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On the periodic writing of cubic irrationals and a

generalization of Rédei functions

Nadir Murru
Department of Mathematics, University of Turin

Via Carlo Alberto 10, Turin, 10123, ITALY
nadir.murru@unito.it

Abstract

In this paper, we provide a periodic representation (by means of
periodic rational or integer sequences) for any cubic irrationality. In
particular, for a root α of a cubic polynomal with rational coefficients,

we study the Cerruti polynomials µ
(0)
n (z), µ

(1)
n (z), and µ

(2)
n (z), which

are defined via

(z + α)2 = µ(0)
n (z) + αµ(1)

n (z) + α2µ(2)
n (z).

Using these polynomials, we show how any cubic irrational can be
written periodically as a ternary continued fraction. A periodic multi-
dimensioanl continued fraction (with pre–period of length 2 and period
of length 3) is proved convergent to a given cubic irrationality, by us-
ing the algebraic properties of cubic irrationalities and linear recurrent
sequences.

1 Introduction

Continued fractions yields to a representation of any real number α by
means of a sequence of integers as follows:

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a0, a1, ... are evaluated byak = [αk]

αk+1 =
1

αk − ak
if αk is not integer

k = 0, 1, 2...
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Continued fractions are generalized by ternary continued fractions, which
represent a pair of real numbers (α, β) by means of two sequences of integers
as follows:

α = a0 +

b1 +
1

a2 +

b3 +
1

. . .

a3 +

.. .

. . .

a1 +

b2 +
1

a3 +

.. .

. . .

a2 +

b3 +
1

. . .

a3 +

.. .

. . .

and β = b0 +
1

a1 +

b2 +
1

a3 +

.. .

. . .

a2 +

b3 +
1

. . .

a3 +

.. .

. . .

(1)

The ai’s and bi’s can be determined by the Jacobi algorithm

an = [αn]

bn = [βn]

αn+1 =
1

βn − [βn]

βn+1 =
αn − [αn]

βn − [βn]

, (2)

see the VI volume of the book Ges. Werke published in 1891, [19]. In 1907,
Perron [27] developed a generalization of this algorithm for higher dimen-
sions (for a complete survey about the Jacobi–Perron algorithm see [10] and
[30]). Further results on the Jacobi–Perron algorithm can be found in [28]
and [36]. Many variants of the Jacobi algorithm arise by modifying the
function used in Eqs. (2) for determining the ai’s and bi’s (in the classical
Jacobi algorithm this function is the floor function). In this sense, many dif-
ferent algorithms are summarized and compared in [11] and [12]. Moreover,
Tamura and Yasutomi [33], [34] recently presented a modified Jacobi–Perron
algorithm. Similarly, the Jacobi–Perron algorithm has been modified using
different functions, e.g., in [17], [37], [25], [32]. See the beautiful book of
Schweiger [31] for a guide about multidimensional continued fractions and
[21] for a new geometric vision of multidimensional continued fractions.

A very interesting approach can be found in the works [15], [3], [13],
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where a multidimensional continued fraction related to triangle sequences is
studied. Moreover, in [6] a generalization of the Minkowski question–mark
function is developed. Finally, a completely different approach to multidi-
mensional continued fractions can be found in [20].

In this paper, we study ternary continued fractions by means of a new
family of polynomials, named Cerruti polynomials. Indeed, we construct
ternary continued fractions such that their convergents are related to this
kind of polynomials. In particular, we develop ternary continued fractions
only for cubic irrationalities starting from the knowledge of their minimal
polynomial. In this way, we will provide a periodic representation via ternary
continued fractions for all cubic irrationals.

The development of multidimensional continued fractions is related to
the Hermite problem. Indeed, in 1839 Hermite (see the letters published
in 1850, [18]) posed to Jacobi the problem of generalizing the construc-
tion of continued fractions to higher dimensions. In particular, he asked
for a method of representing algebraic irrationalities by means of periodic
sequences that can highlight algebraic properties and possibly provide ra-
tional approximations. Hermite especially focused the attention on cubic
irrationalities.

Continued fractions completely solve this problem for quadratic irra-
tionalities, but the problem for algebraic numbers of degree ≥ 3 is still
open. Indeed, the Jacobi–Perron algorithm, when periodic, provides se-
quences that converge to cubic irrationalities. However, the viceversa has
never been proved. In [7], [8], [9], Bernstein studied and proved the period-
icity of the Jacobi–Perron algorithm for a vast class of algebraic irrationals.

The previous mentioned modifications of the Jacobi–Perron algorithm
have the same problem. None algorithm has been proved to become peri-
odic when the input is a cubic irrational. Thus, not exists any algorithm
that provides a periodic representation for a given cubic irrationality.

In this paper, the Hermite problem has been approached finding a pe-
riodic representation for an irrational number satisfying the cubic equation
x3 − px2 − qx − r = 0, with p, q, r rational numbers. In other words, the
problem of writing cubic irrationals as a periodic sequence of rational or
integer numbers has been solved. The Hermite problem can not be claimed
completely solved, since the periodic representation does not derive from an
algorithm defined over all real numbers and it is derived only starting from
the knowledge of the minimal polynomial of the cubic irrational. However,
the results obtained are important, since for the first time we have found a
periodic representation for any cubic irrational.

The periodic representation has been directly found by means of ele-
mentary techniques that only involve the algebraic properties of cubic irra-
tionalities and the properties of linear recurrent sequences. Moreover, an
algorithm, which provides a periodic sequence when a fixed cubic irrational
is given in input, is derived.
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In section 2, the fundamental properties of the multidimensional con-
tinued fraction (named ternary continued fraction), derived from the Jacobi
algorithm, are presented. In section 3, the main case (α root largest in mod-
ulus of x3 − px2 − qx − r) is treated. A periodic expansion that converges

to the pair (
r

α
, α) is shown. In section 4, all the remaining cases of cubic

irrationalities satisfying a cubic equation x3 − px2 − qx− r = 0 are treated.
In this way, we can say that a real number α is a cubic irrational ⇔ α can
be represented by means of a periodic ternary continued fraction (that is
convergent).

The iteration on cubic irrationalities of the map in section 5 provides
(according to the Jacobi algorithm) the periodic expansion found in the
previous sections. Section 6 is devoted to the conclusions.

2 Ternary continued fractions

The Jacobi algorithm associates a pair of integer sequences to a pair of real
numbers by Eqs (2). It follows that

αn = an +
βn+1

αn+1

βn = bn +
1

αn+1

Therefore, the real numbers α and β are represented by the sequences
(an)∞n=0, (bn)∞n=0 as in (3) and we call ternary continued fraction (as named,
e.g., in [14] and [23], where these objects have been studied independently
from the generating algorithm) such a pair of objects representing the num-
bers α and β and we write

(α, β) = [{a0, a1, a2, ...}, {b0, b1, b2, ...}], (3)

where ai’s and bi’s are called partial quotients.

Remark 2.1. Ternary continued fraction are also called bifurcating contin-
ued fraction as in [2] and [16].

Similarly to classical continued fractions, the notion of convergent is
introduced as follows (for a complete survey of the Jacobi–Perron algorithm
see [10]):

[{a0, a1, ..., an}, {b0, b1, ..., bn}] = (
An

Cn
,
Bn

Cn
), ∀n ≥ 0

lim
n→∞

An

Cn
= α, lim

n→∞

Bn

Cn
= β
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are the n–th convergents of the ternary continued fraction (3), whereAn, Bn, Cn
satisfy the following recurrent relations

An = anAn−1 + bnAn−2 +An−3

Bn = anBn−1 + bnBn−2 +Bn−3

Cn = anCn−1 + bnCn−2 + Cn−3

, ∀n ≥ 1 (4)

with initial conditions
A−2 = 1, A−1 = 0, A0 = a0

B−2 = 0, B−1 = 1, B0 = b0

C−2 = 0, C−1 = 0, C0 = 1

Furthermore, a matricial approach is known. Indeed, it is easy to prove by
induction thata0 1 0

b0 0 1
1 0 0

 ...

an 1 0
bn 0 1
1 0 0

 =

An An−1 An−2
Bn Bn−1 Bn−2
Cn Cn−1 Cn−2

 (5)

m

(
An

Cn
,
Bn

Cn
) = [{a0, ..., an}, {b0, ..., bn}],

for n = 0, 1, 2, ....

Remark 2.2. A ternary continued fraction (1) can converge to a pair of
real numbers although the partial quotients are not obtained by the Jacobi
algorithm. Thus, it is possible to study convergence of ternary continued
fractions independently from the origin of the partial quotients. In sections
3 and 4, we find the partial quotients ai’s and bi’s such that the ternary
continued fraction (1) converges to a given cubic irrational. In Section 5,
these partial quotients are obtained by the Jacobi algorithm (2) by means
of two functions fαz , g

α
z that substitute the role of the floor function.

In [2], the authors studied the convergence of ternary continued fractions
with rational partial quotients, finding infinitely many periodic representa-
tions for every cubic root.

Theorem 2.3. The periodic ternary continued fraction

[{z,
2z

d
,

3dz

z3 + d2
, 3z,

3z

d
}, {0,−

z2

d
,−

3z2

z3 + d2
,−

3dz2

z3 + d2
,−

3z2

d
}] (6)

converges for every integer z 6= 0 to the pair of irrationals (
3
√
d2, 3
√
d), for d

integer not cube.
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Remark 2.4. A ternary continued fraction with rational partial quotients
is clearly determined by sequences of integer numbers. Indeed, given

[{
a0

b0
,
a1

b1
, ...}, {

c0

d0
,
c1

d1
, ...}],

where ai, bi, ci, di integer numbers, for i = 0, 1, 2, ..., thena0d0 b0d0 0
c0b0 0 b0d0
b0d0 0 0

 · · ·
andn bndn 0
cnbn 0 bndn
bndn 0 0

 = (7)

 d0sn d0bndnsn−1 d0bndnbn−1dn−1sn−2
b0d1s

′
n b0bndns

′
n−1 b0bndnbn−1dn−1s

′
n−2

b0d0d1s
′′
n b0d0d1bndns

′′
n−1 b0d0d1bndnbn−1dn−1s

′′
n−2


m

[{
a0

b0
, ...,

an

bn
}, {

c0

d0
, ...,

cn

dn
}] = (

sn

b0d1s′′n
,
s′n
d0s′′n

) = (
An

Cn
,
Bn

Cn
),

where
s0 = a0, s1 = a0a1d1 + b0b1c1, s2 = a2d2s1 + b2b1c2d1s0 + b2b1b0d2d1

s′0 = c0, s′1 = a1c0 + b1d0, s′2 = b1b2c0c2 + a1a2c0d2 + a2b1d0d2

s′′0 = 1, s′′1 = a1, s′′2 = b1b2c2 + a1a2d2

and
sn = andnsn−1 + bnbn−1cndn−1sn−2 + bnbn−1bn−2dndn−1dn−2sn−3

s′n = andns
′
n−1 + bnbn−1cndn−1s

′
n−2 + bnbn−1bn−2dndn−1dn−2s

′
n−3

s′′n = andns
′′
n−1 + bnbn−1cndn−1s

′′
n−2 + bnbn−1bn−2dndn−1dn−2s

′′
n−3

, ∀n ≥ 3.

For these results see [2]. Thus, a ternary continued fraction with rational
partial quotients can be represented by matrices with integer entries likeaidi bidi 0

cibi 0 bidi
bidi 0 0

 ,

which play the same role of the matrices used in (5).

The periodic expansion of Theorem 2.3 has been found starting from the
development of

(z +
3
√
d2)n = ν(0)n + ν(1)n

3
√
d+ ν(2)n

3
√
d2, (8)
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for every integer z 6= 0, d integer not cube, and where ν
(0)
n , ν

(1)
n , ν

(2)
n are

polynomials such that

lim
n→

ν
(0)
n

ν
(2)
n

=
3
√
d2, lim

n→

ν
(1)
n

ν
(2)
n

=
3
√
d

These ratios generalize the Rédei rational functions [29]. Indeed Rédei ra-
tional functions arise from the development of

(z +
√
d)n = Nn(d, z) +Dn(d, z)

√
d,

for every integer z 6= 0, d integer not square, and where

Nn(d, z) =

[n/2]∑
k=0

(
n

2k

)
dkzn−2k, Dn(d, z) =

[n/2]∑
k=0

(
n

2k + 1

)
dkzn−2k−1.

The Rédei rational functions are defined as

Qn(d, z) =
Nn(d, z)

Dn(d, z)
, ∀n ≥ 1.

The Rédei rational functions are very interesting and useful tools in number
theory. Indeed they are permutation functions of finite fields (see, e.g., [22])
and they can be also used in order to generate pseudorandom sequences
[35] or to construct a public key cryptographic system [26]. Moreover in
[4] and [1], Rédei rational functions are connected to periodic continued
fractions with rational partial quotients convergent to square roots. In [2],
Rédei rational functions have been generalized in order to obtain periodic
representations only for cubic roots. In the next section, we will propose a
different generalization of the Rédei rational functions in order to construct
periodic ternary continued fractions convergent to any cubic irrationalities.

3 The main case

Let α be a real root of the polynomial x3 − px2 − qx − r, with p, q, r ∈ Q.
Let us consider

(z + α2)n = µ(0)n + µ(1)n α+ µ(2)n α2, (9)

for z integer number not zero and where the polynomials µ
(i)
n depends on

p, q, r, z and we will call it Cerruti polynomials, since when α = 3
√
d they

are the polynomials ν
(i)
n (8) introduced the first time in [2]. Let N be the

following fundamental matrix

N =

z r pr
0 q + z pq + r
1 p p2 + q + z

 . (10)

7



Its characteristic polynomial is

x3 − Tr(N)x2 +
1

2
(Tr(N)2 − Tr(N2))x− det(N),

i.e.,

x3−(p2+2q+3z)x2+(q2−2pr+2p2z+4qz+3z2)x−(r2+q2z−2prz+p2z2+2qz2+z3).

In the following, we set I1(N) =
1

2
(Tr(N)2 − Tr(N2)).

Theorem 3.1. Let N and µ
(i)
n be the matrix (10) and the Cerruti polyno-

mials above defined.

1. The characteristic polynomial of N has roots

z + α2
1, z + α2

2, z + α2
3,

where α1, α2, α3 are the roots of x3 − px2 − qx− r.

2.

Nn =

µ
(0)
n rµ

(2)
n rµ

(1)
n + prµ

(2)
n

µ
(1)
n µ

(0)
n + qµ

(2)
n (pq + r)µ

(2)
n + qµ

(1)
n

µ
(2)
n µ

(1)
n + pµ

(2)
n µ

(0)
n + pµ

(1)
n + (p2 + q)µ

(2)
n


Proof. 1. Considering that

α1α2α3 = r, α1 + α2 + α3 = p, α1α2 + α2α3 + α1α3 = −q,

we have

α2
1 + α2

2 + α2
3 = p2 + 2q, α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3 = q2 − 2pr.

Moreover, expanding the polynomial (x− (z + α2
1))(x− (z + α2

2))(x−
(z + α2

3)), it is easy to see that the coefficient of x2, the coefficient of
x, and the constant term are

−(α2
1 + α2

2 + α2
3 + 3z) = −Tr(N)

α2
1α

2
2 + α2

2α
2
3 + α2

1α
2
3 + 2z(α2

1 + α2
2 + α2

3) + 3z2 = I1(N)

−α2
1α

2
2α

2
3−z(α2

1α
2
2 +α2

2α
2
3 +α2

1α
2
3)−z2(α2

1 +α2
2 +α2

3)−z3 = −det(N),

respectively.
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2. By definition of Cerruti polynomials (9), it follows that µ
(i)
n ’s, for i =

0, 1, 2, are linear recurrent sequences of degree 3 whose characteristic
polynomial is the minimal polynomial of z + α2 (where α real root of
x3 − px2 − qx− r), i.e., the characteristic polynomial of N .
Thus, we only have to check the initial conditions. We start from

(z + α2)0 = 1,

i.e.
µ
(0)
0 = 1, µ

(1)
0 = 0, µ

(2)
0 = 0

and since

N0 =

1 0 0
0 1 0
0 0 1


the initial condition for n = 0 is satisfied. Considering z+α2, it follows
that

µ
(0)
1 = z, µ

(1)
1 = 0, µ

(2)
1 = 1.

Thus,

N =

z r pr
0 q + z pq + r
1 p p2 + q + z

 =

µ
(0)
1 rµ

(2)
1 rµ

(1)
1 + prµ

(2)
1

µ
(1)
1 µ

(0)
1 + qµ

(2)
1 (pq + r)µ

(2)
1 + qµ

(1)
1

µ
(2)
1 µ

(1)
1 + pµ

(2)
1 µ

(0)
1 + pµ

(1)
1 + (p2 + q)µ

(2)
1

 .

Finally,

(z + α2)2 = z2 + 2α2z + α4 = z2 + pr + (pq + r)α+ (p2 + q + 2z)α2

and

N2 =

 pr + z2 p2r + qr + 2rz p3r + 2pqr + r2 + 2prz
pq + r p2q + q2 + pr + 2qz + z2 p3q + 2pq2 + p2r + 2qr + 2pqz + 2rz

p2 + q + 2z p3 + 2pq + r + 2pz p4 + 3p2q + q2 + 2pr + 2p2z + 2qz + z2

 .

Theorem 3.2. Let α be a real root largest in modulus of x3 − px2 − qx− r
and let α2, α3 be the remaining roots. Let µ

(i)
n be the Cerruti polynomials

(9), then is

lim
n→∞

µ
(0)
n

µ
(2)
n

=
r

α
, lim

n→∞

µ
(1)
n

µ
(2)
n

= α− p,

for any integer z such that z+α2 larger in modulus than z+α2
2, z+α2

3 and

µ
(2)
n 6= 0.
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Proof. Let
β1 = z + α2, β2 = z + α2

2, β3 = z + α2
3

be the roots of the characteristic polynomial of N . By the Binet formula
µ
(0)
n = a1β

n
1 + a2β

n
2 + a3β

n
3

µ
(1)
n = b1β

n
1 + b2β

n
2 + b3β

n
3

µ
(2)
n = c1β

n
1 + c2β

n
2 + c3β

n
3

, ∀n ≥ 0

where the coefficients ai, bi, ci can be obtained by initial conditions, solving
the system 

a1 + a2 + a3 = 1

a1β1 + a2β2 + a3β3 = z,

a1β
2
1 + a2β

2
2 + a3β

2
3 = pr + z2

and similar systems for the bi’s and ci’s. Since β1 is larger in modulus than
β2, β3, we are only interested in

a1 =
β2β3 − z(β2 + β3) + pr + z2

(β1 − β2)(β1 − β3)

b1 =
pq + r

(β1 − β2)(β1 − β3)

c1 =
2z + p2 + q − (β2 + β3)

(β1 − β2)(β1 − β3)

.

Now,

lim
n→∞

µ
(1)
n

µ
(2)
n

=
b1

c1
=

pq + r

2z + p2 + q − (2z + α2
2 + α2

3)
=
pq + r

α2 − q
,

moreover
(α2 − q)(α− p) = α3 − pα2 − qα+ pq = pq + r

and it is proved that

lim
n→∞

µ
(1)
n

µ
(2)
n

= α− p.

The proof that limn→∞
µ
(0)
n

µ
(2)
n

=
r

α
is left to the reader.

Remark 3.3. It is always possible to find integers z satisfying the condition

of Theorem 3.2 and such that µ
(2)
n 6= 0.
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Theorem 3.4. Let α be a real root largest in modulus of x3 − px2 − qx− r
and N the matrix defined in (10), then

[{z,
2z + p2 + q

pq + r
,
(pq + r)Tr(N)

det(N)
,Tr(N),

Tr(N)

pq + r
},

{p,−
z2 + qz + p2z − pr

pq + r
,−

I1(N)

det(N)
,−

(pq + r)I1(N)

det(N)
,−

I1(N)

pq + r
}] = (

r

α
, α)

(11)

for any integer z satisfying the hypothesis of Theorem 3.2.

Proof. By Theorem 3.2, it is sufficient to prove that

An

Cn
=
µ
(0)
n+1

µ
(2)
n+1

,
Bn

Cn
=
µ
(1)
n+1

µ
(2)
n+1

+ p, ∀n ≥ 0,

where
An

Cn
,
Bn

Cn
are the convergents of the ternary continued fraction (11)

satisfying Eqs. (4). First of all we prove by induction that

An =
µ
(0)
n+1

(pq + r)k det(N)[
n+1
3

]
, ∀n ≥ 0,

where

k =

{
1 n ≡ 1 (mod 3)

0 otherwise

The inductive basis is straightforward to prove, indeed

A0 = z, A1 =
pr + z2

pq + r
, A2 =

p3r + 2pqr + r2 + 3prz + z3

r2 + q2z − 2prz + p2z2 + 2qz2 + z3
.

Now, for n ≥ 3, we consider the cases

n ≡ 0 (mod 3), n ≡ 1 (mod 3), n ≡ 2 (mod 3).

Let us consider n ≡ 0 (mod 3), then

An = Tr(N)An−1 −
(pq + r)I1(N)

det(N)
An−2 +An−3,

by inductive hypothesis we have

An = Tr
µ
(0)
n

det(N)[
n
3
]
−

(pq + r)I1(N)

det(N)
·

µ
(0)
n−1

(pq + r) det(N)[
n−1
3

]
+

µ
(0)
n−2

det(N)[
n−2
3

]
.

11



Since n ≡ 0 (mod 3), we have

[
n

3
] = [

n+ 1

3
], [

n− 1

3
] = [

n− 2

3
] = [

n+ 1

3
]− 1.

Using the recurrence relation for the Cerruti polynomials, we obtain

An =
Tr(N)µ

(0)
n − I1(N)µ

(0)
n−1 + det(N)µ

(0)
n−2

det(N)[
n+1
3

]
=

µ
(0)
n+1

(pq + r)k det(N)[
n+1
3

]
.

Let us consider n ≡ 1 (mod 3), then

An =
Tr(N)

pq + r
An−1 −

I1(N)

pq + r
An−2 +An−3

and

[
n+ 1

3
] = [

n

3
] = [

n− 1

3
] = [

n− 2

3
] + 1.

Thus, we easily obtain

An =
Tr(N)µ

(0)
n − I1(N)µ

(0)
n−1 + det(N)µ

(0)
n−2

(pq + r) det(N)[
n+1
3

]
=

µ
(0)
n+1

(pq + r)k det(N)[
n+1
3

]
.

Similarly when n ≡ 2 (mod 3). In a similar way, it is possible to prove that

Cn =
µ
(2)
n+1

(pq + r)k det(N)[
n+1
3

]
, ∀n ≥ 0.

Consequently,

lim
n→∞

An

Cn
= lim

n→∞

µ
(0)
n+1

µ
(2)
n+1

=
r

α
.

Finally, let us consider the sequence (Bn)∞n=0. We prove by induction that

Bn =
µ
(1)
n+1 + pµ

(2)
n+1

(pq + r)k det(N)[
n+1
3

]
, ∀n ≥ 0.

The steps n = 0, 1, 2 can be directly checked. Let us consider n ≥ 3 and
n ≡ 2 (mod 3) (similarly the formula can be proved when n ≡ 0 (mod 3)
and n ≡ 1 (mod 3)). We have

Bn =
(pq + r)Tr(N)

det(N)
Bn−1 −

I1(N)

det(N)
Bn−2 +Bn−3 =

=
(pq + r)Tr(N)

det(N)
·

µ
(1)
n + pµ

(2)
n

(pq + r) det(N)
n
3

−
I1(N)

det(N)
·

µ
(1)
n−1 + pµ

(2)
n−1

(pq + r) det(N)
n−1
3

+
µ
(1)
n−2 + pµ

(2)
n−2

(pq + r) det(N)
n
3

.
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Since

[
n+ 1

3
] = [

n

3
] + 1 = [

n− 1

3
] + 1 = [

n− 2

3
] + 1

the formula is proved. Thus,

lim
n→∞

Bn

Cn
= lim

n→∞

µ
(1)
n+1

µ
(2)
n+1

+ p = α.

The previous theorem provides a periodic representation for all the cubic
irrationalities α, such that α is the root greatest in modulus of its minimal
polynomial. This representation is a ternary continued fraction (1) of period
3 whose partial quotients are given by (11). Clearly, this expansion leads
to periodic sequences of integer numbers that represent cubic irrationals.
This fact is highlighted by using the matricial approach. In particular, the

irrationalities (
r

α
, α) are represented by a periodic product of matrices (5)

whose entries are rational numbers, or equivalently by a periodic product of
matrices (7) whose entries are integer numbers.

Example 3.5. Let us consider the cubic polynomial x3−5x2+x−3, having
a real root

α =
1

3
(5 +

3
√

44 +
3
√

242) ' 4.9207,

greater in modulus than the complex roots. Theorem 3.4 provides periodic
representations of α. If we choose, e.g., z = 5 (which satisfies conditions of
Theorem 3.2), we have

N =

5 3 15
0 4 −2
1 5 29


and

(
3

α
, α) = [{5,−17,− 19

141
, 38,−19}, {5, 65,−23

47
,−46

47
, 138}].

Moreover, we can use (7) in order to express the cubic irrationality α as a
periodic product of matrices with integer entries5 1 0

5 0 1
1 0 0

−17 1 0
65 0 1
1 0 0

 −893 6627 0
−3243 0 6627
6627 0 0

1786 47 0
46 0 47
47 0 0

−19 1 0
138 0 1
1 0 0

.
This periodic representation provides rational approximations for α. For
example, the convergents of the ternary continued fraction can be evaluated

by using (4) and we obtain rational approximations of
3

α
and α, respectively:

(5,
20

17
,

88

127
,
4633

7447
,

66559

108838
, ...) = (5, 1.1764, 0.6929, 0.6221, 0.6115, ...)
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(5,
84

17
,
1251

254
,
36651

7447
,
535575

108838
) = (5, 4.9412, 4.9252, 4.9216, 4.9208, ...)

These rational approximations can be obviously obtained by the matricial
representation. For example if we set A for the matrix of the pre–period
(i.e., the matrix product of the two matrices of the pre–period) and P for
the matrix of the period (i.e., the matrix product of the three matrices of
the period), then

AP =

 −147028831 10234297 388784
−1183085175 80962059 2763459
−240423142 16450423 561086


and

− 147028831

−240423142
=

66559

108838
,
− 1183085175

−240423142
=

535575

108838
.

Example 3.6. Let us consider the cubic polynomial 3x3 − 12x2 − 4x + 1.
We can apply Theorem 3.4 with p = 4, q = 4/3, r = −1/3. Using z = 1, we
obtain

(−
1

3α
, α) = [{1,

58

15
,
975

218
,
65

3
,
13

3
}, {4,−

59

15
,−

403

218
,−

2015

218
,−

403

45
}].

that is a periodic representation of α root greatest in modulus of 3x3 −
12x2 − 4x+ 1.
If we choose, e.g., z = −1, we obtain a different periodic ternary continued
fraction convergent to α:

(−
1

3α
, α) = [{−1,

46

15
,
47

8
,
47

3
,
47

15
}, {4, 3,−

269

120
,
269

24
,
269

45
}],

where α ' 4.29253. These periodic representations leads to a periodic prod-
uct of matrices with integer entries convergent to the irrational α.

4 The remaining cases

When α is the root largest in modulus of a general cubic polynomial x3 −
px2− qx− r, a periodic representation for α is provided by Theorem 3.4. In
this section, we treat all the remaining cases of cubic irrationalities.

If α is the root smallest in modulus of x3−px2−qx−r, Theorem 3.4 does

not work. In this case, we consider the reflected polynomial x3+
q

r
x2+

p

r
x−

1

r

whose roots are
1

α
,

1

α2
,

1

α3
. In this way

1

α
is the root greatest in modulus of

x3 +
q

r
x2 +

p

r
x−

1

r
and by Theorem 3.4 we get a periodic representation for

14



the pair (
α

r
,

1

α
). Successively, a periodic representation for α can be derived.

We need the following

Theorem 4.1. Let [{a0, a1, a2, a3, a4}, {b0, b1, b2, b3, b4}] be a periodic ternary
continued fraction that converges to a pair of real number (α, β), then the
periodic ternary continued fraction

[{ra0, ra1,
a2
r2
, ra3, ra4}, {

b0
r
, r2b1,

b2
r
,
b3
r
, r2b4}] (12)

converges to the pair of real number (rα,
1

rβ
), for r rational number.

Proof. Let An
Cn

and Bn
Cn

be the n–th convergents of the ternary continued

fraction of (α, β). Let Ãn

C̃n
and B̃n

C̃n
be the n–th convergents of the ternary

continued fractions (12), then

Ãn = rk1An, B̃n = rk2Bn, C̃n = rk3Cn, ∀n ≥ 0

where

k1 =


0, n ≡ 2 (mod 3)

1, n ≡ 0 (mod 3)

2, n ≡ 1 (mod 3)

, k2 =


−1, n ≡ 2 (mod 3)

0, n ≡ 0 (mod 3)

1, n ≡ 1 (mod 3)

k3 =


−2, n ≡ 2 (mod 3)

−1, n ≡ 0 (mod 3)

0, n ≡ 1 (mod 3)

It is straightforward to check these identities for n = 0, 1, 2. Let us proceed
by induction, considering an integer m ≡ 0 (mod 3). Then

Ãm = ra3Ãm−1 +
b3
r
Ãm−2 + Ãm−3 = ra3Am−1 + b3rAm−2 + rAm−3 = rAm.

Similarly when m ≡ 1 (mod 3) and m ≡ 2 (mod 3), and for the sequences
B̃n and C̃n.

Thus, if α is the root smallest in modulus of x3−px2−qx−r, by Theorem

3.4 we get the periodic ternary continued fraction of (
α

r
,

1

α
) and by Theorem

4.1 we get the periodic ternary continued fraction of (α,
1

rα
).

Example 4.2. Let us consider the cubic polynomial x3−2x2 +x+1. It has
one real root α whose modulus is smaller than the modulus of the complex
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roots. Theorem 3.4 does not work on this polynomial, but we can consider
the reflected polynomial x3 + x2 − 2x+ 1 whose roots are the inverse roots

of x3 − 2x2 + x+ 1. Thus,
1

α
is the real root of x3 + x2 − 2x+ 1 largest in

modulus and we can apply Theorem 3.4. Posing, e.g., z = 5, we obtain

(−α,
1

α
) = [{5,−

13

3
,−

20

87
, 20,−

20

3
}, {−1, 13,−

127

261
,
127

87
,
127

3
}].

Finally, we multiply by -1 this ternary continued fraction and by Theorem
4.1 we obtain

(α,−
1

α
) = [{−5,

13

3
,−

20

87
,−20,

20

3
}, {1, 13,

127

261
,−

127

87
,
127

3
}],

i.e., we found a periodic representation for α root smallest in modulus of
x3 − 2x2 + x+ 1.

Now, we are able to determine a periodic representation for any cubic
irrational that is the root largest or smallest in modulus of a cubic polyno-
mial x3 − px2 − qx− r.

Finally, we treat the last case, i.e., α is the intermediate root of a cu-
bic polynomial having three real roots. Let α1, α2, α3 be the real root of
x3−px2− qx− r such that |α3| < |α2| < |α1|. Using previous techniques we
can get periodic expansions for α1 and α3. Moreover, a rational number k
can be ever found such that α2±k is the root largest or smallest in modulus
of its minimal polynomial (x − (α1 ± k))(x − (α2 ± k))(x − (α3 ± k)). The
coefficients of (x− (α1± k))(x− (α2± k))(x− (α3± k)) can be derived from
the coefficients of x3 − px2 − qx − r (see, e.g., Th. 10 and Cor. 11 [5]).
Thus, by Theorem 3.4 we know the periodic ternary continued fraction of

(
r′

α2 ± k
, α2 ± k). Then it is immediate to obtain the periodic expansion of

(
r′

α2 ± k
, α2) (see (1)).

Example 4.3. Let us consider the Ramanujan cubic polynomial x3 + x2 −
2x− 1 with three real roots. The roots of this polynomial are quite famous
(see, e.g., [38]) and it is well–known that they are

α1 = 2 cos
2π

7
, α2 = 2 cos

4π

7
, α3 = 2 cos

8π

7
,

where
α1 ' 1.24698, α2 ' −0.445042, α3 ' −1.80194.

Thus, from Theorem 3.4, for z = 3, we obtain

(
1

α3
, α3) = [{3,−9,−

2

13
, 14,−14}, {−1, 19,−

9

13
,

9

13
, 63}].
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Considering the polynomial x3 + 2x2 − x− 1 and z = 1, we obtain

(α2,
1

α2
) = [{1,−7,−

9

13
, 9,−9}, {−2, 8,−

20

13
,
20

13
, 20}].

Finally, we can consider the minimal polynomial of

α1 + 1, α2 + 1, α3 + 1

that is x3− 2x2− x+ 1, whose root largest in modulus is α1 + 1. For z = 2,
by Theorem 3.4, we obtain

(−
1

α1 + 1
, α1 + 1) = [{2, 9,

12

43
, 12, 12}, {2,−16,−

41

43
,−

41

43
,−41}]

and

(−
1

α1 + 1
, α1) = [{2, 9,

12

43
, 12, 12}, {1,−16,−

41

43
,−

41

43
,−41}].

5 The periodic algorithm

An approach to the Hermite problem contemplates the research of a function
whose iteration on algebraic irrationalities provides a periodical algorithm.
The partial quotients of the ternary continued fraction (11) can be derived
from the Jacobi algorithm (2) using two functions fαz , g

α
z instead of the floor

function.

Definition 1. Let α and Q(α) be a root of x3−px2−qx−r and the algebraic
extension of Q, respectively. We define the linear functions fαz , g

α
z : Q(α)→

Q, for z ∈ Z, such that

1. fαz (q) = gαz (q) = q, ∀q ∈ Q

2. fαz

(
r

α

)
= gαz

(
r

α

)
= z

3. fαz (α) = gαz (α) = p

4. fαz (α2) = 2z + p2 + 2q, gαz (α2) = z + p2 + q

The ternary continued fraction (11) is obtained from the following algo-
rithm: 

an = fαz (xn)

bn = gαz (yn)

xn+1 =
1

yn − bn
yn+1 =

xn − an
yn − bn

, (13)
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for n = 0, 1, 2, ... and x0 =
r

α
, y0 = α, where α root of the polynomial

x3 − px2 − qx− r.

Let us start to use the algorithm (13) with inputs (
r

α
, α), we immediately

have
a0 = z, b0 = p.

Now, we evaluate x1 and y1:

x1 =
1

α− p
, y1 =

r

α
− z

α− p
.

We need to manipulate x1 and y1 in order to find the values of fαz (x1) and
gαz (y1). In particular, we will often use that α3 = pα2 + qα+ r. We have

x1 =
1

α− p
·
α2 − q
α2 − q

=
α2 − q
pq + r

y1 =

r

α
− z

α− p
·
α2 − q
α2 − q

=
rα− zα2 + qz −

qr

α
pq + r

.

Now we can apply the properties of fαz and gαz and we obtain

a1 = fαz (x1) =
2z + p2 + q

pq + r
, b1 = gαz (y1) = −

z2 + qz + p2z − pr
pq + r

.

Let us continue with

x2 =
1

y1 − b1
=

pq + r

(
r

α
− z)(α2 − q) + (z2 + qz + p2z − pr)(α2 − q)

·
α2 + z

α2 + z
=

(pq + r)(α2 + z)

det(N)
,

where the last identities follow by using α3 = pα2 + qα+ r. Moreover,

y2 = (x1 − a1) · x2 =
(α2 − q)(α2 + z)− (2z + p2 + q)(α2 + z)

det(N)

and

a2 =
(pq + r)(3z + p2 + 2q)

det(N)
=

(pq + r)Tr(N)

det(N)
, b2 = −

I1(N)

det(N)
.

Then,

x3 =
det(N)

(α2 − q)(α2 + z)− (2z + p2 + q)(α2 + z) + I1(N)
·
α2 + z

α2 + z
=

det(N)(α2 + z)

det(N)
= α2+z,

18



y3 =
(pq + r)((α2 + z2)2 − Tr(N)(α2 + z))

det(N)

and

a3 = 3z + 2q + p2 = Tr(N), b3 = −
(pq + r)I1(N)

det(N)
.

Finally,

x4 =
det(N)

(pq + r)((α2 + z)2 − Tr(N)(α2 + z) + I1(N))
·
α2 + z

α2 + z
=
α2 + z

pq + r
,

where the last identity is obtained recalling that α2 + z is the root of the
characteristic polynomial of N .

y4 = (α2 + z − Tr(N)) ·
α2 + z

pq + r

from which

a4 =
Tr(N)

pq + r
, b4 = −

I1(N)

pq + r
.

Now we check that x5 = x2 and y5 = y2:

x5 =
pq + r

(α2 + z)2 − Tr(N)(α2 + z) + I1(N)
=

(pq + r)(α2 + z)

det(N)
= x2

y5 =
α2 + z − Tr(N)

pq + r
·

(pq + r)(α2 + z)

det(N)
= y2.

6 Conclusions

In this paper, given a fixed cubic irrational we have found a periodic rep-
resentation via ternary continued fraction with rational partial quotients.
A periodic representation involving integer numbers can be directly derived
from it. A family of algorithms based on Eqs. (13) determines this periodic
representation. These algorithms become periodic when the input is a pair

(
r

α
, α), for any cubic irrationality α, whose minimal polynomial is known.

The ternary continued fraction (11) is very manageable, since the pre–period
has length 2, the period has length 3, and it provides simultaneous ratio-
nal approximations. Of course, many questions and further developments
remain open:

• Generalization of Theorem 3.4 to any algebraic irrationality is the
natural development of the present work.
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• The problem of the periodicity of the original Jacobi algorithm is still
open. It would be possible to use the present work in order to solve
this question. Indeed, the sequence of numerator and denominator
of the convergents of (11) are linear recurrent sequences. Thus, it
could be possible to prove that a ternary continued fraction provided
by the Jacobi algorithm and equal to (11) (i.e. converging to the
same pair of cubic irrationalities) has numerators and denominators
of the convergents that are linear recurrent sequences. Moreover, it
could be possible to generalize to ternary continued fraction the result
of Lenstra and Shallit [24], which proved that a continued fraction is
periodic if and only if numerators (or denominators) of the convergents
are linear recurrent sequences.

• The convergence’s rate of the ternary continued fraction (11) has not
been studied in the present paper and it will be developed in future
works, studying the role of the parameter z.

• Cerruti polynomials (9) appear to be very interesting and they could
be applied in different fields of number theory. Indeed, they are a
generalization of the Rédei rational functions. Since Rédei rational
functions are very useful in several fields of number theory, Cerruti
polynomials could have many different applications.
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