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Abstract 

 

Passive isolation systems are an established solution for the design of civil engineering structures 

that are required to provide superior performances in the case of a seismic event. Although their 

application to the seismic protection of bridges is currently limited, isolation systems are likely to 

become more widespread in the design of strategic infrastructures and facilities. In this work 

numerical investigations on the ultimate limit state conditions of filled high damping rubber 

bearings under cyclic shear loading are presented, focusing on the influence of the axial load with 

respect to the device. 

 

1. Introduction 

 

In the recent past, passive isolation systems have been largely used as a valuable earthquake-

resistant strategy in the design of civil engineering structures, particularly with reference to the 

large class of ordinary buildings. Indeed, passive, anti-seismic, systems have already been used to 

protect more than 23000 structures such as bridges and buildings, both existing and of new 

construction, in more than 30 countries, although their introduction for the seismic protection of 

strategic structures, such as bridges, is not as widespread as their use for buildings. 

Nevertheless, seismic isolation systems are likely to become an established highly reliable solution 

in the design of special structures and facilities for which superior performances are needed against, 

and functionality after a seismic event is of utmost importance (De Grandis et al 2009, Perotti et al 

2013). Indeed, transportation network and infrastructures are expected to remain in service also 

after disruptive events for emergency activities. 

The anticipated better performance of isolated structures, when compared to traditional ones, 

consists in reducing the values of the seismic acceleration transmitted to the part of the structure 

above the isolation plane (the superstructure). This attenuation is obtained at the price of larger 

relative displacements between the superstructure and the under-structure. 

Where isolation devices are installed they are likely to become the most critical components in a 

seismic assessment. Thus, all factors affecting the devices performance have to be carefully 

considered. A reliable and close to reality evaluation of the constitutive behaviour, up to the device 

limit state, need to be fully addressed. 

Failure of isolators is obviously related to “be-yond design” loading conditions, i.e. extreme 

loading in case of very strong seismic events which lead to amplified multi-directional loading 

paths in the horizontal plane and to variable axial loading. Such extreme circumstances cannot be 

excluded during the structure’s life, and their study requires reliable and validated constitutive 

models of the isolator de-vices.  

Reliable models of the behaviour of seismic isolation devices, and the evaluation of their 

performance, has been successfully accomplished with selected constitutive material laws by FE 
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modeling for moderate, to large, shear strain values. For very large values of the shear strain cyclic 

constitutive models are however still lacking (Domaneschi et al 2015). 

This research is devoted to the implementation and validation of special hyperelastic-dissipative 

material models, which are promising of a good phenomenological interpretation of the cyclic 

physical behaviour of the isolators when subjected to very large shear strains and axial loads. The 

ultimate goal is the implementation in finite element models of large bridge structures. 

Furthermore, since as it has been pointed out (e.g. by Warn and Whittaker 2008), in application of 

isolation devices to bridges, a variation of the vertical load carried by the devices has to be 

expected as well. Therefore, the isolators models are tested in the case of different values of the 

axial force and the influence of the device shape is highlighted. 

 

2. Physical and numerical models of the isolator device 

 

In the class of isolator devices a basic distinction is based on shape, materials and dimensions. The 

most commonly adopted solution in the world is rep-resented by the steel-laminated rubber 

bearings, especially high damping rubber bearings (HDRB) and the lead rubber bearings (LRB) for 

which the largest experience has been gathered and detailed literature is provided (see e.g. Basu et 

al. 2014). A schematic geometry of an elastomeric isolator is depicted in Fig. 1 with a physical 

example. 

The relevant role fulfilled by seismic isolation de-vices in seismic engineering is due to the fact that 

these devices are able to ensure large deformations in the horizontal plane in case of a seismic event 

and provide high stiffness in the vertical direction to sustain gravitational loads. These effects are 

obtained through the low compressibility of rubber and the introduction of thin reinforcing steel 

plates. Therefore, among different technologies the steel-laminated rubber bearings, especially the 

high damping rubber bearings (HDRB) and the lead rubber bearings (LRB), represent the most 

commonly adopted solution in the world (Basu et al 2014).  

The failure of the isolators, in the case of very strong seismic events, is related to extreme loading 

conditions, that induce amplified multi-directional loading paths in the horizontal plane and a 

highly variable axial loading.  

To study the device behaviour under these circumstances FE models employing an overlapping 

discretization are a promising approach, when supported by experimental data. This technique is 

based on the concept that the material behaviour can be split in-to a number of parallel fractions, 

each one with conventional mechanical properties and hence available constitutive laws (hyper-

elastic, elastic-plastic and viscoelastic). The global behaviour is achieved by a suitable 

superposition of simple constitutive models and adequate material parameters. In this way a robust 

FE model for HDRB devices can be developed (Milani & Milani 20112, Gracia et al 2010), on the 

basis of overlapped constitutive laws and fitting of standard laboratory test data.   

The translation of this concept in FE analyses re-quires the generation of a numerical model with 

several identical overlaid meshes, sharing the same nodes, each one presenting a different 

constitutive model. 

For these devices, an adequate mathematical model should not only reproduce the basic elastic 

behaviour of the rubber, but has also to account for dissipative properties within a large 

deformation range. Damping factors for a HDRB ranges from 10% to 15%, while shear modulus 

(G) lies in the 0.8-1.4 MPa range (Perotti et al 2013). 

Furthermore, the extreme value of the axial load can be achieved at or near the one of the relative 

displacement, so that the dimension of the device become important. To study the effect of this 

parameter, extreme possible geometries of the isolation device have been selected in the simulation 

of the global cyclic behaviour in isolators undergoing variable seismic and axial loads. 



Three FE models of a circular HDRB (Fig. 2) have been developed within the MARC® FE code, 

according to the geometrical properties listen in Tables 1-3. The characteristics of the first HDRB 

de-vice closely reproduce the prototypes designed and tested for the ELSY reactor within SILER 

project (2013). 

 

 

 
Figure 1. Physical example of the isolator device. 

 
Table 1. Properties of the first HDRB device modelled. ______________________________________________ 
 
Diameter    1350 mm 
Total rubber thickness   256 mm 
Thickness of each rubber layer  16 mm 
Steel layers    15  
Shape factor    19.7  
Rubber lateral cover thickness  25 mm 
Rubber shear modulus   1.4 MPa 
Horizontal stiffness (100%)  7.82 kN/mm 
Vertical stiffness    5792 kN/mm _____________________________________________ 

 
Table 2. Properties of the device 601 in (Nagarajaiah & Ferrell 1999). ______________________________________________ 
 
Diameter    10 in 
Total rubber thickness   2.00 in 
Thickness of each rubber layer  0.25 in 
Rubber layers    8  
Rubber shear modulus   1.4 MPa _____________________________________________ 

 

Table 3. Properties of device 302 in (Nagarajaiah & Ferrell 1999). ______________________________________________ 
 
Diameter    5 in 
Total rubber thickness   2.00 in 
Thickness of each rubber layer  0.25 in 
Rubber layers    8  
Rubber shear modulus   1.4 MPa _____________________________________________ 

 

The other two are inspired by the geometry of bearing 601 and 302 in (Nagarajaiah & Ferrell 1999). 

 



 a)  b) 

 c)  d) 

 e)  f) 
Figure 2. Design table (a) and finite element 3D mesh of the first (SILER) device (b-d). FE mesh of the devices 601 
and 302 (e-f) respectively in (Nagarajaiah & Ferrell 1999). 

 

The finite element mesh for the first (SILER) de-vice has been prepared considering symmetry of 

geometry and boundary conditions. In the end, it consists in about 35000 isoparametric hexahedral 

solid elements and 25000 nodes.  

According to the overlapping simulation approach, rubber layers are composed by two overlap-ping 

meshes: to one is assigned an hyperelastic behaviour, to the other an elastic-plastic one to ensure 

dissipation will be achieved. 

The models from (Nagarajaiah & Ferrell 1999) have a mesh similar to the first one. It is obtained 

by an operation of geometric scaling without changing the number of elements or of nodes for each 

number of constitutive rubber-steel layers. 

For all FE models, the hyperelastic behaviour is simulated according to a three-constants Mooney-

Rivlin model (Yeoh model), usually implemented in common commercial FE codes. The material 

parameters are assumed to be equal to the ones derived in (Gracia et al 2010), whose assessment is 

based on the execution of laboratory tests on HDRB under cyclic relative displacements and 

constant axial force, carried on up to the specimen failure. Their corresponding values are listed in 

Table 4. 

 
Table 4. Value of the constants in the Mooney-Rivlin material model. ______________________________________________ 
C10     4.989x10-1 
C20     3.47x10-2 
C30     2.28x10-3 _____________________________________________ 

 

The values in Table 4 are also in agreement with the those independently identified in (Bianchi et al 

2011a, 2011b) for similar conditions. 

The elastic-plastic behaviour assigned to the second mesh within the par of the isolator model 

occupied by the volume of the elastomeric component, is derived from the von Mises’ theory. The 

preliminary fitting of the experimental outcomes have been processed assuming a perfectly elastic-

plastic behaviour defined by values in Table 5. 



 

Table 5. Material parameters for the elastic-plastic material model. ______________________________________________ 
Young modulus E (MPa)   11.28 
Poisson’s ratio     0.00 
yielding stress fy (MPa)   0.49 _____________________________________________ 

 

Finally, a non-linear elastic perfectly plastic material (Young modulus 210000 MPa, Poisson’s ratio 

0.3, yielding 300 MPa) has been assigned to the steel layers. 

The boundary conditions on the FE model consist in fixed displacements at the device base, 

imposed uniaxial horizontal displacement (100% of rubber thickness) at the upper isolator surface, 

constant vertical load at the top. Fig. 3 depicts the comparison between laboratory data and FE 

model simulation. 

3. Numerical results 

 

The loading conditions herein presented aim to analyze the influence of the axial force on the 

hysteresis cycles. Thus, subsequently to the identification of the material parameters on the base of 

an experimental uniaxial horizontal test, different vertical loads have been applied on the finite 

element model of the device. Furthermore, the limit condition at failure (delamination mode), as 

reproduced in laboratory tests, has been simulated by FE analyses in or-der to identify the 

corresponding stress state. This development are based on numerical analysis on FE models of the 

device carried out within the MARC® FE code. 

 

 
Figure 3. Comparison between laboratory tests hysteresis cycle (100% - 256 mm - horizontal uniaxial displacement) at 

constant axial load (8075 kN, halved due to symmetry) and FE simulation. SILER isolator. 

 

Initial validation of the adopted material values has been performed with reference to data from the 

physical testing of the isolator (SILER 2013). The boundary conditions in the FE model, which 

have been retained with the exception of the value of the axial load, consist in fixed displacements 

at the de-vice base, imposed uniaxial horizontal displacement (100% of rubber thickness) at the 

upper isolator sur-face, constant vertical load at the top. Fig. 3 depicts the comparison between the 

FE model simulation and laboratory data. 

The FE model, validated by the good matching with experimental data reported in in Fig. 3, has 

been exploited for evaluating the influence of axial load variations on the performance of the device. 

The analyses take into account mechanical and geo-metric non-linearities in order to study possible 

be-yond design conditions.  



At first, the same loading path of Fig. 3 has been reproduced with double (16500 kN) and triple 

axial force (24800 kN). Furthermore, zero axial force is al-so investigated. As it can be inferred 

from Fig. 4a, that depicts for these values of the axial load the isolator cyclic response up to 100% 

of shear deformation in the rubber layers, there is no influence of this static parameters, at least at 

these deformation values. 

The same axial forces have been used to study the device with monotonically increasing horizontal 

imposed displacements corresponding to 300% and 600% of shear strain. Figures 4b and 4c report 

the loading paths in terms of force–displacements at 300% and 600% of shear strain, respectively.  

All the responses appear substantially equivalent, although for the horizontal displacements at 

600% shear strain minor differences among the curves can be detected. For the same 600% 

condition the analysis has not been completed due to excessive deformation in some finite elements. 

 

 a)  b) 

 

 c) 
Figure 4. Comparison of FE results: 100% (a), 200% (b), 300% (c) shear loading at different axial forces. Siler isolator. 

 

The curves shown are related to monotonic loading only since we were not able to reproduce the 

correct dissipation, at this values of shear distortion, either with isotropic and kinematic hardening. 

Adoption of this type of hardening for reproducing the shape of the hysteresis cycles at larger strain 

values had to be abandoned due to its poor performances. Also, in literature no references could be 

found on this topic. 

Laboratory experimentations were also focused on the evaluation of the ultimate limit state for de-

lamination. In particular a monotonic test up to failure has been performed according to the 

EN15129:2009 (2009) norm. 



 

a) b) 

 

c) 
Figure 5. Maximum (a,b) and minimum (c) principal stresses in the numerical model at failure (300% shear 

deformation, and maximum axial load 24800kN). SILER isolator. 

 

The maximum allowable vertical load and the horizontal displacement at 300% of shear 

deformation are the ultimate conditions. This same testing condition has been simulated also 

numerically with the developed isolator model, and the resulting stress state at failure has been 

depicted in Figures 5a-5c. Figure 5a and 5b report the maximum stresses at failure, while Fig. 5c 

the minimum ones. 

The overlaid FE technique, adopted to model the elastomeric layers, does not easily allow to obtain 

the resultant stress-field in the rubber volume, due the superposition of two different constitutive 

models, and the stress value at the delamination limit state had to be computed as the stress at the 

surface of the steel layers. 

4. Scaled devices 

 

Coming to the other two isolator models (namely the ones for device 601 and 302), Figures 6 and 7 

report the curves in terms of shear force and horizontal relative displacement. Several values of the 

axial load have been adopted to assess their influence on the numeric response of devices having 

different shape, and to provide data for comparison with published results. 
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Figure 6. Comparison of FE results: shear loading at 

different axial forces for device 601 at 400% shear strain. 
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Figure 7. Comparison of FE results: shear 

loading at different axial forces for device 302 

at 400% and 250% shear strain. 

 

Differently from the SILER device, that was really thin and large, the last two show an increasing 

influence of axial force with the increasing slenderness of the device. Particularly, the most slender 

device (isolator 302) here considered shows an unstable branch with a critical load that reduces at 

the in-crease of the axial load. This is consistent with results coming from experiments on devices 

of similar shape.  

The distribution of the internal stresses is also of interest in order to avoid local material or bonding 

failures. The internal stresses in device 601 are depicted in Figures 8 and 9 while those of device 

302 in Figures 10-13. The limit value of 79 MPa for principal maximum stresses, as highlighted 

from the SILER isolator FE-experimental analysis, is used for establishing the ultimate limit state 

conditions. 

 

 
Figure 8. Principal stresses in the numerical model of 

device 601: axial load 890kN and 140% shear 
deformation. The maximum principal stresses reach the 

ultimate value of about 79 MPa. 

 
Figure 9. Principal stresses in the numerical model of 

device 601: zero axial load and 400% shear deformation. 
The maximum principal stresses stay below the ultimate 

value of about 79 MPa. 

 



 
Figure 10. Principal stresses in the numerical model of 

device 302: axial load 133kN and 85% shear 
deformation. The maximum principal stresses reach the 

ultimate value of about 79 MPa. 

 

 
Figure 11. Principal stresses in the numerical model of 

device 302: axial load 88kN and 130% shear 
deformation. The maximum principal stresses reach the 

ultimate value of about 79 MPa. 

 

As these figures show, the experimentally defined limit value of about 79 MPa, that corresponded 

to debonding in SILER tests of real devices, was reached under a decreasing shear deformation at 

the increase of the axial load. This is an interesting and significant finding for the design and the 

implementation of such devices in bridge structures. 

 

 
Figure 12. Principal stresses in the numerical model of 

device 302: axial load 44kN and 200% shear 
deformation. The maximum principal stresses reach the 

ultimate value of about 79 MPa. 

 
Figure 13. Principal stresses in the numerical model of 

device 302: zero axial load and 290% shear deformation. 
The maximum principal stresses reach the ultimate value 

of about 79 MPa. 

5. Conclusions 

 

Scope of the paper is to study the limit state and the beyond design response of filled isolator 

devices having different aspect ratios. Axial force variability has been deemed as essential for 

capturing the global response of the base isolation device. Variable axial forces at increasing 

horizontal displacements have been thus considered in finite element analyses to highlight the 

dependencies of one on the other. The devices models have been developed adopting the 

overlapping technique, which allows to predict the hysteretic behaviour of rubber components by a 

suitable combination of simple constitutive models. The material modes have been tuned on results 

from tests and laboratory experiments. The elastic-plastic component of the elastomeric layers has 



been successfully implemented for the re-production of the device hysteresis at small value of shear 

deformations. However, this approach was not successful with shear deformations larger than 

200%. Further research needs to be devoted to the implementation of special dissipative models, 

able to capture the physical behaviour of the HDRB at larger values of shear strain. The limit stress 

state condition of the device has been also assessed. This was carried out by comparing the stress 

values from the numerical analyses with those derived from laboratory tests at failure. The results 

pointed out as at the increase of the axial load, the experimentally derived limit value of the 

principal stresses is reached for a smaller value of the shear deformation.  
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