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DISASTER RESILIENCE ASSESSMENT OF  BUILDING AND TRANSPORTATION 
SYSTEM 

G.P. Cimellaro1, V. Arcidiacono2, A.M. Reinhorn3 
ABSTRACT 

The paper presents a new methodology to assist decision-makers in the management of critical 

events such as earthquakes evaluating the recovery time, and the resilience index of a building 

system that is a component of the physical infrastructure dimension of the PEOPLES Resilience 

framework. The interdependencies between building system and transportation network in term of 

accessibility is modelled. Finally, the methodology has been implemented in a software and has 

been applied in two case studies: a) the old medieval centre of L’Aquila town and b) the Treasure 

Island in the San Francisco Bay area.   

 

 
Keywords: Community resilience, disaster resilience, infrastructure interdependency, PEOPLES 
framework, restoration process, recovery, loss estimation, seismic hazard. 
 

1 INTRODUCTION 

The tendency to globalize services, the ever-growing population, and the trend to push social, 

economic, technological, and biological systems to their limits are all likely to increase the 

frequency of large-scale disasters [Allan, 2013]. For example, electrical power outages 

(“blackouts”) have affected larger and larger areas. This is because of the growing and considerably 

varying demand of electricity (e.g. due to a greater number of air conditioners), the greater size and 

complexity of electrical power networks (often with a power exchange across countries), and the 

de-regulation of the power market (which encourages profits with minimum investments). 

Interconnected causality chains, i.e. a damage in a sector of a system affects the other systems, can 

describe the spreading of natural and man-made disasters. It is often these cascade effects (i.e. 

chain-reactions) by which a localized event in time and space causes a large-scale disaster, which 
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may affect the whole community [Helbing et al., 2006]. Therefore, redundancies are required to 

stop the chain-reactions, and for adapting to the changes of the economical and environmental 

conditions. For example, the earthquake in Kobe (Japan, 1995), was very destructive for both the 

towns and the highways. The main problems were the several fires, which were caused by broken 

gas pipes in wooden houses between skyscrapers. A great chaos was caused by the fact that the fire 

fighters could not reach the fires, because of the damage to the critical infrastructures (lifelines) 

such as the road network and to the water distribution network with many broken and/or 

dysfunctional water pipes. Thousands of people were homeless and panicked during the 

aftershocks. In addition, the power supply lines, hanging over the remaining streets, obstructed 

seriously the traffic, the transportation and the power supply. Hence, awareness of both manmade 

and natural disasters has increased in recent years and the concept of resilience has gained attention, 

because small damages can become catastrophes when the communities have no access to the 

emergency services [Arcidiacono and Cimellaro, 2013; Cimellaro et al., 2013; Scura et al., 2013].  

Therefore, the paper is focusing on the vulnerability of the transportation system and its use in 

emergencies using a methodology – which is based on the PEOPLES framework [Renschler et al., 

2010, Cimellaro et al., 2016] – that is able to assess the resilience index of the physical 

infrastructure dimension during an extreme event.  In detail, the paper focuses on the Building 

System [Arcidiacono et al., 2011] and its interdependencies with the Transportation System 

[Arcidiacono et al., 2012a; 2012b]. In particular it models functionality and resilience of this type of 

infrastructure.   

 

2 STATE-OF-ART OF CURRENT METHODOLOGIES 

The definition of Resilience adopted in this paper is “the ability of social units (e.g. organizations, 

communities) to mitigate hazards, contain the effects of disasters, plan and enact an effective 

strategy to recover its activities so as to minimize social disruption” [Bruneau et al., 2003; 2007]. 
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Moreover, the methodology was implemented in a software [Arcidiacono et al., 2011; 2012a; 

2012b; Cimellaro et al., 2013], which is able to assist decision-makers to prevent and minimize the 

disasters effect. 

Several methods are available in literature for loss estimation methodologies. Among them, the 

most famous is the HAZUS (abbreviation for Hazards United States) framework [Whitman et al., 

1997; FEMA, 2003; 2005] which was developed by the National Institute of Building Sciences 

(NIBS) and used by FEMA in 1997 to assess separately earthquake, wind, and flood losses within 

the USA. The method works on an inventory of various components such as population, buildings, 

transportation systems, lifeline utilities, and hazardous materials. It evaluates the status of a 

community – according to the direct and indirect losses due to social, economic, and physical 

aspects – with a multi-risk analysis approach. The losses are provided in probabilistic terms 

evaluating causalities, shelters, inundations, fires, debris, hazardous material releases, damage states 

of physical infrastructures, and economic losses.  Buildings are grouped in building classes with 

similar characteristics making a building inventory.  There are 36 different structural classes that 

depend on the construction type, the material, and the structural type, while the occupancy 

inventory of the general building stock in the HAZUS methodology is prepared based on its general 

and specific building occupancy. The building and occupancy type inventory are used, respectively, 

for the building risk assessment and to evaluate the potential economic losses. HAZUS 

methodology considers all hazards, but not all the interdependences between the structural 

components. For example, the damage of the transportation network inducted by the building debris 

is not modelled. Therefore, the methodology is “limited” to the risk assessment – not considering 

the functionality and the recovery plan – making it a useful tool to prevent damages and to design 

urban cities, but not to manage the communities during the catastrophic events. 

More recently, the ResilUS framework [Miles and Chang, 2006; 2007; 2011], based on the 

resilience concept, has been developed. It is limited to buildings and lifelines (transportation 
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network, electrical network, water supply, and critical facilities) and uses a macro-sub division of 

area contained within a broader community such as the neighbourhood subdivision, and subdivides 

the community in three elements that are: the physical built environment, economics, and humans 

(i.e., health). The method relies on two generic indicators of resilience: (i) the ability to perform and 

(ii) the opportunity to perform. These recovery indicators are specifically represented by multiple 

variables. For example, the indicator of the ability to perform for households is represented by the 

household health, while the reconstruction time is influenced by the size (single-family vs. multi-

family) of the respective building in addition to the construction capacity in the community 

(opportunity to perform). The model has four recovery curves, but currently the software ResilUS 

uses only one curve, that brings back to the pre-disaster conditions. The framework, therefore, 

facilitates the creation of a database for infrastructures and defines multiple resilience indicators 

making the optimal solution difficult to find, but different functionality models already available in 

the literature can be adopted. 

3 PROPOSED METHODOLOGY 
 

The methodology proposed in this paper is based on the PEOPLES Resilience framework 

[Cimellaro et al., 2016, Renschler et al., 2010]. In the method community resilience is evaluated 

combining seven dimensions – that are subdivided in components and sub-components – identified 

with the acronym P.E.O.P.L.E.S. (Population and demographics, Environmental/Ecosystem, 

Organized governmental services, Physical infrastructures, Lifestyle and community competence, 

Economic development, and Social-cultural capital). The Resilience can be considered as a 

dynamic quantity that changes over time and across space. This is analytically defined as the 

normalized shaded area underneath the functionality performance function Q(t) of a generic system:  

 R

r, tOE,TLC( ) = QTOT


r, t( )

TLCtOE

tOE+TLC

ò ×dt  (1) 
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where TLC is the control time of the period of interest; t0E is the time instant when the event 

happens;   

r  is a vector defining the position within the selected region where the resilience index is 

evaluated [Cimellaro et al., 2010a], and ( ),TOTQ r t


 is the global functionality of the region 

considered that is evaluated combining the performance indicators of each dimension of the 

resilience framework and is defined as follows [Reinhorn and Cimellaro, 2011] 

 QTOT


r, t( ) = QTOT QP,QEnv,QO,QPh,QL,QEco,QS( )  (2) 

where Qx are the functionalities of the seven dimensions of the PEOPLES framework [Cimellaro et 

al., 2016]. The proposed methodology uses as key indicators the recovery time TEW, the global 

functionality QTOT(t), the resilience indicator R(  

r ,tOE,TLC) associated to each dimension and the 

community resilience index RI. The latter is defined as the resilience value R at the end of the 

recovery works TEW (i.e. when the functionality reaches the expected value that can be greater or 

less than 100%) starting from the disaster time tOE (i.e. when the disaster occurred). 

 ( ) ( ), ,O EWERI r R tr T=
 

 (3) 

 

Once the community resilience index is defined, different scenarios of restoration plans can be 

considered, while the scenario that maximizes the Resilience index R and minimizes the recovery 

time, TEW is selected.  

 

4 PHYSICAL INFRASTRUCTURE DIMENSION 

The term infrastructure has been used in English since 1887 and in French since at least 1875, 

originally meaning “The installations that form the basis for any operation or system” [Lewis, 

2008].  The word is a combination of the latin word “infra”, meaning “below”, and “structure”.  It 

can be defined as “the physical components of interrelated systems providing commodities and 
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services essential to enable, sustain, or enhance societal living conditions” [Fulmer, 2009]. The 

literature is characterized by the lack of an accepted description for infrastructure.  The definition of 

infrastructure adopted in this paper includes highways, streets, roads, and bridges; mass transit; 

airports and airways; water supply and water resources; wastewater management; solid waste 

treatment and disposal; electric power generation and transmission; telecommunications; and 

hazardous waste management – and the combined system these modal elements comprise. However 

in the definition of infrastructure are also included the operating procedures, management practices 

and development policies that interact together with societal demand and the physical world.   

The physical infrastructures correspond to a subcategory of infrastructures and refer to the basic 

physical structures required for an economy to function and survive, such as transportation 

networks, a power grid and sewerage and waste disposal systems.   

The methodology proposed in this paper describes how to evaluate the functionality of the Physical 

Infrastructure dimension according to the PEOPLES framework, dividing it in 5 levels 

(Dimensions, Systems, Categories, Sub-categories, and Boundary levels) (Figure 1).  The seven 

dimensions of the PEOPLES framework are included at the Dimension level in Figure 1 and 

because in the paper we are focusing on the Physical Infrastructure dimension, the latter is 

emphasized with respect to the other dimensions.  Furthermore, the functionality of the Physical 

Infrastructure dimension QPh(t) is analytically defined as  

 ( )
( ), ,

,

Ph Ph
s i s i

i
Ph Ph

s i
i

w Q t
Q t

w

×
=

  (4) 

 where Qs,i
Ph(t) and ws,i

Ph correspond to the functionalities and the weight coefficients associated to 

the i-th system respectively.  At the System level, for the same reason above, it is made distinction 

between “building system”, described in more detail in paragraph 4 and “other systems”.  The 

Categories level evaluates the redundancy ratio of certain categories of elements that create a 

system, while the Sub-categories level calculates the functionality of each element of the 
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infrastructure, evaluating dependencies and interdependencies between dimensions, systems, 

category, and sub-category. Finally, the Boundary level evaluates the damages and the recovery 

plan of the physical infrastructure units.   

Boundary

Sub-categories

Categories

Systems

Dimensions
Physical Infrastructures

Buildings System

Building Categories

Building Unit Typologies

Recovery Plan
Risk 

Assessment

Other Systems:

Other Categories:

Other Sub-categories:

Other Dimensions:
Qd t( ) Rd tOE ,TLC( ) RId

d = P, Env, O, L, Eco, S
QPh t( ) RPh tOE ,TLC( ) RIPh

QB
Ph t( ) RB

Ph tOE ,TLC( ) RIB
Ph

Qs
Ph t( ) Rs

Ph tOE,TLC( ) RIs
Ph

s = Transportation,  Water,  etc.

Qh
Ph,B t( ) Rh

Ph,B tOE ,TLC( ) RIh
Ph,B

h = R,  M ,  C,  N,  E,  F,  H ,  U,  T .

Qh
Ph,s t( ) Rh

Ph,s tOE ,TLC( ) RIh
Ph,s

h = Road  Network,  Power  Grid,  etc.

Qt
Ph,B,h t( ) Rt

Ph,B,h tOE ,TLC( ) RIt
Ph,B,h

t = Housing Unit, Hospital, etc.

Qt
Ph,s ,h t( ) Rt

Ph,s,h tOE ,TLC( ) RIt
Ph,s,h

t = Bridge,Road, Pipe, etc.

Community

 

Figure 1. Flowchart for evaluating the Building System functionality and resilience according to 
the PEOPLES framework [Cimellaro et al., 2016]. 

 

5 BUILDINGS SYSTEM 

The Buildings System is defined as a group of building units interconnected each other, which use 

and supply services from/to the community for any activity. The term building unit, i.e. 

construction, refers to “a relatively permanent enclosed construction over a plot of land, having a 

roof and usually windows and often more than one level, used for any of a wide variety of activities, 

as living, entertaining, or manufacturing” [dictionary.com, 2013]. While, the building services are 

“the utilities, including electricity, gas, steam, telephone, and water, supplied to and used within a 

building” [AAMI, 2013].  
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The proposed methodology identifies redundancies of building typologies and interdependences 

between and among building units and utilities, i.e. lifeline systems, as key factors, i.e. 

performances, of the buildings system. It means that the functionality of the building unit is related 

among all of dimensions, systems, categories, and sub-categories (Figure 1). 

 

5.1 Redundancy 

Redundancy is an attribute of resilience and it represents the duplication of available resources in a 

system with the intention of increasing its reliability.  For example, the functionality of the building 

category – i.e. a class or group of building units that have some qualities in common, e.g. 

residential housing units, health care facilities, etc. – depends on its redundancy or in other words 

the number of units with similar characteristics.  If we focus on health care facilities, a single 

hospital is less resilient with respect to an hospital network during an emergency, because the 

redundancy of this specific building category in a network is higher.   

The proposed methodology has identified nine classes or categories within the Building system that 

have common features (Table 1). Then each category is divided in sub-categories that identify a 

typology of the building unit.  

Table 1. Building System: Categories and Typologies. 
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Hence, the functionality of the Building System QB
Ph(t) is the weight average of the functionalities 

of the Building Categories Qh
Ph,B(t) that are the weight averages of the functionalities of the 

Building Unit Typologies QtPh,B,h(t).  Analytically their expressions are the following 

 



10 
 

 
( )

( )
( )

( )

( )
( )

, , , , , ,

,
, , ,

, , , , ,
,

, ,
, , ,

; ;

;

Ph B Ph B Ph B h Ph B h
h h

Ph Ph Bh h
B hPh B Ph B h

h
h h

Ph B h Ph B h
u u

Ph B h u
Ph B h
u

u

w Q t w Q t
Q t Q t

w w

w Q t
Q t

w

t t
t

t
t

t
t

t
t t

t








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

 (5) 

 where h and wh
Ph,B, tandwtPh,B,h , u and wu

Ph,B,h,t are the indices and the weight coefficients of the 

building category, the building sub-categories and the building units respectively; QtuPh,B,h(t) is the 

functionality of the Building Unit that is defined in the next paragraph in Equation (6).   Suggested 

values of the weight indices are provided in Table 1 and they have been determined based on 

engineering judgment that has an important role in safety assessment.  

5.2 Interdependency 

The performances of the Buildings System cannot be determined without considering the 

interdependencies that in this approach have been taken into account at the Building Unit level. In 

fact, the performances of a generic Building Unit QtuPh,B,h(t) mainly depend on its structural qS,u(t) 

and non-structural qNS,u
Ph,B,h,t(t) functionalities. The structural functionality is defined as the 

percentage of building unit that is usable and its estimation will be discussed in the following 

section. Instead, the non-structural functionality depends on the building typology and on its 

interdependencies with utilities and on the performances of the services supplied from the building. 

In particular, the non-structural performances can be measured observing: 

 the quality of services received such as water, electricity, natural gas, oil, heating, internet, 

etc.;  

 the quality of services supplied that depends on the building unit typology, e.g. hospitals 

provide health care, police and fire stations provide assistance to citizens, power plants 

provide electrical power, etc.; 
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Hence, the definition of functionality of a Building Unit is provided by the following equation 

 

( ) ( )
( ) ( )

( ) ( ) ( )( )

, , , ,
, ,, ,

, , , , , , ,
, , ,

, , , , , , , ,
, , , ,

0
;

with: 1 1

Ph B h Ph B h
u uPh B h

u Ph B h Ph B h Ph B h
u u u

Ph B h Ph B h Ph B h
u S u NS u NS u

q t U
Q t

q t q t U

q t q t w q t

t t
t

t t t

t t
t

 =  
 = ×  ×  

 (6) 

where UtuPh,B,h are the lower bound limits that define the usability of the building units, and 

wNS,u
Ph,B,h,t are the weight coefficients that define the importance of the non-structural functionality 

with respect to the structural functionality. Suggested values are given in Table 1. The Usability 

defines the limit between people coming back to their houses and people waiting in provisional 

shelters or in temporary houses. 

Thus, in the methodology, nine key factors have been identified for evaluating the non-structural 

performances of a building unit (Table 2). These values will be analytically defined in the following 

section. 

 

Table 2. Performance indicators of the non-structural functionality of a building unit. 

 

For example, the comfort of the residents of a building unit decreases after a catastrophic event, if 

utilities such as water, electricity, natural gas, communication, and heating are missing. The 

performance of a hospital reduces if the facility is isolated or partly connected to the transportation 

network, because it cannot be reached from injuries and casualties. A building unit that is not 
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accessible cannot accommodate persons or be repaired. Hence, the non-structural functionality is 

analytically defined as 

 qNS ,u
Ph,B,h,t t( ) =

wP
Ph,B,h,t ×qP,u

Ph,B,h,t t( ) + wj
Ph,B,h,t ×qj ,u t( )

j


wP
Ph,B,h,t + wj

Ph,B,h,t

j
  (7) 

where j is the performance index (A, W, E, N, OL, C, H, and O) and wj
Ph,B,h,t

 
are the weight 

coefficients associated to each performance and are function of the type of building unit. For 

example, a housing unit does not offer a public service to the community, but it has a residential 

purpose that can be achieved when it is accessible, while its comfort depends on the quality of the 

utilities received (wA
Ph,B,R,HU=50; wW

Ph,B,R,HU=10; wE
Ph,B,R,HU=16; wN

Ph,B,R,HU=8; wOL
Ph,B,R,HU=0; 

wC
Ph,B,R,HU=10; wH

Ph,B,R,HU=6; wO
Ph,B,R,HU=0; and wP

Ph,B,R,HU=0). 

5.2.1 Loss and recovery functions 

A performance indicator for a building unit during the transient analysis is function of time t and 

other parameters that depend on the type of building unit. In literature, several models describe the 

performance functions, which can be either empirical or analytical depending on the source of data 

and the type of analysis [Cimellaro et al., 2010b]. Empirical performance functions are based on 

test or real-time interpretation of field data and engineering judgment. Since the complexity of the 

problem changes case by case, no specific models are presented in this section. Analytical 

performance functions are developed from the community response data obtained through the 

analysis of the system using numerical simulations. The essential requirement of the analytical 

models is the simplicity, therefore the model should be selected so that it is easy to fit to real or 

numerical observation data and the number of parameters involved should be as low as possible. In 

general, in the performance function it is possible to distinguish three phases (see Figure 2): 

 Loss, i.e. when the functionality drops, 
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 Administrative, which is defined as the time elapsed from the disaster time until the 

beginning of recovery, and 

 Recovery, i.e. when the building is being repaired. 

 

Figure 2. Typical Performance Function. 

Therefore, a general formulation to evaluate the performances of an indicator qj,u(t) which is given 

by the following equation is proposed 

 

qj,u t( ) = qj,u
be + dqj,u

k t( ) ×H t TDj,u
k( ) × rj,u

I ,k t,TDj,u
k ,TLj,u

k( ) + ...{
k


qj,u
re  qj,u

be

dqj,u
k t( ) ×H t TDj,u

k( ) 
k


+ rj,u
I ,k t,TDj,u

k ,TLj,u
k( )

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
×rj,u

II ,k t,TAj,u
k ,TRj,u

k( )




ú
ú
ú

ü

ý


þ


 (8) 

where qj,u
be

 is the functionality before the disaster; qj,u
re is the functionality after the recovery phase; 

k is the damage index (i.e., indicates the earthquakes sequence); TDj,u
k are the times of occurrence 

of damages, i.e. the time when a kth loss has occurred; H(t-TDj,u
k) is the Heaviside step function, 

dqj,u
k(t) are the losses of functionality due to a certain damage k (these are given by Equation (12)), 

TLj,u
k are the time of losses, i.e. the time when a kth loss has completed the drop, TAj,u

k are the 

administrative times, i.e. time when start a kth recovery process, rj,u
I,k(t,TDj,u

k,TLj,u
k) is the loss 

function, rj,u
II,k(t,TAj,u

k,TRj,u
k) is the recovery function, and TRj,u

k are the recovery times, i.e. time 

when finish a kth recovery process that is given by: 
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 TRj ,u
k = TAj ,u

k + dTRj ,u
k t( ) (9) 

where dTRj,u
k are the repair and clean-up, or construction times of the physical infrastructure unit 

(these are evaluated using HAZUS for building units and ATC-13 for bridges). The loss and 

recovery functions are analytically defined as follows 

 rj,u
a ,k t,TS,TF( ) =

0 t £ TS

gj,u
a ,k t, x1,.., xn( ) TS  t  TF

1 TF  t










with a = I,  II  (10) 

where gj,u
ak(t,x1,…,xn) has been defined as bound function, which can be any function that respects 

the condition given by 

 

 

gj ,u
a ,k t, x1,..., xn( ) C 0

gj ,u
a ,k TS , x1,..., xn( ) = 0   gj ,u

a ,k TF , x1,..., xn( ) = 1

0 £ gj ,u
a ,k t, x1,..., xn( ) £1   "t 










 (11) 

where x1,…,xn are the parameters involved in describing the bound function. The functionality in 

Equation (8) can be used for modelling both short-term and long-term recoveries. Long-term 

recovery model is used when the reconstruction phase needs to be modelled, while short-term 

recovery model is used when the emergency phase after the extreme event needs to be focused 

upon. The latter is performed by the overlapping of the loss phase and the recovery phase (see 

Figure 3), i.e. imposing TAj,u
k≤ TLj,u

k. 
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Figure 3. Overlapping between loss and recovery phases. 

5.3 Losses Estimation 

This section presents the methodology to estimate the losses, the height of debris that felt from 

buildings on the roads during an earthquake and the accessibility of the building units.  

5.3.1 Structural Performance Function of a Building Unit 

In the proposed methodology the damage states (0=none, 1=slight, 2=moderate, 3=extensive, and 

4=complete) of building and of road network units are defined and evaluated according to the 

HAZUS methodology [FEMA, 2003]. Furthermore, it is assumed that there is a strong correlation 

between losses and probabilities of damage states (structural and non-structural). Its definition is 

based on the identification of the physical damages of the structural (e.g., beams, columns, walls, 

etc.) and non-structural (e.g., partition walls, ceilings, etc.) elements. Since the damage states, so 

identified, do not take into account the usability of the infrastructure, it is proposed a method to 

convert the damage states into functionality losses, i.e. usability losses. The usability of an 

infrastructure unit is correlated to the damage states and to its typology. For example, if a building 

unit is evacuated when a certain damage state is reached, a critical facility such as a hospital, that 

should remain functional during an emergency, might not close under the same damage state level.  

Hence, the structural functionality losses of a physical infrastructure unit dqS,u
k due to the kth event 

are given by 

 dqS,u
k = qS,u

k TDS,u
k( ) ×

wS,ds,u
Ph,B,h,t ×PDSS,ds,u

Ph,B,h,t

ds=1

dsmax



wS,ds,u
x

ds=1

dsmax


 (12) 

where ds is the damage state index, k is an index that identifies kth earthquake into the sequence of 

earthquakes, PDSj,ds,i,p
Ph,B,h,t are probabilities of being in, or exceeding, a given structural damage 

state (function of structural features and of seismic demand), qS,u
k(TDj,u

k) is the structural 
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functionality evaluated at TDj,u
k (i.e., before the kth loss occurs), wS,ds,u

Ph,B,h,t are the weight 

coefficients that convert the probabilities of damage states in % of structural functionality (e.g., for 

a hospital it can be assumed wS,1,u
Ph,B,H,H=5, wS,2,u

Ph,B,H,H=10, wS,3,u
Ph,B,H,H=25, and wS,4,u

Ph,B,H,H=60, 

while for a housing unit wS,1,u
Ph,B,R,HU=5, wS,2,u

Ph,B,R,HU=45, wS,3,u
Ph,B,R,HU=40, and wS,4,u

Ph,B,R,HU=10). 

In particular, the loss function rS,u
I,k(t,TDS,u

k,TLS,u
k) is assumed with a linear bound function and has 

TDS,u
k=TLS,u

k, while the recovery function rS,u
II,k(t,TAS,u

k,TRS,u
k) is assumed with a cumulative 

lognormal bound function and as default KS,u
k=3 (see Figure 4). Moreover, the structural 

functionality values before the disaster and after the recovery phase have been assumed 

qS,u
be=qS,u

re=1. 

 

Figure 4. Structural functionality for building and road units. 

5.3.2 Debris height generated by building collapse on a road network 

The interdependencies in term of damage assessment between road network and a generic building 

unit are shown in Figure 5. In fact, a building unit, after damage, releases a certain amount of debris 

that can affect the normal traffic flow of the road network. 
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Figure 5. Interdependences in the damage assessment between road network edge and building 
units. 

The amount of debris, which falls from a building unit, has been estimated according to the HAZUS 

empirical approach. Its output is the weight (tons) of two types of debris: large (such as steel 

members or reinforced concrete elements) and small (e.g., brick, wood, glass, building contents and 

other materials) pieces [FEMA, 2003]. Since the unit weight for both types of debris is equal to 1.3 

ton/m3, we have converted the two weights into a total volume (m3) of debris Du
Ph,B,h,t. The fall of 

debris generated from a single building unit is localized and depends on the building features and on 

the seismic demand. The closure of a road or a bridge occurs when all lanes are unusable. Hence, 

the average height of debris on the nth lane HDn,j is evaluated summing the effects of the building 

units (BIAe,u) that stay inside the influence area of the road. The effects are estimated according to 

the projectile motion, assuming a triangular distribution of the velocity (v0×y/Hi; see Figure 6) and a 

maximum velocity v0 at the top of the building unit equal to Sa,i×Ti/2. Hence, HDn,j analytically is 

given by 

 

HDn, j
k =

f x, y,dz × j +
dz
2

æ
èç

ö
ø÷

xL ,n  xL,n1

×dy ×dx
0

yBi
z( )

ò
xL ,n1

xL ,n

ò
iBIAe ,u



with: f x, y, z( ) =
Di

x,k

VBi

   xBi ,1 z( ) £ x + sgn xBi ,1 z( )( ) ×Ti ×Sa,i

2 ×Hi

× 2 ×
y3

g
£ xBi ,2

z( )

0              otherwise









 (13) 



18 
 

where x, y, and z are the coordinates that are graphically defined in Figure 6, j is the index of the 

strips with constant depth dz, n is the lane index, i is the building unit index, BIAe,u is the set of 

buildings that stay inside the influence area of the edge unit, xL,n are the limits that define the shape 

of the lanes, yBi(z), xBi,2(z) and xBi,1(z) are the limits that define the shape of the ith building unit at jth 

strip, dz is the depth of the strips, dzj+dz/2 is the mean value in terms of curvilinear abscissa of the 

jth strip, f(x,y,z) evaluates the volume of debris that falls on the lane, VBi is the volume of the ith 

building unit, Ti and Sa,i are the spectral period and acceleration of the ith building unit evaluated in 

the section, Hi is the height of the building (note that Hi≥yBi(z)), and g is the acceleration of gravity. 

 

Figure 6. Geometrical definition of the debris motion. 

5.3.3 Accessibility Performance Function of a Building Unit 

This section focuses on the accessibility performance function qA,u(t) of the building units. The loss 

function rA,u
I,k(t,TDA,u

k,TLA,u
k) is assumed with a linear bound function and has TDA,u

k=TLA,u
k=TAA,u

k, 

while the recovery function rA,u
II,k(t,TAA,u

k,TRA,u
k) is assumed with a multi-step bound function 

(Figure 7). The accessibility losses and the accessibility values before the disaster and after the 

recovery phase are assumed qA,u
be=qA,u

re= dqA,u
k, =1. Therefore, the accessibility performance 

function is analytically defined as follows 

 qA,u t( ) = 1 when it is accessible
0 otherwise






 (14) 
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Figure 7. Accessibility performance function for building units. 

6 CASE STUDIES  

The methodology has been implemented in a software, which is able to assign the damage states of 

the buildings and of the road network. It also evaluates a recovery plan that maximizes the 

resilience index with respect to physical, social, and economic constraints. The proposed model has 

been tested – to evaluate the interdependencies between the road network and the building system – 

using two case studies: 

 The old medieval centre of L’Aquila town during the 2009 earthquake, and 

 Treasure Island in San Francisco Bay area. 

6.1 The Old Medieval Centre of L’Aquila Town during the 2009 earthquake 

On April 6th 2009, the Italian region Abruzzo was affected by an earthquake with a local magnitude 

of 5.9 on the Richter scale (6.3 on the moment magnitude scale). The epicentre of the main shock 

was near the urban centre of L’Aquila (less than 10 km). The seismic action measured with the 

Housner Intensity parameter [Housner, 1952] was generally higher than that measured with a return 

period TR of 475 years, but remarkably lowers than that with TR of 2,475 years [Masi et al., 2011]. It 

is assumed that inside the selected region there are twenty-two building units near Piazza del 

Duomo with different features (that are not real, but are modelled with realistic features for the case 

study; see Table 4a). Moreover, the graph of the transportation network of L’Aquila (with the 
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district assumption) was downloaded from the Open Street Map database [OSM , 2013]. The total 

length of the network is about 2,000 km. In Figure 8 are shown the B units selected in the old 

medieval centre (in purple) and the road network of L’Aquila (the traffic sources are the green 

markers, the standard roads are the blue edges, and the district roads are the red edges). 

 

Figure 8. Road Network (a) and Building Units (b) near Piazza del Duomo, L’Aquila. 

 

The seismic risk assessment has been performed with a pseudo-probabilistic hazard analysis 

assuming the collapse of all bridges, the debris on the roads caused by building damage; and a 

return period (TR) of 1,000 years [Calvi, 2010]. The test evaluates four scenarios (i.e., Case 1, Case 

2, Case 3, and Case 4) corresponding to four different boundary constraints. The recovery process 

for the road network is evaluated assuming that there are unlimited resources (construction workers) 

therefore the reconstruction phase of an edge starts when its site is accessible from the traffic source 

nodes. A source is a node, which has only outgoing flow and it is located at the intersection of the 

road network with the border of the region analysed. While, the recovery process for the building 

units is evaluated according to the boundary constraints described in Table 3. Moreover, the 

interdependencies between the road network and the building system have been considered 

assuming that a non-accessible building unit cannot be recovered. 

Table 3. Boundary constrains for the four cases. 
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The weight coefficients associated to each system of Physical Infrastructure dimension, building 

units, and non-structural features are assumed as follows 

 

ws
Ph =

1 s = T, B

0 "sÏT, B






    wS, j,u

Ph,B,h,t =
1 j = 0

5 j =1

10 j = 2

24 j = 3

60 j = 4
  










WNS,u
Ph,B,h,t =1                       wj

Ph,B,h,t =
1 j = A

0 others







 (15) 

Table 4. Features of the building units in: (a) old medieval centre of L’Aquila and (b) Treasure 
Island in San Francisco Bay. 
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a)   b)  

6.1.1 Seismic Risk Assessment 

Figure 9 shows the discrete probabilities of the damage states for building units and the road 

network that are plotted on a 3-D histogram located on top of the Google Earth maps of the case 

study analysed. The red edges in the road means they are not accessible, while the purple edges are 

accessible. The debris released from the damaged building units are about 58 m3 and do not 

influence the functionality of the road network, because the height of released debris per unit length 

on the edges involved (in this case two district roads) is less than 0.01 m. The road network, 

although it is damaged, it can still ensure the accessibility to the building units from the traffic 
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sources immediately after the disaster. Hence, the administrative times of the accessibility functions 

for all buildings units are equal to the disaster time TDis. 

 

Figure 9. Damage states for Road Network (a) and Building system (b). 

Table 4a shows the distribution of the damage states in all the buildings in the selected region.  The 

building units that have the higher damages are buildings 1 and 2. This result is easy to predict 

because the two buildings are normal buildings designed with low seismic design level (low code). 

Instead, buildings 3 and 9 suffer minor damage because they are residential buildings designed with 

high seismic design level (high code). In summary, the analyses show that the road network, 

although damaged it is still able to remain functional.  

6.1.2 Resilience Assessment 

As was shown in Table 3, the first and fourth cases have, respectively, the minimum (CS=CSS=0) 

and maximum (CS=CSS=22) availability construction building sites per day and simultaneous start 

of construction sites. The second case has the maximum limit of one CS and of one CSS in 7 days; 

while, the third case has the limit of three CS and of three CSS in 7 days. In all cases, there are no-

limits on economic budget. In Table 5 are shown the administrative times, resilience indices at one 

and at two years of building units used for the 4 cases. 

 

Table 5. Recovery Parameters of Old medieval Centre of L’Aquila. 



24 
 

 

In Figure 10 are shown the Physical Infrastructure resilience indices, the time of completion of the 

works TEW, and the Physical Infrastructure functionality values at TEW for each case. The resilience 

index is an unbiased parameter to evaluate the performance of the recovery plan, because it is 

independent of the user selection of the control period. The results show that Case 4 is the most 

resilient, while Case 1 has the smallest value of resilience. Case 2 has maximum (than the other 

cases) finite value of recovery time TEW that is equal to 4.23 years; while Case 4 has the smallest 

(0.37 years). The functionality of Case 1 is equal to 83% because this case has no recovery works. 

 

Figure 10. Resilience indices and end-work times. 
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The Physical Infrastructure functionality and resilience after one and two years are shown in Figure 

11. The resilience value decreases with the decreasing of the velocity of recovery, so it is a good 

parameter to evaluate the performance of the Physical Infrastructure dimension and of the chosen 

recovery plan. 

 

Figure 11. Functionality and resilience: at one year (a), and at two years (b). 

The different results are due to the differences in the buildings sites availability (workers / day) 

between various cases. Case 4 requests immediately a higher number of workers per day, while 

Cases 1, 2, and 3 (this is the most realistic and efficient) have a stable distribution in time. The 

functionality curves of the Physical Infrastructure Dimension, of the Building System, and of the 

Transportation System are shown in Figure 12. The recovery time of the transportation system for 

Cases 2, 3, and 4 is equal to 0.25 years. 
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Figure 12. Recovery functions for each case of: Building system (a), Transportation system (b), and 
Physical Infrastructure dimension (c). 

In conclusion, Cases 2, 3, and 4 have similar resilience indices. Case 4 has the smallest TEW, but 

requests a higher number of men per day. Therefore, the most effective recovery plan is that of 

Case 3, which ensures a fast recovery with a small number of resources. 

6.2 Treasure Island in San Francisco Bay area 

The San Francisco Bay Area sits within the Pacific-North America plate boundary, which takes the 

form of multiple fault strands through the region. It has the highest density of active faults and the 

highest seismic moment rate per square kilometre of any urban area in the United States [WG02, 

2003]. In 1906, the San Francisco Bay Area was reaching the end of a period of major seismic 

build-up and large earthquakes, which culminated in the great 1906 earthquake, in which 

approximately 3,000 persons were killed and 28,000 buildings were destroyed. Because of the stress 

relief due to the 1906 earthquake, the San Francisco Bay Area has been relatively quiet seismically, 

but a more recent study [WG02, 2003] estimated that there is a 62% probability of occurrence of an 
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earthquake with M≥6.7 from 2002 to 2032 (Figure 13). 

 

Figure 13. Map of the San Francisco Bay Area showing the urban areas and the probabilities of 
M≥6.7 earthquakes by 2032. 

Therefore, Treasure Island in San Francisco Bay has been selected to observe the interdependencies 

between the road network and the building system, and the key role of the accessibility during the 

reconstruction and after a catastrophic earthquake. We have modelled twenty-one building units on 

the Island with realistic features (e.g. capacity curves, damping ratios, occupancy classes, repair 

costs etc.; see Table 4b). The graph of the transportation network of the Treasure Island (with the 

district assumption) was downloaded from the Open Street Map database [OSM , 2013]. The total 

length of the network is about of 3,000 km. In particular, the Treasure Island is connected to San 

Francisco and Oakland through the Bay Bridge, which is located on Highway 80. The selected 

building units (in purple) in Treasure Island and the road network (as above: the traffic sources are 

the markers in green, the standard roads are the edges in blue, and the district roads are the red 

edges) of the island are shown in Figure 14. 
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Figure 14. a) Building Units and b) Road Network in Treasure Island, San Francisco. 

The interdependencies between the road network and the building system were modelled 

considering the accessibility – i.e. if a building unit is not accessible from the road network it will 

not be repaired and used, losing its functionality – and the mutual damage – i.e., if a building unit 

collapses in the influence area of a road, this will lose its functionality. Four different scenarios 

have been considered. The risk assessment has been evaluated with a pseudo-probabilistic hazard 

analysis assuming that all the bridges have collapsed and the seismic action has a return period of 

2,450 years (i.e., it means to analyse the Ultimate Limit State). The recovery process for building 

units is evaluated according to the boundary constraints described in Table 3; while, for the road 

network is evaluated assuming unlimited resources of workers. The weight coefficients associated 

to each system (Physical Infrastructure dimension, building units, and non-structural features) are 

assumed as before (Equation (15)). 

6.2.1 Risk Assessment 

The discrete probabilities of damage states for building units and the functionality of the road 

network at the disaster time TDis are plotted in Figure 15 on a 3D histogram located on top of the 

map of the studied region in Google Earth. The volume of debris released from the damaged 

building units is of 404 m3 and does not affect significantly the functionality of the road network; 

while, the collapse of the bridges makes the Treasure Island unreachable from the mainland. 

Therefore, the physical infrastructures on the island are not accessible, because of the collapse of 
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the bridges that connect Treasure Island to the mainland. Hence, the building units and the district 

edges inside the Island are unusable, i.e. they have zero functionality. 

 

Figure 15. Discrete probability of damage states for building units (a) and functionality of the road 
network (b). 

The detailed results of the building units inside the island are shown in Table 4b. The building units 

that have the lower damages are buildings 3 and 15. This result was easy to predict because the two 

buildings are special buildings designed with moderate seismic design level (moderate code). The 

most damaged building units are buildings 9, 10, and 11 that are normal buildings designed with 

low seismic design level (low code). 

In conclusion, the bridges that connect the Island to the mainland are critical infrastructures, 

because with their simultaneous collapse there is no way to ensure the accessibility of the Treasure 

Island from the traffic sources immediately after the disaster. 

6.2.2 Resilience Assessment 

The restoration strategies described in this case study have the same assumptions of the previous 

examples. In Table 6 are shown the administrative times, the resilience indices respectively after 1 

and 2 years of the building units used for the 4 cases. 
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Table 6. Recovery Parameters of Treasure Island in San Francisco Bay. 

 

In Figure 16 are shown the Physical Infrastructure resilience indices, the time of completion of the 

works TEW, and the Physical Infrastructure functionality values at TEW for each case. The results 

show that Case 2, 3, and 4 have the same resilience, while Case 1 has the smallest value of 

resilience. Case 2 has the highest value of recovery time TEW that is equal to 7.66 years; while Case 

4 has the smallest (0.70 years). The functionality of Case 1 is equal to 21% and its recovery time is 

infinite, because this case has no recovery works. 
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Figure 16. Resilience indices and end-work times. 

The Physical Infrastructure functionality and resilience indices after one and two years are shown in 

Figure 17. The different results are due to the differences in the buildings sites availability (men / 

day) between various cases. In particular, Case 4 is the only one that reached the complete 

functionality after two years. 

 

Figure 17. Functionality and resilience: at one year (a), and at two years (b). 

Similarly, Case 4 requests immediately a higher number of men per day, while Cases 1, 2, and 3 

(this is the most realistic and efficient) have a more homogeneous distribution in time. The 

functionality curves of the Physical Infrastructure Dimension, of the Building System, and of the 

Transportation System are shown in Figure 18. The recovery time of transportation system for 

Cases 2, 3, and 4 is equal to 0.29 years, while, for Case 1 is infinite. 



32 
 

 

Figure 18. Recovery functions for each case of: Building system (a), Transportation system (b), 

and  
Physical Infrastructure dimension (c). 

On 42nd day – when the first bridge that links the island to the mainland has been recovered – the 

functionality curves have a leap, because district roads and building units inside Treasure Island are 

again reachable and can be reused and/or repaired (Figure 19). Hence, the administrative times of 

the accessibility functions for all buildings units are equal to 42 days. 

 

Figure 19. Functionality after the disaster time (a) and at 42th day (b). 

In conclusion, as before, the most powerful recovery plan is that of Case 3, which ensures a fast 

recovery with a small number of resources. The simultaneous collapse of the bridges, which 

connect the island to the mainland, produced a delay of 42 days in the recovery plan. This caused a 
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reduction of the performances of the physical infrastructures (i.e., resilience index) and an increase 

of the recovery times, emphasizing the importance of the accessibility of the physical infrastructures 

after a catastrophic event. 

7 CONCLUDING REMARKS 

Several areas of the world are located on critical seismic zones requiring special consideration for 

rescue management plans.  Experience has shown that earthquake damage to the roadway network 

goes way beyond direct and indirect costs. The real problem are created by the extent of damage 

caused by lack of mobility and accessibility to devastated areas which affect post-earthquake 

emergency response causing further loss of life and disruption of traffic within the urban network.  

In fact, after an earthquake, part or most of the roadway network might be close, because of the 

collapse of structural elements (i.e. tunnels, bridges, etc.) and/or because of the debris from 

housing/building damage.  Therefore, this paper presents a new method to measure disaster 

resilience that takes into account the interdependencies between the road networks and the building 

units following an earthquake event.  A performance function and an analytical model are proposed 

to assess respectively, the performances of the physical infrastructure units and to evaluate the 

amount of debris, which falls from a building unit on the road. Results are compared in term of 

Community Resilience Indices RI and recovery time TEW which are the parameters used to evaluate 

the performances of the infrastructures after a natural disaster.  

The methodology has been implemented in a computer platform which allows an easy environment 

to input data and to display output directly on regional maps, letting the users see the geospatial 

distribution for a given hazard scenario. In addition, it has been applied to two case studies: (1) the 

old medieval centre of L’Aquila in Italy and (2) Treasure Island in San Francisco Bay, in California. 

The first case study shows how the buildings and the transportation system are modelled and 

discusses the community performances parameters, i.e. the resilience index RI and the recovery 
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time TEW. The second case study shows the importance of network redundancy and of the 

interdependencies between the physical infrastructures and the recovery services.   

In conclusion, the proposed methodology can be used to develop different scenarios of road closure 

for different earthquake levels for example. This will allow identifying the emergency routes based 

on network characteristics and setting that is an essential part of developing access to devastated 

areas and emergency relief locations like hospitals, medical centers, shelters, warehouses, and fire 

stations. As outcome, an evacuation plan from the affected region can be developed.   

In summary, different scenarios of urban planning can be tested with the proposed methodology and 

compared in term of resilience indicators by decision makers and transportation service providers.  

The method can be used to identify which area should receive funding priority in order to improve 

the performance of the transportation system during the emergency response.   
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