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Abstract  

 

Disproportionate collapse of an existing cable-stayed bridge is investigated at the numerical 

level by employing a validated model from literature and the Applied Element Method. The 

earthquake input is used for the numerical simulations and applied at increasing intensity to 

assess the bridge response. The role of redundancy in the bridge structural scheme is proved 

as the strategic measure for avoiding disproportionate collapse and improving robustness. 

Therefore, an alternative configuration of the structural scheme has been assessed as possible 

countermeasure to improve the cable-stayed bridge response providing different loading paths 

against disproportionate collapse. With this aim, new redundancy indices that account the 

system reserve resources have been introduced.  

 

 

Keywords chosen from ICE Publishing list 
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List of notation  

  normal stress 

  shear stress  

fu   unidirectional limit stress 

eu   unidirectional limit strain  

   longitudinal strain 

   shear strain   

(y,y)  yielding point  

    mode shape vector 

0S   displacement of the intact configuration 

dS   displacement of the damaged configuration 

   robustness index 

uR   ultimate redundancy index 

fR   functionality redundancy index 

dR   damaged condition redundancy index 

1LF   load that origins the failure of the first structural member 

uLF  load that is related to the achievement of the structural collapse 

fLF   load that induces the overcoming of the functionality limit state in the intact structure 
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dLF   load connected to the collapse of the damaged structure (one member initially lost) 

tFFM   time instant corresponding to the failure of the first structural member 

tSC   time instant corresponding to the system collapse 

tLF   time instant corresponding to the loss functionality 

tUCDS  time instant corresponding to the ultimate capacity of the damaged system 

 f(t)  absolute value of the acceleration input 
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Introduction 

Robustness of buildings and bridges is defined as the ability of the structure to withstand a 

given level of stress or demand (e.g. damage) without suffering degradation or loss of function. 

Besides, redundancy is another structural characteristic that is often required at the design level 

for the benefits it provides against unwanted behaviours. This last one is defined as the quality 

of having alternative paths in the structure by which the forces can be transferred, which allows 

the structure to remain stable following the failure of any single element (Cimellaro et al. 2010).  

Such characteristics, whose interconnection has also been recognised by Kanno and Ben-Haim 

(2011), are desirable in structural systems, being able to reduce vulnerability and therefore 

avoid disproportionate collapse. It occurs when an initial local failure that is produced by small 

triggering event leads to widespread failure of other structural components such that the 

structure collapses. It is also referred as progressive collapse (Starossek 2008, Starossek and 

Haberland 2010, Haberland et al. 2012).  

In recent years several studies have been developed on structural collapses and much attention 

was paid for buildings, leaving the bridges’ field still uncharted or partially investigated by few 

researchers (Wolff and Starossek 2009, Das et al 2016a). However, recent events of bridge 

collapses, namely in Genoa (Italy) on August 14th 2018 and in Kolkata (India) on September 4th 

2018, have focused the public interest on the infrastructures’ safety for their consequences in 

terms of fatalities and injuries, but also of economy and social losses. 

The General Services Administration guideline (GSA 2003) and the Unified Facilities Criteria 

(UFC 2013) are the two most important guidelines that address progressive collapse in 

structures. However, they are focused on buildings and the progressive collapse of bridges is 

only briefly outlined in guidelines. E.g. according to the Posttensioning Institute (PTI 2012), the 

sudden loss of any one cable must not lead to the rupture of the entire structure.  

Among the recent investigations, the structural behaviour of a long-span suspension bridge 

segmented by zipper-stoppers after the sudden rupture of some of its cables is studied in 

(Shoghijavan and Starossek 2018a). It has been found that increasing robustness of the 

structural system through segmentation is a possible approach to prevent progressive collapse 

in bridges due to cable failure.  
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The structural behaviour of long-span suspension bridges after the sudden rupture of a cable is 

studied in (Shoghijavan and Starossek 2018b, Shoghijavan and Starossek 2018c). The load 

carried by the failed cable must be redistributed to the other structural components and the 

cables adjacent to the failed cable receives most of the redistributed load becoming the critical 

member. Furthermore, cable failure produces large bending moments on the girder of the 

bridge. With the aim of studying these behaviour, a comprehensive analytical approach is 

proposed. 

Moving to the cable-stayed-bridge class, Wang et al. (2017) investigate the collapse of a cable-

stayed bridge due to strong seismic excitations, simulating the structural response through the 

explicit dynamic finite element method. They identified in the failure of piers and pylons the main 

reason for the collapse of cable-stayed bridge, rather than the failure of cables or main girder 

components. Their collapse mechanism under strong earthquake excitations is also investigated 

by Zong et al (2016). The results indicate that the ground motion action having the long 

predominant period cause the collapse of the bridge. The introduction of viscous dampers at the 

connections of the pylons and main girder can enhance the earthquake resistant collapse 

capacity of the bridge.  

Das et al (2016b) introduced the Alternate Path Method to cable stayed bridges against their 

progressive collapse. The structural response is discussed for multiple types of cable loss cases 

to recognize the lack of robustness in the structure and to suggest more robust design options. 

Wolff and Starossek (2009, 2010) investigated the disproportionate collapse of a cable-stayed 

bridge within a cable-loss scenario. The failure of three adjacent cables that stabilize the bridge 

girder in compression are responsible of the deck buckling as a result of high normal forces.  

The importance of providing system redundancy was highlighted by the collapse of the 

Mississippi River Bridge in Minneapolis (Salem and Helmy 2017), Minnesota in 2007, in which 

the whole bridge, which has been classified as non-redundant by the National Transportation 

Safety Board (NTSB) (2008), catastrophically collapsed after the failure of a gusset plate 

connection.  

With respect to the existing literature, the present paper analyses the response of a current 

cable-stayed bridge with respect to the issue of disproportionate collapse trough non-linear 

dynamic analysis and the use of the Applied Element Method (AEM). Furthermore, this research 
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proposes new redundancy indices that account the system reserve resources and quantitatively 

allow to evaluate alternative structural configurations. 

A model of an existing bridge widely examined in literature (Li et al. 2014) through an 

international benchmark study on structural monitoring and control is used with the AEM and 

then validated. Solutions and interventions in order to avoid disproportionate collapse and 

increase bridge robustness and redundancy is analysed and discussed. The result is a new 

cable-configuration and deck strengthening.  

The methodology is firstly discussed and the AEM is presented in the next sections. The bridge 

structure and the development of the numerical model with respect to the original benchmark 

problem are described. Finally, robustness and redundancy are examined in detail and the 

possible improvements with respect to seismic hazard are presented with the analysis results.   

This study can provide valuable information that can facilitate decision making, enhance 

planning for disaster mitigation and recovering of critical infrastructures as the transportation 

network, reducing social and economic losses. 

 

2. The methodology  

Nonlinear dynamic analyses and the Applied Element Method are used to investigate the 

problem of disproportionate collapse in cable-stayed bridges. A methodology proposed in 

literature to quantify redundancy components has been extended to time history analyses.  

A preliminary step consists of the calibration of an AEM model of an existing bridge with respect 

to a benchmark study available in the literature. Model Assurance Criterion has been used to 

validate the AEM model. 

The numerical simulations are then developed for the original configuration of the bridge to 

analyse the problem of disproportionate collapse. The failure of more than two cables at mid-

span is specifically considered. Subsequently a new cable-configuration to increase disaster 

resilience is studied.  

The following sections are devoted to the presentation of the AEM and the model calibration for 

performing the subsequent numerical simulations on the bridge structure. The methodology 

proposed in literature to assess redundancy components is extended. Finally, the results of the 

numerical simulations are reported with concluding remarks. 
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2.1 The Applied Element Method  

The proposed study investigates the progressive collapse of a real bridge through nonlinear 

dynamic analysis and an AEM based software (Applied Science International 2017). The AEM 

is an innovative modelling method that adopts the concept of discrete cracking (Domaneschi, 

2012).  Through two decades of continuous development, AEM was proven to be a method that 

can track the structural collapse behaviour passing through all stages of the application of loads: 

elastic stage, crack initiation and propagation in tension-weak materials, reinforcement yielding, 

element separation, element collision (contact), and collision with the ground and with adjacent 

structures. The possible analysis domain of the AEM in comparison to the Finite Element 

Method (FEM) is shown in Figure 1. Since its introduction in the early 1960s, the FEM has been 

the reference for the classic problems of structural mechanics. Therefore, it remains the most 

accurate for the elastic analysis of structures up to the solution of more complex problems (e.g. 

the nonlinear ones) (Zienkiewicz et al 2005). However, the onset of element separation remains 

difficult to automate within FEM and special routines have to be implemented to simulate such 

behaviour, in particular when three-dimensional dynamic analyses and solid elements are 

considered (Domaneschi 2012). Furthermore, modelling of debris collision is computationally 

demanding and time consuming in FEM. The AEM method, on the other hand, overcomes the 

difficulties of FEM in the simulation of the structural collapse and the debris distribution, while 

remaining reliable when used for common procedures, as the   modal and the dynamic analyses 

(Applied Science International 2017). 

 

 

Figure 1. Modelling of structure to AEM. 
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Within the AEM, the structure is modelled as an assembly of small elements that virtually 

subdivide the structure. Two elements are assumed to be connected by one normal and two 

orthogonal shear springs distributed on the elements adjacent faces, as shown in Figure 2.  

 

 

Figure 2. Spring interaction between elements in the AEM. 

 

Each group of springs fully represents the stresses and deformations of the composite structure, 

e.g. reinforced concrete structures contain face-distributed springs triples for concrete material 

while the reinforcement steel bars are modelled explicitly. If there is a rebar running through the 

interface of two cuboids, a spring representing the rebar is assigned to the interface. 

These springs allow also to implement the failure criteria properties associated to the structural 

component, as discussed in the next subsection. The springs’ generation is automatically 

performed in the AEM software Extreme Loading for Structure (Applied Science International 

2017). 

 

2.2 Element separation criteria and failure criteria 

The average normal strain is calculated by averaging the absolute values of strains on each 

face of the elements. When the average strain between these two adjacent faces reaches a 

threshold called the separation strain – which is specified in the material property – the springs 

between these two faces are removed and it is assumed that these elements behave as two 

separate rigid bodies for the remaining analysis. Separation strain represents the limit at which 

adjacent elements are totally separated at the connecting face as shown in Figure 3. Therefore, 
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the refinement level of the discretisation is a significant parameter to be calibrated to accurate 

reproduce the structural collapse. 

Interface springs Start of springs removal Total springs removal

External 
force

External 
force

External 
force

 

Figure 3. Separation phases. 

 

According to Meguro et al. (2000), the springs that simulate the steel reinforcement bars in a 

composite material are removed if the internal stresses reach the failure criteria defined in Eq. 

(1).   

2 2 2

1 2uf               1. 

where  , 
1 , 

2  are the normal and shear stresses respectively and fu is the tensile limit stress 

of the reinforcement bar.  Alternatively, the spring is removed if the internal strains reach the 

unidirectional limit strain eu defined in Eq. (2).  

2 2 2

1 2ue               2. 

where  , 
1 , 

2  represent the longitudinal and shear strains respectively.  One of the features 

of AEM is the automatic element contact detection. Elements may collide each other, separate 

and collide again. There are three types of collisions: (i) element corner-to-element face, (ii) 

element edge-to-element edge and (iii) element corner-to-ground (Applied Science International 

2017).  

 

2.3 AEM solution for cable modelling 
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Using the AEM the cables of the bridge can be included as link members. The link member is a 

special spring that has the ability to connect two separate solid elements with any angle of 

inclination, carrying axial stresses only. 

In order to reproduce the cables performance, a tension-only bilinear material is assigned. As 

shown in Figure 4, the bilinear constitutive law of the material shows a linear trend with elasticity 

modulus E up to the yield point (y,y) without any plastic deformations. After yield, plastic 

deformations take place and the stress-strain post-yield relation behaves linearly up to failure. 

After failure, the strength drops to zero but springs remain till they reach separation strain where 

the elements are fully separated from each other and springs no longer exist. A stress-softening 

parameter is used after failure. Tension-only bilinear material is a special case of the bi-linear 

material where the elements can carry only tensile stresses. 

E
(y ,y)

(-y ,-y)





Separation 
strain

Separation 
strain

Failure

Failure   

E
(y ,y)





Separation 
strain

Failure

 

Figure 4. Stress-strain constitutive law of a bilinear material (a). Tension-only case (b).  

 

3. The AEM model  

(a) 

(b) 
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3.1 The bridge structure 

The analysed bridge is the Yong-he bridge (Tianjin, built 1981-1987, designed by the Tianjin 

Municipal Engineering Survey and Design Institute). It is one of the first cable-stayed bridges 

constructed in mainland China (Figure 5) and was opened to traffic in December 1987. It has 

two main spans of 260 m and two side spans of 25.15 + 99.85 m each. The whole bridge is 510 

m long and 14.5 wide. The main girder was assembled from 74 precast concrete girder 

segments that are formed continuously by cast-in-place joints that connect the girder ends and 

form transversely reinforced diaphragms. The prestressed girder of the side span was built on 

site using formwork supported by temporary falsework. The concrete bridge towers, connected 

by two transverse beams, are 60.5 m tall and was constructed using sliding formwork 

technology.  

There are a total of 88 pairs of cables containing steel wires of 5 mm in diameter. Each cable 

can contain between 69 and 199 steel wires (5mm in diameter). The design cable tension forces 

under dead load range from 559.4 to 1706.8 kN (the stress is approximately 450MPa), and the 

design stress in the cables due to live load is 160MPa.  

The Yong-he bridge is the subject of an international benchmark proposed by the Centre of 

Structural Monitoring and Control at the Harbin Institute of Technology. The benchmark 

structure with the details on the geometry, the design tables with the cross sections of the 

towers and the main girder, the foundations, and the material properties are reported in (Li et al. 

2014).  

 

 

Figure 5. Yong-he bridge geometry.  

 

3.2 The bridge model 

The complete description of the finite element model of the bridge in the Ansys code with the 

model updating procedure is presented in detail in the benchmark statement. The finite element 
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model of the bridge has been validated through on the basis of the field monitoring data from 

the full-scale bridge (Li et al. 2014). It was developed on the basis of the engineering drawings 

and originally implemented using the ANSYS software. Three-dimensional beam elements were 

used to model the bridge towers and the main girder. The cables were modelled using linear 

elastic link elements (uniaxial tension-only elements). The main girder ass restrained by the 

stay-cables, the towers and the piers, while these last ones were fixed to the ground. The 

longitudinal restriction effect of the rubber supports was simulated using linear elastic spring 

elements. 

In this study the original benchmark model was consistently replicated using the AEM. The 

material parameters that have been used in the original benchmark have been implemented in 

the AEM model.  

A preliminary linear static analysis was carried out on the original configuration of the bridge 

under the dead weight of the structural elements. The displacement field thus obtained was 

subsequently used to update the position of the nodes in the global model of the bridge: the 

coordinates of the nodes in the undeformed configuration were modified according to the 

displacements resulting from the static analysis under self-weight only. The bridge model 

obtained in this way matches the geometry envisaged in the original benchmark model, while 

taking into account the state of pre-stress induced by the mass density (Domaneschi et al. 

2016). 

The AEM model has been finally validated through a comparison in terms of natural frequencies 

and mode shapes. The criterion used to verify the correlation between modes is the Modal 

Assurance Criterion (MAC). According to Pastor et al. (2012), the MAC is a statistical indicator 

that is most sensitive to large differences and relatively insensitive to small differences in the 

mode shapes. The MAC is calculated as the normalized scalar product of the two sets of 

vectors  A  and  B . The resulting scalars are arranged into the MAC matrix. 

 
   

         

2

,

T

A xr q

T T

A A x xr r q q

MAC r q
 

   
       3. 

The MAC takes value between 0 (representing no consistent correspondence) and 1 

(representing a consistent correspondence). Values larger than 0.9 indicate consistent 
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correspondence whereas small values indicate poor similarity between two shapes. Seven 

shape modes are taken into account as shown in Table 1. Figure 6 reports the comparison of 

the seven mode shapes detailed in Table 1 between the FEM and the replicated AEM.  

 

Table 1. Mode shapes. Vertical Symmetric = V.S., Vertical Asymmetric = V.A., Transverse 

Asymmetric = T.A. 

Mode FEM Frequency  AEM Frequency  Shape ∆Frequency MAC 

Nr. [Hz] [Hz] - [%] - 

1 0.417 0.416 V.S. 0.24 0.991 

2 0.593 0.643 V.A. -7.78 0.978 

3 0.877 1.012 V.S. 13.34 0.945 

4 1.044 1.297 V.A. 19.51 0.946 

5 1.089 1.349 V.S. 19.27 0.930 

6 1.213 1.515 V.A. 19.93 0.889 

7 0.311 0.280 T.A. 11.07 0.928 

 

 

 

 

 

 

1th mode shape (Vertical Symmetric) 

 

2nd mode shape (Vertical Asymmetric) 
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3rd mode shape (Vertical Symmetric) 

 

4th mode shape (Vertical Asymmetric) 

 
 

5th mode shape (Vertical Symmetric) 

 

6th mode shape (Vertical Asymmetric) 

 

7th mode shape (Transverse Asymmetric) 

 Figure 6. Comparison between FEM and AEM models in terms of mode shapes. 

 

A static comparison in terms of vertical displacements response along the symmetry axis of the 

bridge due to dead load was also performed. The displacement value at mid-span is shown in 

Table 2, while a graphic comparison in terms of structural deformed shape is presented in 

Figure 7. 

 

Table 2. Vertical displacements at the mid-span of the FEM and the AEM models. 
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Model Vertical 

displacement 

∆ 

 [m] [%] 

FEM 0.178  

9 AEM 0.163 

 

 

Figure 7. Deformed shape: FEM model and  AEM. 

 

4. Robustness and redundancy issues  

Several competing approaches for the deterministic evaluation of structural robustness and 

redundancy have been discussed by Anitori et al. (2013). Biondini and Restelli (2008a, 2008b) 

evaluated robustness using an index that relates the global displacements of a structure 

composed of parallel members in different configurations: 

0

d

S

S
             4. 

where 
0S  is the displacement of the intact configuration of the system and 

dS is the 

displacement of the damaged configuration. This robustness index  decreases from 1 and 

approaches to 0 as damage spreads within the system. The significance of   is that it is a 

measure of the system susceptibility to damage spreading through the structural elements.  
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Figure 8. Robustness curve. 

 

A no-damage configuration of the bridge within the linear elastic field subjected to dynamic 

action, was initially tested and this resulted in a robustness index variation as shown in Figure 8. 

On the horizontal and vertical axes respectively, the time and the robustness index  are 

presented. The model is subject to a low-intensity impulsive perturbation. After 2s the maximum 

effect for the response of the structure is reached and in the following 2s the original 

configuration is recovered as the model in this case is linear elastic. In this case the value s0 

represents the displacement of the bridge configuration at rest (gravitational loads), while sd is 

the displacement of the bridge configuration when both dynamic loads (impulsive perturbation) 

and gravitational loads are considered. Indeed, using Eq. 4, the increasing displacements 

resulting from perturbation cause the value of the robustness index to decrease. As the external 

dynamic perturbation decreases, the structure tends to return to the initial configuration and the 

robustness index increases to unity. If the structure is outside the linear elastic range, damage 

can be verified: the ascending part of robustness curve would be reduced or totally absent due 

to the presence irreversible deformation. 

Structural redundancy is defined by Ghosn and Moses (1998) and Liu et al. (2000) as the 

capability of the system to continue to carry load after the failure of one main member. They 

proposed three different indices to assess redundancy components. Two indices are related to 

the overloading of the originally intact configuration of the structure and are defined as the ability 

to withstand collapse and/or to avoid losses in the structural functionality. The third index is 
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computed for a damaged configuration of the structure and allows the assessment of the 

system capability to carry extra loads after the damage occurrence in one main structural 

member. 

First member 
failure (LF1)

Structural response

Load 
factor

Loss of 
functionality (LFf)

Ultimate capacity 
of the intact system (LFu)

Ultimate capacity 
of the damaged system (LFd)

 

Figure 9. Load measures needed to calculate redundancy indices. 

 

The redundancy indices are defined in terms of the system reserve ratios (Liu et al. 2000) such 

as 
uR , fR , 

dR  for the ultimate, functionality and damaged condition limit states, respectively 

(Figure 9). They are computed with respect to the load that origins the failure of the first 

structural member and are given by following equations: 

1

u
u

LF
R

LF
            5. 

1

f

f

LF
R

LF
            6. 

1

d
d

LF
R

LF
            7. 

Where 
1LF  is the load that causes the failure of the first structural member, 

uLF  the load that 

is related to the achievement of the structural collapse, fLF  the load that results in loss of 

functionality in the intact structure, 
dLF  the load causes collapse of the damaged structure 

(with one main member initially lost). In other words, 
uR , fR , 

dR  indices measure the system’s 
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capacity to withstand first member failure and can be used to evaluate alternative design 

solutions. 

In this paper, an algorithm to extend the methodology proposed by Liu et al. (2000) using history 

analysis is presented. The original methodology was related to pushover analyses, therefore the 

(nonlinear) static domain was considered only. If nonlinear dynamic analyses are considered, 

the load factor method cannot be used and a different approach has to be developed.  

Time [s]

0 5 10 15 20

A
B

S
(a

c
c
e

le
ra

ti
o

n
) 

[m
/s

2
]

0

50

100

150

200

250

300

Failure first member tFFM System collapse tSC

Loss functionality tLF

Ultimate capacity 

damaged system tUCDS

 

Figure 10. Absolute value of the acceleration input. 

 

In the first step of the proposed procedure, the acceleration input is converted to positive values 

only. In the second step, the acceleration input is integrated between 0 and the time instant  

corresponding to the failure of the first structural member (tFFM) to compute an equivalent value 

for 
1LF  load level in the case of time history analysis.  This value is critical for the computation 

of the redundancy indices because they account the system’s capacity to withstand first 

member failure with respect to ultimate, functionality and damaged condition limit states.  

Integrating between the time corresponding to the failure of the first member and the system 

collapse time (tSC), an equivalent value of 
dLF  load is obtained. Following the same procedure, 

fLF  and 
uLF  loads can be computed. Theoretically, the integral of the acceleration input 
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related to structural collapse or functionality losses will be higher than the integral that causes 

the first component failure. Figure 10 summarizes the adopted conditions for the computation of 

the proposed indices. 

1
0

( )
fFFMt

LF f t dt           8. 

0
( )

SCt

uLF f t dt           9. 

0
( )

LFt

fLF f t dt           10. 

0
( )

UCDSt

dLF f t dt           11. 

Where f(t) is the absolute value of the acceleration input. Therefore, the numerical procedure 

consists in the integration of linear functions that are defined through the discretization of the 

time history in Figure 10. Indeed, the transition between each sample of the time history is 

linearly approximated. It means that straightforward approaches, as the trapezoidal rule,  can be 

also employed for the numerical integration of f(t). 

 

5. Seismic response simulation of the Yong-he bridge 

5.1 Original configuration of the structure 

The effect of cable failure is investigated by nonlinear dynamic analyses in the time domain 

taking into account large deformations. Direct time integration is used to solve the equations of 

motion. The input accelerogram computed by Haifan (1983) to analyse the influence of phase-

difference effect on the earthquake response of the Yong-he bridge was used for the numerical 

simulation of this study (Figure 11a). The results of the corresponding AEM analyses highlight 

the disproportionate collapse shown in Figure 11b. 
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Figure 11. (a) Input accelerogram computed by Haifan (1983). (b) Disproportionate collapse 

from AEM simulations. 

 

In order to analyse the structural problem and identify the collapse mechanism, cable stresses 

are evaluated. In particular the cables highlighted in Figure 12 were considered. The maximum 

values of cable stresses are shown in Table 3. 

 

Figure 12. Analysed cables. 
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Table 3. Maximum axial stresses in the cables. 

Cable   
MPA s 

C1 365 6.2 

C2 367 11.3 

C3 386 13.1 

C4 417 13 

C5 468 12 

C6 468 6.2 

C7 468 7.5 

C8 468 8 

C9 444 8.8 

C10 363 5.1 

C11 396 16 

C12 365 6 
 

Figure 13 shows the stress time history in cables C6 and C7 from the AEM simulation where the 

time of the failures can be observed. Cable C6 fails at about 7 seconds when the input 

acceleration highlights an intensity peak. The weakening of the support system due to the 

failure of cable 6 leads to the failure of cable 7 after about 1 second. Both C6 and C7 are the 

longest cables of the suspension system, supporting the mid-span of the bridge. As reported by 

Li et al. (2014), the design ultimate stress for the cables is about 460 MPa, consistently with the 

simulations.  
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Figure 13. Normal stress in cable C6 and C7. 
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Failure of cables C6 and C7 cause the overloading of the structural members and consequently 

further ruptures of adjacent cables. The cables losses lead to a reduction of the capacity of the 

supporting system and increase the risk of the global failure of the structure. As a result, the 

bridge collapse due to progressive shocks of the ground motion cannot be avoided. Wolff and 

Starossek (2010) report that this phenomenon occurs when the distance between the first failed  

cable and the adjacent cables is about 10 metres.  

In Figure 14, the robustness variation with respect to time is reported. After the failure of cable 

C6, the robustness decreases until the collapse of the entire bridge (disproportionate collapse). 

The redundancy indices take the values: 1.71uR  , 1.09fR  , 1.21dR  . 
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Figure 14. Variation of robustness with respect to time. 

 

The analysis of the disproportionate collapse of the bridge presented here, together with the 

review of the existing literature, has led to some considerations of an alternative cables 

configuration that will be described in detail in the next section. 

 

5.2 Modified configuration of the structure  

A new configuration for the cables in the central span of the bridge is proposed to improve the 

bridge response. As shown in Figure 15a, the distance between the cable-deck connection is 
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reduced while the cross-sections have been retained. For cables adjacent to the mid-span (e.g. 

C6 and C7) the spacing is fixed at 8 m, while the cables adjacent to the towers (e.g. C4 and C9) 

are at 10 m. This configuration results in a reduction of the stress in the cables, and cables C6 

and C7 in particular at the mid-span that have been identified as the responsible of the 

disproportionate collapse.  

The new configuration is also in agreement with Shoghijavan and Starossek (2018b, 2018c) that 

suggest to redistribute the load carried by the failed cable to other structural components (as 

adjacent cables). 

The analyses of the new configuration of the deck show localized damage at the deck mid-span, 

as shown in Figure 15b, and disproportionate collapse of the bridge is avoided. The failure of 

the main girder is due to high tensile stresses. 

 

(a) 

 (b) 

Figure 15. (a) New cable configuration and (b) the corresponding AEM model of the bridge.  

 

The normal stresses in the longest cables of the new configuration are shown in Figure 16. 

They can be compared to those of cables C6 and C7 in Figure 13. A perturbation in the 

response occurs at the deck mid-span failure (time range 10-15 s) . 
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Figure 16. Axial stresses in the longest cables for the new configuration of the bridge. 

 

The lateral strength of the reinforced concrete deck is abruptly reduced after reaching its 

ultimate deformation due to rupture of the steel reinforcing bars or concrete crushing. In Table 4 

the maximum values of the normal stress in the cables are shown. They remain lower (even if 

close) than their ultimate limits. 

 

Table 4. Maximum axial stresses in the stay-cables for the new configuration of the bridge. 

Cable   
MPa sec 

C1 380 C1 

C2 379 C2 

C3 372 C3 

C4 375 C4 

C5 379 C5 

C6 381 C6 

C7 404 C7 

C8 370 C8 

C9 373 C9 

C10 375 C10 

C11 373 C11 

C12 371 C12 
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The deck displacements from the numerical simulations are extracted and the robustness index 

is calculated for each time step as shown in Figure 17. The redundancy indices values results 

the following: 4.34uR  , 2.71fR  , 3.37dR  . 

Comparing the values of the redundancy indices of the original bridge configuration, a 

remarkable improvement in terms of redundancy is highlighted. This results from the evaluation 

of the robustness index leading to performance over the previous configuration of the bridge 

(Figures 17 and 14). 
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Figure 17. Robustness variation with respect to time for the new configuration of the bridge. 

 

6. General remarks 

Numerical analyses have the benefit of being able to effectively control the changes introduced 

in the modified structural configuration maintaining all other conditions unchanged. This allows a 

consistent comparison in terms of structural response between the original configuration and the 

alternative.  

The problem of double-cable-losses for the cable stayed-bridge is considered with respect to 

the disproportionate collapse and the way to improve redundancy is investigated through 

nonlinear time history analyses. It is worth noting how such local failure condition improves the 
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requirements of the existing PTI Recommendations. Indeed, they require that a cable-stayed 

bridge shall be capable of withstanding the loss of any one cable (PTI 2012). Therefore, the 

proposed alternative configuration of the cable-stayed bridge is able to give additional benefits 

with respect to the minimum expected requirements. 

With respect to the existing literature, new redundancy indices are proposed for time history 

analyses. They introduce a new information, allowing a quantitative measure of redundancy. In 

particular, the proposed alternative bridge configuration (section 5.2), with respect to the original 

one (section 5.1), shows how the reduction of the geometrical distance between the cables-

deck connection can uniformly improve all redundancy indices of about 250%. It means that the 

system is capable to withstand local cables failure with uniform reserve ratios, with respect to 

ultimate, functionality and damaged condition limit states. 

The improvements highlighted by the redundancy indices between the alternative and the 

original bridge configurations are reflected also in the robustness index ρ, in agreement with the 

recognised relation between redundancy and robustness (Kanno and Ben-Haim 2011).  Indeed, 

ρ parameter results essentially improved in the first half of the analysis (range 0-10 s in Figure 

17). However, the deck mid-span failure affects the second part of the diagram. 

7. Conclusion 

The problem of disproportionate collapse of an existing cable-stayed bridge is investigated 

through nonlinear dynamic analysis and the Applied Element Method. An algorithm is presented 

to extend a methodology proposed in literature using time history analysis to compute 

redundancy indices in terms of the system reserve ratios. 

The analyses of the cable-stayed bridge model show that the bridge cannot sustain the failure of 

more than two cables at mid-span without resulting in a disproportionate collapse. In addition, 

disproportionate collapse can be avoided through a new cables-configuration. This is closely 

connected with improvements in robustness and redundancy. However, the new configuration is 

not enough to guarantee the functionality of cable-stayed bridge after a strong motion event, 

because the stresses in the bridge deck compromise the structural stability. Therefore, 

additional strengthening would be necessary in the main girder to overcome this issue and 

avoiding functionality losses. The methodology can support decision-makers to explore the 
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performance of bridge structures in seismic affected area, to plan strategies and resilience 

improvements to minimize both losses and recovery time. 
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Figure captions  

Figure 1. Modelling of structure to AEM. 
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Figure 2. Spring interaction between elements in the AEM. 

Figure 3. Separation phases. 

Figure 4. Stress-strain constitutive law of a bilinear material (a). Tension-only case (b).  

Figure 5. Yong-he bridge geometry.  

Figure 6. Comparison between FEM and AEM models in terms of mode shapes. 

Figure 7. Deformed shape: FEM model and  AEM. 

Figure 8. Robustness curve. 

Figure 9. Load measures needed to calculate redundancy indices. 

Figure 10. Absolute value of the acceleration input. 

Figure 11. (a) Input accelerogram computed by Haifan (1983). (b) Disproportionate collapse 

from AEM simulations. 

Figure 12. Analysed cables. 

Figure 13. Normal stress in cable C6 and C7. 

Figure 14. Variation of robustness with respect to time. 

Figure 15. (a) New cable configuration and (b) the corresponding AEM model of the bridge.  

Figure 16. Axial stresses in the longest cables for the new configuration of the bridge. 

Figure 17. Robustness variation with respect to time for the new configuration of the bridge. 

 


