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Abstract—While the first aim of smart meters is to provide
energy readings for billing purposes, the availability of these
measurements could open new opportunities for the management
of future distribution grids. This paper presents a multi-level state
estimator that exploits smart meter measurements for monitoring
both low and medium voltage grids. The goal of the paper is
to present an architecture able to efficiently integrate smart
meter measurements and to show the accuracy performance
achievable if the use of real-time smart meter measurements
for state estimation purposes were enabled. The design of the
state estimator applies the uncertainty propagation theory for
the integration of the data at the different hierarchical levels.
The coordination of the estimation levels is realized through a
cloud-based infrastructure, which also provides the interface to
auxiliary functions and the access to the estimation results for
other distribution grid management applications. A mathematical
analysis is performed to characterize the estimation algorithm
in terms of accuracy and to show the performance achievable
at the different levels of the distribution grid when using the
smart meter data. Simulations are presented, which validate the
analytical results and demonstrate the operation of the multi-level
estimator in coordination with the cloud-based platform.

Keywords—State Estimation, Distribution System Automation,
Distributed Estimation, Smart Meters, Distribution Grid Monitor-
ing, Measurement Uncertainty, Cloud Platform.

I. INTRODUCTION

Electric distribution grids are evolving into complex systems
where many different resources, like distributed generation,
storage systems and flexible loads, have to be coordinated to
achieve the efficient and secure operation of the network [1].
The smart control of these heterogeneous resources requires
the development of new applications for the management of the
grid at both Medium Voltage (MV) and Low Voltage (LV) level
[2]. Most of the functions of the Distribution Management
System (DMS) need to know the operating conditions of the
network to operate [3]. This information is provided by the
Distribution System State Estimation (DSSE), which is thus
crucial to enable the intelligent functions required for the
control of future distribution grids.
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In spite of the large research efforts to design State Esti-
mation (SE) algorithms tailored to distribution grids [4]–[8],
some important issues still hinder the deployment of DSSE
in real networks [9]. The main obstacle is the scarcity of
measurements on the field at distribution level, which prevents
the effective operation of DSSE. Common solutions rely on
pseudo-measurements, namely forecasts of the power gener-
ation or consumption at the different nodes of the network
[10], [11]. While this solution allows reaching the observability
of the system and makes DSSE possible, the achievable
accuracy performance is significantly affected [12]. Due to
these problems, the distribution systems need an upgrade of
the measurement system in order to evolve into smart grids.

Several works have tackled the problem of meter placement
in distribution systems [13]–[16]. One of the solutions recently
investigated is the use of smart meters at customer premises as
input for the DSSE. While these devices are mainly intended
for billing purposes, their measurements can actually be a pre-
cious source of information for the management of distribution
grids. Relying on this idea, different papers proposed the use
of smart meters for DSSE. In [17], smart meters placed in
strategical points are used to enhance the observability of the
distribution grid. Similarly, the technique proposed in [18]
relies upon the placement of smart meters in few selected
locations to enable the grid observability. In [19] and [20],
the main idea is to aggregate the information given by the
smart meters to enhance the knowledge of the power injections
at the MV/LV substations of the MV grid. Other works aim
instead at including smart meter measurements directly on
LV grid estimators [21], [22]. Field trials showing the use of
smart meters for LV grid monitoring have been also presented
recently (see for example [23] and [24]). All these papers,
however, use the smart meter measurements only for one level
of the distribution grid, not allowing the full monitoring of the
distribution network, at both LV and MV level, based on the
use of smart meters.

Differently from the above-mentioned works, this paper
overcomes this limitation and presents a state estimator that
uses smart meter measurements to monitor both LV and MV
grids. A multi-level architecture is proposed to this purpose,
where the SE problem is decomposed into concentrator, LV
grid and MV grid SE levels. Such a solution allows distributing
computation, memory and communication requirements, thus
facilitating the DSSE execution and coping with the challenge
of deploying DSSE in large distribution networks. In [25], a
first version of the estimator was presented, but its application
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was limited only to the LV grid. In this work, the DSSE
algorithm has been refined to allow also the monitoring of
MV grids, thus extending the benefits of the use of smart
meter measurements to the upper level of the distribution
system. A similar concept is presented also in [26], where
LV grid estimations are used in input to the MV estimator.
However this paper presents more in detail how to coordinate
the hierarchical levels of the SE architecture, referring to
the use of the uncertainty propagation law for the accurate
integration of the results achieved at the different SE levels.
The main contributions of this work, which represent technical
novelties with respect to the state of the art literature, can be
listed as follows.
• The details on how to model the MV/LV transformer to

fully exploit the LV grid results into the MV grid level
SE are provided.

• The coordination of the SE levels using the uncertainty
propagation theory is presented: the goal here is to maxi-
mize the accuracy performance and to make possible the
mathematical evaluation of such performance.

• The accuracy performance achievable at the different
levels of the DSSE architecture is presented. To this
purpose, the analytical expressions needed to compute
the uncertainty of voltages and powers as a function
of the number of smart meters and of their accuracy
characteristics have been derived; numerical simulations
are then used to validate the mathematical findings.

Together with these main contributions, to give an overall
view of the conceived architecture, a cloud-based infrastructure
used to interconnect the different DSSE levels is also presented
[27]. This infrastructure also allows interfacing other DSSE
auxiliary functions and storing the DSSE results for their use
in other distribution system management functions.

The remainder of this paper is organized as follows. In
Section II, the design of the multi-level DSSE algorithm is de-
scribed, while Section III presents the cloud-based infrastruc-
ture used to coordinate the hierarchical levels of the estimator.
In Section IV, the mathematical analysis developed to assess
the accuracy performance of the smart meter based DSSE is
presented. Simulations validating the analytical findings and
showing the operation of the multi-level DSSE algorithm in
the proposed cloud architecture are discussed in Section V.
Finally, Section VI provides the final remarks of the paper.

II. MULTI-LEVEL STATE ESTIMATION

A. Multi-level architecture
The DSSE scheme presented in this paper is composed of

three hierarchical levels conceived to distribute the computa-
tional requirements for SE and to fully exploit smart meter
measurements for monitoring both LV and MV grid. Starting
from the lowest level of the hierarchy, the proposed estimator
relies upon: concentrator SEs; LV grid SEs; MV grid SE
(Fig. 1). To remark the presence of the different hierarchical
levels, the architecture will be referred to as multi-level in the
following.

In a smart metering infrastructure, the concentrators aggre-
gate the smart meter readings coming from different customers,

Fig. 1. Multi-level SE architecture: a) partition of the distribution grid; b)
hierarchical structure of the architecture.

translate them (if needed) into the data format used at the
following acquisition stage, and forward them periodically
with a chosen reporting rate. To perform these tasks, concen-
trators are equipped with computational capabilities, hence, the
idea, already anticipated in [25], is to use these computational
resources to compute a first stage (concentrator SE) of the SE
process to estimate the voltages and the power injections seen
the LV feeder buses. As depicted in the simplified schema in
Fig. 1a, thanks to the radial topology of LV grids and the
resulting configuration of feeders and laterals, it is possible
to place the concentrators in the LV feeder buses to have the
aggregation of all the smart meters connected to such bus.
Using this criterion, each concentrator SE can monitor the
laterals of the LV grid departing from the associated feeder
bus and estimate, as a result, the voltage and the equivalent
power injection seen from such node on the LV feeder (see
the area associated to each concentrator in Fig. 1a).

The second stage (LV grid SE) of the multi-level SE process
estimates the state of the LV grid by using as input the SE
results on the LV feeder buses provided by the concentrator
level estimators. This SE process allows the monitoring of
the operating conditions in the LV feeders, which can be also
used to trigger possible functions designed for the management
of the LV grid. Similarly to the previous stage, the LV grid
monitoring estimates the voltage state and the overall power
injection resulting at the MV/LV substation. This, in turn,
enables the application of an upper level SE on the MV
network (MV grid SE), which enables the full monitoring
of the MV grid without installing additional meters at MV
level. In fact, if a full coverage of smart meters is available
on the distribution grid, each MV/LV substation would have
an equivalent voltage and power injection input given by the
LV grid SE, while the measurement information at the nodes
directly connected to MV customers could be obtained through
their smart meters. This guarantees the observability of the MV
grid even in a worst-case scenario where no other measurement
instrumentation is present at MV level and without the need
to use inaccurate pseudo-measurements.

The multi-level architecture (Fig. 1b) presented here is
developed only for the distribution level of the electric system,
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but it can be expanded to fit the hierarchical structure theorized
in [28] for a comprehensive smart grid SE including both
distribution and transmission systems. The presented DSSE
scheme thus allows addressing the following challenges.
• Smart meter measurements are fully exploited to obtain

situational awareness on the whole distribution grid
(both LV and MV level), enabling the development of
advanced distribution management functions. The use
of smart meters allow monitoring the whole distribution
grids without the need for large investments to deploy
additional measurement instruments.

• As it will be shown in Section IV, the use of smart
meters together with the proposed coordination frame-
work allow having a very accurate tracking of the grid
operating conditions, differently from what achievable
by adopting pseudo-measurements.

• SE can be performed in parallel among different LV
grids and among different concentrators within the same
LV grid; this allows splitting the SE problem, dis-
tributing computational and memory requirements and
reducing the required execution times: this is a key
aspect given the very large size of the distribution grids.

• Concentrators send only SE results in real-time at the
LV feeder buses and not the whole set of smart meter
measurements, with consequent reduction of the real-
time communication requirements.

B. State Estimation model

The SE algorithms implemented at the different stages of
the multi-level architecture are all based on the well-known
Weighted Least Squares (WLS) approach. The goal of the
WLS technique is to minimize the following weighted sum
(see [29] for more details):

J(x) =

M∑
i=1

wi(zi − hi(x))2 (1)

where zi is the i-th available measurement; hi(x) is the asso-
ciated measurement function expressing the measured quantity
in terms of the state variables used in the vector x; wi is
a weight used to scale the importance of the measurements
according to their accuracy (inverse of the measurement vari-
ance σ2

i ). Converting the objective function in (1) in matrix
form and applying the Gauss-Newton method to pursue the
minimization, the final state vector is obtained through the
iterative solution of the following equation system:

G∆x = Hz
TWz[z− hz(x)] (2)

where z and hz(x) are the vectors containing the zi and hi(x)
values; Wz is the weighting matrix having the wi terms on
the diagonal; Hz is the Jacobian matrix associated to the
measurement functions hi(x); G = Hz

TWzHz is the so-
called Gain matrix; ∆x is the updating vector to be summed
to the state vector x at each iteration to update its result. The
iterative procedure stops after the largest element in ∆x (in
absolute value) is smaller than a chosen threshold.

Fig. 2. MV/LV substation model for the MV grid SE.

The WLS approach is often used in the SE context be-
cause under the hypothesis of Gaussian distribution of the
measurement uncertainties it corresponds to the maximum
likelihood estimator [29]. Another important advantage offered
by the WLS formulation is the possibility to compute the
corresponding uncertainty associated to the estimated state
variables: this can be calculated as the inverse of the Gain
matrix Σx = G−1. Such an aspect is of paramount importance
for the application of a hierarchical SE architecture; in fact,
calling with y = hy(x) the vector of electrical quantities to
be provided as input to the upper level SE, it is possible
to compute their uncertainty Σy by applying the law of
propagation of the uncertainties:

Σy = HyΣxHy
T (3)

where Hy is the Jacobian associated to the measurement
functions hy(x) (which express the quantities in y in terms of
the SE state variables in x). The diagonal terms in Σy are the
resulting variances of the quantities in y and can be thus used
for the accurate definition of the weights to be introduced in
the WLS procedure at the upper levels of the SE hierarchy.

C. State Estimation algorithm
The SE algorithm implemented in all the three stages

of the architecture is based on the three-phase unbalanced
formulation presented in [8]. The state vector x is composed
of the voltage magnitude at a reference node and the currents
at all the branches of the grid, expressed in rectangular
form. It is worth noting that, as proved in [30], other WLS
formulations based on different state variables also provide the
same estimation results with same accuracy. As a consequence,
the choice of the SE algorithm could be also different and
the choice shown here is not a constraint for the proposed
architecture.

The design of the algorithm at the concentrator and the
LV grid level is straightforward and simply follows the steps
described in [8]. At MV level, instead, the presence of the
MV/LV transformers has to be considered and suitably mod-
elled. Since most of the distribution grids are characterized by
MV/LV transformers with a delta-grounded star connection,
this configuration has been considered here for the design of
the algorithm. Its modelling follows the scheme in Fig. 2 (note
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that the transformer ratio can be neglected when working with
per unit values, as it usually occurs in SE). In particular, the
branch currents at the secondary side of the transformer are
included among the state variables x of the MV SE algorithm
(branch j in Fig. 2). Given these additional state variables, and
referring to the scheme in Fig. 2, it is possible to see that:
• according to [8], power injections are converted at each

SE iteration in equivalent current measurements; thus,
the power injection seen from the MV/LV substation
(node n) is converted into the real and imaginary currents
ireinj,n,φ and iiminj,n,φ and for each phase φ = a, b, c their
measurement functions are:

hire
inj,n,φ

= irej,φ (4)

hiim
inj,n,φ

= iimj,φ (5)

• due to the delta connection at the primary side of the
transformer, the zero current injection at node m creates
a coupling among the different phases of the system; as
an example, for the current injection ireinj,m,a at phase a,
the corresponding measurement function is:

hire
inj,m,a

= irei,a − irek,a − irej,a + irej,b (6)

• the voltage magnitude measurement at the MV/LV sub-
station (node n) also introduces a coupling among the
phases; for example, for the voltage Vn,a at phase a,
the resulting measurement function is (see [8] for more
details on its computation):

hVn,a = V1,a · cos(θ1,a − θn,a)− V1,c · cos(θ1,c − θn,a)−∑
p∈Γ1−n

(rp,ai
re
p,a − xp,aiimp,a) · cos(θn,a)−∑

p∈Γ1−n

(rp,ai
im
p,a + xp,ai

re
p,a) · sin(θn,a)+∑

p∈Γ1−m

(rp,ci
re
p,c − xp,ciimp,c) · cos(θn,a)+∑

p∈Γ1−m

(rp,ci
im
p,c + xp,ci

re
p,c) · sin(θn,a)

(7)

where θs,φ is the voltage angle at bus s for phase φ, rp,φ
and xp,φ are the resistance and reactance, respectively,
associated to the phase φ of branch p, and Γ1−s is the
path between the starting reference node of the grid and
the generic node s.

III. SOFTWARE SMART METERING ARCHITECTURE

A. Software platform
Monitoring and controlling the electricity consumption at

the customers level to improve efficiency is an important
feature of future smart grids [31], [32]. The deployed smart
metering infrastructure plays a key role to achieve this objec-
tive. Indeed, it needs to manage millions of internet-connected
devices (e.g. smart meters) in a secure, reliable and scalable
way. To enable this, utilities need distributed data-centres. In

Fig. 3. Architectural schema of the cloud platform

this respect, cloud computing is envisaged to play a key role
in future smart grids [33]. As highlighted in [33], sharing
information among different actors and services is also a
crucial issue in the smart grid scenario. This data sharing can
enable new business models and novel services to manage the
power distribution network, fostering new actors to participate
in a fast-evolving distributed marketplace [34].

The smart metering infrastructure used in this paper aims
at providing the above features [27]. In particular, it allows
the interoperability among: i) different services and ii) het-
erogeneous devices to retrieve measurement information. Fur-
thermore, it is capable of handling and post-processing huge
amounts of information. The cloud platform here presented is,
therefore, not only the key enabler to coordinate the different
levels of the SE architecture, but also gives the possibility to
interface SE with other possible services for the management
of the distribution grid. As shown in Figure 3, the platform is
a three layer architecture with: i) a Device Integration Layer,
ii) a Middleware Layer and iii) an Application Layer.

The cloud platform is able to deal with heterogeneous
devices using different communication protocols. This means
that, if different measurements are available in the grid (using
different protocols), these can be also exploited into the
DSSE algorithm. To enable interoperability among different
technologies, the Device Integration Layer exploits Device
Integration Adapters (DIA) to abstract the hardware data-
sources through a methodology described in [35]. The DIA is
a software component that converts the measurements coming
from the devices to the JSON data format used within the cloud
platform and sends them to the cloud infrastructure exploiting
the MQTT protocol [36].

The Middleware Layer is composed of different software
components acting together to: allow communication with
DIAs; receive, check and store measurements; provide access
to data, devices, assets and maintenance operations. The Mes-
sage Broker provides an asynchronous communication through
MQTT, which is a publish/subscribe protocol to send data in
(near-) real-time. This communication paradigm removes the
interdependencies between producer and consumer of informa-
tion increasing the scalability of the whole infrastructure [34].

The Message Broker and the Communication Engine allow



5

a bi-directional communication between the software platform
and smart devices (i.e. smart meters and/or smart appli-
ances). In addition, the Communication Engine is responsible
for checking messages integrity, managing traffic spikes and
collecting the incoming measurements into a Data Storage
composed of different non-relational databases designed for
Big Data management. This approach provides scalability
and clusterization keeping the cloud infrastructure independent
from the low-level database management systems. Finally, the
REST API Interface Manager provides REST web services
to access information and manage entities in the infrastruc-
ture through a request/response communication paradigm. All
REST web services need authentications to allow the users
to perform operations. Thanks to this module, the platform
provides developers with uniform interfaces to access stored
information allowing them the development of new services
based on the available data.

The Application Layer is the highest layer of the platform. It
provides tools and interfaces to design distributed applications
and services for smart grid management and user awareness.
The multi-level state estimation algorithm presented in this
paper is an example of such services. In general, applications
can exchange data with the cloud platform using two different
communication paradigms. The first option is to consider a
publish/subscribe approach using the MQTT protocol: in this
case applications can publish new information and subscribe
to receive data in (near-) real-time. This option is particularly
suited for applications that have to react as soon as new
information is delivered or a new event is triggered. The
second option is to use a request/response communication via
REST. In this case applications can write, modify or access
data available in the cloud whenever it is needed regardless of
the moment in which those data were produced or generated.
More details on the features and performance of the used cloud
platform can be found in [27].

B. Data and communication flows for the multi-level SE
Figure 4 shows a schematic of the communication flows

needed for the coordination of the multi-level SE algorithm in
the used cloud platform. As explained in Section II-A, in the
conceived architecture, concentrators get the household level
measurements from the smart meters and compute a local SE
(note that concentrators receive data with the specific smart
meter communication protocol, e.g. DLMS/COSEM, and that
the protocol translation into MQTT is only applied for the
communication to the cloud platform). The results at the LV
feeder bus are then sent through MQTT to the cloud using
a specific topic linked to the portion of LV grid to which
the concentrator is connected. LV estimators are subscribed to
get the data published under that topic and thus they receive
the results of the concentrators they subtend (via the MQTT
broker). In addition, possible additional meters available in the
LV grid also send their measurements, via MQTT, to the cloud,
and LV estimators subscribe to receive these measurements.

These inputs are processed to obtain the LV grid SE results,
which are then sent to the cloud, via MQTT. Finally, the
MV grid SE subscribes to receive the SE results at the

Fig. 4. Communication flow for SEs and auxiliary services

MV/LV substations and the possible measurements coming
from additional equipment installed at MV level. The MV
estimator can thus perform the MV grid SE and it provides
the results to the cloud.

In the proposed platform, two auxiliary services play an
important role for the proper execution of the SE processes.
First, in a fully automated distribution grid, a network topology
reconfiguration algorithm can be used to decide the optimal
configuration of the network based on the operating conditions.
In this context, a reconfiguration service would subscribe to
obtain the results of the MV grid SE and use these data to
decide the optimal configuration of the grid. If any change
in the topology occurs, the topology reconfiguration service
updates the topology information in the cloud through the
REST interface. In this way, the MV grid SE (assuming that
only the MV grid can be reconfigured) can subscribe to get an
alarm whenever a topology change is uploaded in the cloud
and then it can request the updated topology. This approach
allows requiring and updating the topology information needed
for the MV grid SE only when a change occurs.

A second application complementary to the SEs is the
historical data analysis service. This service collects the SE
results and analyses the historical dataset to provide forecast
measurements of power consumption at the different nodes of
the grid (depending on day and time of the day). This service
provides a back-up for the real-time information in case of
lost measurements or bad data identification. Whenever some
measurements are missing (or erroneous) in the LV or MV grid
SE, these can be thus replaced by retrieving from the cloud
a corresponding pseudo-measurement based on the historical
data. A request/response communication is used in this case
since these data are needed only when a missing or bad
measurement is detected. While these services are essential for
the estimators (to ensure the use of the correct topology and to
guarantee the observability of the grids), a deeper description
of these services is out of the scope of this paper (details
on the coordinated operation of DSSE and network topology
reconfiguration services can be found in [27]).
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IV. DSSE PERFORMANCE ANALYSIS

In this section, the potential performance achievable through
the proposed multi-level SE architecture are analysed in terms
of SE accuracy. To this purpose, the following assumptions are
considered
• The grid is provided with a full coverage of smart meter

at the end-users nodes: this will be a realistic assumption
for many countries in the next future [37].

• Smart meters can provide real-time measurements of
voltage and power: nowadays, smart meters are mainly
deployed for billing purposes; however, some Distribu-
tion System Operators (DSOs) are already upgrading
their functionalities to enable their use for automation
purposes (see [23], [26]).

• Smart meters have time synchronization: this is often
achieved distributing a time reference through the net-
work; possible effects of lack of synchronization have
been investigated in [38] and are not considered here.

• Topology and network data are available: sometimes LV
grid data can be unknown (see for example [19]), but
for the application of WLS SE, as in this paper, the
knowledge of the network characteristics is essential.
Since many DSOs are currently proceeding with the
digitalization of the grid data, it is likely that this
information will be available for many grids in future.

A. Voltage profile accuracy
The evaluation of the DSSE performance in term of voltage

profile accuracy is performed through the analysis of the
covariance matrix of the estimates given by the inverse of the
Gain matrix. Let us consider the following state vector x:

x = [Va, Vb, Vc, ire,a, iim,a, ire,b, iim,b, ire,c, iim,c] (8)

where Vφ with φ = {a, b, c} is the voltage magnitude at the
phase φ of the reference bus, whereas ire,φ and iim,φ are the
vectors of the real and the imaginary components of the branch
currents for phase φ.

Given this form of the state vector, the covariance matrix of
the estimates can be written as:

Σx =

[
ΣV ΣV,i

Σi,V Σi

]
=

[
GV GV,i

Gi,V Gi

]−1

(9)

where ΣV is the 3×3 submatrix of covariances of the voltage
magnitude estimates, Σi is the covariance matrix of the branch
currents and ΣV,i and Σi,V are the covariances between
voltage and current variables. The same subscripts are also
used to split in a similar way the Gain matrix.

Focusing on the submatrix ΣV, as shown in [39] and [40],
using the properties for the inverse of a block matrix and the
Woodbury identity relationship, ΣV can be computed as:

ΣV = G−1
V + G−1

V ·GV,i ·Σi ·Gi,V ·G−1
V (10)

As presented in [39], the first component of uncertainty in
(10) is only associated to the number and accuracy of the
available voltage measurements, whereas the second term is
linked (through the impedances present in GV,i and Gi,V

and the branch current uncertainties in Σi) to the voltage
drops in the path between each voltage measurement location
and the considered reference bus. If voltage drops and branch
current uncertainties are low (see in [39] the effect of power
injection accuracy on the uncertainty of the voltage profile),
their contribution to the overall uncertainty in ΣV is very
small and can be in first approximation disregarded. In this
way, the voltage uncertainty computation is reduced to the
only calculation of the inverse of the Gain submatrix GV .

At concentrator level, voltage measurements are only linked
to the voltage state at the same phase of the measurement
and no coupling exists with the voltage states of the other
phases. The computation of the submatrix GV thus results in
a diagonal matrix having the diagonal elements equal to:

GV (φ, φ) =

Mφ,conc∑
i=1

wVi,φ (11)

where wVi is the weight of i-th voltage measurement for phase
φ and Mφ,conc is the total number of smart meters at phase φ
for the considered concentrator. The inverse of the submatrix is
simply given by the inverse of the terms in (11). Considering
that the WLS weights have to be chosen as the inverse of
the measurement variance, if all the smart meters have the
same voltage accuracy UV%, from (11), the uncertainty of the
voltage estimation in the concentrator SE can be found to be:

UV̂ ,φ,conc% '
UV%√
Mφ,conc

(12)

Such a result highlights that the higher the number of smart
meter measurements, the better the voltage estimation.

Considerations similar to those made for the concentrator SE
apply also to the LV grid SE. The submatrix GV still results
in a diagonal matrix where the diagonal terms are equal to
the sum of the weights of the input voltage measurements:
however, in this case, the input voltage measurements are the
voltage estimation results obtained at the concentrator level.
Equation (11) thus becomes:

GV (φ, φ) =

Cφ,LV∑
i=1

wVi,φ (13)

where Cφ,LV is the number of concentrators at phase φ
subtended by the LV grid. Given the uncertainty in (12) as
input for the calculation of the weights in (13), the following
uncertainty can be obtained for the LV grid voltage estimation:

UV̂ ,φ,LV% '
UV%√
Mφ,LV

(14)

where Mφ,LV is the total number of smart meters connected to
the LV grid (at phase φ). Equation (14) clearly shows that the
integration of the DSSE hierarchical levels as done in this work
leads to a significant improvement of the voltage estimation
accuracy when moving from concentrator to LV SE and all
the smart meter measurements contribute to the enhancement
of the accuracy performance.

While the mathematical framework is the same also for the
evaluation of the voltage accuracy at MV level, in this case the
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uncertainty calculation has to take into account the coupling
among phases introduced by the delta-star transformer. As
visible in (7), the Jacobian of each voltage measurement
involves two different phases. Due to the phase shift (30◦)
brought by the delta-star connection, the derivative with respect
to the voltage states of each involved phase is equal to

√
3

2 .
Considering the contribution of the voltage measurements at
all the phases, the submatrix GV becomes:

GV =
3

4
·

[
WV,A +WV,B WV,B WV,A

WV,B WV,B +WV,C WV,C

WV,A WV,C WV,A +WV,C

]
(15)

where the generic term WV,φ is:

WV,φ =

Nφ∑
i=1

wVi,φ (16)

with Nφ being the total number of voltage measurements for
phase φ. The inverse of the submatrix GV gives the following
result for all the diagonal elements (which correspond to the
variances of the voltage states):

ΣV (φ, φ) =
WV,AWV,B +WV,BWV,C +WV,AWV,C

3WV,AWV,BWV,C
(17)

Taking into account that the voltage measurement weights
are given by the uncertainties obtained during the LV SE
processes (eq. (14)), from (17) it is possible to obtain the
following theoretical uncertainty:

UV̂ ,φ,MV% ' UV% ·
√
MAMB +MBMC +MAMC

MAMBMC
(18)

where Mφ is the overall number of smart meter measurements
subtended by the MV grid for phase φ.

If the number of smart meters for the different phases is
almost the same (namely MA ' MB ' MC = M ), equation
(18) can be further simplified and it becomes:

UV̂ ,φ,MV% '
√

3UV%√
M

(19)

From (19) it is possible to observe how, in the proposed multi-
level framework, the whole number of smart meters subtended
by the MV grid contributes to decrease the uncertainty of the
MV voltage estimation profile.

B. Power flow accuracy

The analysis of the DSSE performance in terms of power
flow accuracy can be performed through a backward sweep
procedure, starting from the leaf nodes of the grid and moving
towards the root bus. Power losses in the grid are neglected in
first approximation to simplify the analysis.

At concentrator level, the total power injection seen from
the LV feeder bus is equal to the sum of the power consumed
(or generated) by each end-user. Given a relative uncertainty
UP% for the power measurements of the smart meters (same

considerations apply for both active and reactive power), the
total uncertainty for the power injection at the feeder bus is:

UP̂ ,φ,conc% '
UP% ·

√∑Mφ,conc

i=1 P 2
i∑Mφ,conc

i=1 Pi
(20)

Equation (20) shows that the power uncertainty strongly
depends on the values of consumption and generation of the
customers. A simplified case occurs when all the customers
are consuming (or generating) power. In this case, the power
injection uncertainty falls within the following boundaries:

UP%√
Mφ,conc

≤ UP̂ ,φ,conc% ≤ UP% (21)

The upper boundary in (21) occurs when the total power
injection at the feeder bus is only given by a single customer,
whereas the lower boundary occurs when the total power
injection is equally divided among all the downstream users. In
general, the more uniform the distribution of the power among
the customers, the lower the final uncertainty. In this particular
case, (21) shows that the estimation uncertainty for the power
injection at the LV feeder bus will be always lower than the
starting measurement uncertainty of the smart meters.

For the LV grid SE, similar considerations also apply. The
power flow uncertainty in each branch of the grid is given by
the contribution of all the customer injections downstream that
branch. At the MV/LV substation, thus, the following holds:

UP̂ ,φ,LV% '
UP% ·

√∑Mφ,LV

i=1 P 2
i∑Mφ,LV

i=1 Pi
(22)

For the particular case of customers that are all consuming
(or generating) power, the boundaries in (21) still hold, but
the lower boundary will take into account the total amount of
customers subtended to the LV grid:

UP%√
Mφ,LV

≤ UP̂ ,φ,LV% ≤ UP% (23)

At the MV level, the propagation of the uncertainties is
affected by the presence of the delta-star transformer. Referring
to the same scheme depicted in Fig. 2, the active and reactive
power injections seen from the MV side (node m) can be
written as (considering phase a as example):

P injm,a = Vm,a
P injn,a cos(θmana)−Qinjn,asin(θmana)

Vn,a
+

− Vm,a
P injn,b cos(θmanb)−Q

inj
n,bsin(θmanb)

Vn,b

(24)

Qinjm,a = Vm,a
Qinjn,acos(θmana) + P injn,a sin(θmana)

Vn,a
+

− Vm,a
Qinjn,bcos(θmanb) + P injn,b sin(θmanb)

Vn,b

(25)

where P injn,φ and Qinjn,φ are the active and reactive power
injections seen from the phase φ of node n, Vn,φ is the voltage
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magnitude at phase φ of node n, and θmφ1nφ2 is the phase
angle difference between the voltages at phase φ1 of node m
and the current at phase φ2 of node n.

Considering, in first approximation, the voltages equal to
their nominal value and taking into account the phase shift
brought by the delta-star connection, the following simplified
relationships can be obtained:

P injm,a '
P injn,a + P injn,b

2
−
Qinjn,a −Q

inj
n,b

2
√

3
(26)

Qinjm,a '
Qinjn,a +Qinjn,b

2
+
P injn,a − P

inj
n,b

2
√

3
(27)

From (26) and (27), it is possible to derive the resulting
uncertainty for the MV power injections:

UP̂ inj
m,a,MV

'

√
U2
P injn,a

+ U2
P inj
n,b

4
+
U2
Qinjn,a

+ U2
Qinj
n,b

12
(28)

UQ̂inj
m,a,MV

'

√
U2
Qinjn,a

+ U2
Qinj
n,b

4
+
U2
P injn,a

+ U2
P inj
n,b

12
(29)

where UP injn,a
and UQinjn,a

are the uncertainties (in absolute
value) for the power injections resulting at the MV side of
the transformer due to the LV grid estimations.

Starting from the power injection uncertainties in (28) and
(29), the uncertainty for the power flows in each branch of
the MV grid is then given by the quadratic sum of the power
injection uncertainties at all the nodes downstream the branch.
At the primary substation, the following holds (a similar
equation can be also derived for the reactive power):

UP̂ ,φ,MV% '

√∑NMV
i=1 U2

P inj
i,φ,MV∑NMV

i=1 P inji,φ

(30)

where NMV is the total number of MV buses.
The above relationships show how the uncertainties prop-

agate from the LV grid estimators to the MV grid level.
It is important to note that these relationships are a rough
calculation since the voltages in (24) and (25) have been ap-
proximated (and their uncertainties neglected) and calculations
only took into account the contribution to uncertainty provided
by the power injections. However, when accurate voltage
measurements are available at the different nodes (as it is at the
MV level according to the analytical findings in Section IV-A),
they also contribute to the power flow estimation because
they put a constraint on the voltage drops between buses.
As a result, depending on the scenario, slight over- or under-
estimations of the uncertainty can be found. Nevertheless, these
relationships can be used as a good benchmark by DSOs to
evaluate if the achievable accuracies are in line with their
expectations or requirements for the grid monitoring.

Fig. 5. MV feeder used for the simulations.

Fig. 6. Example of LV grid topology used for the simulations.

V. TESTS AND RESULTS

The scenario used for the simulations is composed of a 13-
bus MV feeder connected to 9 MV/LV substations, 2 MV loads
and a PV plant (see Fig. 5). For each MV/LV substation, the
downstream LV grid has been modelled down to the building
units. Fig. 6 shows, as an example, one of the LV grids with
the indication of the LV feeder buses and of the subtended
customers for each of the three phases. Daily profiles have
been generated for each LV residential customer and for the
MV loads and generation. Smart meters have been assumed
to be available at all the load and generation nodes with
accuracies equal to 1% and 2% for the voltage and power
measurements, respectively. Different simulations have been
performed to show the performance of the proposed multi-
level architecture. The performed tests mainly aim at proving
the validity of the accuracy analysis performed in Section IV
and to highlight the benefits given by the conceived multi-level
architecture.

A. Validation of the accuracy performance analysis
In this subsection, off-line Monte Carlo (MC) simulations

have been first performed to evaluate the accuracy performance
of the designed multi-level SE and to validate the analytical
relationships shown in Section IV. Simulations have been then
run also in real-time to show the operation of the DSSE in
coordination with the cloud platform.

Off-line MC simulations have been carried out by consider-
ing a specific time step of the day. For such time step, a power
flow calculation is performed to obtain the reference operating
conditions of the grid. Measurements are then extracted by
adding random noise to the reference electrical quantities
according to a Gaussian probability distribution with standard
deviation equal to one third of the related accuracy value. For
each MC simulation, 25000 trials have been run by extracting
different measurements in order to have a statistically mean-
ingful dataset.
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TABLE I. CONCENTRATOR SE ACCURACY RESULTS

Node
Voltage Uncertainty [%] Power Uncertainty [%]

Theor. MC Theor. LB Theor. UB MC

LV 211 ph.A 0.38 0.38 0.76 2.00 1.23

LV 211 ph.B 0.45 0.45 0.89 2.00 1.64

LV 211 ph.C 0.41 0.41 0.82 2.00 0.99

Fig. 7. Power consumption of single customers subtended by concentrator
at bus LV 211

Table I shows, as an example, the results obtained for the
concentrator located in bus LV 211, which has 7, 5 and 6
customers connected to phase a, b and c, respectively. The
Table reports the theoretical values of uncertainty given by
the mathematical relationships found in Section IV and the
experimental results obtained through the MC simulation. For
the power injection, since all the residential customers are
passive users, the lower and upper bounds (LB and UB in
the Table, respectively) of uncertainty have been indicated. It
is possible to note that theoretical and experimental voltage
uncertainties perfectly match and power injection uncertainties
are within the expected boundaries. Power uncertainties can
be more or less close to the lower bound depending on the
distribution of the power among the subtended customers. Fig.
7 shows the values of power consumption, at the considered
time step, for the customers connected to the different phases.
It is possible to observe that phase c has a quite uniform
distribution of the power consumptions and this is reflected in
the uncertainty result, which is quite close to the lower bound.
On the other hand, in phase b, the contribution to the total
uncertainty is mainly given by one of the customers and hence
the final power injection uncertainty is only slightly better than
the starting smart meter uncertainty.

At the LV grid level, a much larger number of smart meter
measurements allows refining the SE results. Table II shows

TABLE II. LV GRID SE ACCURACY RESULTS

Node
Voltage Uncertainty [%] Power Uncertainty [%]

Theor. MC Theor. LB Theor. UB MC

LV 002 ph.A 0.09 0.09 0.19 2.00 0.31

LV 002 ph.B 0.09 0.09 0.19 2.00 0.37

LV 002 ph.C 0.09 0.09 0.18 2.00 0.35

Fig. 8. Profile of power uncertainties at the branches of the MV network

the uncertainty results for the LV grid depicted in Fig. 6.
As expected, voltage estimation uncertainty is significantly
decreased and a very accurate voltage profile of the grid can
be achieved. Similarly, power injection uncertainties are also
drastically improved as the total power at the substation is due
to the contribution of many end-users. Such results highlight
the large benefits potentially achievable by integrating smart
meter measurements in a properly designed SE framework.

In the MV grid, the estimation accuracy is further refined
thanks to the contribution of all the LV grid SEs. For the
voltage profile, an estimation accuracy equal to 0.05% is
obtained through the MC simulations, which is compliant
with the analytical relationship in (19) (note that around one
thousand residential customers are connected in total to each
phase). For the power injections at each MV/LV substation,
an accuracy of 0.25% is achieved, which is in line with the
theoretical result that can be found starting from eq. (28). At
the branches, the power estimation uncertainty can be obtained
as quadratic combination of the power injection uncertainties
at the downstream nodes. Fig. 8 shows, as an example, the
uncertainties obtained in a time step where no generation is
available. It can be observed that very accurate estimations
are achieved (better than the starting uncertainty of the smart
meters), and these improve when moving towards the root node
(as an effect of the quadratic combination of the uncertain-
ties). When generation is present, this trend is not always
clearly observable, since the relative terms of uncertainties
increase significantly when the branch power tends towards
zero. In general, however, high values of relative uncertainty
are present only when the branch power is extremely low,
whereas low values of uncertainty occur when the branches
are heavily loaded (which can be the most critical situation
to be monitored). These results prove that smart meter mea-
surements at LV level could be essential to have an accurate
monitoring also of the upper-level MV grid, without the need
to use inaccurate pseudo-measurements or to have an extensive
deployment of MV meters.

As final results, Fig. 9 and 10 show the voltage and
power estimations in the MV grid over the day when the
designed multi-level estimator is used in a real-time simulation
environment with the described cloud platform. In this test, a
simulation is carried out for the whole day by using different
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Fig. 9. Voltage estimation profile at phase a of bus MV 013, maximum
error: 0.06%

Fig. 10. Active power estimation profile at phase a of the branch MV 001
- MV 002, maximum error: 0.01%

daily profiles for all the loads and generators. To emulate
the smart meter measurements, random noise is added to the
reference electrical quantities obtained through the power flow
calculation. Smart meter measurements are extracted from the
power system simulator every minute and used to trigger the
SE process. First, the smart meter measurements are processed
to perform the concentrator level SE. Then, concentrator level
results are sent, through the communication infrastructure
decribed in Section III, to the cloud platform for triggering
the execution of the estimation steps at LV and MV level.

Fig. 9 shows the estimation of the voltage profile during the
whole day for bus MV 013 (phase a), which is the furthest one
from the HV/MV substation and, therefore, the one where the
most important voltage drops occur. It is possible to observe
that the proposed multi-level SE is able to properly track the
voltage variations over time and only very small errors exist
(maximum error found was 0.06%). Similarly, Fig. 10 depicts
the result of power estimation for the branch between nodes
MV 001 and MV 002 (phase a), which is the most loaded
one in the network. Even in this case, a very accurate tracking
of the flowing power is achieved (maximum error is 0.01%).
Such results further highlight the potential benefits offered by
the designed smart meter based SE framework.

TABLE III. DISTRIBUTED VS CENTRALIZED ARCHITECTURE: TIME
PERFORMANCE

Distributed architecture Centralized

Conc. level LV level MV level architecture

Min time 1.5ms 3.6ms 7.0ms 11.6s

Avg time 2.0ms 4.7ms 7.5ms 11.9s

Max time 3.7ms 7.5ms 23.9ms 13.4s

B. Benefits of the proposed multi-level framework

In the proposed multi-level framework, two aspects play a
major role for dealing with the challenges associated to the de-
ployment of DSSE: i) the distributed nature of the architecture,
which allows distributing the computational requirements of
SE and shortening the computation time of the SE algorithms;
ii) the use of the WLS formulation, which allows properly
coordinating the different SE levels to maximize the achiev-
able accuracy performance. In this subsection, simulations are
presented to show these features.

In the first test, the distributed architecture is compared to a
centralized one. To this purpose, the performances of the SE
algorithms used at the different SE levels are compared to those
of a centralized estimator dealing with both the LV and the
MV grid. Table III shows the results obtained over 1000 MC
iterations. Tests were performed using Matlab 2016 in a PC
having a 3.3GHz CPU and 8GB of RAM. The main advantage
of the proposed architecture is the possibility to parallelize the
execution of all the algorithms running at the same hierarchical
level (all the concentrators SEs at the concentrator level and
the LV SEs at the LV grid level run in parallel). Moreover, each
estimator has only to deal with a small portion of the grid (the
maximum number of nodes is in the MV grid model, which has
21 three-phase buses). As a result, the algorithms implemented
in the distributed architecture take a very short time to perform
their estimation (in the order of few ms). On the contrary, the
centralized algorithm takes several seconds (up to 13.4s in
the performed test) to handle the complete grid, which has
3498 buses (note that sparse matrices have been used, where
convenient, to shorten the execution times). In [27], more
details on the time performance of the distributed architecture
are provided for the time needed by the MQTT interfaces to
publish or receive the data and for the MQTT communication
(in the order of tens and hundreds of ms, respectively).
Considering the sum of all the contribution in the distributed
architecture, the overall execution times are generally below 1s.
This proves that the proposed architecture clearly outperforms
a centralized solution in terms of time performance and this
trend would be even more evident in case of larger distribution
grids. Such an improvement in the computation performance
is however obtained at the expenses of a slight degradation of
the estimation accuracy. This holds above all for the LV grids,
where voltage estimation uncertainties around 0.04% can be
achieved at both the LV feeder and the end-user buses when
adopting a centralized estimator. As shown in Tables I and II,
with the proposed architecture, the voltage uncertainties are
instead around 0.40% and 0.09% at the concentrator and LV
level, respectively.
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TABLE IV. PERFORMANCE FOR DIFFERENT SE FORMULATIONS

Index
WLS B/F LAV

Conc LV MV Conc LV MV Conc LV MV

Average
time [ms] 2.0 4.7 7.5 0.2 0.5 2.7 155 235 139

Average
iteration no. 3.0 4.5 5.0 3.0 4.7 4.0 3.2 4.6 5.4

Voltage
unc. [%] 0.37 0.09 0.05 1.00 1.01 1.04 0.47 0.15 0.10

Power
unc. [%] 2.00 0.85 1.11 2.00 0.85 1.36 2.00 0.85 1.15

A second test is run to show the benefits given by the WLS
formulation and the associated coordination framework. While
some literature already shows the advantages of WLS over
other formulations (see for example [41]), the goal here is
to highlight the main implications in terms of accuracy and
time execution for the presented architecture. To this purpose,
the performance of the proposed WLS-based framework are
compared to those obtained by integrating different SE formu-
lations in the multi-level architecture. The Backward/Forward
(B/F) sweep technique is used as main term of comparison,
since it is an alternative approach widely used in distribution
radial grids [42], [43]. In addition, the Least Absolute Value
(LAV) approach is also tested, since it is an approach often
used in the SE context [29].

Table IV gives the results obtained over 1000 MC trials
with the details for each hierarchical level. In particular, the
average execution time and number of iterations are provided
to evaluate the computational performance, while the estima-
tion uncertainty of node voltages and branch active powers is
given to assess the accuracy behaviour (the given values are
the average among the expanded uncertainties obtained in all
the nodes or branches of the considered hierarchical level).
In Table IV, it is possible to observe that the B/F algorithm
have the fastest convergence. However, it also exhibits an
important degradation of the voltage estimation accuracy. This
is because this approach does not allow the integration of
all the available voltage measurements, but only uses one
of them for the computation of the backward sweep (see
[42]). The LAV approach allows instead having accuracy
performance closer to those of the WLS framework, but the
needed optimization is computational demanding and this leads
to an evident increase of the execution times. Such results
thus highlight that the proposed WLS framework is a valid
solution to maximize the accuracy performance, exploiting all
the smart meter measurements, while guaranteeing sufficiently
low execution times.

VI. CONCLUSIONS

This paper presented the design of a multi-level SE aimed
at monitoring both LV and MV grids through the use of smart
meter measurements. A mathematical analysis has been devel-
oped to derive the analytical expressions needed to compute
the uncertainties of voltages and powers at all the levels of the
SE architecture. Such findings have been validated by means
of dedicated simulations and show how the integration of a
large number of smart meters is beneficially reflected into the

accuracy of the SE results. This highlights the key role that
smart meters could have for the monitoring and automation of
future distribution grids. Performed tests also show the benefits
that may be achieved, in terms of reduction of the computation
time, thanks to the proposed multi-level framework. To give
a complete overview of the conceived multi-level DSSE ar-
chitecture, the paper also presents a cloud-based infrastructure
used to allow the interconnection of the different hierarchical
levels. The same infrastructure can also be used to coordinate
DSSE with other functions for distribution grid management.
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