (Bishop 2006):

DKL(P||Q) =
� +�

��
p(x) log

�
p(x)
q(x)

�
dx . (25)

Note that DKL is always greater than or equal to zero; distributions P and Q are equal
almost everywhere if and only if DKL(P||Q) = DKL(Q||P) = 0. KL divergence
is indeed not symmetric; in order to introduce a symmetric divergence, the Jensen–
Shannon (JS) divergence can be taken into account:

DJS(P||Q) =
1
2

(DKL(P||Q) + DKL(Q||P)) . (26)

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 19 of 33 9

Again, DJS(P||Q) = 0 if and only if P = Q almost everywhere. KL and JS diver-
gences are also defined for two discrete probability distributions P and Q defined on
the same probability space, on a discrete set X , as follows (MacKay 2002):

DKL(P||Q) =
�

x�X
p(x) log

�
p(x)
q(x)

�
, (27)

where p and q are the probability mass functions of P and Q, respectively.
In the next subsections we will analyze differences between distributions of actual

fluxes and fluxes predicted by N
.

4.4.1 Comparison of flux distributions for N �

Let A � RN × R4 be a given set (e.g. the test set P); for each (�,�) � A, let �� � R4

be the prediction of � made by N
 for a given � and, for each j = 1, . . . , 4, let
 j
and �
 j be the j th elements of � and ��, respectively. For each j = 1, . . . , 4, we will
denote by q j (A) and �q j (A ; N
) the probability density functions (pdf) of
 j and �
 j ,
respectively, on the set A.

Since continuous distributions of fluxes (both actual and predicted ones) are not
given a priori, distributions q j (A) and �q j (A ; N
) have been computed with Matlab
routine ksdensity, which performs kernel density estimation of probability distributions
from data; the functions obtained are discrete approximations of the pdf, and therefore
we will refer to them as probability mass functions (pmf); correspondingly, the KL
and JS divergences between two distributions characterized by the two estimated pmfs
have been computed using the discrete version of KL divergence described in (27).

We can now analyze prediction performances of N
 comparing q j (P107) and
�q j (P107 ; N
), for j = 1, . . . , 4, where P107 is the test set of D107 (see (18)). A
first comparison can be made observing Fig. 8 and Tables 2 and 3: for each j , not only
actual and predicted distribution plots are very similar (see Fig. 8) but also expected
values, sample standard deviation values and percentile values are remarkably close
(compare values in Tables 2, 3).

In order to obtain a quantitative measure of similarity between the actual and
predicetd pmf, we compute their KL and JS divergences, which are reported in Table 4.
All divergence values are smaller than 0.01, confirming previous deductions.

These results in particular suggest that, even if some high prediction errors may
occur (e.g., values in “max” row of Table 1), they are negligible from the statistical
point of view and N
, with its predictions, reconstructs flux distributions very similar
to the actual ones.

4.4.2 Running N � on inputs with partially fixed transmissivities

In this section we highlight the capability of N
 to predict fluxes also within a frame-
work not addressed in its training phase; namely, a case in which only a subset of
transmissivities are actually random, despite N
 has been trained considering all
transmissivites as log-normal random variables.

123

 9 Page 20 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Fig. 8 DFN107. Pmf of actual fluxes in P107 (q j (P107)) compared with the corresponding pmf obtained
from N
 flux predictions on inputs of P107 (�q j (P107; N
))

Table 2 DFN107

q1(P107) q2(P107) q3(P107) q4(P107)
(F8) (F33) (F62) (F105)

Number of elements 3000 3000 3000 3000
E 17.4447 8.8383 9.1650 8.0058
� 9.8431 4.7194 5.5791 5.2130
Min 1.2334 0.3559 0.4514 0.08256
3th percentile 4.2222 2.3880 2.0169 1.3648
50th percentile 15.3146 8.0007 8.0479 6.9079
75th percentile 22.8561 11.3141 12.0380 10.6672
97th percentile 40.0750 19.5170 21.4465 20.4751
Max 73.2941 37.2726 44.7325 38.2596

Statistics on actual fluxes (mm2 s�1) in P107

To this aim, let us consider datasets D30 � R30 × R4 and D80 � R80 × R4 used
for creation of training set and test set of NNs N B

30,d and N B
80,d (for each d = 1, 3,

B = 10, 30), respectively. Then, we create sets �D30, �D80 � R107×R4 by extending the
transmissivity vectors to vectors in RN , setting the additional elements to the constant
value fl� . By means of sets �D30 and �D80, we can therefore test performances of N

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 21 of 33 9

Table 3 DFN107

�q1(P107 ; N
) �q2(P107 ; N
) �q3(P107 ; N
) �q4(P107 ; N
)
(F8) (F33) (F62) (F105)

Number of elements 3000 3000 3000 3000
E 17.4866 8.7957 9.0551 7.9320
� 9.5208 4.5331 5.3992 5.0926
Min 2.0972 1.5140 -3.7443 0.8239
3rd percentile 4.7918 2.6595 1.9861 1.4126
50h percentile 15.4199 7.9420 7.9850 6.8133
75th percentile 22.6945 11.2383 11.8539 10.6492
97th percentile 39.9464 19.2921 21.1260 19.8495
Max 63.0359 37.9709 38.6921 36.0230

Statistics on N
 predicted fluxes (mm2s�1) obtained on inputs of P107

Table 4 DFN107

Divergence j = 1 j = 2 j = 3 j = 4
(F8) (F33) (F62) (F105)

DKL(�q j (P107 ; N
) || q j (P107)) 0.0034 0.0047 0.0021 0.0027
DKL(q j (P107) ||�q j (P107 ; N
)) 0.0074 0.0053 0.0074 0.0015
DJS(q j (P107) ||�q j (P107 ; N
)) 0.0054 0.0050 0.0048 0.0021

Kullback–Liebler and Jensen–Shannon divergences between distributions of actual fluxes in P107
(q j (P107)) and distributions of N
 predicted fluxes on inputs of P107 (�q j (P107 ; N
))

Table 5 DFN107

Divergence j = 1 j = 2 j = 3 j = 4
(F8) (F33) (F62) (F105)

DJS(q j (D30) ||�q j (�D30 ; N
)) 0.0070 0.0079 0.0036 0.0097

DJS(q j (D80) ||�q j (�D80 ; N
)) 0.0053 0.0086 0.0025 0.0150

Jensen–Shannon divergences between distributions of actual fluxes in D30, D80 (q j (D30), q j (D80)) and
distributions of N
 predicted fluxes on inputs of �D30 and �D80 (�q j (�D30 ; N
), �q j (�D80 ; N
))

on cases with random transmissivities restricted to the first 30 and 80 fractures. We
remark that since N
 has been trained and tested on D107, the whole datasets �D30 and
�D80 can now be used for testing N
, as none of their pairs has been used in training
N
.

In Table 5 we report the JS divergences of q j (Dn) � q j (�Dn) and �q j (�Dn ; N
), for
n = 30, 80, and for j = 1, . . . , 4. The very low divergence values (most of them are
again smaller than 0.01) highlight a good approximation of pmf q j (Dn) made by N

predictions and therefore also a good generalization ability with respect to new inputs
� � RN with several fixed transmissivities.

123

 9 Page 22 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Table 6 DFN107

Divergence j = 1 j = 2 j = 3 j = 4
(F8) (F33) (F62) (F105)

DJS(q j (P30) ||�q j (�P30 ; N
)) 0.0062 0.0063 0.0047 0.0095

DJS(q j (P30) ||�q j (P30 ; N 10
30,3)) 0.0015 0.0004 0.0003 0.0001

DJS(q j (P80) ||�q j (�P80 ; N
)) 0.0044 0.0050 0.0029 0.0121

DJS(q j (P80) ||�q j (P80 ; N 10
80,3)) 0.0009 0.0025 0.0028 0.0029

Top two rows: Jensen–Shannon divergences between distributions of actual fluxes in P30 (q j (P30)) and
distributions of predicted fluxes on inputs of �P30 and P30, respectively (�q j (�P30 ; N
), �q j (P30 ; N 10

30,3)).
Bottom two rows: same as top two rows, but on �P80, P80

We end this section comparing the behavior of N
, in the case of partially fixed
transmissivity, with those of the NNs specifically trained in the corresponding frame-
work (namely, N 10

30,3 and N 10
80,3).

For all j = 1, . . . , 4, let�q j (P30 ; N 10
30,3) and�q j (P80 ; N 10

80,3) be the pmf of predicted
fluxes obtained by N 10

30,3 and N 10
80,3, respectively, on their corresponding test sets. We

evaluate JS divergence between q j (Pn) and distributions of predictions of N
 and
N 10

n,3 (see Table 6) on �Pn and Pn , respectively, where n = 30 , 80 and sets �Pn are
obtained extending Pn as previously depicted for �Dn . As expected, JS divergence
values for the NN specifically trained are smaller than those for N
. However, N 10

30,3
and N 10

80,3 in general don’t outperform N
 and therefore, in view of the possibile need
to apply the method in a quite general framework, possibly with different choices of n,
it seems to be worthwhile to train a single NN (e.g., N
) on the general case n = N ,
instead of training a NN for each n value to be considered.

5 N � and uncertainty quantification

In Sect. 4.4.1 we observed that the pmf �q j (P107 ; N
), predicted by N
, well approx-
imates q j (P107) for each j = 1, . . . , 4. These results prove the ability of the NNs
to correctly reproduce the statistical properties of the phenomenon, and suggest that
NNs can also be used as a support for performing uncertainty quantification (UQ)
analyses. While deferring to a further work a thorough analysis, we anticipate here
some preliminary results about effectiveness of the approach. The effectiveness may
of course depend on a trade-off between the number of simulations needed for the
training and the number of simulations needed by the UQ analysis. In this respect,
deeper investigations on the NN topology can strongly reduce the dimension of the
training set.

In order to investigate these aspects we start our preliminary investigation analysing
the sensitivity of NN performances with respect to the cardinality of the training and
validation set t = |T � V|. Namely, focusing on the architecture already depicted in
Sect. 3, and on the parameters d, B used for N
, we consider different variants of the
NN, training it on sets with different cardinality and where 20% of elements are used

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 23 of 33 9

Fig. 9 DFN107. Pmf of actual fluxes in P107 (q j (P107)) compared with the corresponding pmf
�q j (P107; N

t) obtained from N

t flux predictions on inputs of P107, for several values of the training

and validation set size t

as validation set (i.e. |V| = 20% |T � V|); thus we introduce the NNs

N

t , � t � {500, 1000, 2000, 4000 , 7000} . (28)

Hence, N

7000 � N
. In order to compare the behavior of these NNs, we compare the

predicted pmf with the pmf of the actual fluxes using the common test set P107 (see
Fig. 9). Furthermore, we compute the JS divergences between these distributions and
the ones with pmf q j (P107), for each j = 1, . . . , 4. Note that, as expected, the accuracy
of the predicted pmf deteriorates while decreasing the cardinality of the training and
validation set; nonetheless, a quite good similarity between the pmfs is obtained also
for moderate values of t (see Table 7).

Encouraged by the good agreement between NNs predictions and actual DFNs
simulations, we apply Monte Carlo method (MC) for first order moment estimation,
comparing the results obtained with actual fluxes and with predicted ones, for each
t � {500, 1000, 2000, 4000 , 7000}. The results obtained for fractures F33 and F105
are reported in Fig. 10, and they are in good agreement with the behavior highlighted
in Fig. 9. Note that the two fractures are those for which the divergence values are—for
fixed t-approximately the largest and the smallest, respectively (see Table 7). As far
as the mean value is concerned, we note that, for fracture F33, t = 500 and t = 1000
are not enough to obtain a good approximation of the mean value using MC, as the
approximation obtained with the predicted fluxes is not close to the one obtained

123

 9 Page 24 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Table 7 DFN107 t j = 1 j = 2 j = 3 j = 4
(F8) (F33) (F62) (F105)

500 0.1540 0.2357 0.1994 0.1205
1000 0.0875 0.1793 0.0812 0.0524
2000 0.0246 0.0505 0.0583 0.0264
4000 0.0146 0.0223 0.0145 0.0047
7000 0.0054 0.0050 0.0048 0.0021

Jensen–Shannon divergences between distributions of actual fluxes in
P107 (q j (P107)) and distributions of N

t predicted fluxes on inputs of
P107 (�q j (P107 ; N

t)) for several values of the training and validation
set size t

500 1000 1500 2000 2500 3000
num. of samples

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

E
xp

ec
te

d
V

al
ue

actual

N*
7000

N*
4000

N*
2000

N*
1000

N*
500

500 1000 1500 2000 2500 3000
num. of samples

7.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

E
xp

ec
te

d
V

al
ue

actual

N*
7000

N*
4000

N*
2000

N*
1000

N*
500

Fig. 10 DFN107. Monte Carlo mean value estimates of the exiting flux versus number of samples, using
actual DFN simulations and N

t predictions, for several values of the training and validation set size t . Left:
fracture F33; right: fracture F105

using actual fluxes; on the other hand, training the NN with t = 2000 already yields
an estimate of the mean value which is quite close to the one obtained with MC on
actual fluxes (the difference is approximately settled to 1%).

We end this section comparing computing times needed to apply MC method with
real simulations and to apply MC with the predicted fluxes. All the simulations, the
training of the NNs and the flux predictions using NNs have been computed on a
workstation with two AMD Opteron Processors, Interlagos type, 12 cores, Ram 32
GB; the simulations have been performed using FEM with approximately 100 mesh
elements on each fracture, and a stopping relative tolerance for the conjugate gradient
method equal to 10�7. Using these parameters, the average computing time of a single
DFN simulation is approximately 5.5 seconds, whereas the average computing time
for a prediction with N

t is approximately 0.137 •10�3 seconds; namely, as an average
a prediction is approximately 4 • 104 times faster than a real simulation

As far as the training time is concerned, it is partially dependent on the cardinality
of the training set and on the parameters that characterize the NN (see Sect. 4.3 and
Fig. 6). In Table 8 we show the computing time needed for the training phase of
N

t , for each t � {500, 1000, 2000, 4000, 7000}. Note that the training time abruptly
increases when passing from t = 2000 to t = 4000. This behavior is probably due

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 25 of 33 9

Table 8 DFN107

t Avg. time for T � V creation Training time Total time

500 00:45:50 00:02:11 00:48:01
1000 01:31:40 00:04:54 01:36:34
2000 03:03:20 00:08:40 03:12:00
4000 06:06:40 00:53:06 06:59:46
7000 10:41:40 00:56:53 11:38:33

Total computing time for training N

t for several values of the training and validation set size t (time

expressed as hh:mm:ss)

to the presence of a larger number of outliers in the training set, which are therefore
more likely to be selected during the mini-batch selection for gradient evaluation
(see Sect. 3.1); this results in a slower descent during the training optimization that
hinders the early stopping regularization method to work well (considering the patience
parameter p
 = 150).

As a whole, we observe that most of the computing time has been spent running
DFN simulations for training and validation sets creation, being the training time
typically a small fraction of the set creation time (approximately 1/6 in the worst
case, but in the other cases ranging from 0.04 to 0.09). Note that the total training
cost is considerably dampened if a single NN is trained, and then applied in several
frameworks, as suggested from the analysis in Sect. 4.4.2.

From the observations made in this section, we conclude that the use of NNs for
UQ is promising, considering that a fine tuning of the NN architecture and hyper-
parameters would improve effectiveness of the NNs.

6 Robustness with respect to network size

In this section we highlight the robustness of the method showing the results of its
application to other networks with different number of total fractures and of outflow
fractures. Namely, we consider three additional networks randomly sampled according
to the same lines used for DFN107, but with a larger number of fractures. The three new
networks, after connectivity analysis, are made of 158, 202 and 395 fractures, and are
labeled DFN158, DFN202 and DFN395, respectively. In Table 9 we report, for each
network, data concerning the number of traces per fracture and the trace length. The
distribution are similar as the networks are obtained starting from the same distribution,
nonetheless they represent quite general and realistic configurations.

The number of outflow fractures of DFN158, DFN202 and DFN395 is M = 7,
M = 14 and M = 13, respectively; as already done for DFN107, we focus the
analysis on a subset of outflow fractures carrying the largest exit flow mean values,
setting therefore m = 4 for DFN158 and m = 7 for DFN202 and DFN395.

Following the observations made in Sect. 4.4.2, we focus here on the case in which
all fractures have a random transmissivity, namely on the case n = N , performing on
each new test case a grid search method limited to parameters d = 1, 3 and B = 10, 30.

123

 9 Page 26 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Table 9 Data on traces’ length and number for the DFNs considered

Trace number Trace length (m)

DFN Min Aaverage Max Min Average Max

DFN107 1 3.59 16 1.54 94.52 504.29
DFN158 1 3.23 17 0.25 101.02 333.41
DFN202 1 3.28 18 1.85 85.84 549.31
DFN395 1 3.18 19 0.04 74.75 389.94

Table 10 Mean relative errors E[er (N B
d ; P)] for several values of depth parameter d and mini-batch size

B, for all the considered test cases (n = N fixed)

DFN107 DFN158 DFN202 DFN395

d = 1 d = 3 d = 1 d = 3 d = 1 d = 3 d = 1 d = 3

B = 10 0.0196 0.0180 0.0221 0.0262 0.0116 0.0175 0.0234 0.0258
B = 30 0.0235 0.0221 0.0212 0.0234 0.0129 0.0161 0.0245 0.0260

For each DFN the smallest errors are in bold face

Therefore, for the ease of notation, we drop in this section any dependency on n from
the symbols.

6.1 DFN158: regression results and performance comparison

Following the lines of Sect. 4.3, we perform a preliminary regression analysis for
DFN158 with respect to four NNs,

N B
d , � d = 1, 3 , � B = 10, 30 , (29)

and with respect to a dataset D given by 10,000 simulations that is split in a test set P ,
a training set T and a validation set V; the number of elements of each set is chosen
according to the general description of Sect. 3.2.2, hence we have |P| = P = 3000,
|T | = T = 5600 and |V| = V = 1400.

In Table 10 we report the mean relative errors E[er (N B
d ; P)] for all the outflow frac-

tures. For the sake of comparison, we also report in the table the same errors obtained
for DFN107. Also for DFN158, very small average relative errors are obtained.

Note that the behavior in terms of dependence on d and B is different with respect
to DFN158, as the error increases with respect to B, for fixed d, and with respect to
d, for fixed B. Nevertheless, in all the cases we observe rather small differences in
the error, while varying d from 1 to 3. This is a quite interesting point, as in large
realistic DFNs, made of thousands of fractures, a large depth would result in a very
demanding training, by the computational point of view, due to the extremely large
number of weights to be determined. Indeed, fully-connected layers are characterized
by n2 weights; in a network for vector-valued regression with depth d and m outputs

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 27 of 33 9

0 50 100 150

fluxes (mm2/s-1)

0

0.01

0.02

0.03

0.04

0.05
pe

rc
en

ta
ge

s
frac.8

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 20 40 60 80

fluxes (mm2/s-1)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

pe
rc

en
ta

ge
s

frac.12

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 50 100 150

fluxes (mm2/s-1)

0

0.01

0.02

0.03

0.04

0.05

pe
rc

en
ta

ge
s

frac.78

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 20 40 60 80

fluxes (mm2/s-1)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

pe
rc

en
ta

ge
s

frac.107

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

Fig. 11 DFN158. Pmf of actual fluxes in P (q j (P)) compared with the corresponding pmf �q j (P; N

t)

obtained from N

t flux predictions on inputs of P , for several values of the training and validation set size

t

the number of weigths would be approximately m •d •n2. Then, the possibility to stick
to a small depth facilitates the training also in view of very large DFNs.

Following such remarks, we fix d = 1 and set for DFN158 N
 = N 30
1 , namely

the NN with average best performances. We repeat the analysis already performed in
Sect. 5 for DFN107, comparing the distributions of actual fluxes on inputs of P with the
corresponding distributions of predicted fluxes obtained with N

t , namely the NN N

trained with sets T �V with increasing cardinality t = 500 , 1000 , 2000 , 4000 , 7000
(see Fig. 11). The values of the Jensen–Shannon divergences are reported in Table 11.

Comparing Fig. 11 and Table 11 to Fig. 9 and Table 7, respectively, a quite similar
behavior of the distributions is observed; in particular, very good approximation results
are obtained, and the values of DJS in general decrease with t , with few exceptions.

As far as the training times of NNs N

t are concerned, they are reported in Table 11

and they appear to be quite small, especially if compared to those for DFN107 reported
in Table 8. The large difference between the training times in DFN107 and DFN158
is mainly related to the different depth parameter d, since it characterizes the number
of weights in the NN, and the different time of action of the early stopping method.

123

 9 Page 28 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Table 11 DFN158 t j = 1 j = 2 j = 3 j = 4 Training time
(F8) (F12) (F78) (F107)

500 0.0802 0.0322 0.0759 0.0657 00:00:13
1000 0.0228 0.0293 0.0240 0.0881 00:00:21
2000 0.0092 0.0189 0.0081 0.0072 00:00:31
4000 0.0095 0.0135 0.0061 0.0117 00:01:01
7000 0.0058 0.0101 0.0025 0.0067 00:02:28

Jensen–Shannon divergences between distributions of actual fluxes in
P (q j (P)) and distributions of N

t flux predictions on inputs of P
(�q j (P ; N

t)) for several values of the training and validation set size
t . Last column: training times (time expressed as hh:mm:ss)

Table 12 DFN202

t j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 Training time
(F8) (F31) (F61) (F73) (F162) (F173) (F176)

500 0.0391 0.1191 0.1681 0.1197 0.0396 0.0385 0.1419 00:00:31
1000 0.0818 0.0684 0.0610 0.1040 0.1372 0.1154 0.0836 00:01:02
2000 0.0340 0.1344 0.0738 0.0495 0.0296 0.0294 0.1859 00:02:07
4000 0.0055 0.0214 0.0206 0.0221 0.0144 0.0233 0.0247 00:04:09
7000 0.0073 0.0085 0.0082 0.0055 0.0060 0.0053 0.0132 00:13:36

Jensen–Shannon divergences between distributions of actual fluxes in P (q j (P)) and distributions of N

t

flux predictions on inputs of P (�q j (P ; N

t)) for several values of the training and validation set size t . Last

column: training times (time expressed as hh:mm:ss)

6.2 DFN202: regression results and performance comparison

The same analysis performed on DFN158 is here repeated for DFN202. The main
feature of DFN202, besides doubling the number of fractures of DFN107, is to have
a larger number of outflow fractures under investigation, namely m = 7. The mean
relative errors obtained are reported in Table 10. The smaller error is in this case
attained for d = 1 and B = 10, thus we set N
 := N 10

1 . The results obtained training
the networks N

t on sets T � V with increasing cardinality are summarized in Fig. 12
and Table 12. For space reasons, we report in Fig. 12 the pmf of actual and predicted
fluxes for four fractures only. The behavior on the omitted ones is similar. Again,
good approximation behavior is attained, with DJS values generally decreasing with
respect to t , and brief training times also for the largest t values; it is worth noting that
the larger value of m = 7 does not introduce significant differences in the quality of
regression results obtained with the NN, if compared to cases DFN107 and DFN158
in which m = 4.

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 29 of 33 9

0 20 40 60 80 100

fluxes (mm2/s-1)

0

0.01

0.02

0.03

0.04

0.05

0.06
pe

rc
en

ta
ge

s
frac.8

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 10 20 30 40 50

fluxes (mm2/s-1)

0

0.05

0.1

0.15

pe
rc

en
ta

ge
s

frac.31

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

-5 0 5 10 15 20 25

fluxes (mm2/s-1)

0

0.05

0.1

0.15

0.2

pe
rc

en
ta

ge
s

frac.61

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 20 40 60 80 100

fluxes (mm2/s-1)

0

0.01

0.02

0.03

0.04

0.05

0.06

pe
rc

en
ta

ge
s

frac.73

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

Fig. 12 DFN202. Pmf of actual fluxes in P (q j (P)) compared with the corresponding pmf �q j (P; N

t)

obtained from N

t flux predictions on inputs of P , for several values of the training and validation set size

t

6.3 DFN395: regression results and performance comparison

We end this section with a similar analysis for DFN395. For this DFN, the number of
fractures considerably increases, while the analyzed outflow fractures are in the same
number as the DFN202 case, that is m = 7. The mean relative errors obtained on
DFN395 are again reported in Table 10; looking at the values reported in the table, the
architecture with smaller error is the one characterized by d = 1 and B = 10; then
we set N
 := N 10

1 . The results obtained training the networks N

t on sets T �V with

increasing cardinality, summarized in Fig. 13 and Table 13, show again good results
but a general worsening of the distribution approximation with respect to the previous
cases. Indeed, looking at Jensen–Shannon divergence values in Table 13, the general
decreasing behavior with respect to t is conserved but the divergence values, for each
fixed t , are generally higher (in general at least one order of magnitude) with respect
to those reported in Tables 7, 11 and 12; the reason for these higher values relies in the
so-called “curse of dimensionality” (Goodfellow et al. 2016, chapter 5.11.1), since an
increment of the transmissivity space dimension causes an exponential increment of
possible combinations which can be obtained during the random generation, making
it more difficult to span the domain. Despite these observations, regression results
obtained are still good, as seen from Table 10. Finally, we look at the training times

123

 9 Page 30 of 33 GEM - International Journal on Geomathematics (2021) 12:9

0 10 20 30 40 50 60 70

fluxes (mm2/s-1)

0

0.02

0.04

0.06

0.08

pe
rc

en
ta

ge
s

frac.8

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 10 20 30 40 50 60 70

fluxes (mm2/s-1)

0

0.02

0.04

0.06

0.08

pe
rc

en
ta

ge
s

frac.20

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 20 40 60 80 100

fluxes (mm2/s-1)

0

0.02

0.04

0.06

0.08

pe
rc

en
ta

ge
s

frac.22

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

0 10 20 30

fluxes (mm2/s-1)

0

0.05

0.1

0.15

pe
rc

en
ta

ge
s

frac.82

actual
N*

7000

N*
4000

N*
2000

N*
1000

N*
500

Fig. 13 DFN395. Pmf of actual fluxes in P (q j (P)) compared with the corresponding pmf �q j (P; N

t)

obtained from N

t flux predictions on inputs of P , for several values of the training and validation set size

t

Table 13 DFN395

t j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 Training time
(F8) (F20) (F22) (F82) (F112) (F305) (F311)

500 0.2365 0.5372 0.2191 0.5037 2.2118 0.4591 0.2313 00:02:04
1000 0.2469 0.1499 0.3860 0.2430 0.3819 0.1531 0.2707 00:04:03
2000 0.2087 0.1539 0.3261 0.2244 0.1271 0.2159 0.1984 00:06:37
4000 0.0469 0.0618 0.0835 0.0901 0.0692 0.1105 0.0394 00:08:55
7000 0.0617 0.0581 0.0484 0.1179 0.1072 0.02177 0.0425 00:34:26

Jensen–Shannon divergences between distributions of actual fluxes in P (q j (P)) and distributions of N

t

flux predictions on inputs of P (�q j (P ; N

t)), for several values of the training and validation set size t .

Last column: training times (time expressed as hh:mm:ss)

for NNs N

t in Table 13; very short training times are seen, in according with the small

depth of the networks (d = 1), with the only exception of t = 7000 caused by a late
action of the early-stopping regularization method.

123

GEM - International Journal on Geomathematics (2021) 12:9 Page 31 of 33 9

7 Conclusions

We have presented a novel model reduction approach for a massive number of DFN
simulations, focusing on its application in uncertainty quantification analyses of some
selected quantities of interest. The method involves vector valued regression of the
QoIs performed by artificial neural networks.

Given a DFN with fixed geometry, we trained and tested several NNs by varying the
number of fractures with random transmissivity, the depth of NNs and the mini-batch
size; the target was to predict outflows of some boundary fractures of the given DFN.

Performances of these NNs have been measured and, using a grid search, the net-
work N
 with best performance has been selected.

A more detailed analysis has been done for N
. We compared discrete approxima-
tions of probability density functions of predicted and actual fluxes using suitable
divergence measures for probability distributions, showing a very high similarity
between them.

The same distribution comparison, for evaluating performance of N
, has been
performed with respect to other sets of data, in particular on those sets generated from
inputs having a fixed transmissivity value for some given fractures; in this situation
N
 performed very well, since it has been able to predict fluxes even if its training set
was generated from inputs with no fixed values for any fracture transmissivity.

We have also analyzed the sensitivity with respect to the training set size, and we
have shown the viability of the approach to produce predicted fluxes to be used in the
framework of Monte Carlo method for computing statistics of the given quantity of
interest. Comparing these results with those obtained using actual DFN simulations,
we observed that moments computed using NNs are relatively near to values of actual
moments, also for NNs trained on small training sets.

In order to show robustness with respect to the number of overall fractures, and the
number of outflow fractures, the analysis has been then repeated for other DFNs with
different fixed geometries, confirming the ability of the presented method in predicting
fluxes essentially independently of the total number of fractures and of the number of
outflow fractures.

In conclusion, all results shown in this paper confirm the viability of NNs as possible
model reduction tools for DFN flow simulations, usable for example in the framework
of UQ analyses, due to the good accuracy and extremely fast evaluation time. These
encouraging results suggest a wider investigation, in view of a more general application
of learning algorithms for UQ in DFN problems.

Acknowledgements Research performed in the framework of the Italian MIUR Award “Dipartimento
di Eccellenza 2018-2022” to the Department of Mathematical Sciences, Politecnico di Torino, CUP:
E11G18000350001. The research leading to these results has also been partially supported by Italian
MIUR PRIN Projects 201752HKH8_003 and 201744KLJL_004, by INdAM-GNCS and by the Smart-
Data@PoliTO center for Big Data and Machine Learning technologies. F.V. acknowledges partial support
from Intesa Sanpaolo Innovation Center. The funder had no role in study design, data collection, and
analysis, decision to publish, or preparation of the manuscript.

Funding Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.

123

 9 Page 32 of 33 GEM - International Journal on Geomathematics (2021) 12:9

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015)
Adler, P.M.: Fractures and Fracture Networks. Kluwer Academic, Dordrecht (1999)
Amari, S.I., Barndorff-Nielsen, O.E., Kass, R.E., Lauritzen, S.L., Rao, C.R.: Differential geometry in

statistical inference. Lect. Notes Monogr. Ser. 10, (1987)
Benedetto, M.F., Berrone, S., Pieraccini, S., Scialò, S.: The virtual element method for discrete fracture

network simulations. Comput. Methods Appl. Mech. Eng. 280, 135–156 (2014)
Berrone, S., Pieraccini, S., Scialò, S.: A PDE-constrained optimization formulation for discrete fracture

network flows. SIAM J. Sci. Comput. 35(2), B487–B510 (2013a)
Berrone, S., Pieraccini, S., Scialò, S.: On simulations of discrete fracture network flows with an optimization-

based extended finite element method. SIAM J. Sci. Comput. 35(2), A908–A935 (2013b)
Berrone, S., Pieraccini, S., Scialò, S.: An optimization approach for large scale simulations of discrete

fracture network flows. J. Comput. Phys. 256, 838–853 (2014)
Berrone, S., Pieraccini, S., Scialò, S., Vicini, F.: A parallel solver for large scale DFN flow simulations.

SIAM J. Sci. Comput. 37(3), C285–C306 (2015)
Berrone, S., Pieraccini, S., Scialò, S.: Towards effective flow simulations in realistic discrete fracture

networks. J. Comput. Phys. 310, 181–201 (2016a)
Berrone, S., Borio, A., Scialò, S.: A posteriori error estimate for a PDE-constrained optimization formulation

for the flow in DFNs. SIAM J. Numer. Anal. 54(1), 242–261 (2016b)
Berrone, S., Pieraccini, S., Scialò, S.: Non-stationary transport phenomena in networks of fractures: effective

simulations and stochastic analysis. Comput. Methods Appl. Mech. Eng. 315, 1098–1112 (2017)
Berrone, S., Canuto, C., Pieraccini, S., Scialò, S.: Uncertainty quantification in discrete fracture network

models: Stochastic geometry. Water Resour. Res. 54(2), 1338–1352 (2018)
Berrone, S., D’Auria, A., Vicini, F.: Fast and robust flow simulations in discrete fracture networks with

GPGPUs. Int. J. Geomath. 10, 8 (2019)
Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer,

Berlin (2006)
Cammarata, G., Fidelibus, C., Cravero, M., Barla, G.: The hydro-mechanically coupled response of rock

fractures. Rock Mech. Rock Eng. 40(1), 41–61 (2007)
Canuto, C., Pieraccini, S., Xiu, D.: Uncertainty quantification of discontinuous outputs via a non-intrusive

bifidelity strategy. J. Comput. Phys. 398, 108885 (2019)
Chan, S., Elsheikh, A.H.: A machine learning approach for efficient uncertainty quantification using mul-

tiscale methods. J. Comput. Phys. 354, 493–511 (2018)
Chollet, F., et al.: Keras (2015). https://keras.io
de Dreuzy, J.R., Pichot, G., Poirriez, B., Erhel, J.: Synthetic benchmark for modeling flow in 3D fractured

media. Comput. Geosci. 50, 59–71 (2013)
Dershowitz, W.S., Fidelibus, C.: Derivation of equivalent pipe networks analogues for three-dimensional

discrete fracture networks by the boundary element method. Water Resour. Res. 35, 2685–2691 (1999)
Fidelibus, C., Cammarata, G., Cravero, M.: Hydraulic characterization of fractured rocks. In: Abbie, M.,

Bedford, J.S. (eds.) Rock Mechanics: New Research. Nova Science Publishers Inc., New York (2009)
Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-

matching grids. Adv. Water Resour. 62, 454–464 (2013)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.

org
Hebb, D.O.: The Organization of Behaviour, New York (1949)

123

http://creativecommons.org/licenses/by/4.0/
https://keras.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org

GEM - International Journal on Geomathematics (2021) 12:9 Page 33 of 33 9

Hyman, J.D., Gable, C.W., Painter, S.L., Makedonska, N.: Conforming Delaunay triangulation of stochasti-
cally generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing
strategy. SIAM J. Sci. Comput. 36, A1871–A1894 (2014)

Hyman, J.D., Aldrich, G., Viswanathan, H., Makedonska, N., Karra, S.: Fracture size and transmissivity cor-
relations: Implications for transport simulations in sparse three-dimensional discrete fracture networks
following a truncated power law distribution of fracture size. Water Resour. Res. 52(8), 6472–6489
(2016)

Hyman, J.D., Hagberg, A., Srinivasan, G., Mohd-Yusof, J., Viswanathan, H.: Predictions of first passage
times in sparse discrete fracture networks using graph-based reductions. Phys. Rev. E 96, 013304
(2017)

Jaffré, J., Roberts, J.E.: Modeling flow in porous media with fractures; discrete fracture models with matrix-
fracture exchange. Numer. Anal. Appl. 5(2), 162–167 (2012)

Karimi-Fard, M., Durlofsky, L.J.: Unstructured adaptive mesh refinement for flow in heterogeneous porous
media. In: ECMOR XIV-14th European Conference on the Mathematics of Oil Recovery (2014)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR. abs/1412.6980 (2014)
Kullback, S.: Information Theory and Statistics. Dover Publications, Mineola (1968)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)
MacKay, D.J.C.: Information Theory. Inference and Learning Algorithms. Cambridge University Press,

New York (2002)
McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math.

Biophys. 5, 115–133 (1943)
McKinney, W.: Data structures for statistical computing in python. In: van der Walt, S., Millman, J. (eds.)

Proceedings of the 9th Python in Science Conference, pp. 51 – 56 (2010)
Nœtinger, B.: A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks

accounting for matrix to fracture flow. J. Comput. Phys. 283, 205–223 (2015)
Nœtinger, B., Jarrige, N.: A quasi steady state method for solving transient Darcy flow in complex 3D

fractured networks. J. Comput. Phys. 231(1), 23–38 (2012)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pichot, G., Poirriez, B., Erhel, J., de Dreuzy, J.R.: A Mortar BDD method for solving flow in stochastic

discrete fracture networks. In: Domain Decomposition Methods in Science and Engineering XXI,
Lecture Notes in Computational Science and Engineering, Springer, pp. 99–112 (2014)

Pichot, G., Erhel, J., de Dreuzy, J.: A mixed hybrid mortar method for solving flow in discrete fracture
networks. Appl. Anal. 89, 1629–643 (2010)

Pichot, G., Erhel, J., de Dreuzy, J.: A generalized mixed hybrid mortar method for solving flow in stochastic
discrete fracture networks. SIAM J. Sci. Comput. 34, B86–B105 (2012)

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput.
Phys. 378, 686–707 (2019)

Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain.
Psychol. Rev. 65–386 (1958)

Srinivasan, G., Hyman, J.D., Osthus, D.A., Moore, B.A., O’Malley, D., Karra, S., Rougier, E., Hagberg,
A.A., Hunter, A., Viswanathan, H.S.: Quantifying topological uncertainty in fractured systems using
graph theory and machine learning. Sci. Rep. 11665 (2018)

Srinivasan, S., Karra, S., Hyman, J., Viswanathan, H., Srinivasan, G.: Model reduction for fractured porous
media: a machine learning approach for identifying main flow pathways. Comput. Geosci. (2019).
https://doi.org/10.1007/s10596-019-9811-7

Svensk Kärnbränslehantering AB. Data report for the safety assessment, SR-site. Technical Report TR-10-
52, SKB, Stockholm, Sweden (2010)

Tripathy, R.K., Bilionis, I.: Deep uq: learning deep neural network surrogate models for high dimensional
uncertainty quantification. J. Comput. Phys. 375, 565–588 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10596-019-9811-7

