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ABSTRACT 
 

Seismic damage simulation at the regional scale can potentially provide valuable information that can facilitate 

decision making, enhance planning for disaster mitigation, and reduce human and economic losses. When an 

earthquake happens, building damage assessment is one of the important issues in earthquake loss estimation. 

The amount of debris generated and the effects on related critical infrastructures is also an essential information 

to evaluate. Indeed, as cascading consequence of debris accumulation, the road network can be interrupted. This 

entails an overall increase in the average number of people who have difficulty evacuating, with high risk that 

residents cannot evacuate any areas. This study proposes a method to evaluate the debris affected area and the 

debris amount as a function of the geometric characteristics and the level of damage of the buildings. The first 

part of this work is focused on the evaluation of the debris area’s extension by numerical simulations. 

Comparison of the results with images of real seismic damaged structures allows the validation of the results. 

Besides, experimental tests on a small shaking table are performed to validate the numerical simulations. A 

mathematic model based on the results is also proposed. 
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1. INTRODUCTION  

 

In recent years, seismic events hit several territories such as the center of Italy (2016) and Mexico 

(2017). In order to reduce the social and economic losses, the emphasis has shifted to mitigations and 

preventive actions before the earthquake events (Cimellaro 2016). Large amounts of debris may be 

generated after a seismic event due to the buildings collapses and could constitute a serious obstacle to 

the escape routes. This entails an overall increase in the average number of people who have difficulty 

evacuating. The generation of debris due to earthquakes has been studied by some authors. For 

example, S. García-Torres et al. (2017) or Rafee et al. (2008) analyzed the implementation of 

strategies in debris management after seismic events. By a material stock analysis Tanikawa et al. 

(2014) examined the losses of building and infrastructure materials after disasters such as a tsunami or 

an earthquake. No methodology to quantify the extension area within which debris fall was developed 

in order to determine whether a road is blocked or not. This work proposes a methodology to estimate 

this area by the development of collapse scenarios of buildings. The research has been focused on 

masonry buildings; they represent much of the Italian cultural heritage and most of the European 

historic buildings. This paper is divided into two sections. The first section provides a description of 

the proposed methodological approach. In the second section the main findings are discussed and the 

conclusions of this work are presented. 
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2. METHODOLOGY 

 

2.1 Applied Element Method 

 

The proposed methodology in this study is based on the correlation between geometric parameters of 

the building and the debris area. For this research an Applied Elements Method (AEM) based software 

is used. The AEM is an innovative modeling method adopting the concept of discrete cracking.  

Through two decades of continuous development, AEM was proven to be the method that can track 

the structural collapse behavior passing through all stages of the application of loads: elastic stage, 

crack initiation and propagation in tension-weak materials, reinforcement yielding, element separation, 

element collision (contact), and collision with the ground and with adjacent structures. Although the 

FEM is accurate and reliable for analysis of continuum structures, the onset of element separation is 

difficult to automate and modeling of debris collision is time consuming. With AEM, the structure is 

modeled as an assembly of small elements, which are made by dividing the structure virtually, as 

shown in Figure 1. The two elements shown in Figure 1 are assumed to be connected by one normal 

and two shear springs located at contact points, which are distributed around the elements’ edges. 

Each group of springs completely represents stresses and deformations of a certain volume as shown 

in Figure 1. 

 

 
Figure 1. Modeling of structure to AEM 

 

These springs reflect the different material properties; strain stresses and failure criteria are all 

calculated and estimated using these springs. 

 

2.2 AEM for Masonry Building 

 

Using AEM method, the brick can be simulated either in a staggered pattern, in its real configuration, 

or as homogenous material as shown in Figure 2. The real configuration includes the individual bricks 

in a staggered pattern connected by interface springs with mortar by material properties. The brick 

itself can be divided into sub-elements to allow the cracks to develop inside an individual brick. Since 

it is not practical to model the mortar as separate elements, the thickness of mortar is not included in 

the real configuration approach. On the other hand, the continuum simulation, or the macro simulation, 

represents the brick wall as one homogenous material. Instead, average properties should be 

introduced by the user for the mortar and the adjacent brick element. The reinforcing steel bars are 

modeled by springs that represent the material properties, exact location and dimensions of the bars. 

The generation of these springs is automatically performed in the software Extreme Loading for 

Structure. 

 

 

Figure 2. Different meshing for masonry 
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2.3 Case study: shaking test 

 

A case study conducted by Imai H. et al. (2015) on masonry buildings subjected to earthquake with a 

shaking table is considered to evaluate the accuracy of a simulation by AEM method and the influence 

of mesh discretization on the solution. Two houses were built and dynamically tested with fourteen 

input motions on a seismic simulator at National Research Institute for Earth Science and Disaster 

Prevention (NIED) on February 23-24, 2011. Buildings views are shown in Figure 3. 

 

 
 

Figure 3. Isometric views of two models on shaking table 

  

Model A is constructed with the flowing materials, in compliance to the minimum requirements set in 

the National Structural Code of the Philippines (NSCP2010). The walls are made of 400 mm x 200 

mm x 150 mm concrete hollow blocks (CHB). The mortar mix used for filling and joint mortar is 

properly compacted. The vertical and horizontal reinforcement bars used are 10 mm and are spaced at 

400 mm and 600 mm respectively.  Model B represents the non-engineered construction of typical 

houses in Philippines; It is made of 400 mm x 200 mm x 100 mm CHB and filled hollows and joints 

with mortar having a mix ration of 1:4 (by volume of cement and sand). The reinforcement used size 

of 6 mm diameter and is spaced at 600 mm along the horizontal direction and at 900 mm along 

longitudinal direction. Compression strength tests were performed on prism specimens of masonry 

unit of concrete hollow blocks (Figure 4) at Mie University (Japan). Vertical reinforcing bars were not 

installed. Tests shows that the compressive strength of the mortar used for the prism specimens ranges 

from 9.5 N/mm2 to 15.2 N/mm2. In the table 1 and 2 the results are shown.  

 
Table 1. Prism specimens of concrete hollow blocks (CHB). 

 

 CHB Reinforcing bar Mortar 

Thickness Mixing ratio Compaction 

Specimen D 6 inch, 150 mm None 1 cement : 4 sand Compacted 

Specimen E 6 inch, 150 mm None 1 cement : 4 sand Not Compacted 

Specimen F 4 inch, 100 mm None 1 cement : 4 sand Compacted 
 

 

Table 2. Prism compressive strength. 

 

                                    [N/mm2] 

Specimen D 4.40 

Specimen E 1.42 

Specimen F 2.52 
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Figure 4. Compressive test results 

 

Only model B is modeled by AEM software like homogeneous material. As can be seen in Table 1, 

the test show that for Philippine CHB masonry structures, the application of mortar is a critical and 

important aspect of construction because the CHB itself has a poor strength. Tested material 

specimens reported in Figure 4 and Table 1 do not include that one of Model B. Indeed, CHBs 

thickness of building Model B (100 mm) is smaller than material specimen E (150 mm in Table 1). 

Consequently, the mechanical properties of specimen E are higher than Model B. Therefore, to 

validate AEM model with the performed shaking table tests, the material parameters are decreased 

until the partial collapse at the top of gable wall during input motion # 7 is equivalent to that recorded 

during the laboratory test. The same seismic inputs of the shaking table tests have been used for the 

numerical simulations with the AEM. They are reported in Figure 5. The damages caused by the 

shaking test are reported in Table 3. 

 
Table 3. Damage status of the model structure at main inputs. 

 

February 24, 2011 PGA Damage status 

No.7  0.85 g East wall: Gable wall collapsed (fell). Upper 

part of opening had large displacement. West 

wall: Gable and upper part of wall was 

collapsed (fell). North and South wall: Minor 

cracks 

 

No.12 1 g East and West walls were collapsed, then this 

model was totally collapsed. 

 

 

 
 

Figure 5. Input motion n°7 and n°12 

 

In Table 4, the mechanical parameters of AEM model are shown. Where    is the compressive 

strength,     is the shear strength, E is the elastic modulus and G is the shear modulus. 
 

Table 4. Input mechanical parameter for AEM model. 

 

   [N/mm2]     [N/mm2] E [N/mm2] G [N/mm2] 

1.15 0.35 24000 6000 

 

In Figure 6 a graphical output compared with the real picture is done while in the Figure 7 the AEM 
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displacements with the displacements obtained by shaking test are compared. 

 

 

 
 

Figure 6. Compare between real model B and AEM model 

 

 
 

Figure 7. Displacement data of top of gable walls during input No. 7  

 

In order to evaluate the influence of mesh discretization on the solution, a sensitivity analysis is 

performed. The number of mesh has been decreased until the displacement of top of gable walls has 

shown further significant changes. As reported in Figure 8, at the decreasing of elements number 

correspond an increase of the resistance to the collapse. 

 

 

 
Figure 8. Different meshing of AEM model 
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For a number of elements equal to Mesh 2, the results tend to be acceptable, as shown in Figure 9. The 

results of “mesh 3” and “mesh 4” have not been represented in the chart, because the displacements of 

the considered element are very far from the exact solution. 

 

 
 

Figure 9. Displacement of top of gable walls for different meshing levels 

 

Therefore, the solution “mesh 2” is chosen for the analysis. Walls were discretized with 13 elements 

on the short side of the building, 15 elements on the long side and one element along the thickness. It 

can be asserted that the AEM analysis shows a good accordance with the real test. Therefore, the time-

step and mesh discretization settings used for the Philippine CHB building is maintained for further 

analysis to estimate debris areas of masonry buildings. 

 

2.3 Debris Area 

 

Numerical simulations are performed on 27 types of buildings groups. Each group consists of three 

types of building with 1, 2 and 3 floors respectively, leading to a total of eighty one models. The sides’ 

dimension and the area of the rectangular footprint for each group of three buildings are shown in  

Table 5. 

By a nonlinear dynamic analysis, for each building a progressive collapse is simulated. The Central 

Italy 24/08/2016 earthquake record is used for the analysis. As shown in Figure 10, the earthquake is 

applied in four different directions rotated by 45 degrees around the vertical axis; Therefore, four 

collapse simulations for each case study are available. That one with the largest debris area is only 

considered. 

 
 

Figure 10. Accelerogram and earthquake directions. 

 

Mechanical parameters are calibrated accordingly with the current Italian standard on existing 

masonry (NTC 2008), as homogenous material. To amplify the area of debris, the masonry typology 

with the lowest mechanical parameters are used, as shown in Table 6.  

In Figure 11, a sample of full collapse performed by AEM software is shown. 

 

 
 

Figure 11. Example of AEM simulation 
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A scale factor to enlarge the building's footprint is considered for including the debris. The area may 

be much larger than the required area (Figure 12). This error is due to maintain the building’s sides 

ratio constant. 
 

Table 5. Group analyzed. 

 

Group Ratio a[m] b[m] Area [m2] 

1 0.2 4 20 80 

2 0.3 4.9 16.3 79.9 

3 0.4 5.7 14.1 80.4 

4 0.5 6.3 12.6 79.4 

5 0.6 6.9 11.5 79.4 

6 0.7 7.5 10.7 80.3 

7 0.8 8 10 80 

8 0.9 8.5 9.4 79.9 

9 1 8.9 8.9 79.2 

10 0.2 8 40 320.0 

11 0.3 9.8 32.6 319.5 

12 0.4 11.4 28.2 321.5 

13 0.5 12.6 25.2 317.5 

14 0.6 13.8 23 317.4 

15 0.7 15 21.4 321.0 

16 0.8 16 20 320.0 

17 0.9 17 18.8 319.6 

18 1 17.8 17.8 316.8 

19 0.2 12 60 720.0 

20 0.3 14.7 48.9 718.8 

21 0.4 17.1 42.3 723.3 

22 0.5 18.9 37.8 714.4 

23 0.6 20.7 34.5 714.2 

24 0.7 22.5 32.1 722.3 

25 0.8 24 30 720.0 

26 0.9 25.5 28.2 719.1 

27 1 26.7 26.7 712.9 

 
 

Table 6. Mechanical parameters used (NTC2008). 

 

   [N/mm2]     [N/mm2] E [N/mm2] G [N/mm2] 

1.0 0.2 690 230 

 

 
 

Figure 12. Footprint area vs scale factor area 
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As shown in Figure 13, a central area with a major debris presence and an outer area with a smaller 

amount. By neglecting a low percentage of debris, it is possible a new rectangular high debris density 

area can be defined (in red in Figure 15). 

 

Figure 13. Scale factor area with neglecting percentage of debris 

 
By a Cad software the AEM output file can imported and the coordinates of the debris amount can be 

saved in a text file. This last can be easily uploaded in Matlab environment for further evaluations. 

Coordinates of all points into the file are exported in txt format. The code has two functions: 

 A rectangular area with a percentage of internal points can be defined through a scale 

factor (Figure 14); 

 Another area that contain all the debris can also be identifies through a polyline (Figure 

14). 

 

 

 
 

Figure 14. Scaled rectangular area with a given percentage of internal points and 

 Real area of debris bounded by a polygonal 

 

As shown in Figure 15, other two geometries (elliptic and circular) are considered and compared with 

rectangular shape. The ellipse axes and the circle radius are scaled with the same principle as the 

rectangle (scale factor). 

 
Figure 15. Ellipse and circle area 

 

In function of the building’s area different cases of percentage of inside points in function of the 

building’s area are considered as shown in Table 7. 

. 
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Table 7. Percentages of inside points considered. 

 

 1 floor 2 floors 3 floors 

\Area: 

80 m2 

100% 100% 100% 

90% 90% 95% 

80% 80% 92.50% 

70% 70% 90% 

Area: 

320 m2 

100% 100% 100% 

95% 97.50% 98% 

90% 95% 96% 

80% 92.50% 94% 

Area: 

720 m2 

100% 100% 100% 

97.50% 98.80% 99.30% 

95% 97.60% 98.60% 

92.50% 96.40% 97.90% 

 

To every percentage of neglected points corresponds a volume of debris.  

 

2.4 Road interruption simulation 

 

In order to evaluate the amount of debris that can be able to interrupt a standard road an AEM 

simulation is performed and the volume limit for passing a vehicle is calculated. According to Italian 

road regulations (art. 2, Decreto Legislativo 30 aprile 1992, n. 285), a 3,5-meter road with a 0,50-

meter sidewalk and the axles of the vehicle are modeled. The presence of debris on a road surface 

whose distribution derives from the simulation carried out for a 3-storey building with a ratio of 1 is 

performed. The test is passed if the vehicle starting from point A can reach point B. Four scenarios 

with different debris volumes are simulated: 25 cubic meters, 20 mc, 15 mc, 10 mc (Figure 16). 

 

 
 

Figure 16. Simulation car for different volumes of debris 

 

The total weight (1300 Kg) of the vehicle is distributed on the four tires. The dimensions of the car 

considered are shown in figure 17. 

 
 

Figure 17. Car AEM model and dimensions 

 

The vehicle is modeled like a rigid body. The car body was neglected for two reasons: 

1) To reduce the computational efforts; 
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2) As the simulation performed represents an emergency, it is assumed that it is not priority to 

evaluate the car body. 

The model of the tire is 225/45 R17. To each tire is assigned a rotation of 2 of a lap per second (10 

km/h). Uniform motion in a straight line is assigned to the car. The vehicle moves along the road, it 

can change its direction only because of an obstacle. In Table 8 the results are shown. 
 

Table 8. Car test results. 

 

Test Volume Result 

1 10 m3 Passed 

2 15 m3 Passed 

3 20 m3 Not Passed 

4 25 m3 Not Passed 

 

2.5 Results 

 

Referring to Table 6 and taking in account also the results obtained in paragraph 2.4, the difference of 

the measured area with the real one (error) for the different percentages are analyzed. The 

combinations “debris volume passed by car test-error" with the lowest values are considered, as shown 

in Table 9. These percentages correspond to a neglected debris volume between 11 and 14 cubic 

meters. As the volume of the building grows, the outer area with less debris is less extensive as shown 

in Figure 18. 
 

Table 9. Percentage of inside points. 

 
 1 floor 2 floors 3 floors 

80 m2 80% 90% 92.5% 

320 m2 95% 97.5% 98% 

720 m2 97.5% 98.8% 99.30% 

 

 
Figure 18. Debris Area/Outer debris volume - ratio 

 

Rectangular geometry has been selected as the best performer with respect to circular and ellipse area.  

For the circle the error is higher for low ratios, but decreases for unitary ratios. In the figure 19, the 

results are shown and only the values of scale factors obtained by rectangular shapes are considered. 

 

 
 

Figure 19. Error – ratio a/b 

http://context.reverso.net/traduzione/inglese-italiano/uniform+motion+in+a+straight+line
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The data are interpolated through a plan as shown in Figure 20-a. Two residuals tests are performed to 

verify the reliability of the model. The normality of the residuals is validated by Shapiro-Wilk test that 

confirm the normality hypothesis as shown in Figure 20-b.  In the second test the predicted residuals 

are compared with predicted values to validate the homoscedasticity hypothesis. As shown in Figure 

20-c it is satisfied.  

 

 
 

Figure 20. Residuals chart 

 

The formula for obtaining rectangular shape scale factor is given by: 

 

                          (
 

 
)         (

             

              
 
         
 

 
)   (1) 

 

Where the volume represents the occupied volume by building's material and it is roughly equal to: 

 

                    (                       )
      

     (2) 

Therefore, (1) can be rewritten as: 

 

                          (
 

 
)         (             

       
         
      

 
)   (3) 

 

           total height of the building                                 (4) 

 

     respectively are the minor side and major side of the building’s footprint   (5) 

As shown in Figure 21, new simulations for the buildings with one floor and 80 m2 are performed to 

evaluate the variations of debris area increasing the material strength. According to NTC (2008), P1 

represents the mechanical parameters used for all collapse simulations in previous analyses, while P2 

represents the mechanical parameters used for these new simulations. 

 

P1   P2 

   

[N/cm2] 

    

[N/cm2] 

E 

[N/cm2] 

G 

[N/cm2] 

 

   

[N/cm2] 

    

[N/cm2] 

E 

[N/cm2] 

G 

[N/cm2] 

100 2.0 690 230 200 3.5 1020 340 

 
Figure 21. Mechanical properties from P1 to new P2 (NTC2008) 

 

Table 10 reports the comparison between the debris extension adopting P1 parameters and P2 

parameters. 
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Table 10. Compare between Area P1 with Area P2 

 

Ratio Area P2 Area P1 

0.2 229 396 

0.3 194 317 

0.4 292 445 

0.5 247 305 

0.6 329 376 

0.7 231 253 

0.8 337 353 

0.9 321 345 

1 341 353 

 

In all cases, the results computed in the simulations with the P1 parameters are larger than that with 

the P2 parameters. The preliminary results seem promising on the reliability of the formula. 

 

 

3. CONCLUSION 

 

In earthquake affected areas, debris accumulation can be an important problem, as cascading 

consequence of debris accumulation, the road network can be interrupted. The methodology presented 

in this research work contributes to this task since is able to provide and assessment of debris 

generation after a seismic event. The proposed formula could predict whether a road is inaccessible to 

escape. This approach can be implemented in a more general procedure on a virtual city model, to 

evaluate the resilience of the road network after collapse of the masonry buildings. It can represent an 

important input for escape management planning and for waste management planning that will be 

triggered immediately after a seismic event, allowing rapid removal and relocation of debris in order 

to facilitate the rescue of victims. 
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