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A B S T R A C T

Automated evaluation of a subject's neurocognitive performance (NCP) is a relevant topic in neurological and
clinical studies. NCP represents the mental/cognitive human capacity in performing a specific task. It is difficult
to develop the study protocols as the subject's NCP changes in a known predictable way. Sleep is time-varying
NCP and can be used to develop novel NCP techniques. Accurate analysis and interpretation of human sleep
electroencephalographic (EEG) signals is needed for proper NCP assessment. In addition, sleep deprivation may
cause prominent cognitive risks in performing many common activities such as driving or controlling a generic
device; therefore, sleep scoring is a crucial part of the process. In the sleep cycle, the first stage of non-rapid eye
movement (NREM) sleep or stage N1 is the transition between wakefulness and drowsiness and becomes rele-
vant for the study of NCP.

In this study, a novel cascaded recurrent neural network (RNN) architecture based on long short-term mem-
ory (LSTM) blocks, is proposed for the automated scoring of sleep stages using EEG signals derived from a sin-
gle-channel. Fifty-five time and frequency-domain features were extracted from the EEG signals and fed to fea-
ture reduction algorithms to select the most relevant ones. The selected features constituted as the inputs to the
LSTM networks. The cascaded architecture is composed of two LSTM RNNs: the first network performed 4-class
classification (i.e. the five sleep stages with the merging of stages N1 and REM into a single stage) with a classi-
fication rate of 90.8%, and the second one obtained a recognition performance of 83.6% for 2-class classification
(i.e. N1 vs REM). The overall percentage of correct classification for five sleep stages is found to be 86.7%. The
objective of this work is to improve classification performance in sleep stage N1, as a first step of NCP assess-
ment, and at the same time obtain satisfactory classification results in the other sleep stages.

1. Introduction

Neurocognitive performance (NCP) represents the mental/cognitive
human capacity in performing a specific task [1]. Numerically and ac-
curate evaluation of the subject's NCP is currently an open problem
in several fields, such as rehabilitation, neurology, psychology/psychi-
atry and base research studies. NCP assessment relies primary on accu-
rate information extraction from the electroencephalographic (EEG) sig-
nal and on its interpretation and classification. It is difficult to develop
the study protocols in which the subject clearly changes its NCP in a
known predictable way. Sleep analysis may be considered as an exam

ple of time-varying NCP, since the functional aspects of the brain vary
in different sleep stages. Sleep plays an essential role in human health
because it represents one of the primary functions of the human brain.
The life of a human subject is constituted of sleep cycle for one third
of its duration and the quality of sleep may be influenced by sleep-re-
lated disorders like insomnia, hypersomnia, narcolepsy, sleep apnea,
breathing-related disorders, depression and circadian rhythm disorders
[2]. Sleep deprivation, considered as a result of a sleep pathology or
stress-related disorder, causes prominent cognitive risks in perform-
ing many common activities such as driving or controlling a generic
device [3]. In fact, according to the National Highway Traffic Safety
Administra
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tion in the USA, the reduction of reaction times due to drowsiness while
driving causes between 56,000 and 100,000 car accidents, resulting in
more than 1500 deaths and 71,000 injuries annually [4]. In this con-
text, the variable called sleep onset period (SOP), i.e. the period inter-
posed between weak wakefulness and drowsiness, becomes very impor-
tant for the study of NCP. In the sleep stage classification, the non-rapid
eye movement (NREM) sleep stage 1 (N1), considered as the first stage
of sleep cycle, represents the center of the SOP [5]. For this reason, an
accurate scoring of sleep stages, with a particular focus on stage N1, is
considered a crucial part of the process.

Several polysomnographic (PSG) signals are acquired for sleep scor-
ing: the EEG signals for monitoring brain activity, the electrooculo-
graphic (EOC) signals for eye movements and the electromyographic
(EMG) signals to measure muscle tone. In general sleep signals are
visually scored by experts according to two available guidelines: the
Rechtschaffen and Kales's (R&K) standard [6] and the manual proposed,
in a more recent period, by the American Academy of Sleep Medicine
(AASM) [7]. The main change is in terminology: in the AASM manual
the state of sleep is split into five sleep stages: wakefulness (stage W),
non-rapid eye movement (NREM) sleep stage 1 (N1), NREM sleep stage
2 (N2), NREM sleep stage 3 (N3) and rapid eye movement (REM) sleep
stage. The two R&K stages S3 and S4 have been combined into a single
stage N3, also called slow wave sleep (SWS) stage. The AASM rules de-
fine the characteristic waves for each of the five sleep stages:

• W (Wakefulness): stage W is characterized by alpha (8–12Hz) and
beta (16–30Hz) waves;

• N1 (NREM 1): stage N1 is scored when theta (4–8Hz) waves are evi-
dent, and vertex sharp waves may be present;

• N2 (NREM 2): stage N2 is scored when high voltage biphasic waves
(K-complexes) and sleep spindles (12–16Hz) are noted and theta
waves are present;

• N3 (NREM 3): stage N3 is characterized by high amplitude (>75μV)
delta (0.5–4Hz) waves;

• REM: stage REM is scored when theta and sawtooth (2–6Hz) waves
are evident and alpha waves may be present.

Sleep scoring is a complex procedure, because differences among
the stages are often very subtle. Several authors proposed automatic
classification systems to support the scoring made by sleep specialists.
These methods are based on two main strategies: i) multi-channel and
ii) single-channel recording. In the first approach i), a different num-
ber of PSG signals are used (more than one EEG channel, the EMG sig-
nal and the EOG signals especially for REM detection). But this kind
of scoring imposes limitations on the subject's movements and could
be a limit for NCP assessment in real conditions, such as during dri-
ving. In the second approach ii), only a single EEG channel is used
to extract informative features. This approach reduces the instrumental
complexity and eases the experimental recordings. The standard proce-
dure for an automatic sleep stage classification (ASSC) system is com-
posed of four stages: i) data acquisition, ii) signal pre-processing, iii)
feature extraction and iv) classification [8]. The iii) feature extraction
process is based on the estimation of characteristic parameters from the
pre-processed EEG signals of stage ii). These parameters can be com-
puted in time, frequency, time-frequency or complexity/nonlinear do-
main [9]. In few ASSC systems, there is another step before the classi-
fier, called feature selection or dimensionality reduction [10]. This ad-
ditional step is useful to reduce the computation cost by removing the
most redundant features (feature selection) or to generate new features
in a lower-dimensional subspace (dimensionality reduction). According
to our survey, the most popular algorithms used to perform feature se-
lection in the ASSC system are: sequential forward and backward selec-
tion methods [11], minimum redundancy maximum relevance (mRMR)

[12], relief algorithm [13] and principal component analysis (PCA) [14]
and linear discriminant analysis (LDA) [15] as dimensionality reduction
techniques. Automatic sleep stage classification methods include: sup-
port vector machine (SVM) [8,16–18], gaussian mixture model (GMM)
[19], bootstrap aggregating (Bagging) [20,21], J-means clustering [22],
random forest classifier [23], k-means clustering [24] and artificial
neural networks (ANNs) [25,26]. Recently deep learning methods have
been applied to sleep stage classification. Recurrent neural networks
(RNNs) applied to sequence data [27,28] and convolutional neural net-
works (CNNs) [29,30], most commonly applied to image data, are the
most relevant algorithms in this field. RNNs have several variants in-
cluding long short-term memory (LSTM) [31], gated recurrent unit
(GRU) [32] and bidirectional RNNs [33].

The current overall performance in terms of stage N1, which is the
most complex stage to identify, in most of the works published, is less
than 40%. To the best of our knowledge, the only proposed method,
which employed a RNN classifier for the automatic sleep stage classifi-
cation, obtained a classification accuracy of 36.7% [27]. In this work,
a novel approach using a cascaded RNN architecture with LSTM units
is proposed to classify the sleep EEG signals to overcome the current
limitation of multi-channel approaches and the low N1 sleep accuracy.
The importance of this stage becomes relevant in the context of the NCP
assessment; in fact, the next step towards the NCP should be the iden-
tification of the hypnagogic state, which is defined as the contact point
between waking and sleeping and is considered as the opposite of the
hypnopompic state. Hori et al. [5] studied the time and spatial-domain
transitions of the EEG signals during the hypnagogic state and proposed
a new sleep scoring made by nine stages: the first two stages correspond
to stage W in AASM standard, EEG stages 3–8 correspond to sleep stage
N1 and the last stage corresponds to sleep stage N2. It's clear from this
new classification that most of the hypnagogic EEG stages are classified
as stage N1 in the AASM standard. For this reason, the objective of this
work is to improve the low classification performance in sleep stage N1
and, at the same time, to obtain satisfactory results in the other sleep
stages. In the following section, an exhaustive description of the method
is presented.

2. Materials and methods

In this paper, we propose a novel automatic classification model,
consisted of two different RNNs with LSTM units. The first performed
4-class classification (W, N1-REM, N2 and N3), while the second per-
formed binary classification (N1 vs REM). Both RNNs shared the first
three steps: data acquisition, signal pre-processing and feature extrac-
tion from single-channel EEG signals. Subsequently, a feature selection
or feature transformation method was adopted to reduce the number of
input features for neural network. Two different methods were consid-
ered: for the first RNN the mRMR algorithm was used for feature selec-
tion, while for the second RNN, the PCA was employed for dimension-
ality reduction. Finally, the two RNNs were connected in cascade, with
the aim of classifying five different sleep stages. The workflow of the
proposed strategy is schematically described in Fig. 1.

2.1. Data acquisition

The dataset used in this study was the Sleep-EDF database, which is
publicly available from the PhysioBank [34]. The sampling rate of the
EEG signals was 100Hz. For our study, we selected twelve recordings
(SC4001E0, SC4002E0, SC4011E0, SC4012E0, SC4021E0, SC4031E0,
SC4051E0, SC4061E0, SC4112E0, SC4122E0, SC4131E0, SC4182E0)
of 10 healthy Caucasians aged 26–33 years. The other subjects were
excluded from the analysis because their recordings contained move-
ments and unreported epochs. In addition, we merged the stage 3 and
4 into a single stage N3, as it is currently recommended by the AASM
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Fig. 1. Schematic representation of the proposed workflow.

standard. Only the EEG Fpz-Cz signals were used as single-channel in
this work because K-complexes and sleep-spindles (typical patterns of
stage N2) could be recorded in central/frontal regions and during stage
N1, vertex sharp waves may be present which often occurs in central/
frontal brain areas, according to the AASM guidelines. The number of
30 s epochs for each of the five sleep stages are shown in Table 1.

In this study, different from most of studies (ASSC systems), we ran-
domly selected a relatively small number of epochs in stage W (8%).
This because the characteristics of the W epochs are very well defined
and have relatively low-variability. This makes the W epochs the easiest
to recognize without the need for many epochs in the dataset.

2.2. Signal pre-processing

All EEG time-series data were filtered to remove the frequency com-
ponents outside the range of 0.3–45Hz. Next, the 30s filtered epochs
were subdivided in blocks of 1 s duration, thus for each epoch we ob-
tained 30 time-segments. A number of timesteps equals to 30 was set for
the RNN classifier.

2.3. Feature extraction

In the feature extraction process, a total of 55 features were identi-
fied from a single EEG channel (Fpz-Cz). All features were computed for
each 1s filtered epoch for two reasons: the first is the non-stationarity of
the EEG signal and the second is the size of the input sequence at each
time step for the RNN classifier.

Table 1
The data distribution in various stages of sleep.

Sleep
stages W N1 N2 N3 REM Total

Number
of
epochs
in
stages

850 920 4960 1690 1860 10280

2.3.1. Time-domain features
Statistical parameters: mean (1st raw moment), variance (2nd cen-

tral moment), skewness (normalized 3rd central moment), kurtosis (nor-
malized 4th central moment) and median were the first time-domain
features extracted from EEG signals. The mathematical expressions of
the statistical moments are reported below:

(1)

(2)

(3)

(4)

Other time-domain features: peak-to-peak amplitude (difference be-
tween the maximum positive and negative amplitudes), absolute max-
imum value, number of zero crossings (number of time signal crosses
time-axis), root mean square (RMS) and average rectified value (ARV).
The last two parameters are defined as:

(5)

(6)

In this analysis were also used Hjorth parameters, i.e. Hjorth mobil-
ity (HM) and Hjorth complexity (HC), introduced by Bo Hjorth in 1970
[35]:

(7)

(8)

Next, we employed six infinite impulse response (IIR) Butterworth
band-pass filters in 0.5–4Hz, 4–8Hz, 8–12Hz, 12–16Hz, 16–30Hz and
30–45Hz to separate the delta, theta, alpha, sigma (or sleep spindle
sub-band), beta and gamma waves, of each 1s epoch, respectively. The
peak-to-peak amplitude was computed for each of the six sub-bands (
Adelta, Atheta, Aalpha, Asigma, Abeta and Agamma) in which the EEG signal
was decomposed. We also computed the energy from each 1s epoch
filtered using the IIR filters in the six significant EEG sub-bands (Edelta
, Etheta, Ealpha, Esigma, Ebeta and Egamma). The wave energy is defined

3



UN
CO

RR
EC

TE
D

PR
OO

F

N. Michielli et al. Computers in Biology and Medicine xxx (2019) xxx-xxx

as the sum of squared magnitude of each signal component:

(9)

In addition, five energy ratios were computed for the first five
sub-bands referred to the energy in gamma sub-band. Hence, the total
number of time-domain features is 29.

2.3.2. Frequency-domain features
Spectral estimation was performed to transfer the time series to the

frequency domain. We used the non-parametric approach: Power Spec-
tral Density (PSD) values were computed from the signal samples multi-
plied by a window function. In this study Welch's method [36] was used
to achieve PSD. Next, mean frequency (MNF), spectral entropy (SE) and
Renyi entropy (RE) [37] were computed for each 1s epoch. The mathe-
matical expressions are reported below.

(10)

(11)

(12)

where P is the power spectrum and p is the normalized power spectrum.
The relative spectral powers in the six significant frequency sub-bands (
Pdelta, Ptheta, Palpha, Psigma, Pbeta and Pgamma) were computed from the ob-
tained PSD values, as the ratios between the absolute power in each fre-
quency sub-band and the total area of PSD function over frequencies.
From these features, 15 power ratios were also derived. The last two
features, used in this study, were the products of the relative powers
in two low-frequency sub-bands (delta and theta) and in two high fre-
quency sub-bands (alpha and beta). In total, we extracted 26 features in
frequency domain. All extracted features are summarized in Table 2.

At the end of this process we extracted for each 30s epoch, of each
sleep stage, 55 features for each time step; hence our data matrix had
dimensions of 55×30.

2.4. Feature selection

The minimum redundancy maximum relevance (mRMR) algorithm
[12] was used to perform feature selection. This method balances the
need for including the most relevant features (i.e. those that are corre-
lated with the target, in our case the sleep stages) and the need for ex-
cluding the most redundant variables (i.e. those that are strongly corre-
lated with each other). Feature relevance and redundancy are character-
ized in terms of mutual information. If we consider two discrete random
variables X and Y with a joint probability mass function p(x,y) and mar-
ginal probability mass function p(x) and p(y); their mutual information
I(X;Y) is defined as [38]:

(13)

We used the logarithmic base 2, thus the units of mutual information
were bits. In the mRMR algorithm, the purpose is to search a feature set
S with m features {xi}, which should maximize the difference between
the relevance defined as the mutual information between individual fea-
tures xi and target class c and the redundancy, defined as the mutual
information between features xi and feature xj. The objective is to max-
imize the following mRMR cost function:

(14)

where is the number of features in the feature subset S. After hav-
ing selected sequential features, according to this algorithm, we com-
puted for each incremental feature subset the corresponding value of
the mRMR cost function and we defined the optimal subset size as the
global maximum point, as shown in Fig. 2.

According to this supervised algorithm, the following 11 features
were selected: median, skewness, root mean square, Hjorth mobility,
amplitude (theta sub-band), amplitude (sigma sub-band), amplitude
(beta sub-band), amplitude (gamma sub-band), Ebeta/Egamma, power
(theta sub-band) and power (beta sub-band).

2.5. Dimensionality reduction

In this work, principal component analysis (PCA) is employed for
dimensionality reduction. PCA is an unsupervised statistical technique
for the reduction of the dimension of features in a new lower-dimen-
sional subspace [14]. PCA produces a smaller number of uncorrelated
variables from the original set of correlated variables, without loss of

Table 2
List of extracted features.

N Feature N Feature N Feature N Feature

1 Peak-to-peak amplitude 15 Amplitude (alpha sub-band) 29 Ebeta/Egamma 43 Pdelta/Pgamma
2 Arithmetic mean 16 Amplitude (sigma sub-band) 30 Mean frequency 44 Ptheta/Palpha
3 Absolute maximum value 17 Amplitude (beta sub-band) 31 Spectral entropy 45 Ptheta/Psigma
4 Median 18 Amplitude (gamma sub-band) 32 Renyi entropy 46 Ptheta/Pbeta
5 Variance 19 Energy (delta sub-band) 33 Power (delta sub-band) 47 Ptheta/Pgamma
6 Skewness 20 Energy (theta sub-band) 34 Power (theta sub-band) 48 Palpha/Psigma
7 Kurtosis 21 Energy (alpha sub-band) 35 Power (alpha sub-band) 49 Palpha/Pbeta
8 Root mean square 22 Energy (sigma sub-band) 36 Power (sigma sub-band) 50 Palpha/Pgamma
9 Average rectified value 23 Energy (beta sub-band) 37 Power (beta sub-band) 51 Psigma/Pbeta
10 Number of zero crossings 24 Energy (gamma sub-band) 38 Power (gamma sub-band) 52 Psigma/Pgamma
11 Hjorth mobility 25 Edelta/Egamma 39 Pdelta/Ptheta 53 Pbeta/Pgamma
12 Hjorth complexity 26 Etheta/Egamma 40 Pdelta/Palpha 54 Pdelta⋅Ptheta
13 Amplitude (delta sub-band) 27 Ealpha/Egamma 41 Pdelta/Psigma 55 Palpha⋅Pbeta
14 Amplitude (theta sub-band) 28 Esigma/Egamma 42 Pdelta/Pbeta

4
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Fig. 2. mRMR cost function value for different numbers of selected features with local maxima.

information. These new variables are called principal components. This
procedure can be used as a form of dimensionality reduction if the
eigenvectors corresponding to smaller eigenvalues are discarded. Before
applying PCA, it's standard practice to perform feature scaling in or-
der to have features with zero mean and comparable ranges of values.
Dimensionality reduction was performed by selecting only a subset of
principal components to retain the 95% of variance. In this work, 27
principal components were selected according to variance criterion and
were stored in the matrix of coefficients U; thus, the new feature data
matrix for the i -th 30s sleep EEG epoch was computed as:

(15)

The new reduced data matrix was used as input for the second LSTM
RNN which performed binary classification (N1 vs REM). Fig. 3 shows
the absolute value (normalized between 0 and 1) of the coefficients of
three principal components (those that were more correlated with the
target) which multiplied the original feature values in the linear combi-
nation.

2.6. Recurrent neural networks

RNN architecture is a powerful deep learning classification method
especially applied to sequential data. RNNs are currently state of the
art methods in natural language processing (NLP) and speech recogni-
tion [39]. In fact, language data can be considered sequences, such as

words (sequence of letters), sentences (sequences of words) and docu-
ments (sequence of sentences). RNNs are a particular form of standard
artificial neural networks (ANNs) with the advantage of modelling time
series with long range structural dependencies [40]. The basic idea in
RNNs is to add time delay unit and a feedback connection so that infor-
mation from previous state can be used in the subsequent state.

In the RNN architecture the input layer is a sequence layer which
takes the input a sequence of vectors {x < 1 > ,…,x < t > ,…,x < T > },
which contain all the features for each timestep; then the network com-
putes a sequence of hidden activations {a < 1 > ,…,a < t > ,…,a < T > }
and the output vector for T timsteps. The first
activation a < 0 > is usually a vector of zeros. The activation and the
output prediction at time t are expressed as:

(16)

(17)

where the vector in square brackets is the vector concatenation of ac-
tivation at previous timestep and input at current timestep, Wa and Wy
are the activation and output weight matrix respectively, while ba and
by are the activation and output bias term respectively. The operator g

Fig. 3. PC1 , PC4 and PC6 coefficients respect to the original features.
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represents a generic activation function, which may be different for the
activation and the output estimation. The characteristic of RNN is that
each neuron of the hidden layer receives the activation of the previous
time step to compute the activation of the current time step. So, in the
RNN, the prediction of the output at the current time step is done
not only with the information in the input x < t > , but also with the in-
formation from x < 1 > to x < t − 1 > through the activation a < t − 1 >

at previous timestep. This architecture is called unidirectional RNN, be-
cause it uses information from the earlier sequence inputs to estimate
the prediction at a certain time step, but no information later in the se-
quence, like in the bidirectional RNN. The equations 16 and 17 define
the forward propagation in the RNN. In the backward propagation the
weights and bias terms are iteratively updated using an optimization
algorithm. In this case, the partial derivatives of the cost function are
computed by propagating back through all timesteps. For this reason,
this process is called backpropagation through time (BPTT). The main dif-
ficulty in training RNN is due to the vanishing gradient problem [41]:
partial derivatives become very small in deep layers for large timesteps
and the network parameters (weights and bias terms) can't change in the
subsequent iterations and consequently the network stops learning. In
order to solve this problem, RNN unit is replaced by a gated cell called
long short-term memory (LSTM) unit.

The LSTM unit was introduced by Hochreiter and Schmidhuber in
1997 [31] and it represents a modification to the standard RNN that
makes it much better capturing long-term dependencies and allows to
address the problem of vanishing gradient. The LSTM memory cell con-
sists of five components: the memory cell c < t > (a new variable com-
puted for each timestep), the candidate value for replacing the
memory cell at each timestep and three gates defined as update gate
Γu, forget gate Γf and output gate Γo. The memory cell is useful to re-
member certain values even for a long time during the training process.
The three gates can assume only values between 0 and 1 and for each of
them a weight matrix and a bias term will be updated during the train-
ing process. The forget gate allows to decide what information may be
thrown away and its expression is reported below:

(18)

The update gate allows to decide whether or not to replace the mem-
ory cell with the candidate value. It can be expressed as:

(19)

Finally, the output gate is the section where the activation at the cur-
rent timestep is generated and can be defined as:

(20)

In the previous expressions, σ represents the sigmoid function. The
equations that govern the behavior of the LSTM unit are reported be-
low:

(21)

(22)

(23)

where Wc and bc are the cell weight matrix and bias term respectively,
the notation ∗ denotes the Hadamard (i.e. element-wise) product and

tanh is the hyperbolic tangent function. The LSTM unit and its internal
structure is reported in Fig. 4.

The idea of using RNNs for EEG classification came from the tem-
poral and highly non-linear nature of the EEG signal [9]. In this study,
we employed a cascade of two RNNs with LSTM units. The first network
took the input the features selected by mRMR algorithm and performed
4-class (W, N1-REM, N2 and N3) classification (the N1 and REM epochs
were merged into a single class), while the second network used the in-
put new features computed by PCA of the correctly classified N1-REM
epochs by the first RNN and classified these epochs into two classes (N1
and REM). Both RNNs proposed in this study presented the same struc-
ture: the input layer was a sequence layer with 30 timesteps; the LSTM
layers were used to learn the features from EEG signals; the fully con-
nected (FC) layer was used to convert the output size of the previous
layers into the number of sleep stages to recognize; the softmax layer
computed the probability of each target class over all possible target
classes and, in the end, the classification output layer computed the cost
function. The main advantage of using the softmax activation function
is its output probability range. This function provides output values be-
tween 0 and 1 and the sum of all probabilities is equal to one. Its math-
ematical expression is reported below:

(24)

The superscript i refers to the generic training example, the subscript
j denotes the generic neuron of the FC layer, z is the output value of the
FC layer and C is the number of target classes. The cost function, mini-
mized during the network training process, is a function of all weights
W and bias terms b, and is expressed as the average (on training set) of
cross entropy functions for C mutually exclusive classes:

(25)

where M is the number of training examples, y denotes the true label
and is the value estimated by the network. The value of C was 4 for
the first RNN and 2 for the second RNN. Fig. 5 shows the structure of
the two RNNs with LSTM units proposed in this paper.

The main difference between the two networks was that in the first
structure there was a single LSTM layer with a sequence-to-label ar-
chitecture, while in the second RNN there were two LSTM layers: the
first had a sequence-to-sequence architecture and the second had a se-
quence-to-label architecture.

The adaptive moment estimation (ADAM) algorithm was adopted in
this work for backpropagation. ADAM optimization algorithm is a com

Fig. 4. Long short-term memory (LSTM) unit.
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Fig. 5. a) RNN architecture for 4-class classification. b) RNN for 2-class classification.

bination of gradient descent with momentum, based on the exponen-
tiality weighted average, and root mean square propagation (RMSProp)
algorithm. Thus, it is designed to combine the advantages of the mo-
mentum, that works faster than the standard gradient descent algorithm
and RMSProp, which solves the optimization problem in non-stationary
conditions [42]. The main hyperparameters used for ADAM training al-
gorithm were the same used in the reference: learning rate (α = 0.001
), gradient decay factor (β1 = 0.9), squared gradient decay factor (
β2 = 0.999), and epsilon (ε = 10 − 8) for numerical stability.

3. Results

In this study, to determine the best RNN model, 1000 different RNNs
with LSTM units for both classification problems (4-class and 2-class)
were developed in MATLAB environment (MATLAB and Neural Net-
work Toolbox Release 2018b, The MathWorks, Inc., Natick, MA, USA).
For the first RNN, all tested architectures had the input sequence layer
with a size of 11 (the number of features selected by mRMR algorithm)
and a fully connected layer of 4 units (the number of sleep stages to
classify). For the second RNN, all tested architectures had the input se-
quence layer with a size of 27 (the number of principal components)
and a fully connected layer of 2 units (for binary classification). The
other parameters (i.e. the number of LSTM layers and LSTM units for
each layer) were different amongst the networks. In addition, only for
the second RNN, we tried to use different classification thresholds ap-
plied to the output of the softmax layer to determine whether values
different from the standard probability threshold (i.e. 0.5) could in-
crease the N1 stage accuracy, keeping almost unchanged the number
of correctly classified epochs of REM sleep. The performance of the re-
current classifiers was assessed by computing the percentage of correct
classification (PCC), i.e. the number of correctly classified epochs in all

classes normalized by the total number of epochs in the dataset, and the
per-class sensitivity (Se), specificity (Sp) and accuracy (Acc). The two
best RNN structures were identified according to the following selec-
tion process. For the problem of 4-class classification, the RNN model
with the best N1-REM sensitivity was selected as the first LSTM RNN,
while, for the purpose of binary classification, the network with high-
est N1 true positives (and at the same time with an acceptable value for
REM stage) was selected as the second LSTM RNN. The best RNN model
performing 4-class classification had one LSTM layer with 101 hidden
units, while the best RNN model for 2-class classification had two LSTM
layers: the first was a sequence-to-sequence architecture with 125 hid-
den units and the second was a sequence-to-label architecture with 98
hidden units. In addition, for the second RNN the classification thresh-
old was set to 0.6. The detailed information for each layer of the two
proposed network models is reported in Tables 3–4.

Table 3
RNN model with LSTM units performing 4-class (W, N1-REM, N2 and N3) classification.

Layer
number Layer type Properties

Layer 1 Sequence input
layer

11 input features

Layer 2 LSTM layer 101 hidden units,
sequence-to-label
architecture

Layer 3 Fully connected
layer

4 units

Layer 4 Softmax layer Softmax activation
function

Layer 5 Classification
output layer

4 classes
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Table 4
RNN model with LSTM units performing 2-class (N1 vs REM) classification.

Layer
number Layer type Properties

Layer 1 Sequence input
layer

27 principal
components

Layer 2 LSTM layer 125 hidden units,
sequence-to-sequence
architecture

Layer 3 LSTM layer 98 hidden units,
sequence-to-label
architecture

Layer 4 Fully
connected
layer

2 units

Layer 5 Softmax layer Softmax activation
function
(threshold=0.6)

Layer 6 Classification
output layer

2 classes

The entire dataset was split into a training (80% of data), valida-
tion (10%) and test (10%) set. A stratified 10-fold cross-validation tech-
nique was used to test the performance of two RNNs. Stratification en-
sures that the class distribution from the whole dataset is preserved dur-
ing the training, validation and test sets. The entire dataset, summa-
rized in Table 1, was randomly split into ten parts; nine parts of the
data (9252 epochs) were used as training (8224 epochs) and validation
(1028 epochs) sets and the remining one part (1028 epochs) was used
for testing. This process was repeated ten times using different parts for
training, validation and testing in each case. For the first RNN we used
the entire dataset and merged the N1 and REM epochs into a single class
(a total of 2780 epochs); subsequently only a portion of these epochs
(i.e. epochs which were correctly classified by the first RNN) was used
for the performance evaluation of the second RNN. The training set,
during backpropagation, was split into smaller training subsets called
mini-batches to speed up the optimization algorithm. Mini-batch size of
512 and 256 for the first and the second RNN were used respectively.
The validation set was used to stop training automatically when the val-
idation accuracy stopped increasing in order to avoid overfitting [43].
Both the training and validation results for the two RNNs are reported
in Fig. 6. The solid line is the average accuracy of the 10 folds, while the
shaded area and the error bars indicate the standard deviation for the
training and validation set, respectively.

Both feature selection and reduction algorithms were executed only
on the training and validation data and subsequently the relationships
between new data and original features were applied to the examples

in the test set in each of ten folds. The processing was performed on a
workstation with a 2.5GHz quad-core CPU, 16GB of memory RAM and
64-bit version of Windows. The final confusion matrices are the sum of
all confusion matrices of each fold, for the sleep stage classification us-
ing the two LSTM RNNs (shown in Tables 5–6).

It can be seen from Tables 5–6, that the first RNN with LSTM units
was able to classify 4 classes with a PCC of 90.80%. The highest classi-
fication rate was obtained in stage W. The second RNN with two LSTM
layers, performing 2-class classification, obtained a PCC of 83.56%. In
Table 5, some epochs of the fused stage N1-REM and N3 were misclassi-
fied as N2 epochs, while some N2 epochs were misclassified as N1-REM
and N3 stages. The other misclassification values were negligible for the
4-class classification. Finally, the overall performances, for each sleep
stage, obtained by the cascaded RNN architecture are: 95.29%, 61.09%,
89.48%, 91.66% and 83.76% for stage W, N1, N2, N3 and REM respec-
tively. The overall PCC of the proposed method is 86.74%.

4. Discussion

Sleep scoring is a difficult and time-consuming task performed man-
ually by sleep experts. The objective of this work is to propose a novel
automated sleep stage classification method. There is an extensive liter-
ature on automated scoring of sleep stages. Table 7 presents the com-
parison of our proposed approach with several research studies, both
multi-channel and single-channel signal based, performed on five-class
classification following the AASM rules. The results for each sleep stage
and the overall percentage of correct classification (PCC) are reported.

In few of these methods [8,18,20–22,27,30], the public Sleep-EDF
database [34] was used. In addition, few authors employed more than
one EEG channel [16,19,22] and other PSG signals [17,24], like the
EOG and EMG signals for sleep stage classification. Hsu et al. [27]
used Elman RNN to automatically classify sleep stages employing en-
ergy features extracted from the EEG signal of the Fpz-Oz channel and
reported the classification rate of 87.20%. Haung et al. [16] proposed a
sleep classification system using two EEG channels (Fp1 and Fp2), based
on fuzzy C-means (FCM) for dimension reduction and multi-class SVM
for classification. They obtained an average accuracy of 70.92%. Has-
san et al. proposed two methods for sleep stage classification: in the
first work [20], they extracted statistical and spectral features from a
single EEG channel (Pz-Oz) and applied statistical analysis to validate
the selection of features. Subsequently, they used bootstrap aggregat-
ing (Bagging) to perform classification of different sleep stages and re-
ported an accuracy of 86.53%. In the second work [21], they applied
complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) to decompose the single-channel (Pz-Oz) EEG signal into
intrinsic mode functions (IMFs). Subsequently they extracted higher or

Fig. 6. a) Training and validation accuracy over iterations for the 4-class RNN. b) Training and validation accuracy over iterations for the 2-class RNN.
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Table 5
Confusion matrix for 4-class classification using 10-fold cross-validation.

Predicted Per-class [%]

True W N1-REM N2 N3 Se Sp Acc

W 810 28 3 9 95.29 99.77 99.40
N1-REM 10 2537 231 2 91.26 95.21 94.14
N2 4 331 4438 187 89.48 93.10 91.35
N3 8 0 133 1549 91.66 97.69 96.70

Percentage of correct classification (PCC)=90.80%.

Table 6
Confusion matrix for 2-class classification using 10-fold cross-validation.

Predicted Per-class [%]

True N1 REM Se Sp Acc

N1 562 202 73.56 87.87 83.56
REM 215 1558 87.87 73.56 83.56

Percentage of correct classification (PCC)=83.56%.

der statistical moments and employed bagging to classify sleep stages
and reported a classification rate of 90.69%. A novel method [44] used
a multiresolution approach to decompose the RR-time series into IMFs
with the aim of classifying “sleep vs wake”, “light sleep vs deep sleep”
and “REM vs NREM” sleep stages. Rodriguez-Sotelo et al. [22] pro-
posed a novel automated sleep classification method using entropy fea-
tures fed to an unsupervised feature classification algorithm (J-means
clustering). They used two EEG channels (Fpz-Cz and Pz-Oz) and im-
plemented a new feature selection method called Q-α relevance analy-
sis. They obtained an average accuracy of 81.00%. Fraiwan et al. [23]
employed time-frequency analysis and Renyi entropy for feature ex-
traction from a single EEG channel (C3-A1). They obtained a classi-
fication rate of 82.57% using random forest classifier. Shuyuan et al.
[24] extracted both time- and frequency-domain features from PSG sig-
nals (4 EEG channels, 2 EOG channels and EMG) and employed an
improved K-means clustering algorithm for the classification of sleep
stages with a classification rate of 74.70%. Lajnef et al. [17] proposed
a multi-class SVM classifier based on a decision tree approach. They ex-
tracted features from PSG signals (2 EEG channels, 2 EOG channels and
EMG) and used forward sequential selection technique for feature se-
lection, obtaining a classification rate of 76.20%. Seifpour et al. [18]

extracted a novel variable called statistical behavior of local extrema
(SBLE), using a single EEG channel (Fpz-Cz). A multi-class feature selec-
tion method was employed, and the selected features were used as input
to the SVM classifier, obtaining a classification rate of 91.82%. Sors et el
[29]. presented a deep CNN using single-channel raw EEG signals for su-
pervised learning of sleep stage prediction and obtained a classification
rate of 86.79%. Wei et al. [30] computed the Hilbert-Huang transform
and temporal feature matrix from single-channel (Fpz-Cz) EEG time se-
ries. They fed these features to the CNN and reported an average ac-
curacy of 83.93%. Acharya et al. [19] used higher order spectra (HOS)
to extract hidden information in the EEG signals using two channels
(C4-A1 and C3-A2). These nonlinear features were fed to a GMM clas-
sifier for automatic identification of sleep stages. They reported a clas-
sification rate of 88.71%. Sharma et al. [8] extracted a novel set of
wavelet-based features which were fed to the SVM classifier and they
obtained an average accuracy of 83.92%.

In this study, we applied EEG signals to the cascaded RNN archi-
tecture with LSTM units with the aim of classifying sleep stages auto-
matically. To the best of our knowledge, it is the first study that uses
LSTM units, applied to the sleep stage classification. In this process was
involved only a single EEG channel, which solves the problems typical
of multi-channel signal base methods, such as the limitations on sub-
ject's movements and the low signal-to-noise ratio due to multi-elec-
trode interference. The sleep EEG signals are nonlinear and non-station-
ary in nature, thus we extracted time and frequency-domain features
from 1s EEG time-segment, repeating this process 30 times in order
to cover the whole 30s epoch and we exploited the nonlinear model-
ling capability of the RNN. We extracted hand-crafted features in or-
der to keep a strict physiological meaning with the nature of EEG sig-
nals. In a future work, CNNs can be employed to extract deep features
from the EEG time-frequency distributions and the advantages and lim-
itations of these two different approaches can be investigated. After the
feature extraction process, a subset of feature was selected using the
mRMR algorithm. This subset included only features that had low corre-
lation with each other and were highly correlated with the target. These
features were amplitude, energy and relative power of beta sub-band,
which was typical for stage W, the amplitude of sigma sub-band which
belonged to stage N2 sleep and the amplitude and relative power of
theta sub-band were typical for stage N1, N2 and REM. In addition, the
Hjorth mobility can be considered to discriminate stage N3 due to the
low-frequency waves (delta waves) present in this stage. The first-time
derivative acts as a high-pass filter, attenuating these frequency compo-
nents. Hence the variance of the derivative of the EEG signal in stage
N3 is lower than in other sleep stages. For the RNN performing 2-class

Table 7
Comparison of multi-channel and single-channel state-of-the-art studies.

Multi-channel methods Results [%]

Authors Classifier W N1 N2 N3 REM PCC

Huang et al. [16] Multi-class SVM 76.85 34.24 72.39 88.67 69.07 70.92
Rodriguez-Sotelo et al. [22] J-means clustering 84.00 15.00 91.00 59.00 38.00 81.00
Shuyuan et al. [24] K-means clustering 76.14 11.76 69.94 97.12 94.44 74.70
Lajnef et al. [17] Dendrogram SVM 90.00 41.00 70.00 76.00 97.00 76.20
Acharya et al. [19] GMM 87.13 94.02 85.24 82.83 98.34 88.71
Single-channel methods Results [%]
Authors Classifier W N1 N2 N3 REM PCC
Hsu et al. [27] Elman RNN 70.80 36.70 97.30 89.70 89.50 87.20
Hassan et al. [20] Bagging 96.60 27.48 82.93 76.92 69.57 86.53
Hassan et al. [21] Bagging 95.28 47.02 92.38 90.00 80.87 90.69
Fraiwan et al. [23] Random forest 93.33 43.22 84.76 68.37 76.41 82.57
Seifpour et al. [18] Multi-class SVM 98.76 40.07 90.94 85.08 83.98 91.82
Sors et al. [29] CNN 91.40 34.92 89.24 85.08 85.82 86.79
Wei et al. [30] CNN 92.70 26.66 87.40 87.05 82.74 83.93
Sharma et al. [8] Multi-class SVM 95.41 17.39 76.38 57.11 36.46 83.92
Proposed method LSTM RNN 95.29 61.09 89.48 91.66 83.76 86.74

9



UN
CO

RR
EC

TE
D

PR
OO

F

N. Michielli et al. Computers in Biology and Medicine xxx (2019) xxx-xxx

(N1 vs REM) classification, the dimensionality reduction process se-
lected relatively high number of relevant principal components due to
the similarity of these two stages in terms of amplitude and spectrum
variations. It is evident from Fig. 3 that, the three principal compo-
nents (that are more correlated with the target) show the highest coef-
ficients of the linear combination in correspondence of feature 8, 9 and
13 for the first component, feature 54 for the second component and
feature 43 for the third component. These features, as can be seen in
Table 2, are the RMS and ARV, the amplitude of delta sub-band, the
product of relative powers in low-frequency sub-bands (i.e. delta and
theta) and relative power in delta sub-band normalized to the power in
gamma sub-band. This relation between principal components and fea-
tures computed in delta sub-band can be justified by the presence of
low-frequency waves, like the vertex sharp waves, in stage N1, instead
of sawtooth waves, typical of REM sleep, because they are rarely pre-
sent in our dataset. As shown in the results reported in Tables 5–6, the
algorithm presents the difficulty in discriminating between N1 and REM
sleep stages. This is understandable because these stages are character-
ized by similar EEG activity and the recognition is made even harder
by lack of EOG and EMG signals. Charbonnier et al. [25] showed an
increase of 20% classification accuracy in stage N1, when EOG signal
was added to the analysis, since during REM sleep, rapid eye move-
ments were observed. In addition, the classification accuracy of REM
sleep epochs was highly improved when EMG signal was added to EEG,
because the muscle activity is lower in this stage with respect to stage
W and N1. In stage N1, there are no regularly repeating patterns, in
stage N2 the aim is to detect the presence of specific waveforms by using
time or frequency-domain features. Other possible explanation for the
misclassification of stage N1 sleep, could be the inconsistency between
sleep experts in classifying this stage which is a transition from stage W
to deep sleep. In fact, stage N1 sleep lasts only 2–5% of the total dura-
tion in a standard sleep cycle [45]. The percentages of the other sleep
stages with respect to the total sleep episode are 45–55% for stage N2,
15–25% for stage N3 and 20–25% for REM sleep. In this work we used
many epochs for each class to reproduce these sleep cycle percentages.
But the number of N1 epochs can be increased to improve the results of
our approach. In future, time-frequency and/or complexity-domain fea-
tures [46] can be used.

Table 7 indicates that our method outperforms the state-of-the-art
methods, which used single-channel EEG signals, in the N1 stage detec-
tion. In addition, this work reports the highest number of correctly clas-
sified values for stage N3 (compared to other single-channel methods)
and obtains a percentage greater than 83% in the other sleep stages. In
addition, impressive results for stage W are obtained, using a small num-
ber of training epochs compared to other studies. The performance for
stage N1 are higher with respect to multi-channel signal based methods
except for the work of Acharya et al. [19] which showed excellent re-
sults using a private clinical database.

The limitation of this work is the error propagation in the cascaded
RNN architecture, which becomes relevant especially in the REM stage
detection. The disadvantage of using deep neural networks, respect to
other classifiers is the computation cost due to the training process. This
study proved that, the RNN is capable to handle EEG time series effi-
ciently and hence this model can be used to evaluate other biomedical
time signals. Recently, few authors [47–49] used LSTM RNN to classify
the cardiac abnormalities using electrocardiographic (ECG) signals with
high classification accuracy.

The next step towards the automated assessment of neurocogni-
tive performance (NCP) should be the application of the RNNs to the
classification of the hypnagogic EEG stages. In this context, the vari-
able called sleep onset period (SOP), i.e. the period interposed between
weak wakefulness and drowsiness, becomes very important. According
to this definition, the SOP is centered around stage N1, but it clearly
overlaps into sleep stage W and N2 [5]. The most of the hypnagogic

EEG stages are classified as stage N1 in the AASM standard, hence the
results obtained with the proposed method in the first two sleep stages
(stage W and stage N1) encourage us to explore the possibility of NCP
assessment.

5. Conclusion

In this work a novel approach based on LSTM networks, is devel-
oped for automated sleep stage classification using single-channel EEG
signals. The EEG signal analysis can be divided into five essential parts:
data acquisition, signal pre-processing, feature extraction, feature selec-
tion or dimensionality reduction and classification. The most relevant
features are extracted from the signals and are used as input for the re-
current neural classifier. Two RNN models are proposed; the first per-
formed multi-class classification by merging into a single class the stage
N1 and REM, while the second performed the binary classification (N1
vs REM). The results obtained with the cascaded RNN architecture, pro-
posed in this paper, are encouraging for automated NCP assessment.

In future works, the raw EEG signals can be fed to a cascaded con-
volutional-recurrent neural network architecture. The CNN model helps
to extract deep features without the feature selection and the RNN per-
forms classification. In addition, spatial and temporal feature extraction
can be achieved by the CNN and RNN layers respectively.
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