
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Adding Support for Automatic Enforcement of Security Policies in NFV Networks / Basile, Cataldo; Valenza, Fulvio; Lioy,
Antonio; Lopez, Diego R.; Pastor Perales, Antonio. - In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-
6692. - STAMPA. - 27:2(2019), pp. 707-720. [10.1109/TNET.2019.2895278]

Original

Adding Support for Automatic Enforcement of Security Policies in NFV Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNET.2019.2895278

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2724445 since: 2019-09-06T09:10:49Z

IEEE/ACM

1

Adding Support for Automatic Enforcement of
Security Policies in NFV Networks

Cataldo Basile, Fulvio Valenza, Antonio Lioy, Diego R. Lopez, and Antonio Pastor Perales

Abstract—This paper introduces an approach towards auto-
matic enforcement of security policies in NFV networks and
dynamic adaptation to network changes. The approach relies
on a refinement model that allows the dynamic transformation
of high-level security requirements into configuration settings
for the Network Security Functions (NSFs), and optimization
models that allow the optimal selection of the NSFs to use. These
models are built on a formalization of the NSF capabilities, which
serves to unequivocally describe what NSFs are able to do for
security policy enforcement purposes. The approach proposed is
the first step towards a security policy aware NFV management,
orchestration, and resource allocation system – a paradigm shift
for the management of virtualized networks – and it requires
minor changes to the current NFV architecture. We prove that
our approach is feasible, as it has been implemented by extending
the OpenMANO framework and validated on several network
scenarios. Furthermore, we prove with performance tests that
policy refinement scales well enough to support current and
future virtualized networks.

I. INTRODUCTION

Currently two technologies seem to have the power to
significantly change computer networks: Network Functions
Virtualization (NFV) [1] and Software-Defined Networking
(SDN) [2]. NFV proposes a virtualized infrastructure where
network functions are implemented by software appliances,
named Virtual Network Functions (VNF), that are decoupled
from physical network devices. SDN introduces the possibility
to dynamically reconfigure the network, by selecting arbitrary
paths and redirecting traffic through specific middleboxes.
These technologies are in synergy. NFV fosters flexible and
programmable network function deployment and ease of scal-
ing, and its adoption is expected to reduce administration tasks,
response times, and TCO (Total Cost of Ownership). SDN
enables a more efficient use of resources, as selected traffic
can be dynamically redirected to virtual and physical network
functions, e.g., per-user and per-flow basis.

Flexible management is one of the main advantages of these
new networking paradigms. However, in NFV flexibility can-
not be extended to security controls, named (virtual) Network
Security Functions (NSFs)1, as the enforcement of security
policies requires careful adaptation every time a change is
made. In fact, while networking elements and protocols are
designed to automatically adapt to changes, dynamic adapta-
tion is not always a design principle for NSFs. Therefore, in

C. Basile, A. Lioy, F. Valenza are with the Politecnico di Torino, Dip. Auto-
matica e Informatica; e-mail: {first.last}@polito.it, A. Pastor, D. R. Lopez are
with Telefónica I+D; e-mail:{first.last}@telefonica.com, This work has been
partly supported by the SECURED and SHIELD project (grant agreements
no. 611458 and 700199) , co-funded by the European Commission.

1https://datatracker.ietf.org/wg/i2nsf/charter/

this paper we propose to take advantage of the flexibility of
networking management to also achieve flexible enforcement
of security policies. The research in this paper addresses two
important challenges, as highlighted by works literature [1],
[3]. First, it supports the automatic enforcement of security
policies. Given a target network and a set of security re-
quirements expressed with a high-level language (i.e., the
security policy), our model supports the configuration2 of all
the security functions in the target NFV network so that the
security policy is enforced. Our model identifies and reports
non-enforceability issues when the security policy requires
security functions not available in the target network (e.g., to
filter URLs without having a HTTP filter). Second, we support
dynamic adaptation to network changes. We enable adminis-
trators to react and maintain the security policy enforced in
case of any topological change of the network, like NSF failure
or substitution of a NSF with another one that implements
the same security functions (e.g., substitution of a firewall
with a different one from another vendor with equivalent
filtering capabilities), and any addition/removal of VNFs or
NSFs. More precisely, given 1) a set of security requirements
expressed with a high-level security policy language, 2) an
initial network already configured to enforce this policy, and
3) a target network (different from the initial one), our model
allows the configuration of all the NSFs so that the security
policy is enforced in the target network. Non-enforceability
issues are reported in this case too.

The long term objective of our research is to support a
broadest scenario: security policy aware network management
and orchestration (SPA-MANO), where only the functional
and security requirements are specified, while the network
topology and the security functions that optimally implement
the security policy are automatically decided and allocated in
a way that is transparent to the administrators.

We address the two challenges above in NFV networks by
adding a new component, the Security Awareness Manager
(SAM), as a part of the Orchestrator. Indeed, the two scenarios
are very similar and we addressed them by means of policy
refinement3. The SAM is in charge of executing the policy
refinement when the network is initialized and every time a
change is detected into the network or into the security policy.
Our policy refinement approach also includes a decision phase
where an optimization model allows selecting the best way to
refine the policy in the target network, according to (network

2Configuring a NSF is the process that defines a set of low-level settings
that, once deployed, determines the behaviour of the security controls.

3Policy refinement is the process that takes as input a policy at high-level
of abstraction and transforms it into a low-level concrete one [4].

https://datatracker.ietf.org/wg/i2nsf/charter/

2

and device) performance, and security. Although other works
exist on policy refinement, to the best of our knowledge there
are no initiatives that propose to support automatic security
policy enforcement in NFV with policy refinement.

In addition to the refinement and optimization models, this
paper presents other contributions. To make policy refinement
feasible we have developed a solution to a known open
issue4: to find an unequivocal method to represent the security
features that an NSF could provide for policy enforcement
purposes. We propose the capability model, which is presented
in Section III, where capabilities are a compact yet precise way
to determine which policies an NSF can implement, as they
describe the actions that can be enforced and the conditions
for their enforcement. Moreover, capabilities describe other
policy-related aspects that a refinement system must know
when generating configurations for target NSFs (like the
supported resolution strategy or how to set the default action).
Other works related to a capability model exist, however, they
address a similar issue but only for traffic flow control [6], or
model virtual resources for allocation purposes [7]. Instead,
we specifically model NSFs capabilities.

On top of the capability model, we have built the Medium-
Level Policy Language (MLP), an abstract language to rep-
resent NSF configurations with a vendor-independent but
capability-aware format (see Section IV-C), another known
open issue in literature [1].

Finally, we have developed a High-Level Policy language
(HLP), which allows easy specification of security requirement
at a high-level of abstraction. The HLP has been defined to
specify the security policies useful in our use cases. Other
high-level languages exist in literature, mainly for access
control policy specification (see Section VIII-C), but, as in our
case, they only solve problems related to specific use cases.

We tested the validity of our approach by specifying secu-
rity requirements and automatically enforcing them in NFV
networks deployed with OpenMANO [8]. First, we proved
that adding the SAM in a NFV architecture is straightforward
and effective, as we easily included the SAM in OpenMANO.
Then, we used the SAM to enforce security requirements into
a set of target networks, by refining policies into configura-
tions for all the NSFs. Both security requirement and target
networks have been taken from the use cases of the EU project
SECURED, thus we proved the applicability to real cases
(see Section VII-B). Moreover, we have performed in-depth
scalability testing on synthetic-yet-realistic networks and we
have found promising results (see Section VII-C).

Note that, we don’t think that our models can be directly
adopted by working groups or used in practice as they are,
as several other low-level and management aspects need to
be considered at large. However, they were essential to prove
that using policy refinement for easy management of VNF is
feasible, and it can be done by using a capability model and
an abstract representation of the policy.

The paper is structured as follows. Section II introduces
our approach, the SAM, and shows how to implement it in

4Other works [1], [5] report the same issue, moreover the I2NSF IETF
Working Group aims at identifying a solution for the same problems.

the current NFV architecture. Section III presents the founda-
tions of our capability model and the algebra for composing
capabilities. Sections IV and V discuss the models to refine
HLP policies and allow optimal selection of NSFs to use
for policy enforcement. Section VI sketches how dynamic
adaptation to network changes is managed with our approach
and Section VII describes the implementation of our approach
and the results of the performance analysis. Section VIII
presents the most important related work in three areas,
NFV management and orchestration, resource optimization,
and policy refinement. Finally Section IX draws conclusions,
discusses on the applicability of this approach and depicts the
next steps towards a security policy aware MANO.

II. APPROACH

We now discuss that supporting automatic enforcement of
security policies and dynamic adaptation to network changes
is a feasible task that requires minor changes to the current
NFV architecture.

A. Background

ETSI has defined the Management and Orchestration
Framework (MANO) to provide the required functionality for
provisioning and configuring VNFs as well as the configu-
ration of the infrastructure where these functions must run.
MANO also provides orchestration and life cycle management
of VNF resources. We shortly sketch here the main features,
while further details, which are not needed for this treatment,
can be found in a survey from Mijumbi et al. [1].

The main NFV MANO components are the Virtual Infras-
tructure Manger (VIM), the VNF Manager (VNFM), and the
NFV Orchestrator (NFVO). The VIM manages and controls
a NFV Infrastructure (NFVI). NFVIs are combination of
physical and virtual resources where VNFs are deployed. A
NFV architecture may contain many VIMs, if there are more
NFVIs provided by more infrastructure providers. The VNFM
ensures the correct life cycle management of VNFs, which
include instantiation, scaling (increase or reduce the resources
associated to a VNF), and termination. The VNFM may resort
to a (legacy) component, the Element Management system
(EM), to manage selected VNFs. NFVO orchestrates resources
and services. Moreover, it may allocate end-to-end services by
composing VNFs [9].

The MANO may access information from ad hoc repos-
itories that store data needed for its operations (e.g., the
Network Service catalogue (NS) and the VNF catalogue).
However, it may also collect additional data as Network Ser-
vice Descriptors (NSDs). A NSD consists of static information
that describes deployment flavours of Network Service and
potential dependencies, like the VNF Forwarding Graphs,
Virtual and Physical Network Functions, and Virtual Links.

Even if the current NFV specifications state that VNF
Forwarding Graph information elements contain Network For-
warding Path elements that are used to route traffic “which
in turn include policies (e.g. MAC forwarding rules, routing
entries, etc.) and references to Connection Points (e.g. virtual
ports, virtual NIC addresses, etc.)” [9], there are no examples

3

of Network Forwarding Path in the standard appendices. More-
over, the tools that we have examined, namely OpenMANO
and OPENBATON, do not support forwarding information.
That is, the network services that can be specified are chains of
VNFs. ETSI proof of concept 28 (POC#28) on NFV is looking
for effort towards SDN Controlled VNF Forwarding Graph,
but it is an ongoing activity. Since we internally use abstract
service graphs to represent networks for policy refinement
purposes, this lack of available standard representations does
not affect our work.

For our experimentations, we have specified target networks
as a set of NSDs, each one describing a chain, connected
by means of external SDN routing information by OpenFlow
rules. These rules have also been used to route the traffic of
our sample client nodes towards the network services.

B. Reference scenario

For the sake of clarity, we introduce a simplified scenario
to be used whenever an example is needed to contextualize
our approach.

A Network Service Provider (NSP) provides network and
security services for its customers. The NSP uses five cate-
gories of NSFs: packet filters (PF), web application firewalls
(WAF), parental controls (PC), virtual private networks (VPN),
and network security monitors (MON). The NSP uses a single
application/control for each category of NSFs, namely: PF is
implemented with Iptables; WAF is enforced by Squid; PC
is implemented by E2gardian; VPN uses IPsec+IKE features
implemented by a Strongswan instance; MON is implemented
by Bro. NSFs are provided as service function chains.

A company buys the network and services offered by
the NSP and wants three security requirements enforced,
expressed here as HLP-like statements: 1) “Enable malware
detection in PDF attachments in corporate email”; 2) “Allow
employees to connect to social networks at lunch”; 3) “Protect
confidentiality of traffic between Turin and Madrid offices”.

Additional information about this scenario will be discussed
in Section VII-B, where we present the validation of our
approach, and in the supplementary downloadable material,
where we report all the input and output data necessary to
validate our approach on this example in the NFV context.

C. The Security Awareness Manager architecture

To have a security policy aware orchestration, we pro-
pose the use of a new component, which we name Security
Awareness Manager (SAM). The SAM transparently enforces
user security requirements by providing an additional layer
between the administrator and the NFV orchestrator that
performs the following key features: 1) interpretation of the
security policy and identification of the NSFs that may enforce
the policy, 2) generation of the configurations of the NSFs
that will implement the security policy, and 3) invocation of
the standard MANO management operations to deploy the
generated configurations.

In our implementation, the SAM is a component that pro-
vides additional features to the NFVO but whose functionality
logically pertains it. However, in the future, the SAM could be

part of the NFVO. In practice, the SAM is a component that
has to be connected to the NFVO to provide its policy-related
services, but it is immaterial, with the current NFV standard,
whether it is an internal module of a security-aware NFVO or
a separate module that is part of an external framework.

The SAM requires a dedicated repository to perform its
operations: the Policy Repository (PR). In principle, the PR
will be in charge for storing all the policy abstractions needed
for security policy awareness purposes, including the input
security policies and the output NSF configurations. We will
show in the next sections that in our policy refinement
approach, the PR stores the input policies (expressed with
HLP), the abstract NSFs configurations (in MLP), and the
concrete configurations of all the needed NSFs (expressed
in their own configuration languages). We also store in the
PR all the intermediate data structures in the NSDs (used
for policy enforceability purposes) and the reports produced
by the refinement process (to inform the administrators in
charge for configuring the NFV architecture and enforcing the
policy). Furthermore, the SAM accesses an internal Knowledge
Base (KB) to store the semantic of high-level concepts, that
is, the mappings between high-level HLP concepts to the
network-related low-level information needed to implement
the policy (e.g., network topology info, addresses, black lists).
For instance, in our example, we have introduced mappings to
associate “social networks” with the URLs of social network
web sites, “Turin offices” with the public IP addressed of the
Turin offices, and “corporate email” is associated to MIME
objects from/to the mail server defined with IP, ports and
protocols. Identifying these mappings is a laborious yet easy
task. To implement our prototype, we followed a bottom-
up approach; we have written the configurations of several
security controls able to enforce the statements allowed by
the HLP, found the involved concepts, and added into the KB
the proper mappings. Unfortunately, every time that a new
HLP concept or new types of statement is introduced in the
HLP, new relations could be needed by the KB. However,
we expect open source initiatives or companies interested in
commercializing products to perform these maintenance oper-
ations. Analogously, while we manually populated the KB for
our experiment (i.e., by defining all the mappings), we expect
that, in future, filling in the KB will be (almost completely)
performed by including external sources of information, such
as corporate directory services, DNS data, virus DB, and
URL lists5. Finally, the SAM retrieves the network and VNF
informations from the VNF repository.

We have integrated and tested the SAM in OpenMANO,
an open source project led by Telefónica, which provides one
of the most up to date open source implementations of the
NFV MANO reference architecture [8]. OpenMANO has been
preferred due to its modular architecture, which has allowed
us a smooth insertion of the new functionalities. Furthermore,
OpenMANO is actually used by Telefónica to manage, deploy
and test different types of VNFs in their labs, and currently
evolving into a complete MANO solution supported by a wide
community through the OSM project.Thus OpenMANO is a

5For instance, SquidGuard refers to http://www.squidguard.org/blacklists.html

4

NFVO

NFVM

NFVI VIM

KB SAM PR

EMsEMsEMs

VNFsVNFsVNFs

OSS/BSS

1
HLP

2
HLP

3

4a
MLPConf

4b
5 Conf6

Conf

7a1

7a2

8
Conf

Fig. 1: Automatic policy enforcement in NFV: workflow.

working software, not only a prototype, and it is currently
maintained and extended by Telefónica. Moreover, recently
OpenMANO has become the starting point of Open Source
MANO, the official ETSI NFV reference architecture [10].
The integration of the SAM to OpenMANO has shown a
promising impact on policy-based NFV management. The
results in Sections VII show that adding support for policy
awareness does not significantly delay the NFVO operations.

D. The Security Awareness Manager workflow

Fig. 1 shows the SAM and the new storages (in gray)
together with the ETSI NFV components (the other white
boxes), and the interactions among them. The adoption of our
approach imposes additional steps to the ETSI NFV workflow,
which are represented as dotted arrows (the solid ones are
already foreseen by NFV). Further details on the steps are
presented in the next sections.

The workflow starts with a user writing his own security
requirements as an HLP policy (step 1), which is stored in
the PR. The creation of the user policy triggers the following
steps. The SAM, after being notified about the availability of
a new policy, retrieves the HLP policy (step 2). The SAM, by
using the information in the KB (and information about target
network, that is the NSDs and SDN information as OpenFlow
rules), identifies the capabilities NSFs needed to enforce the
HLP policy then it selects the best set of NSFs in the target
network to enforce the identified capabilities. If the network
does not contain NSFs able to enforce the policy, the user
is informed about the non-enforceability issue and a log is
generated. If the policy is enforceable, the SAM first refines
the HLP policy into a set of abstract MLP policies for all
the selected NSFs (with the mapping stored in the KB) then
it translates them into the corresponding NSF configurations
(step (3), Sections IV-D, IV-E, and V). The SAM stores the
MLP and the configurations in the repository (step (4a)), and
notifies the NFVO that new information is available into the
PR ((step (4b))). The NFVO retrieves the NSF configurations
from the PR and the NSD from the standard repositories
(step (5)). The NFVO contacts the NVFM to instantiate the
selected NSFs through the VIM and passes it the configura-
tions (step (6)). The actual instantiation is performed by the
NFVI and VIM (steps 7a and 7b). The actual configuration
of the network functions is pushed by the NFVM through the
Element Managers (EM) of each involved function (step (8)).

Note that, if our approach is not used, the configurations for
all the NSFs need to be manually written and pushed through
Operation and Business Support Systems (OSS/BSS) by the
administrators.

E. Advantages of the SAM

Currently, only the resources to be assigned to the each NSF
(e.g., memory size, processor utilization, storage) and available
in the VNF descriptors are considered for the allocation of
VNFs. However, a security policy aware MANO, given the
information generated during the refinement process by the
SAM, may use algorithms that allocate the NSFs of all the
users (and customers) that work better than the existing ones,
because more data are available to base their decisions. For
instance, if users need to perform packet filter, a SPA-MANO
may decide to add the rules that enforce the user policy
into an existing Iptables NSF and forward traffic with SDN,
or if users ask (and pay) for isolation, it may allocate a
separate NSF. This decision may be led by the resources
available at the nodes, performance considerations, on the
network delays introduced to forward the traffic, the workload
of the NSF (which will also include the number and type of
rules to enforce). Moreover, a SPA-MANO may decide based
on more precise performance models of security functions,
which may also consider the number of the rules they have
to implement (which are currently available for some packet
filters [11]) and the condition types of each rule (e.g., if rules
use conditions as regular expressions [12]). As an example,
this information can be used to determine how many rules
to insert before deciding to allocate an additional NSF, as
for some functions, performance is stable until a threshold is
reached, then it dramatically increases. Even if it is not in the
scope of this paper, optimized allocation algorithms that also
consider policy-related information is an interesting research
area we are considering for future work.

Finally, another important aspect that is outside the scope
of this research paper but needs to be addressed before using
this refinement system in the current NFV implementations,
is determining the proper order of configuration of the NSFs.
Indeed, the glitches arising from transition from a policy
configuration to a new one can lead the target network
to inconsistent states that may have devastating effects on
both functionality and security. We are not aware of existing
systems able to perform this task, research should focus on
extending the features of the VIM.

III. CAPABILITY MODEL

As human beings, administrators and network security ex-
perts understand each other when referring to security controls
by just naming categories. For instance, experts unequivocally
refer to “packet filters” as stateless devices able to drop packets
based on conditions on source and destination IP addresses,
source and destination ports, and IP protocol type fields [13].
Moreover, it is known that packet filter rules are prioritized6

and it is often possible to specify a default action.

6More precisely, packet filters implement the First Matching Rule (FMR)
or Last Matching Rule (LMR) resolution strategies.

5

However, more information is needed to better clarify the
behaviour of, for instance, stateful firewalls or application
layer filters. Controls that fall in these categories may show
substantial differences (e.g., depending on the vendor/product)
on how they classify packets and communications to determine
when to apply decisions, maintain the stateful information, and
process protocols. That is, they are in the same category but
they cannot be used interchangeably. Also communication pro-
tection protocols are usually considered as a single category.
Indeed, all of them protect packets7 with symmetric algorithms
whose keys could have been negotiated with asymmetric
cryptography, and have a clear behaviour defined by standards.
However, each protocol has its own peculiarity, e.g., it works
at a different ISO/OSI layer and support different encryption
algorithms, and authentication, key agreement and negotiation
abilities. Moreover, implementations of these protocol show
further minor differences. Therefore, even in this case, no
interchangeability is ensured.

For this reason, a capability model is needed to precisely and
unequivocally clarify what a security function can do in term
of security policy enforcement. With such a model, automatic
systems, like the refinement engine we are proposing, and
human beings can understand 1) whether a function is suitable
or not for implementing a high-level policy and 2) how it can
be configured to enforce such high-level security policy.

To build our capability model8, we have analysed several
NSFs that fall in different categories, including packet fil-
ter, URL filter, HTTP filter, VPN gateway, anti-virus, anti-
malware, content filter, monitoring, anonymity proxy. More-
over, we have also analysed common extensions of the generic
NSFs, like optionally loadable modules (e.g., iptables supports
the addition of modules with the -m option, some module
is standard “state” and included in the base distribution,
some needs to be explicitly downloaded and installed, like
“time”). Therefore, based the geometric model of policies [14],
we have modelled the capabilities of a NSF in two parts:
1) rule-based capabilities, which describe how rules can be
written in terms of actions and conditions (see Section III-A);
2) policy-based capabilities, which describe how to write a
coherent policy given a set of rules specified according to the
rule-based capabilities (see Section III-B). We have identified
a list of rule-based and policy-based capabilities (presented
in the the supplemental material provided with this paper).
Nevertheless, our model is extensible as additional capabilities
can be added if required to describe new security functions.
Our capability model is provided with a set operations to
manipulate capabilities by means of a capability algebra (see
Section III-C).

A. Rule based capabilities

Security functions are able to enforce actions and own traffic
classification features. Actions (A) describe the operations that
a security function can perform on packets/flows, like filtering

7To ensure protection, these protocols check header or payload integrity,
optionally apply confidentiality, anti-reply protections, and authenticate peers.

8Preliminary material about capabilities has been published as an IETF
I2NSF draft https://tools.ietf.org/html/draft-baspez-i2nsf-capabilities-00 and
revived in https://datatracker.ietf.org/doc/draft-xibassnez-i2nsf-capability/.

or encrypting traffic, and operations that are not performed
directly on the traffic, like logging matching rules or notifying
events. We assume that all the actions available at a security
function are well known and organized in the NSF action
set. For instance, the action set of a generic packet filter
will include the Allow and Deny actions. Communication
protection functions will have action sets that depend on the
technology. For instance, NSFs based on IPsec will have action
sets that include actions expressing the protocol (AH vs. ESP),
and the mode (tunnel vs. transport mode).

Classification features (C) concern the possibility of the
security function to identify target packets/flows on which the
actions could be enforced. Classification features are specified
by means of conditions clauses that are logical formulas of
conditions [14]. Conditions are typed predicates defined over
given selector. A selector is an abstract representation of the
values that a protocol field may take, e.g., the IP source
selector is the set of all possible IP addresses, and the part
of the packet where the values come from, e.g., the IP source
selector refers to the IP source field in the IP header. Moreover,
selectors may imply a list of allowed values, such as the
states associated to a traffic (like the NEW, ESTABLISHED,
RELATED, INVALID states in iptables), or implicitly deter-
mine the type of data (like the strings of characters for HTTP
protocol fields). In practice, a condition on a given selector
matches a packet/flow if it is evaluated to true with the values
extracted from the packet/flow. A condition clause matches a
packet/flow if its formula is evaluated to true. Since in most
cases formulas are represented in disjunctive normal form, a
condition clause matches a packet/flow if all the conditions are
true, otherwise a Boolean expression needs to be evaluated.

We have categorized the types of selectors in exact match,
range-based, regex-based, and custom-match [12].

Exact match selectors are (unstructured) sets: elements can
only be checked for equality, as no order is defined on them.
As an example, the protocol type field of the IP header is a
unordered set of integer values associated to protocols.

Range-based selectors are ordered sets, thus easily mapped
to integers, where it is possible to naturally specify ranges. As
an example, the ports in the TCP protocol are well represented
using a range-based selector (e.g., 1024-65535). We include
in the range-based selectors all the category of selectors that
have been defined by Al-Shaer et al. as prefix match [13].
These selectors allow the specification of ranges of values
by means of simple regular expressions. The typical case is
the IP address selector (e.g., 10.10.1.*). There is no need to
distinguish between prefix match and range-based selectors as
10.10.1.* easily maps to [10.10.1.0, 10.10.1.255].

Another category of selector types includes the regex-based
selectors, where the matching is performed by using regular
expressions. This selector type is frequent at the application
layer, where data are often represented as strings of text.
The regex-based selector type also includes as subcase the
string-based selectors, where matching is evaluated using
string matching algorithms (SMA). Indeed, for our purposes,
string matching can be mapped to regular expressions, even
if in practice SMA are much faster. For instance, Squid, a
popular Web caching proxy that offers various access control

https://tools.ietf.org/html/draft-baspez-i2nsf-capabilities-00
https://datatracker.ietf.org/doc/draft-xibassnez-i2nsf-capability/

6

capabilities, allows the definition of conditions on URLs that
can be evaluated with SMA (e.g., dstdomain) or regex
matching (e.g., dstdom_regex).

Finally, we introduce the idea of custom check selectors to
model conditions that do not provide details about logic of
the matching process. For instance, custom check selectors
describe features of malware analysis and IDS tools that look
for specific patterns and return a Boolean value if the pattern
is found. In order to be properly used by high-level policy
based processes (like reasoning systems, refinement systems),
custom check selector need (at least) to be described as black-
boxes, that is, by means of the list of fields that they take in
input in order to return the Boolean verdict.

B. Policy-level capabilities

Besides the rules, other “technicalities” need to be specified
in order to properly manage and configure security functions,
and a sound capability model must also be able to describe
them. According to the geometric model, a policy is specified
by means of: 1) resolution strategy (R), which abstracts the
decision criteria for the action to apply when a packet matches
two or more rules; 2) external data, such as priority, identity
of the rule creator, and creation time, which are associated
to each rule (but not part of the rule itself) and used by the
resolution strategy to decide; 3) default action (D), which is
the action applied if no rules match the packet/flow.

We have ignored in this work options to generate config-
urations that may have better performance (e.g., with chains
or ad hoc structures [11]). Adding support to these forms of
optimization is certainly feasible with a limited effort but it
was outside the scope of this paper, that is, to show that adding
security awareness to NFV management and orchestration
features is possible. It is one of the task for future work.

C. Formal model and algebra of capabilities

Formally, the capabilities associated to a NSF X are defined
by a 4-tuple: capX = (A;C;R;D) ⊆ (A; C;R;A). Where A
is the set of all the possible actions and A ⊆ A are the actions
available from X , C is set of all the existing conditions types
and C ⊆ C are the ones available from X , R is the set of
all the existing resolutions strategies and R ⊆ R are the ones
contained in X , and D ⊆ A lists the actions supported by X
that can be used as default action (∅ if the default action is
not configurable).

Moreover, capabilities can be added and subtracted, given
cap1 = (A1, C1, R1, d1) and cap2 = (A2, C2, R2, d2):

cap1+2 = cap1 + cap2 = (A1 ∪A2, C1 ∪ C2, R1, d1)

cap1−2 = cap1 − cap2 = (A1 \A2, C1 \ C2, R1, d1)

Note that addition and subtraction do not alter the resolution
strategy and the default action method of the first operand,
as our main intent was to model addition of modules (that
enable conditions and actions but do not change the core
behaviour of the NSF). The operations only merge the rule
based capabilities and leaves untouched the policy capabilities.

As an example, we report how to define the capabilities of
a generic packet filter that supports the FMR, supports explicit

default actions and a another packet filter that also supports
time-based conditions:

Af = {Allow,Deny}
Cpf = {IPsrc, IPdst,Psrc,Pdst,protType}
Ctime = {timeperiod,days,datestart,datestop}
cappf = (Af ;Cpf ; {FMR};Af)
cappf time = cappf + (∅;Ctime; ;)

D. Use of the capability model

Our capability model has several applications. First of all,
it can used to precisely asses security policy enforceability,
as needed by our policy refinement approach. If the security
function can enforce the actions required by the policy and can
identify the packets/flows to which the security policy wants
the action enforced, then the security control is capable of
enforcing the policy, and a manager can use it. Note that, in
some cases, a single function may not be able to enforce a
policy (incapable), however, a set of security functions can
be capable of enforcing that policy. In both cases, a simple
capability matching algorithm is enough.

Then, the capability model entails information about the
valid MLP policies for a given NSF. Information about actions
and classification features is actually used to determine how
to write valid rules, policy-based capabilities allow setting up
the remaining details. Indeed, it is not possible to use specific
conditions or actions when an NSF that does not own the
proper capabilities.

Furthermore, we have used the capability model to describe
generic categories of security functions and specific products
in unambiguous way. We used the model to describe the
categories of security controls we have analysed.

We have created a set of generic security functions (g-
NSFs), one for each category, and we have associated them to
a set of core capabilities owned by (almost) all the controls in
a category. The purpose is to remove ambiguity, as with our
formalization the behaviour of each g-NSF is well understood,
and use security function with the same clearness as network
components (i.e., a switch is a switch and experts know how
to use it even if it may have some vendor-specific functions).
In our idea, vendors and developers should describe their
products starting from the g-NSFs. That is, generic functions
become templates that can be customized by adding and
removing capabilities by means of the capability algebra in
Section III-C.

IV. REFINEMENT

The most significant achievement in this paper is the defi-
nition of the policy refinement model.

For the definition of the refinement model needed for
automatic enforcement of security policies and dynamic adap-
tation to network changes, we assume the following design
principles: a) the refinement process translates high-level poli-
cies into configurations directly usable by the NSFs; b) the
refinement must warn users against cases of non-enforceability
of the input policy on the target network. Moreover, we
added another requirement, the vendor independence, that is,

7

configuration
MLP

NER

HLP

KB

H2M Service

M2L Service

SAM

configuration
MLP

NER

HLP

KB

H2M Service

M2L Service

PR

SAM

Fig. 2: The SAM inputs and outputs.

it should be easy to substitute an NSF with another one able
to enforce the same types of policies.

Practically, the final goal of our approach is to generate
concrete configurations for the NSFs into the target NFV
network, which are the rightmost element in Figure 2. The
syntax and expressiveness of the concrete configurations of
the actual NSF is not under our control. We don’t have the
possibility to ask for new features nor to change the specific
languages to cope with our needs. Hence, for our purposes,
low level languages are constraints.

A. Approach and SAM workflow

We propose to use two refinement steps and an intermediate
abstract language to translate high-level policies into low level
configurations (see Fig. 2). This is, the internal workflow
performed of the SAM. The High- to Medium-level Refinement
Service (H2M Service) first performs the semantic interpreta-
tion of the HLP policies to determine the capability needed
to enforce them and infer the NSFs available in the network
that can enforce them. Then, it outputs the set of all the MLP
policies for all the NSFs in the NFV network. If the NSFs
in the target NFV network do not satisfy these requirements,
the user is provided with a detailed non-enforceability report
(NER) and a proposed remediation strategy. The semantic
interpretation of HLP policies, its relations to the capability
model and the model-driven generation of valid MLP policies
is presented in Section IV-D.

When the MLP policies are generated, the Medium- to
Low-level Refinement Service (M2L Service) is in charge of
translating the abstract policies in the concrete configurations
for the selected NSFs, as presented in Section IV-E.

B. High-level policy language

We defined the HLP language [15], [16] to express
the security requirements collected from various use cases,
such as parental control, corporate environments, user-driven
paradigms, and IoT. The HLP has been designed as an
authorization language that follows the subject-action-object-
attributes paradigm (also referred to as target-effect-condition)
[17]. HLP policies are composed of HLP statements in the
form: [sbj] action obj {(field_type,value),...}
where attributes are (field_type,value) pairs. HLP
statements map to equivalent user friendly sentences, close
to natural language, which are preferred for interactions with
administrators. Examples of security requirement are “scan
email for malware”, “block access to gambling sites”, “only
allow Internet traffic from 18:30 to 20:00 for Alice”.

It is worth noting that this language is an example to prove
the validity of our approach in our use cases thus we don’t
claim that this is the universal language for enforcing security
policies, although it can be extended to support more complex
scenarios. Nevertheless, the scope of our language allows the
specification of high-level policies for a number of security
controls, such as packet filtering, application firewall, anti-
malware, spam detector, VPN gateway, traffic anonymizer,
IDS, DPI, file and traffic analyzer. Thus, as it stands, the HLP
can be useful in daily security administrators’ tasks as well as
for normal users. The detailed list of security control categories
that are supported can be found in the supplemental material
together with examples of HLP statements.

C. Medium-level policy language

The MLP language has been designed to abstract the
configurations settings of NSFs. Even if in the practice these
settings are conveyed with different languages, the capability
model allows us to easily know, in an abstract way, all the
features owned by each NSF. Therefore, the MLP language
is specified with a general model that defines the abstract
concepts (i.e., policies, rules, conditions, actions, resolution
strategies) and the required associations among them (e.g.,
rules are aggregations of conditions and actions, a policy is
association to its default action). However, when instantiating
a policy for a specific NSF, only instances of concepts present
in the capabilities of the NSF can be used. That is, a condition
on URL cannot be used if the NSF does not own a URL-related
classification feature.

D. H2M Service

The refinement process performed by the H2M Service can
be split into two logical tasks: selecting the NSFs that will
enforce the policy, and deriving configurations for them.

The decision of the NSFs is performed in two steps. First,
the H2M Service interprets the HLP statements to determine
the capabilities to enforce the policy. To have greater flexibility
and to easily adapt to other contexts, this interpretation is
not static, it is performed by using the information (i.e.,
the semantic mappings) in the Knowledge Base. Examples
of association rules and inference rules are reported in the
supplemental material. Specifically, the H2M Service performs
the following steps. 1) It maps the values HLP subject, object
and fields fields to low-level concetps by means of direct
associations in the KB. For example, ‘Employees’ maps to
a set of IP addresses, ‘Madrid Subnet’ to a subnet, ‘lunch
time’ is a time period and ‘gambling sites’ is a set of IP
and URLs. After this phase, each HLP statement becomes
an enriched HLP statement. 2) It uses a set of inference
rules, also stored in the KB, to associate concepts from each
enriched HLP statement to the rule-based capabilities (i.e.,
action and classification futures) needed to enforce them. For
example, for the HLP “Employees are authorized to access
Internet traffic (time period, {12:30-13:30 UTC})”, the H2M
Service first deduces that an Allow filtering action is needed,
because ‘are authorized to’ is associated to ‘Internet traffic’
which maps to ‘any IP address’. Then it deduces that the

8

target NSF must be able to enforce a condition on time
(timestart). Note that the system also deduces that filtering on
IP destination is not needed as ‘any IP address’ is not needed
if condition clauses are in DNF form. Moreover, it deduces
that all the other communications not explicitly allowed by
the HLP policy must be denied (i.e., the default action is
Deny). The result is the set of the required capabilities. 3) It
generates, with a process driven by the MLP policy model, a
set of policy rules where the MLP concepts are instantiated
from the low-level parameters in the enriched HLPs and the
inferred rule-base capabilities.

After this semantic interpretation, the H2M Service identi-
fies the NSFs in the target that can be used to enforce the HLP
policy. This is performed by matching the required capabilities
with the ones owned by the NSFs. However, according to (the
action implied by) the HLP policy, there are different ways
to select the NSFs and perform the matching, which we have
categorized in single function enforcement, coupled functions
enforcement, and path functions enforcement. As a result of
the application of these three selection ways, all or a subset
of the NSFs in each of the paths will be configured.

A policy requires single function enforcement when the
activation of a single NSF in the target network is enough
to enforce the policy. As an example, having a security
control that performs anti-malware checks over the corporate
email attachments is enough to enforce policies that ask for
verification of email attachments even if network flows may
need to be redirected to the selected NSF with SDN features.
Therefore, checking the capabilities of individual NSFs is
enough to determine capable functions.

A policy requires coupled functions enforcement when the
policy enforcement requires the coordinate configuration of
two security functions. As an example, configuring a VPN tun-
nel between two corporate subnets that communicate through
the Internet (e.g., the Madrid and Turin ones) requires the use
of two gateways. Moreover, the H2M Service also checks that
the two coupled NSFs are also compatible. For instance, both
IPsec- and TLS-based controls could be used to enforce a VPN
policy, but both gateways must speak the same protocol. Also
in these cases, network flows may need to be redirected to the
selected NSFs (e.g., the gateways). Here network topology
info is used to explore the neighbours of the entities involved
by the policies and find the ones having the capabilities to be
coupled (e.g., a VPN concentrator at the same security level
as the connecting entity).

A policy requires path functions enforcement when the
policy enforcement requires the simultaneous configuration
of all the security functions with specific capabilities in the
communication path. Communication paths are determined by
processing topological information. Moreover, routing infor-
mation is used to establish the actual communication paths
from the alternative ones. As an example, the configuration of
an allowed communication requires the configuration of all the
filtering devices (e.g., packet filter or HTTP filter) in the path
from the source to the destination. In these cases, the decision
is not on the security control to use, rather on the path to
choose, therefore, all the security controls in the path must
own the required capabilities. Also in these cases, network

flows may need to be redirected to the selected NSFs (e.g.,
the gateways).

If some required capability is not available or it cannot be
properly coupled, the H2M Service generates the NER. It is
not interesting discussing the format of the NER. Briefly, it
contains the reason for non enforceability, that is, the policies
that cannot be enforced, the missing capabilities in the target
NSFs, or the impossibility to find one or more devices to
couple to enforce the policy (like VPN gateways) in the set
of NSFs that can be selected for a given user, together with a
list of NSFs that can be added in the network (and where) to
make the policy enforceable.

In case of availability of several NSFs that can enforce the
HLP statements, the distribution of the generated policy rules
to the available NSFs can be optimized. We have developed an
optimization model that performs this distribution also based
on network and device performance and security metrics (see
Section V and VI).

Finally, the H2M Service generates the MLP policy for
each one of the NSFs selected by the optimization process
by 1) collecting the associated policy rules, and 2) finalizing
the policy gathering from the KB the policy-based capability
information, collecting each policy rules with the same rule
base capability, specifying the resolution strategies and the
default action (retrieving these information in the KB) .

The derivation of the configurations in MLP is a simpler
task. Once the security controls have been identified, generat-
ing the configuration is quite straightforward, as the required
rules are determined when processing the HLP statements.

E. M2L Service

The M2L Service performs the syntax change to adapt
the policy specified in MLP into actual NSFs configurations
directly usable by the target NSFs. As an example, it is in
charge to translate the MLP policy for a generic packet filter
into a valid iptables configuration file. As it bridges the gap
to real NSFs, it is a crucial component for the adoption of
our refinement approach towards the automatic enforcement
of security policies and the dynamic adaptation to network
changes. It was also needed to validate and test our approach in
OpenMANO. Nonetheless, its design did not require to address
peculiar research issues.

We have implemented an M2L service as a framework that
dynamically loads (from a remote repository) the plug-ins that
translate the MLP into the NSF-specific syntax. Indeed, each
NSF typically has a different configuration language, thus,
an NSF-specific translation module proved to be the most
convenient way to perform the mapping. Since the MLP policy
already includes all the concepts that will be needed at the
lowest level, every module has to perform a change of syntax
and add the necessary fixed information (e.g., initialization,
global options). Note that, supporting future NSFs that provide
new capabilities does not pose issues to the MLP. Indeed,
changes to the MLP are model-driven from the capability
descriptions, that is, it is just required to extend the KB to
support the new policies that can be enforced by these NSFs,
as described in Section II-C.

9

V. OPTIMIZATION

As anticipated, the optimization phase performed by the
H2M Service selects the NSFs to use to enforce the HLP
policy, when alternatives security functions can be used. The
idea is that an optimization phase can help in improving the
performance and achieving a better use of the available re-
sources, especially for large networks where multiple choices
are often available. Instead of developing ad hoc allocation
strategies, we have preferred tackling the decision problem
formally, with an optimization model (in standard form).
The optimization model is an instance of the set covering
problem, which is NP-Complete in worst case but it is solved
with good performance by standard solvers (there is also a
greedy algorithm that works well in practice). Moreover, our
formulation of the problem can be can be easily customized to
support a large set of optimization scenarios by simply adding
constraints and customizing the parameters, as shown below.

Let P = {p1, ..., pt} be the MLP policy rules derived from
the refinement of the input HLP policies to enforce, and let
S = {s1, ..., sn} be the NSFs in the target network, we define
two functions to map them to capabilities, namely γp : P→ C
returns the capabilities needed to enforce a policy, and γs :
S→ C returns the capabilities owned by a NSFs.

A set of Boolean variables xi,j = {0, 1} reports if the NSFs
si ∈ S is selected to enforce the policy rule pj ∈ P.

A set of metrics has been proposed to generalize the target
function used to choose of the NSFs. That is, we assume that
there are l metrics µ1, . . . , µl that associate each NSF s to a
real value r depending on the policy rule p it has to enforce:

µi : S× P → R (s, p) 7→ r

Note that this definition also covers, as subcase, metrics that
do not depend on the policy to enforce.

A generic function K, named cost, computes the aggregated
cost associated to the use of the NSF s to enforce the policy
rule p, which is expressed as a real number and defined as
a linear combination of different metrics values µi computed
over a NSF s:

K : S× P → R (s, p) 7→
m∑
i=1

wiµi (s)

where wi weights the importance of the metric µi.
For our prototype we have defined several sample single

objective target functions by customizing the cost functions
and defining the corresponding metrics. We have introduced
metrics to estimate the (economic) costs associated to buying
or using a NSF, metrics that capture user rating of NSFs, and
experts trustworthiness expectations (i.e., by trivially counting
the number of patches and averaging them with their severity),
and security evaluation of NSFs.

Moreover, we have considered metrics to quantify perfor-
mance, based on the information available in the VNF descrip-
tors (see the supplemental material provided with this paper for
examples of VNF descriptors). For instance, the delay metric
estimates the time needed by a NSF to process traffic and
by links to transfer it. The difficult part was modelling the
performance profiles associated to NSFs. Indeed, while for
virtual resources the performance degrades (linearly) with the
number of rules, physical NSFs may use ad hoc hardware

to have constant time processing regardless of the rules [11].
Unfortunately, models that estimate performance degradation
based on the configured policies are not linear and needed a
linearization to be solved efficiently. Furthermore, we have in-
troduced metrics to estimate the “distance” between solutions,
which weight the differences among where policy rules are
enforced. These metrics are used to add penalties to solutions
that are too different from an initial configuration and have
been used to support change management (see Section VI).
As a future work, we planned to introduce new metrics to
capture CTO estimation. Finally, multi-objective criteria have
been defined to trade-off competing objectives by combining
single objective target functions.

Our model also includes several constraints, some of them
are configurable by the users. The first set of constraints avoids
that the NSFs allocated on each physical node exceeds the
node resources. The only resources that we have considered
in our optimization models are the virtual CPU count, needed
RAM, and required disk storage, that is, the only data available
in the VNF descriptors (see the supplemental material for
examples of OpenMANO VNF descriptors). For instance,
there are constraints to cope with the different NSF selection
strategies. When enforcing a single function enforcement
policy pj , the model excludes from the decision space all the
security functions si that do not own the required capabilities:
xi,j = 0 ⇔ γp (pj) ⊃ γc (si). Capable functions are OR-ed
with additional equations that limit the number of functions
to use (i.e., at most one). For instance, defence-in-depth is
achieved by playing with these equations. Then, when looking
for NSF to associate for coupled functions enforcement, only
the neighbours of the end nodes implied by the policies are
considered (e.g., VPN gateways are selected at the border of
the network to protect). Thus, the model excludes all the NSFs
that are not in the neighborhood and do not own the required
capabilities:xi,j = 0 ⇔ si /∈ N (e1 (pj)) ∪ N (e2 (pj)).
where e1 (pj) and e2 (pj) are the functions that determine the
endpoints (determined by the refinement process performed by
the H2M Service) and N (·) is the function that abstracts the
selection of the neighborhood of endpoints to consider (e.g.,
in the same network or broadcasting domain, or the part of
the network at the same security level).

Supporting path functions enforcement also adds con-
straints. The NSFs in the same path to activate are AND-
ed. Given the paths {πk (e1 (pj) , e2 (pj))}k between the end-
points implied by a policy, we introduced a set of variables
vk =

∧
xi,j (for si ∈ πk) to force the configuration of

all the nodes in the path πk. Also in this case, equations
allow the selection of at leat one path (

∨
vk = 1), exactly

h path (
∑
vk = h) , or all the paths (∀k, vk = 1). In

case of static routing, there is only one path to consider, the
other possible NSF are therefore excluded. The optimization
model is instantiated by the H2M Service that automatically
generates optimization programs that instantiate these logical
formulas with values from the target network and for the input
policies. Then, the H2M service solves the generated models
with standard solvers. We used the MOEA framework, as we
planned support for multi-objective optimization, however, any
ILP solver can be used.

10

VI. MANAGEMENT OF CHANGES

We have considered several scenarios to deal with changes.
We have addressed dynamic adaptation to network changes, a
first step towards security policy aware network management
and orchestration. This is still an ongoing research, however,
the preliminary results are promising.

First, with our approach, substituting a NSF X with a new
one Y owning the same capabilities as X can be managed
with a quick procedure. Indeed, after the refinement, the H2M
Service outputs an MLP policy for a generic NSF that exploits
(some or all) the capabilities of X . The MLP policy M is then
translated to be usable by X by the M2L Service. Hence,
switching to Y just requires that the M2L Service translates
the policy M for the syntax of Y . More generally, the quick
procedure can be used with any NSF that owns at least the
capabilities of X exploited in M (vendor independence).

The general case of dynamic adaptation to network changes,
that is, changes that happen in the network and are not just
substituting a NSF with an equivalent one, can be dealt with a
complete refinement of the HLP policy onto the new network.
However, this approach may originate too many changes and
lead the network to a temporary inconsistent state, as a subset
of NSFs may enforce the new policy while the others NSFs
still behave as required by the previous policy. Therefore, to
reduce the issues related to changes, we have introduced the
distance metrics, anticipated in Section V, which favour solu-
tions that are maybe a bit less optimal from the performance
point of view, but minimize the impact on the network. A
simple metrics counts the NSFs whose policy needs to be
updated, others count the number of coupled functions that
need to be reconfigured to re-establish secure channels and the
paths that are affected by the changes. Linear combinations of
distance metrics are then used in the target functions. However,
these distance metrics and the target functions built on them
will need further research effort to guarantee a better stability
of the network over time, not only on the single change.

Also the management of dynamic changes of the policy can
be dealt with a complete refinement of the new HLP policy,
as for dynamic adaptation to network changes. However, we
are investigating faster refinement algorithms that only process
the differences between the old and the new policy (delta
refinement), which could reduce the likelihood of negative
impacts of the refinement performance. Indeed, the manage-
ment of changes is essential for the practical adoption of our
approach. Unfortunately, the consequences of only considering
the differences have not yet been extensively investigated.
Indeed, inconsistencies may arise when mixing configuration
rules from different refinement processes. Currently, we are
researching criteria that characterize the differences that do
generate inconsistencies to determine when the complete re-
finement can be avoided. Indeed, an a posteriori inconsistency
checking would render useless the performance improvement
of the delta refinement.

Another ongoing research concerns algorithms to automati-
cally assess the changes to the input policy and the target net-
work and decide the best way to push the new configurations.
The idea is to develop advanced configuration deployment

strategies that decide how and when to push configuration
of NSFs to allow seamless transition between solutions, i.e.,
network states (i.e., topology and NSFs configurations). These
strategies should avoid the inconsistencies (and related conse-
quences) that may arise when passing from a network state to
a different one as a consequence of changes.

VII. IMPLEMENTATION AND VALIDATION

We have integrated our solution into the OpenMANO
project and we have used OpenMANO to validate our ap-
proach on virtualized scenarios. The virtualized scenarios have
been selected in the context of EC funded project SECURED.
The SECURED use cases were perfect to show that it is
possible to perform a policy-based management and orches-
tration of virtualized networks. Indeed, these use cases depict
NSPs enforcing security policies requested by residential users
(divided in classes of services) and/or SMEs by means of
one or more chains of network security services formed by
one or more NSFs. Use cases were representative of medium
size networks but did not allow us to measure the scalability
of our approach, which was one of the critical points for its
adoption. Therefore, we have also designed a set of tests where
the SAM was used as a black-box policy refinement engine
to derive configurations from HLP for network that were
only represented with their service graphs, i.e., without actual
deployment. Hence, our validation is composed of two parts:
validation of the policy-based configuration process and testing
on synthetic networks with very large number of policies.

A. Implementation

The OpenMANO project has developed three components:
1) Openmano, the northbound interface, based on a REST
APIs, which exposes a set of orchestration and management
tasks (such as creation and deletion of VNF instances and net-
work services); 2) Openvim, the NFV Virtualised Infrastructure
Manager that directly interfaces with an OpenFlow controller
and a compute nodes via a REST API; 3) Openmano-gui, the
web interface to invoke the Openmano API.

To prove the validity of our approach we have extended
Openmano and Openmano-gui. The SAM has been imple-
mented as a new Openmano module. The SAM refinement
services are exposed by means of a REST API, which is used
to pass as input the HLP and receive in output the MLP, the
NSD and the NSF configuration to store in the PR. The SAM
has been developed as a single threaded Java 1.7 application
that relies on two Java-based open source frameworks: Drools
and MOEA. Drools is a Rule Engine that we have used to
implement an Expert System that reasons about capabilities
for HLP policy enforcement purposes. Drools uses the Rete-
OO algorithm whose performance is excellent in practice,
also considering the expressiveness of the inference rules, and
whose complexity is presented in depth in a past work [18].

The MOEA framework is a Java library for developing
multi-objective optimization programs and solve them with
evolutionary algorithms. We have used to implement the
optimization models (Section V).

11

We also implemented the PR (using the Django REST
framework) and added it to the OpenMANO repositories. The
PR API allows the addition, deletion, and update of all the
artifacts needed by our approach that were not available in the
OpenMANO distribution. These artifacts include information
about HLP and MLP policies, and NSF configurations.

We extended the openmano-gui to allow users to specify
the input HLP policies and visualize the all the artifacts used
by our refinement approach.

Finally, to perform the experiments, we have also imple-
mented one Element Manager for each of the NSFs we have
used for validation purposes in order to to push configurations
and manage their lifecycle (start, stop, restart).

B. Validation with use cases

The validation on use cases aimed at proving that our
approach is actually able to select and configure the NSFs in
a policy-driven manner. It consisted in the following phases:
1) selecting a use case network (with all the information about
the available NSFs, including the capabilities) and specifying
security requirements for that network; 2) drawing the network
in OpenMANO with the openmano-gui; 3) specifying the
corresponding HLP policy with the extension to the opena-
mano-gui; 4) deploying and configuring the network with the
SAM-extended OpenMANO and measuring the performance
of every phase; 5) manually inspecting the generated NSFs
policies at the MLP level (i.e., not the low-level config-
urations); 6) testing with probe packets and ad hoc built
policy violations to verify, also with traffic inspection, that
the selected security requirements were actually enforced.

We only report here the entire validation results of the net-
work service example presented in Section II-D. However, we
have considered several use cases from the SECURED project
that include parental control, corporate network protection, and
user-centric policy enforcement 9.

The input policies in HLP of the example were:
H1 : enable email scanning {(mimeType, pdf)}
H2 : Developers are authorized to access

Internet {(time period, 13-15 UTC),
(specific URL, www.facebook.com)}

H3 : protects integrity and confidentiality
{(source, TurinNet),(target, MadridNet)}

The SAM correctly inferred the capability required to
enforce the HLP policies then determined that H1 can be
enforced by Bro, H2 can be enforced by Squid, and H3

can be enforced by strongSwan. The SAM first generated the
MLP policies for three generic anti-malware, application layer
filtering, and IPsec channel protection security functions (that
own a subset of the capabilities owned by the three selected
NSFs). Then, the SAM translated the MLP policies into the
NSF configurations.

We have performed further advanced testings to prove an
effective reaction to changes. First we have modified the
attributes in the input policies (time period from 13-15 to 8-12,
specific URL from www.facebook.com to www.tweeter.com,

9Use cases are sketched in the deliverable D6.3, further details can be found
on https://github.com/SECURED-FP7.

and from specific URL=www.facebook.com to specific
IP=10.0.0.1) and verified that the SAM only updated the squid
MLP and low level configuration and did it correctly. Finally,
we have changed squid with privoxy, another application layer
filter that owns the capabilities to enforce H2. As expected,
the SAM only generated the configuration of privoxy from the
same MLP policy used before for squid.

C. Scalability testing

We have generated synthetic networks by means of an
algorithm developed to connected chains of network services
composed of one or more NSFs to form a tree (whose root was
intended as the connection to the “outside”) then added con-
nections among other tree nodes to simulate a proper number
of redundant paths. Chains of network services were available
in a catalogue and explicitly designed by us (i.e., chains are
not randomly generated). A number of users, i.e., the target of
the policies, were connected at the beginning of each chain.
Other creation rules ensured that the generated networks were
close to reality, for instance, increasing the concentration of
security services at the root or selected intermediate nodes
to simulate border security, providing some security services
with a centralized or distributed approach, and ensuring that
enough capabilities were available at each path to reduce non-
enforceability issues. Finally, HLP policies were randomly
generated for the inserted users starting from a set of template
policies that covered the whole HLP expressiveness.

We have performed our tests on an Intel i7-3630QM @
2.4GHz laptop with 16GB RAM. Each test was run on each
scenario 50 times; results have been averaged.

We have first measured the time spent to perform the
refinement of the HLP policy into configurations, which is the
sum of the time to translate HLP policies into MLP policies
for all the NSFs in the network (by the H2M Service) and the
time to translate all the MLP policies into configurations (by
the M2L Service). We have generated networks with a fixed
number of NSFs, while we have increased the number of HLP
policies (ranging from 10 to 500.000.

Figure 3a depicts the results obtained respectively with
5 and 20 NSFs. As expected, there is a more than linear
dependency with the HLP policy count. We noted that for
a small number of HLP policies, the initialization time of
the two frameworks (Drools and MOEA) gave an important
contribution that has a minor impact when more than 500
rules are considered. This test gave us the most important
result, as it proved that the approach scales well enough to be
used in practice, despite the limited hardware resources used.
We also measured that the time to generate configurations
from MLP linearly depends on the number of rules in the
MLP policy but is negligible. In the work case, the translation
of five thousands rules (for Squid) took less than 100ms.
Furthermore, the MLP translation can be easily parallelized,
an advantage when the number of NSF to configure is huge.
Moreover, we have measured the time required by the Element
Manager to configure the NSFs. Figure 3a plots the results
obtained when measuring the time to push a configuration
depending on the number of rules it contains (ranging from

https://github.com/SECURED-FP7

12

0 2 4

·105

0

5

10

HPL count

Ti
m

e
[s

]

NSFs:

5

20

(a) Time to perform the HLP refinement.

200 400 600 800 1000
0.5

0.55

0.6

0.65 squid

iptables

Rule count

Ti
m

e
[s

]

(b) Time to configure the NSFs.

0 10 20

1

2

3

4

NSF count

Ti
m

e
[s

]

(c) Time to instantiate a service chain.

Fig. 3: Results of the scalability testing.

10 to 1000 rules). The bottom line represents the results of
Iptables, the NSF that has shown the best performance, and
the top line Squid, the NSF that required more time to be
configured. The configuration time is nearly constant and lasts
a few tenths of second. Thus it can be considered negligible
for scalability analysis purposes.

Finally, even if it is not directly related to our contribu-
tions, it interesting reporting here the time Openvim spent to
instantiate a network service chain from its NSD, depending
on the number of NSFs. Figure 3c depicts the results obtained
to instantiate up to 20 NSFs. Also in this case, the time to
setup the network grows almost linearly, as expected since
the virtual machines are deployed in order by OpenMANO.
This result confirmed the feasibility of our approach. Given
the current NFV technology, the optimized policy would be
ready before the MANO completes the instantiation of the
virtualized network.

VIII. RELATED WORK

A. NFV management, orchestration and modelling

In addition to the ETSI working group, which has defined
the standard, a great number of researchers analysed in depth
the NFV challenges and benefits. The most significant papers
are authored by Mijumbi et al. who proposed several unex-
plored NFV research topics. Authors stated that management
and orchestration of NFV-based networks will become more
challenging in future, the most promising proposal being
the MANO framework by ETSI [9]. Mijumbi et al. also
highlighted the importance of formally modelling network
and security functions to exploit the NFV’s ability to deliver
high levels of automation and flexibility. Since the resources
and functions in NFV will be provided by different entities,
the availability of well understood, open and standardized
descriptors for multi-vendor resources, functions, and services
will be key to large-scale NFV deployment.

ETSI and others working groups have provided a possible
set of information and data models for NFV resource and
function modelling. Examples are OVF, TOSCA, YANG and
SID. However these models are only used in the definition of
software/hardware resource (their components, relationships,
and the processes that manage them), but, at the best of our
knowledge, none seems to address issues related to NSFs man-
agement and support. Giotis et al. [19] proposed a preliminary

architectural model for policy-based VNF orchestration, which
use an Information Model to abstracts network resources and
VNFs capabilities. The main limitation is that the model only
addresses access control and forwarding policies. Shen et
al. proposed vConductor, a MANO architecture to support
E2E Virtual Network Integration as a Service (VNIaaS) [20].
vConductor is a NFV-based service that provides a multi-
objective resource scheduling and NFV-oriented inventory
management capabilities. However, it does not support policy
refinement, the configurations of NSFs are directly written by
network administrators. Finally, Spinoso et al. proposed the
use of functional descriptions of VNFs to correctly integrate
and configure third-parties VNFs in NFV NSP networks [5].

B. Optimization

The provisioning of NFV brings up the resource allocation
problem, also known as Virtual Network Function Placement
(VNF-P). Moens et al. [21] proposed an Integer Linear Pro-
gramming (ILP) model to minimize the number of used servers
in mixed physical and virtualized environments. Yoshida et
al. [22] proposed to optimize the resource allocation when
enforcing stakeholder policies on a network infrastructure.
Conflicting objectives are dealt with a Multi-objective Genetic
Algorithm (MOGA), which produces approximate solutions
in a reasonable computation time. Gember et al. [23] present
a network-aware orchestration layer for Middleboxes (MBs),
named Stratos. Stratos allows tenants to specify middlebox
deployment by using a simple logical topology abstraction and
three features, application-aware scaling, rack-aware place-
ment, and network-aware flow distribution. Mehraghdam et
al. [24] proposed an optimization model for building chains
of VNFs that satisfy requirements of the tenants and the
operator expressed with a formal language. These work are
complementary to our optimization model. Their optimization
criteria could be used, after extension and adaptation, to
improve our optimization model.

C. Refinement

Policy refinement has received great attention in literature.
Many models and methods have been proposed to efficiently

deal with both management and enforcement of security
policies. However, the interest from the theoretical viewpoint
has not yet shown real advancements in the practice. The

13

main reasons are related to the lack (and in most cases of the
unavailability) of formal representations of the huge amount
of data that are needed to actually perform the refinement.

NFV networks, and in general, virtual environments, where
orchestration and management have access to a detailed rep-
resentation of the running infrastructure, are a promising field
to finally see the refinement dream to come true. According
to Weise and Martin [25], a security policy must be imple-
mentable through system administration procedures (e.g., pub-
lishing of acceptable use guidelines) and enforceable with se-
curity tools or controls, where appropriate, and with sanctions,
where actual prevention is not technically feasible. Unfortu-
nately, in literature, enforceability analysis has received little
or no attention and it has not been investigated in-depth. For
instance, in a real scenario, some policies may be less precisely
enforceable in some systems than in others or in worst case,
completely non-enforceable. As suggested by [26], the access
control on traditional UNIX systems is much less granular
when compared with ACLs on modern implementations and
some access control requirements may be not fully supported.
Schneider proposed an approach to determine when a security
policy is enforceable with Execution Monitoring [27]. A policy
is non-enforceable when its set of executions is not a safety
property and the Execution Monitoring does not have an
enforcement mechanism. This concept has been improved
by Bauer et al. who extended the model the Schneider’s to
support new classes of security policies [28], and Basin et al.
who proposed Execution Monitor able to distinguish actions
that are controllable and those that are only observable [29].
We tried to overcome current limitations by proposing the
capability model, which allows precise identification of non-
enforceability issues.

Refinement models exist for firewalls. Bartal et al. pro-
posed a solution, named Firmato, for the refinement of high-
level filtering requirements into packet filter configurations
[30]. Firmato uses a knowledge base, formalized with an
entity-relationship model that describes high-level filtering
requirements and network topologies, and a translator, which
refines high-level filtering requirements into packet filter rules.
However, Firmato has been validated on a network with a
single border firewall, hence its applicability to large and
heterogeneous scenarios has not been proven. Verma et al. used
a similar approach to develop FACE, a firewall analysis and
configuration engine [31]. FACE takes as inputs the network
topology and a global security policy written in a high-level
language, and outputs the packet filter configurations.

Valenza et al. proposed the use of ontologies to capture
the semantics of high-level filtering and channel protection
policies (e.g., IPsec) [32]. By means of ontology inferences,
high-level concepts (such as users and services) are mapped
to low-level network concepts (such as IP addresses, ports,
protocols) so that high-level security policies can be translated
into configurations settings for target security controls. Our
approach shares with this work the idea of an inference engine
to perform HLP policy refinement. However, our approach is
much more powerful, as ontology proved to be very difficult
to use and extend, failed to capture concepts (like connections)
in a simple way, and their performance scaled quite slowly.

IX. CONCLUSIONS

This paper presented the first steps towards a Security
Policy Aware NFV MANO (SPA-MANO) by supporting two
innovative scenarios: automatic enforcement of security poli-
cies and dynamic adaptation to network changes in NFV
networks. We have developed refinement models that allow the
transformation of high-level security requirements into config-
uration settings for the Network Security Function (NSF) in
the target NFV network. These models also support optimal
selection processes, which permit the selection of the NSFs
to use in case of alternative functions. To build such an
approach, we have defined an algebra of capabilities useful to
describe the security functions implied by the security policy
requirements and the functions actually available and the
NSFs. We have also proved that supporting security awareness
in NFV networks is feasible and requires limited changes in
the current NFV architecture. Moreover, we have integrated
the new component in the OpenMANO framework.

It is important to highlight that this approach cannot be
used as it stands now in production networks. Indeed, policy
languages need to be extended to support more security
requirements and to be adapted to the various scenarios where
this new paradigm needs to be applied. Also the capability
model needs to be further detailed to be able to express a
larger set of NSFs. However, both for policies and capabilities,
an incremental effort is needed, whose purpose is support of a
broader range of cases. Indeed, we have analysed large but not
exhaustive set of security controls, most of them are traditional
security controls, which can be virtualized, but we have not
addressed specific NSFs that are natively virtual. Thus, limited
changes to the capability model can be expected.

Presently, scalability of this approach has been proved
very promising also on off-the-shelf hardware. Advantages are
expected when using more powerful resources, like the ones
available at the data centers where NFV networks will be de-
ployed. However, improvements to the refinement algorithms
can further reduce the impact of the policy refinement.

However, the most important future works concentrate on
the definition of the security aware resource allocation, that is,
on the design of the missing parts to have a SPA-MANO that
also performs optimized allocation based on policy informa-
tion. This will add more degrees of freedom to the decision
process, thus rendering the optimization problem more com-
plex. On the other hand, this optimization can lead to a better
use of available resources and a save of the expenditures at the
NSP, especially if integrated with target functions that better
support changes. Also the management of dynamic changes in
the high-level policy is an interesting research topic. Indeed,
only refining the differences between the old and new policy
may consistently optimize the refinement process, as the whole
security policy will not change frequently. Therefore, we are
investigating criteria that ensure that a partial refinement does
not introduce any inconsistency in the globally enforced policy.
As future application case, we want to extend also Open
Source MANO, which has been selected as the new reference
implementation of NFV by ETSI. Since, Open Source MANO
is built on OpenMANO, we expect limited effort.

14

REFERENCES

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 2016.

[2] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latre, M. Charalambides,
and D. Lopez, “Management and orchestration challenges in network
functions virtualization,” IEEE Commun. Mag., vol. 54, no. 1, pp. 98–
105, 2016.

[4] J. Moffett and M. Sloman, “Policy hierarchies for distributed systems
management,” IEEE J. Sel. Areas Commun., vol. 11, no. 9, pp. 1404–
1414, 1993.

[5] S. Spinoso, M. Leogrande, F. Risso, S. Singh, and R. Sisto, “Seam-
less configuration of virtual network functions in data center provider
networks,” J. Net. Syst. Manag., vol. 26, no. 1, pp. 222–249, 2017.

[6] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” SIGCOMM Comput.
Commun. Rev., vol. 42, no. 4, pp. 467–472, 2012.

[7] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource require-
ments,” IEEE Trans. Netw. Serv. Manage., vol. 14, no. 1, pp. 106–120,
2017.

[8] D. Lopez, “OpenMANO: The Dataplane Ready Open Source NFV
MANO Stack,” in Proc. of the IETF Meeting, 2015.

[9] ETSI, “Network Functions Virtualisation (NFV); Management and Or-
chestration (GS/NFV-MAN-001),” December 2014.

[10] ——, “Network Functions Virtualisation (NFV): Architectural Frame-
work (RGS/NFV-002),” December 2014.

[11] D. Taylor and J. Turner, “Scalable packet classification using distributed
crossproducting of field labels,” Dept. of Computer Science and Engi-
neering, Washington Univ., DC, Tech. Rep. WUCSE-2004-38, 2004.

[12] C. Basile and A. Lioy, “Analysis of Application-Layer Filtering Policies
With Application to HTTP,” IEEE/ACM Trans. Netw., vol. 23, no. 1, pp.
28–41, 2015.

[13] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” IEEE Trans. Netw. Serv. Manage., vol. 1, no. 1, pp. 2–10,
2004.

[14] C. Basile, A. Cappadonia, and A. Lioy, “Network-level access control
policy analysis and transformation,” IEEE/ACM Trans. Netw., vol. 20,
no. 4, pp. 985–998, 2012.

[15] C. Basile, A. Lioy, C. Pitscheider, F. Valenza, and M. Vallini, “A
novel approach for integrating security policy enforcement with dynamic
network virtualization,” in Proc. of the 1st IEEE Conf. on Network
Softwarization (NetSoft ’15), 2015, pp. 1–5.

[16] F. Valenza, T. Su, S. Spinoso, A. Lioy, R. Sisto, and M. Vallini, “A
formal approach for network security policy validation,” J. wirel. mob.
netw. ubiquitous comput. dependable appl., vol. 8, no. 1, pp. 79–100,
2017.

[17] S. Godik, A. Anderson, B. Parducci, E. Damiani, P. Samarati, P. Hu-
menn, and S. Vajjhala, “eXtensible Access Control Markup Language
(XACML) Version 3.0,” January 2013.

[18] D. Sottara, P. Mello, and M. Proctor, “A configurable rete-oo engine for
reasoning with different types of imperfect information,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 11, pp. 1535–1548, 2010.

[19] K. Giotis, Y. Kryftis, and V. Maglaris, “Policy-based orchestration of
nfv services in software-defined networks,” in Proc. of the 1st IEEE
Conf. on Network Softwarization (NetSoft ’15), 2015, pp. 1–5.

[20] W. Shen, M. Yoshida, K. Minato, and W. Imajuku, “vconductor: An
enabler for achieving virtual network integration as a service,” IEEE
Commun. Mag., vol. 53, no. 2, pp. 116–124, 2015.

[21] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in Proc. of the 10th Int. Conf. on
Network and Service Management, 2014, pp. 418–423.

[22] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku,
“MORSA: A multi-objective resource scheduling algorithm for NFV
infrastructure,” in Proc. of the 16th Asia-Pacific Network Operations
and Management Symposium, 2014, pp. 1–6.

[23] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, V. Sekar, and A. Akella, “Stratos: A Network-Aware
Orchestration Layer for Virtual Middleboxes in Clouds,” CoRR, vol.
abs/1305.0209, 2013.

[24] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. of the 3rd IEEE Int. Conf. on
Cloud Networking (CloudNet’ 14), 2014, pp. 7–13.

[25] J. Weise and C. R. Martin, “Developing a Security Policy,” SANS
Institute, Tech. Rep., April 2003.

[26] M. Bishop and S. Peisert, “Your Security Policy is What??” March 2006.
[27] F. Schneider, “Enforceable security policies,” ACM Trans. on Info. and

System Sec., vol. 3, no. 1, pp. 30–50, 2000.
[28] L. Bauer, J. Ligatti, and D. Walker, “More enforceable security policies,”

in Proc. of the Work. on Foundations of Computer Security, 2002.
[29] D. Basin, V. Jugé, F. Klaedtke, and E. Zălinescu, “Enforceable security

policies revisited,” ACM Trans. on Infor. and Syst. Sec., vol. 16, no. 1,
pp. 3:1–3:26, 2013.

[30] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” ACM Trans. on Comput. Systems, vol. 22, no. 4,
pp. 381–420, 2004.

[31] P. Verma and A. Prakash, “FACE: A Firewall Analysis and Configuration
Engine,” in Symp. on Applications and the Internet, 2005, pp. 74–81.

[32] F. Valenza, C. Basile, D. Canavese, and A. Lioy, “Classification and
analysis of communication protection policy anomalies,” IEEE/ACM
Trans. Netw., vol. 25, no. 5, pp. 2601–2614, 2017.

Cataldo Basile received a M.Sc. (summa cum laude)
in 2001 and a Ph.D. in Computer Engineering
in 2005 from the Politecnico di Torino, where is
currently a research assistant. His research is con-
cerned with policy-based management of security in
networked environments, policy refinement, general
models for detection, resolution and reconciliation
of specification conflicts, and software security.

Fulvio Valenza received the M.Sc. (summa cum
laude) in 2013 and the Ph.D. (summa cum laude)
in Computer Engineering in 2017 from the Politec-
nico di Torino, Italy. His research activity focus on
network security policies, access control policies,
orchestration, management and automatic configu-
ration of network security functions in the context
of SDN/NFV-based networks.

Antonio Lioy is Full Professor at the Politecnico
di Torino, where he leads the TORSEC cybersecu-
rity research group. His research interests include
network security, policy-based system protection,
trusted computing, and electronic identity. Lioy re-
ceived a M.Sc. in Electronic Engineering (summa
cum laude) and a Ph.D. in Computer Engineering,
both from the Politecnico di Torino.

Diego R. Lopez Diego Lopez received his MS
from the University of Granada in 1985, and his
PhD degree from the University of Seville in 2001.
Diego joined Telefónica I+D in 2011 as a Senior
Technology Expert on network infrastructures and
services after several years in the academic sector.
His current interests are related to network infras-
tructural services, new network architectures, and
network programmability and virtualization.

Antonio Pastor received the MSc. degree in in-
dustrial engineering from the Carlos III University
of Madrid (UC3M), Spain, in 1999. Since then, he
has been with Telefónica I+D, where he works on
the research and engineering of different worldwide
Telefonicas networks and where he is currently
Network Security Expert.

	I Introduction
	II Approach
	II-A Background
	II-B Reference scenario
	II-C The Security Awareness Manager architecture
	II-D The Security Awareness Manager workflow
	II-E Advantages of the SAM

	III Capability model
	III-A Rule based capabilities
	III-B Policy-level capabilities
	III-C Formal model and algebra of capabilities
	III-D Use of the capability model

	IV Refinement
	IV-A Approach and SAM workflow
	IV-B High-level policy language
	IV-C Medium-level policy language
	IV-D H2M Service
	IV-E M2L Service

	V Optimization
	VI Management of changes
	VII Implementation and validation
	VII-A Implementation
	VII-B Validation with use cases
	VII-C Scalability testing

	VIII Related Work
	VIII-A NFV management, orchestration and modelling
	VIII-B Optimization
	VIII-C Refinement

	IX Conclusions
	References
	Biographies
	Cataldo Basile
	Fulvio Valenza
	Antonio Lioy
	Diego R. Lopez
	Antonio Pastor

