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Index and first Betti number of f-minimal

hypersurfaces and self-shrinkers

Debora Impera, Michele Rimoldi and Alessandro Savo

Abstract. We study the Morse index of self-shrinkers for the mean cur-
vature flow and, more generally, of f -minimal hypersurfaces in a weighted
Euclidean space endowed with a convex weight. When the hypersurface
is compact, we show that the index is bounded from below by an affine
function of its first Betti number. When the first Betti number is large,
this improves index estimates known in literature. In the complete non-
compact case, the lower bound is in terms of the dimension of the space of
weighted square summable f -harmonic 1-forms; in particular, in dimen-
sion 2, the procedure gives an index estimate in terms of the genus of the
surface.

1. Introduction

1.1. Main definitions

It is well-known that an immersed hypersurface Σm of a given Riemannian manifold
(Mm+1, g) is minimal (i.e. it has everywhere vanishing mean curvature) if and only
if it is critical for the volume functional

Σ 7→ vol(Σ) =

∫

Σ

dµ

where dµ is the Riemannian measure associated to the induced metric g on Σ.
More generally, given a smooth function f on Mm+1, one can consider the so-
called f -volume:

volf (Σ) =

∫

Σ

e−f dµ.

It is then natural to study the immersions x : Σm → Mm+1 which are critical
for the f -volume. For the sake of exposition assume, for the moment, that Σ is
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compact and orientable. Given u ∈ C∞(Σ) and a unit normal vector field N on
Σ, consider the associated one-parameter deformation:

(1.1) Σt
.
= {expx(tu(x)N(x)) : x ∈ Σ}

for t ∈ (−ǫ, ǫ) sufficiently small. Hence Σ0 = Σ, and a calculation shows that:

d

dt
|t=0volf (Σt) = −

∫

Σ

(H +
∂f

∂N
)ue−f dµ.

Here H = trA, and A is the second fundamental form (shape operator) of the
immersion, defined as AX = −∇XN on all tangent vectors X to Σ; moreover, ∇
is the Levi-Civita connection of the ambient manifold M . The conclusion is that
Σ is critical for the f -volume if and only if

(1.2) H +
∂f

∂N
= 0.

If one defines the f -mean curvature of Σ as

Hf
.
= H +

∂f

∂N
,

then Σ is critical for the f -volume if and only if it is f -minimal inM , which means,
by definition, that Hf = 0 identically on Σ.

If Σ is a local minimum of the weighted area functional we say that it is f -stable.
When Σ is unstable, it makes sense to investigate its Morse index: this is, roughly
speaking, the maximal dimension of a linear space of deformations that decrease
the weighted volume up to second order. To compute it, we need to compute the
second variation of the f -volume, which is intimately connected with the structure
of the triple Mf

.
= (Mm+1, g, e−fdµ); such structure is often termed a weighted

manifold. In fact, if uN is the normal variation used in (1.1), and Σ is f -minimal,
then:

Qf(u, u)
.
=

d2

dt2
|t=0volf (Σt) =

∫

Σ

(

|∇u|2 − (RicMf (N,N) + |A|2)u2
)

e−f dµ

where RicMf = RicM + Hessf is the Bakry-Émery Ricci tensor of the weighted
ambient manifold Mf .

The maximum dimension of a subspace of C∞(Σ) on which Q is negative
definite is called the f -index of Σ, and is denoted by Indf (Σ). This number can
also be seen as the number of negative eigenvalues of the Jacobi operator Lf ,
associated to the quadratic form Qf and acting on L2(Σ, e−f dµ). We will give an
explicit expression of Lf later.

If Σ is compact its f -index is always finite. If Σ is complete, not compact,
we can define the index Indf (Ω) of any relatively compact domain Ω ⊆ Σ as the
maximum dimension of a subspace of C∞

0 (Ω) (smooth functions with support in
Ω) on which Qf is negative definite; then define

Indf (Σ) = sup{Indf (Ω) : Ω ⊂⊂ Σ}.
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Obviously, Indf (Σ) can be infinite.

In this paper we will give lower estimates of the f -index of f -minimal hyper-
surfaces of the weighted manifold (Rm+1, gcan, e

−f dµ). When Σ is compact and
the weight f is a convex function on Rm+1 the lower bound will only depend on
the topology of Σ through its first Betti number b1(Σ).

Remark 1.1. The f -minimal equation (1.2), together with the rules of conformal
change, tells us that Σm is f -minimal in (Mm+1, g) if and only if it is minimal (in

the usual sense) in the manifold (Mm+1, e−
2f
m g). Moreover, the f -index coincides

with the usual index of the minimal immersion Σm → (Mm+1, e−
2f
m g); see [6].

1.2. Self-shrinkers

Perhaps the main motivation for this paper was to study an important class of
f -minimal hypersurfaces : the self-shrinkers of the mean curvature flow. By
definition, they are connected, orientable, isometrically immersed hypersurfaces
x : Σm → Rm+1 whose mean curvature vector field H satisfies the equation

(1.3) x⊥ = −H,

where (·)⊥ denotes the projection on the normal bundle of Σ. Self-shrinkers play
an important role in the study of singularities developed along the mean curvature
flow and have been extensively studied in recent years; see e.g. [8], [5], [9], and
references therein.

Taking the scalar product on both sides of (1.3) with a unit normal vector field
N we see that self-shrinkers are f -minimal hypersurfaces of (Rm+1, gcan, e

−f dµ)

for the weight function f(x) = |x|2
2 .

Let us recall the main results regarding their index. It was proved by T.
Colding and W. Minicozzi, [8], that every complete properly immersed self-shrinker
is necessarily f -unstable (i.e it has f -index greater than or equal to one). Note that
this result was later generalized in [14] by the first two authors, to self-shrinkers
with at most exponential (intrinsic) weighted volume growth.

In the equality case, rigidity results have been proved by C. Hussey, [12], un-
der the additional assumption of embeddedness. This last assumption was later
removed in [13]. More precisely, one has that if a complete properly immersed self-
shrinker in Rm+1 has Morse index 1, then it has to be an hyperplane through the
origin. Furthermore, if the self-shrinker is not an hyperplane through the origin,
then the Morse index has to be at least m + 2, with equality if and only if the
self-shrinker is a generalized cylinder of the form Rm−k×Sk√

k
for some 1 ≤ k ≤ m.

For other basic concepts and results about self-shrinkers and their stability
properties we refer to [8] and the very recent [13].

1.3. Main results

It is by now a well-established guiding principle that the index of a compact mini-
mal hypersurface of a positively curved manifold is sensitive to the topology, more
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precisely, to the first Betti number of the hypersurface; hence, rich cohomology in
degree one often implies high instability of the immersion. In fact, Schoen, Mar-
ques and Neves conjecture that the index of a compact minimal hypersurface of a
manifold with positive Ricci curvature is bounded below by an affine function of
the first Betti number.

In dimension 2, this was first shown by A. Ros in [21] for immersions in R3

or a quotient of it by a group of translations; in higher dimensions the third
author proved this fact when the ambient manifold is the round sphere (see [23]).
Recently L. Ambrozio, A. Carlotto and B. Sharp, [2] generalized the methods of
Ros and Savo and verified the conjecture for a larger class of ambient spaces. For
a more general result see also the very recent [18]. However, as of today, the
full conjecture above is still open, although the method was employed to obtain
bounds for minimal free boundary immersions ([3] and [22]) and complete minimal
immersions in Rn ([16]).

Test-functions for the Jacobi operator are constructed as follows. One needs
the family of harmonic one-forms, which are known by classical Hodge theory
to represent cohomology in degree one, and a distinguished family P of vec-
tor fields on Σ, given by orthogonal projection onto Σ of parallel vector fields
in Euclidean space of suitable dimension. In dimension 2, Ros used the fam-
ily of test-functions: u = ω(V ), where ω is a harmonic one-form and V ∈ P .
In higher dimensions these test-functions no longer work; indeed, for immersions
Σm → Sm+1 the third author introduced in [23] the test-functions u = ω(XV,W ),
where XV,W = 〈V̄ , N〉W −〈W̄ ,N〉V ; here V̄ , W̄ are parallel vector fields in Rm+2

and V,W are their projections on Σ. It should be mentioned that harmonic vector
fields were previously used by B. Palmer in [19] to prove a lower bound of the index
of harmonic Gauss maps in terms of the genus.

In this paper we employ the method in [23] to prove lower bounds in the
weighted case. We start with compact f -minimal hypersurfaces; in this case we
can improve the bound by adding the number of small eigenvalues of the weighted
Laplacian.

Recall that the weighted Laplacian is the operator acting on u ∈ C∞(Σ) as
follows:

∆fu = ∆u+ 〈∇f,∇u〉

where ∆
.
= −div(∇ ) is the usual Laplacian and f is the weight. The weighted

laplacian is self-adjoint with respect to the measure e−f dµ and has a discrete
spectrum 0 = λ0(∆f ) < λ1(∆f ) ≤ λ2(∆f ) ≤ . . . . For any positive number a, set

N∆f
(a) = #{positive eigenvalues of ∆f which are less than a}.

Here is our first main result.

Theorem A. Let Σ be a compact f -minimal hypersurface of the weighted manifold
Mf

.
= (Rm+1, gcan, e

−f dµ). Assume that the Bakry-Émery Ricci tensor of Mf is
bounded below by µ > 0, that is, Ricf ≥ µ > 0. Then:

(1.4) Indf (Σ) ≥
2

m(m+ 1)

(

N∆f
(2µ) + b1(Σ)

)

.
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Remark 1.2. The theorem could also be rephrased as follows: if Σ is a compact

minimal hypersurface of the Riemannian manifold (Rm+1, e−
2f
m gcan) such that

Hessf ≥ µ > 0, then the lower bound (1.4) holds.

The theorem will be proved in Subsection 2.2 below. In particular, the f -index
is large provided that:

• the first Betti number is large, or

• there are many small (i.e., less than 2µ) eigenvalues of the weighted Lapla-
cian.

When Σ is a self-shrinker we take f(x) = |x|2
2 . In that case Hessf = RicMf =

gcan and we get an affine lower bound.

Theorem B. Let x : Σm → Rm+1 be a compact self-shrinker. Then

(1.5) Indf (Σ) ≥
2

m(m+ 1)
b1(Σ) +m+ 1.

In particular if Σ has dimension m = 2, letting g = genus(Σ), we have that

Indf (Σ) ≥
2

3
g + 3.

It should be said that self-shrinkers behave, in some respects, like closed mini-
mal surfaces of S3. We remark that in that case we have (see [23]):

Ind(Σ) ≥
g

2
+ 4.

We adopt the method in [23], with a noteworthy modification. Instead of using
the usual harmonic one-forms we employ the so-called f -harmonic one forms, which
satisfy by definition the two conditions:

dω = δfω = 0

where δfω = δω + ω(∇f) is the weighted codifferential. This seems to be the
natural approach in the weighted case, also because f -harmonic forms are those
which minimize the functional

ω 7→

∫

Σ

|ω|2e−f dµ

restricted to a fixed cohomology class. By the Hodge decomposition (which contin-
ues to hold in the weighted case, see [4]) the dimension of the space of f -harmonic
1-forms equals the first Betti number of Σ.

It should be pointed out that P. Zhu and W. Gan also obtained an estimate
in the spirit of the Theorem A above: a lower bound by the first Betti number is
proved, but only assuming an additional curvature condition (see Corollary 1.2 in
[24]). In that paper usual harmonic (and not f -harmonic) forms are being used.
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Adapting to this setting the approach used in [2] we obtained similar esti-
mates also in the case of compact f -minimal hypersurfaces in more general ambi-
ent weighted manifolds. The article [15] containing these results will be available
soon.

In the second part of the paper we consider the case where the immersion is
complete, non-compact. Denote by H1

f (Σ) the space of f -harmonic one-forms ω
which are square summable for the weighted measure:

H1
f (Σ) =

{

ω ∈ Λ1(Σ) : dω = δfω = 0,

∫

Σ

|ω|2e−f dµ < +∞

}

.

Theorem C. Let Σ be a complete, non-compact f -minimal hypersurface of a
weighted manifold (Rm+1, gcan, e

−f dµ) with Ricf ≥ µ > 0. Then

Indf (Σ) ≥
2

m(m+ 1)
dimH1

f (Σ).

In particular, if Σm is a complete properly immersed self-shrinker, then

Indf (Σ) ≥
2

m(m+ 1)

(

m+ 1 + dimH1
f (Σ)

)

.

Adapting the well-known Farkas-Kra construction (see [10]) to the weighted
situation we will prove in the last section:

Theorem D. Let Σ be a two-dimensional orientable, connected, complete surface.
Then, for all f ∈ C∞(Σ):

dimH1
f (Σ) ≥ 2g

where g is the genus of Σ.

This implies the following inequalities.

Corollary E.

(a) Let Σ be a complete f -minimal surface in (R3, gcan, e
−f dµ) with Ricf ≥ µ > 0.

Then

Indf (Σ) ≥
2g

3
.

In particular, stable f -minimal surfaces have genus zero.

(b) If Σ2 is a complete self-shrinker, properly immersed in R3, then

Indf (Σ) ≥
2g

3
+ 1

Ros proved the bound in (a) for usual complete minimal surfaces in R3 (see
[21]); this was later improved to Ind(Σ) ≥ 2

3 (g + r) − 1 by O. Chodosh and D.
Maximo ([7]), where r is the number of ends. The inequality in b) improves

the lower bound Indf (Σ) ≥
g
3 proved in [17] under the additional condition that

supΣ|k
2
1 − k22 | ≤ δ < 1 (here k1 and k2 are the principal curvatures of Σ).
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Remark 1.3. We are grateful to the anonymous referee who suggested to add the
following remark. After submission of the present article, we learned about the
preprint [1] by N.S. Aiex, where it is shown that if Σ2 is a complete self-shrinker,
properly immersed in R

3, then one has the interesting bound

(1.6) dimH1
f (Σ) ≥ 2g + r − 1,

where r is the number of asymptotically conical ends of Σ (see Theorem 3.5 in [1]).
Hence, for this class of surfaces, Theorem D can be improved. Using (1.6), Aiex
improves the bound Indf (Σ) ≥

g
3 in [17] to

Indf (Σ) ≥
2g + r − 1

3

under the same pinching conditions (see Theorem 4.2 in [1]).
But now, inserting Aiex’s bound (1.6) directly into our estimate (Theorem C)

one obtains the following lower bound which improves part b) of Corollary E (this
result is also stated as Corollary 4.3 in [1]).

Corollary 1.4. Let Σ2 be a properly immersed, orientable, self-shrinking surface
in R

3 with genus g and r asymptotically conical ends. Then

Indf (Σ) ≥
2g + r − 1

3
+ 1.

In conclusion no pinching condition is in fact needed.

2. A comparison theorem in the compact case

In the compact case, our estimates will be a consequence of a more general com-
parison result between the spectrum of the stability operator and that of the f -
Laplacian acting on 1-forms. Thus, we start by defining these operators.

2.1. Hodge Laplacian and Weitzenböck formula in the weighted setting

Recall that the f -Laplacian of a weighted manifold (M, g, e−f dµ), acting on func-
tions, is defined by:

∆fu = ∆u+ 〈∇f,∇u〉.

In general, if one introduces the weighted divergence

δf = δ + i∇f ,

then one has simply ∆fu = δfdu. Note that ∆f is self-adjoint with respect to the
weighted measure e−fdµ. More generally, we have a Hodge f -Laplacian acting on

p-forms, denoted ∆
[p]
f and defined in the natural way:

∆
[p]
f = dδf + δfd.
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As M is compact, the Hodge Laplacian has a discrete spectrum {λk(∆
[p]
f )}k=1,2,....

The important fact is that the Hodge decomposition continues to hold in this

setting; therefore the dimension of the kernel of ∆
[p]
f is equal to the p-th Betti

number, which means that

λk(∆
[p]
f ) = 0 for k = 1, . . . , bp(M).

The following Lemma is well-known in the field; it gives an expression of the
Hodge f -Laplacian in terms of the connection Laplacian and the Bakry-Émery
Ricci tensor. Since we haven’t found a proof in literature, we provide it below.

Lemma 2.1. Let (M, g, e−fdµ) be a weighted manifold and ω ∈ C∞(Λ1(M)).
Then

(2.1) ∆
[1]
f ω = ∇∗

f∇ω +Ricf (ω
♯),

where ∆
[1]
f = δfd+ dδf , δf = δ + i∇f , ∇

∗
f = ∇∗ + i∇f , Ricf = Ric + Hessf .

Proof. Recall that by the classical Weitzenböck formula, letting ω ∈ C∞(Λ1(M)),
we have that

∆[1]ω = ∇∗∇ω +Ric(ω♯).

Then

∆
[1]
f ω = (δfd+ dδf )ω = (δd+ i∇fd+ dδ + d i∇f )ω

= (∆[1] + L∇f )ω = ∇∗∇ω +Ric(ω♯) + L∇fω

= ∇∗
f∇ω +Ric(ω♯)− i∇f∇ω + L∇fω,

where of course L is the Lie derivative. Since, for every X ∈ TM ,

−(i∇f∇ω)(X) + (L∇fω) (X) = −∇ω(∇f,X) + (i∇fdω)(X) + d(i∇fω)(X)

= −∇ω(∇f,X) + dω(∇f,X) +X(ω(∇f))

= −∇ω(X,∇f) +∇Xω(∇f) + ω(∇X∇f)

= 〈∇X∇f, ω♯〉

and since 〈∇X∇f, ω♯〉 = Hessf(X,ω♯) = Hessf(ω♯, X) we see from the two previ-
ous facts that

∆
[1]
f ω(X) = ∇∗

f∇ω(X) + Ric(ω♯, X) + Hessf(ω♯, X)

= ∇∗
f∇ω(X) + Ricf (ω

♯, X)

which is the assertion. ✷

For notational purposes we will prefer to work with vector fields instead of
one-forms. If ξ is a vector field on M consider its dual one-form ξ♭. We define the
Hodge f -Laplacian of ξ as the unique vector field such that

〈∆
[1]
f ξ,X〉 = ∆

[1]
f ξ♭(X)
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for all X ∈ TM . The Weitzenböck formula becomes:

∆
[1]
f ξ = ∇∗

f∇ξ +Ricf (ξ),

where ∇∗
f∇ξ = ∇∗∇ξ +∇∇fξ, and, with respect to an orthonormal basis,

∇∗∇ξ = −
∑

i

(∇ei∇eiξ −∇∇ei
eiξ).

2.2. A comparison theorem and the proof of Theorem A and Theorem

B

Now let Σ be a complete f -minimal hypersurface of the weighted manifold Mf
.
=

(Rm+1, gcan, e
−fdµ). As such, it inherits a structure of weighted manifold, the

weight being simply the restriction of f to Σ which, by a slight abuse of language,
we keep denoting by the same letter f . The stability operator of Σ is then given
by

Lfu = ∆fu− (RicMf (N,N) + |A|2)u,

where ∆f is the weighted Laplacian of Σ and RicMf is the Bakry-Émery Ricci
tensor of the ambient weighted manifold; of course one has

RicMf = Hessf,

(the Hessian of f , computed in Rm+1). Similar to the case of minimal immersions
in the standard sphere, we have the following comparison theorem between the
spectrum of the stability operator and that of the Hodge f -Laplacian acting on
1-forms.

Theorem 2.2. Let Mf = (Rm+1, gcan, e
−fdµ) be a weighted manifold such that

RicMf
.
= Hessf ≥ µ > 0. Let Σm → Rm+1 be a compact f -minimal hypersurface.

Then, for all k:

λk(Lf ) ≤ −2µ+ λd(k)(∆
[1]
f )

where ∆
[1]
f = δfd+ dδf is the Hodge f -Laplacian acting on 1-forms of Σ and

d(k) =

(

m+ 1

2

)

(k − 1) + 1.

We will prove the theorem in the next section.
Now let

β = #{eigenvalues of ∆
[1]
f which are less than 2µ}.

If k is the largest integer such that d(k) ≤ β, one sees from the above inequality
that λk(Lf ) < 0, so that Indf (Σ) ≥ k. It is easy to estimate that k ≥ 2

m(m+1)β.

Then the theorem gives:

(2.2) Indf (Σ) ≥
2

m(m+ 1)
β.



10 D. Impera, M. Rimoldi and A. Savo

Proof of Theorem A. Let γ = N∆f
(2µ) be the number of positive eigenvalues of the

f -Laplacian which are less than 2µ. Let u1, . . . , uγ be L2
f -orthogonal eigenfunctions

of ∆f associated to positive eigenvalues which are less than 2µ. Obviously, they

are all orthogonal to constants. As ∆
[1]
f commutes with exterior differentiation d,

the 1-forms du1, . . . , duγ form, by Stokes formula, an orthogonal set of eigenforms

of ∆
[1]
f associated to positive eigenvalues less than 2µ. As they are all orthogonal

to the space of f -harmonic 1-forms, we see that β ≥ γ + b1(Σ), hence, from (2.2):

Indf (Σ) ≥
2

m(m+ 1)

(

N∆f
(2µ) + b1(Σ)

)

which is the statement of Theorem A.

Proof of Theorem B. Reasoning as before, now let k =

[

b1(Σ)+(m+1
2 )−1

(m+1
2 )

]

. Then

d(k) ≤ b1(Σ) and we see from Theorem 2.2 that λk(Lf) ≤ −2. This means that
there are at least k eigenvalues of Lf which are less than or equal to −2.

Note now that by (3.6) below, for any self-shrinker, we have at least m + 1
eigenvalues equal to −1. Indeed the functions

〈

V̄ , N
〉

, with V̄ a parallel field in
R

m+1 are eigenfunctions of Lf corresponding to the eigenvalue −1; moreover

dim
{〈

V̄ , N
〉

: V̄ parallel field inRm+1
}

= m+ 1,

since otherwise we could find a non-zero V̄ such that
〈

V̄ , N
〉

= 0 and this would
imply that Σ splits isometrically, which is not possible since Σ is compact. There-
fore, the index is at least k +m+ 1 and the assertion follows. In case m = 2, we
get the desired bound just noting that b1(Σ) is twice the genus of Σ.

3. Proof of Theorem 2.2

3.1. The test-functions and the main computational lemma

Then let Σ be an hypersurface of (Rm+1, gcan, e
−f dµ). Here and in the rest of the

paper, we will denote by P the set of parallel vector fields on Rm+1, and by V the
orthogonal projection of the parallel field V̄ ∈ P on Σ, so that we have

V̄ = V + 〈V̄ , N〉N.

To a pair of parallel vector fields V̄ , W̄ ∈ P we associate the vector field on Σ
defined by XV̄ ,W̄ =

〈

V̄ , N
〉

W −
〈

W̄ ,N
〉

V . We obtain a family of test functions
for the weighted Jacobi operator by pairing XV̄ ,W̄ with a vector field ξ ∈ TΣ:

(3.1) u =
〈

XV̄ ,W̄ , ξ
〉

.

Typically, ξ will be a f -harmonic vector field, or an eigenvector field of the Hodge
f -Laplacian. The scope of the following Lemma is to give an explicit expression of
the stability operator when applied to u.
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Lemma 3.1. Let f ∈ C∞(Rm+1) and let x : Σm → Rm+1 be an f -minimal
hypersurface. Denote by N the unit normal vector and by A the second fundamental
form of Σ. Let ξ ∈ TΣ be a generic vector field on Σ and u the function defined
in (3.1). Then

Lfu = −uHessf(N,N)− Hessf(XV̄ ,W̄ , ξ) +
〈

XV̄ ,W̄ ,∆
[1]
f ξ

〉

+ v,

where v = 2(〈∇AV ξ,W 〉 − 〈∇AW ξ, V 〉)−〈W, ξ〉Hessf(V,N)+ 〈V, ξ〉Hessf(W,N).

If Σ is a self-shrinker (so that Hessf = gcan) then

Lfu = −2u+
〈

XV̄ ,W̄ ,∆
[1]
f ξ

〉

+ v,

where v = 2(〈∇AV ξ,W 〉 − 〈∇AW ξ, V 〉).

Proof. Recall that

Lfu = ∆fu− (RicMf (N,N) + |A|2)u = ∆fu− (Hessf(N,N) + |A|2)u.

The assertion now follows from (3.9), which will be proved in the next subsection.
✷

3.2. The basic equations and the proof of Lemma 3.1

In the next two lemmas we collect some preliminary computations which will be
used in the proof of our main results.

Lemma 3.2. Let f ∈ C∞(Rm+1) and let x : Σm → Rm+1 be an f -minimal
hypersurface. Let V̄ ∈ P and denote by V its projection on Σ. If X ∈ TΣ one has

∇XV =
〈

V̄ , N
〉

AX ;(3.2)

∇
〈

V̄ , N
〉

= −AV ;(3.3)

∇∗
f∇V = A2V +

〈

V̄ , N
〉

Hessf(N)T .(3.4)

Proof. Let ∇̄ denote the Levi-Civita connection on Rm+1. We have that

∇XV =
(

∇XV
)T

= −
(

∇X

〈

V̄ , N
〉

N
)T

= −
〈

V̄ , N
〉 (

∇XN
)

=
〈

V̄ , N
〉

AX,

and, for all tangent vectors X :
〈

∇
〈

V̄ , N
〉

, X
〉

= X
〈

V̄ , N
〉

=
〈

V̄ ,∇XN
〉

= −〈AV,X〉 .

As for (3.4), note that ∇eiV = 〈V̄ , N〉Aei. Then by (3.3) and Codazzi’s equation,

∇∗∇V = −
∑

i

(∇ei (
〈

V̄ , N
〉

Aei)−
〈

V̄ , N
〉

A∇eiei)

= −A∇
〈

V̄ , N
〉

−
〈

V̄ , N
〉

tr∇A

= A2V −
〈

V̄ , N
〉

∇H.
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Moreover, using the f -minimal equation, it is not difficult to show that

(3.5) ∇H = −Hessf(N)T +A∇f.

Hence we get

∇∗∇V = A2V +
〈

V̄ , N
〉

Hessf(N)T −
〈

V̄ , N
〉

A∇f

= A2V +
〈

V̄ , N
〉

Hessf(N)T −∇∇fV.

✷

Lemma 3.3. Let f ∈ C∞(Rm+1) and let x : Σm → Rm+1 be an f -minimal
hypersurface. Let V̄ , W̄ ∈ P, V, W their projections on Σ. Then, for any ξ ∈ TΣ

∆f

〈

V̄ , N
〉

=|A|2
〈

V̄ , N
〉

−Hessf(V,N);(3.6)

∆f 〈V, ξ〉 =−Hessf(V, ξ) + 〈V̄ , N〉Hessf(N, ξ) + 2 〈AV,Aξ〉(3.7)

− 2
〈

V̄ , N
〉

〈∇ξ, A〉+
〈

∆
[1]
f ξ, V

〉

;

∆f

(〈

V̄ , N
〉

〈W, ξ〉
)

=|A|2
〈

V̄ , N
〉

〈W, ξ〉+ 2〈V̄ , N〉〈AW,Aξ〉+ 2〈W̄ ,N〉〈AV ,Aξ〉

(3.8)

−
〈

V̄ , N
〉

Hessf(W, ξ)− 〈W, ξ〉Hessf(V,N)

+ 〈V̄ , N〉〈W̄ ,N〉Hessf(N, ξ) + 2∇ξ(AV,W )

− 2
〈

V̄ , N
〉 〈

W̄ ,N
〉

〈∇ξ, A〉+
〈

V̄ , N
〉

〈

∆
[1]
f ξ,W

〉

.

Finally, if XV̄ ,W̄ = 〈V̄ , N〉W − 〈W̄ ,N〉V and u = 〈XV̄ ,W̄ , ξ〉 then:

(3.9) ∆fu = |A|2u−Hessf(XV̄ ,W̄ , ξ) +
〈

XV̄ ,W̄ ,∆
[1]
f ξ

〉

+ v,

where v = 2(〈∇AV ξ,W 〉 − 〈∇AW ξ, V 〉)−〈W, ξ〉Hessf(V,N)+ 〈V, ξ〉Hessf(W,N).

Proof. First note that, as a consequence of the Codazzi equation, we have that

div(AV ) =
〈

V̄ , N
〉

|A|2 + 〈∇H,V 〉 .

Therefore we obtain, by (3.5) and (3.3):

∆
〈

V̄ , N
〉

= −div(∇
〈

V̄ , N
〉

) = div(AV )

=
〈

V̄ , N
〉

|A|2 − 〈Hessf(N), V 〉+ 〈A∇f, V 〉

=
〈

V̄ , N
〉

|A|2 −Hessf(N, V )−
〈

∇f,∇
〈

V̄ , N
〉〉

.

Equation (3.6) now follows by the definition of ∆f :

∆f 〈V̄ , N〉 = ∆〈V̄ , N〉+
〈

∇f,∇〈V̄ , N〉
〉

.

As for equation (3.7), observe that by Lemma 2.1 and (3.4)

∆f 〈V, ξ〉 =
〈

∇∗
f∇V, ξ

〉

+
〈

V,∇∗
f∇ξ

〉

− 2 〈∇V,∇ξ〉

= 〈AV,Aξ〉+
〈

V̄ , N
〉

Hessf(N, ξ) +
〈

∆
[1]
f ξ, V

〉

− RicΣf (V, ξ)− 2 〈∇V,∇ξ〉 .
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Moreover (see e.g. [14]) for an f -minimal hypersurface in the Euclidean space
we have that

RicΣf (ξ) = Hessf(ξ)−A2(ξ), ξ ∈ TΣ.

We hence get

∆f 〈V, ξ〉 =−Hessf(V, ξ) +
〈

V̄ , N
〉

Hessf(N, ξ) + 2 〈AV,Aξ〉

+
〈

∆
[1]
f ξ, V

〉

− 2 〈∇V,∇ξ〉 .

Note also that, by (3.2),

〈∇V,∇ξ〉 =
〈

V̄ , N
〉

〈A,∇ξ〉 ,

Thus

∆f 〈V, ξ〉 =−Hessf(V, ξ) +
〈

V̄ , N
〉

Hessf(N, ξ) + 2 〈AV,Aξ〉

+
〈

∆
[1]
f ξ, V

〉

− 2
〈

V̄ , N
〉

〈A ,∇ξ 〉 .

We now note that, for any X ∈ TΣ:

〈∇〈W, ξ〉, X〉 =〈∇XW, ξ〉+ 〈W,∇Xξ〉

=〈W̄ ,N〉〈Aξ,X〉+∇ξ(X,W )

so that

(3.10)
〈∇〈V̄ , N〉,∇〈W, ξ〉〉 = −〈AV ,∇〈W, ξ〉〉

= −〈W̄ ,N〉〈AV ,Aξ〉 − ∇ξ(AV,W )

As
(3.11)
∆f

(

〈V̄ , N〉〈W, ξ〉
)

= 〈W, ξ〉∆f 〈V̄ , N〉+ 〈V̄ , N〉∆f 〈W, ξ〉 − 2〈∇〈V̄ , N〉,∇〈W, ξ〉〉

equation (3.8) now follows by substituting in the above expression (3.6), (3.7) and
(3.10).

Finally, (3.9) follows by using formula (3.8) twice. ✷

We also observe the following fact, which will be used later.

Lemma 3.4. Let x : Σm → Rm+1 be a self-shrinker and V̄ be a parallel vector
field on Rm+1. Then every linear function u = 〈V̄ , x〉, restricted to Σ, satisfies:

∇〈V̄ , x〉 = V ∆f 〈V̄ , x〉 = 〈V̄ , x〉.

Hence any such u is an eigenfunction of the weighted Laplacian associated to the
eigenvalue λ = 1. Moreover, if Σ is complete and properly immersed then u ∈
W 1,2(Σf ), that is:

∫

Σ

(u2 + |∇u|2)e−fdµ < +∞.

Proof. The proof of the first statement is easy. If Σ is complete and properly
immersed it is known that then it is of finite volume and, more generally, every
polynomial in |x| is f -integrable (for details we refer to [13]). The second assertion
now follows because |u| ≤ |x| and |∇u| is bounded by a constant. ✷
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3.3. End of the proof of Theorem 2.2

Select an orthonormal basis {ϕj} of L2(Σf ) = L2(Σ, e−fdµ) given by eigenfunc-
tions of Lf , where ϕj is associated to λj(Lf ), and let Ed be the direct sum of the

first d eigenspaces of ∆
[1]
f :

Ed =

d
⊕

j=1

V
∆

[1]
f

(λj).

We look for vector fields ξ ∈ Ed such that u =
〈

XV̄ ,W̄ , ξ
〉

satisfies the following
orthogonality relations for all choices of V̄ , W̄ ∈ P̄ :

∫

Σ

〈

XV̄ ,W̄ , ξ
〉

ϕ1e
−fdµ = . . . =

∫

Σ

〈

XV̄ ,W̄ , ξ
〉

ϕk−1e
−fdµ = 0

As the vector space P̄ has dimension m+ 1 and since XV̄ ,W̄ is a skew symmetric

bilinear function of V̄ , W̄ , we see that the above is a system of
(

m+1
2

)

(k − 1)
homogeneous linear equations in the unknown ξ ∈ Ed.

If d = d(k) =
(

m+1
2

)

(k−1)+1, we can then find a non-trivial vector field ξ ∈ Ed

such that u =
〈

XV̄ ,W̄ , ξ
〉

is L2(Σf )-orthogonal to the first k − 1 eigenfunctions of
Lf for all V̄ , W̄ . Then, by the min-max principle, we have that

(3.12) λk(Lf )

∫

Σ

u2e−fdµ ≤

∫

Σ

uLfu e
−fdµ.

Let Ū be the family of parallel vector fields of Rm+1 having unit length. As in
[23], we identify Ū with Sm and endow it with the measure µ̂ = m+1

|Sm|dvolSm . Using

coordinates, one verifies easily that, for all X̄, Ȳ ∈ Rm+1:

(3.13)

∫

Ū

〈

V̄ , X̄
〉 〈

V̄ , Ȳ
〉

dV̄ =
〈

X̄, Ȳ
〉

.

Using the product metric on Ū × Ū we see that at each x ∈ Σ:
∫

Ū×Ū
u2dV̄ dW̄ = 2|ξ|2;

∫

Ū×Ū
Hessf(XV̄ ,W̄ , ξ)udV̄ dW̄ = 2Hessf(ξ, ξ);

∫

Ū×Ū
Hessf(N,N)u2dV̄ dW̄ = 2Hessf(N,N)|ξ|2;

∫

Ū×Ū
u
〈

XV̄ ,W̄ ,∆
[1]
f ξ

〉

dV̄ dW̄ = 2
〈

ξ,∆
[1]
f ξ

〉

;

∫

Ū×Ū
uvdV̄ dW̄ = 0.

In fact, to verify the above identities, one uses (3.13) repeatedly and proceeds
as in [23]. To prove the last identity: pick an orthonormal basis (e1, . . . , em) of
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TΣ and decompose the tangential part V =
∑m

j=1〈V̄ , ej〉ej ; now observe that the
typical term in the integral of uv can be handled as follows:

∫

Ū×Ū
〈W, ξ〉2

〈

V̄ , N
〉

Hessf(V,N)dV̄ dW̄ = |ξ|2
∫

Ū

〈

V̄ , N
〉

Hessf(V,N)dV̄

=|ξ|2
m
∑

j=1

Hessf(ej , N)

∫

Ū

〈

V̄ , N
〉 〈

V̄ , ej
〉

dV̄

=0.

The other terms can be handled similarly.
Integrating (3.12) with respect to

(

V̄ , W̄
)

∈ Ū×Ū , applying the Fubini theorem
and Lemma 3.1, one concludes that

λk(Lf )

∫

Σ

|ξ|2e−fdµ ≤−

∫

Σ

(Hessf(ξ, ξ) + Hessf(N,N)|ξ|2)e−fdµ

+

∫

Σ

〈

ξ,∆
[1]
f ξ

〉

e−fdµ.

Now note that, as ξ is a linear combination of the first d(k) eigenvector fields of

∆
[1]
f , one easily verifies that

∫

Σ

〈

ξ,∆
[1]
f ξ

〉

e−fdµ ≤ λd(k)(∆
[1]
f )

∫

Σ

|ξ|2e−fdµ.

Putting together the above facts with the assumption Hessf ≥ µ, the assertion of
the Theorem follows.

4. Non-compact case: proofs

We now assume that the immersion x : Σm → Rm+1 is complete and non-compact,
and let f ∈ C∞(Rm+1) be a given weight. We let H1

f (Σ) denote the space of f -
square summable f -harmonic vector fields on Σ:

H1
f (Σ) = {ξ ∈ TΣ : dξ = δfξ = 0,

∫

Σ

|ξ|2e−f dµ < +∞}.

We want to estimate the f -index from below, in terms of the dimension of H1
f (Σ).

Actually, we give a slightly stronger estimate. We denote by V∆f
(λ) the space of

f -square summable eigenfunctions of ∆f associated to λ and having finite weighted
Dirichlet integral:

V∆f
(λ) = {u ∈ C∞(Σ) : ∆fu = λu,

∫

Σ

(u2 + |∇u|2)e−fdµ < +∞}.

For a fixed Λ > 0, we let E(Σ,Λ) be the vector space generated by all vector
fields which are gradients of some u ∈ V∆f

(λ) with λ ≤ Λ:

E(Σ,Λ) = span{∇u : u ∈ V∆f
(λ), λ ≤ Λ}.

In the next subsection we will prove the following fact.
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Theorem 4.1. Assume that Σm is a complete, non-compact f -minimal immersed
hypersurface of the weighted space Mf = (Rm+1, gcan, e

−f dµ), such that Ricf ≥
µ > 0. Assume that Indf (Σ) is finite. Then H1

f (Σ) and E(Σ,Λ) have finite
dimensions for any Λ < 2µ, and

Indf (Σ) ≥
2

m(m+ 1)

(

dimE(Σ,Λ) + dimH1
f (Σ)

)

.

Specializing to the case f = 1
2 |x|

2, we have the following consequence.

Corollary 4.2. Let Σm be a complete, properly immersed self-shrinker which is
not a hyperplane. Then:

Indf (Σ) ≥
2

m(m+ 1)

(

m+ 1 + dimH1
f (Σ)

)

.

Proof. From Lemma 3.4 we see that each V ∈ P is the gradient of the linear
function u = 〈V̄ , x〉, and this function belongs to V∆f

(1). Then P ⊆ E(Σ, 1).
Taking Λ = 1 in the theorem (note that 1 < 2µ because for a self-shrinker 2µ = 2),
it is enough to show that

dimP ≥ m+ 1.

Let B = (V̄1, . . . , V̄m+1) be an orthonormal basis of Rm+1, and let us denote by
V1, . . . , Vm+1 the vector fields obtained by projection of B on Σ. If these vector
fields were linearly dependent, we would have a parallel vector field on Rm+1 which
is everywhere normal to Σ: this can’t happen unless Σ is a hyperplane. ✷

In Subsection 4.2 we will prove that if Σ2 is a complete, connected, orientable
surface of genus g then dimH1

f (Σ) ≥ 2g. Hence, if Σ2 is f -minimal in R3 and
Ricf ≥ µ > 0 the theorem gives immediately

Indf (Σ) ≥
2g

3
.

which proves the first assertion of Corollary E in the introduction. If Σ2 is a
properly immersed shrinker, then

Indf (Σ) ≥
2

3
g + 1.

In fact, this is trivially true if Σ2 is a hyperplane (in that case, in fact, the index
is equal to 1); otherwise, we apply Corollary 4.2.

4.1. Proof of Theorem 4.1

Before giving the proof we state two lemmas.

Lemma 4.3. Let Ω ⊂ Σ be a bounded domain and let φ ∈ C∞
0 (Ω). Let u ∈ C∞(Ω).

If Lf = ∆f + T, is a Schrödinger operator and T ∈ C∞(Ω) is any potential, then

∫

Ω

(

|∇(φu)|2 + Tφ2u2
)

e−f dµ =

∫

Ω

φ2uLfu · e−f dµ+

∫

Ω

u2|∇φ|2 · e−f dµ.
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Proof. The proof is obtained using integration by parts and the identity

∆f (uv) = v∆fu+ u∆fv − 2〈∇u,∇v〉.

✷

We use a sequence of cut-off functions defined as follows. For each positive
integer n, let Bn be the (intrinsic) geodesic ball in Σ having radius n and centered
at a fixed point x0 ∈ Σ. Since Σ is complete, it is standard to obtain by Proposition
2.1 in [11] that there exists a family of smooth functions φn on Σ such that φn = 1
on Bn, φn is compactly supported on B2n and

|∇φn| ≤
c

n

for a constant c depending only on Σ.

Lemma 4.4. Let V (Σ) = E(Σ,Λ) +H1
f (Σ). Then

dimV (Σ) = dimE(Σ,Λ) + dimH1
f (Σ).

Moreover, for any η ∈ V (Σ) one has:

∫

Σ

〈∆
[1]
f η, η〉e−fdµ ≤ Λ

∫

Σ

|η|2e−fdµ.

Proof. We can assume that both spaces are finite dimensional, otherwise the asser-
tion is trivial. The first assertion follows because, if ξ ∈ H1

f (Σ) and u ∈W 1,2(Σf )

then (ξ,∇u)f = 0, where (·, ·)f is the weighted L2-inner product. Hence E(Σ,Λ)
and H1

f (Σ) are mutually orthogonal and the assertion follows.
For the second part, notice that we have

E(Σ,Λ) = V∆f
(λ1) + · · ·+ V∆f

(λk)

for eigenvalues 0 < λ1 ≤ · · · ≤ λk ≤ Λ. One verifies that, if u ∈ V∆f
(λi) and

v ∈ V∆f
(λj) then:

∫

Σ

〈∇u,∇v〉e−fdµ = λi

∫

Σ

uve−fdµ = λj

∫

Σ

uve−fdµ.

This allows to construct a (finite) orthonormal basis of E(Σ,Λ) by eigenfunctions
of ∆f . The standard argument shows that then any η ∈ VΣ satisfies the assertion
of the lemma. ✷

Let us now prove the theorem. We want to prove that dim V (Σ) is finite and
the following inequality holds:

Indf (Σ) ≥

(

m+ 1

2

)−1

dimV (Σ).
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Set for short:
I = Indf (Σ), k = dimV (Σ)

with k possibly equal to +∞. We have to show that

(4.1) k ≤

(

m+ 1

2

)

I.

Assume by contradiction that V (Σ) contains a subspace Ek of dimension k satisy-
ing:

k >

(

m+ 1

2

)

I.

Consider the exhaustion of Σ by relatively compact balls {Ωn}
.
= {B2n} cen-

tered at a fixed point x0 ∈ Σ. As the index is finite, there exists n0 such that
I = Indf (B2n) for all n ≥ n0. Let {φn} be the family of cut-off functions as
defined before.

We let V̄ , W̄ ∈ P and let V,W be their projections on Σ. As in the compact
case, we introduce the vector field

XV̄ ,W̄ =
〈

V̄ , N
〉

W −
〈

W̄ ,N
〉

V.

Define u = 〈XV̄ ,W̄ , ξ〉. For each fixed n ≥ n0, consider the the family of functions
:

{un} = {φnu}.

with ξ ∈ Ek and V̄ , W̄ ∈ P . Notice that each such function is zero on the boundary
of Ωn

.
= B2n and then it can be used as test-functions for the stability operator

of Ωn. We now proceed exactly as in the compact case. Consider the first I
eigenfunctions of the stability operator on Ωn, say {f1, f2, . . . , fI}. We look for
non-zero vector fields ξ ∈ Ek such that the following orthogonality relations hold
for all possible choices of V̄ , W̄ :

∫

Σ

φn〈XV̄ ,W̄ , ξ〉f1e
−fdµ = · · · =

∫

Σ

φn〈XV̄ ,W̄ , ξ〉fIe
−fdµ = 0.

This is a system of
(

m+1
2

)

I homogeneous linear equations in the unknown ξ ∈ Ek.

Counting dimensions we see that, as k >
(

m+1
2

)

I by our assumption, we can find a
non-trivial vector field ξn ∈ Ek which verifies all of those equations for all choices
of V̄ , W̄ .

The notation ξn stresses the fact that such vector field depends on n. We can
choose ξn so that it has unit L2(Σf )-norm:

∫

Σ

|ξn|
2e−f dµ = 1.

In what follows, we make the identification:

{ξ ∈ Ek :

∫

Σ

|ξ|2e−f dµ = 1} = Sk−1,
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in particular, we can think of ξn as an element of Sk−1.

As I is the index of Ωn, we see that λI+1 ≥ 0 and hence

∫

Ωn

(

|∇(φnu)|
2 − (|A|2 +Hessf(N,N))φ2nu

2
)

· e−fdµ ≥ λI+1

∫

Ωn

φ2nu
2 e−fdµ ≥ 0

for all u = 〈XV̄ ,W̄ , ξn〉.
We apply Lemma 4.3 to the above inequality with Ω = Ωn, φ = φn and

T = −(|A|2 +Hessf(N,N)). We thus obtain

0 ≤

∫

Ωn

φ2nuLfu · e−f dµ+

∫

Ωn

u2|∇φn|
2 · e−f dµ

which again, is valid for all V̄ , W̄ . Proceeding as in the compact case, integrating
with respect to V̄ , W̄ we obtain:

0 ≤−

∫

Ωn

φ2nHessf(ξn, ξn)e
−f dµ−

∫

Ωn

φ2nHessf(N,N)|ξn|
2e−f dµ

+

∫

Ωn

φ2n〈∆
[1]
f ξn, ξn〉e

−fdµ+

∫

Ωn

|∇φn|
2|ξn|

2 · e−f dµ.

Recalling the properties of the cut-off functions φn (namely φn = 1 on Bn), using
the hypothesis Hessf ≥ µ > 0 and the inequality in Lemma 4.4, we obtain, for all
n ≥ n0 :

(4.2)

(2µ− Λ)

∫

Bn

|ξn|
2 · e−f dµ ≤

c2

n2

∫

B2n

|ξn|
2 · e−f dµ

≤
c2

n2
.

As by assumption 2µ− Λ > 0 we see

(4.3) lim
n→∞

∫

Bn

|ξn|
2 · e−f dµ = 0.

However, we will show below that this can’t hold, thus getting a contradiction.
The contradiction comes from the assumption k >

(

m+1
2

)

I. Hence

k ≤

(

m+ 1

2

)

I,

as asserted.

Let us then show that (4.3) can’t hold. By the compactness of Sk−1, the
infinite set {ξn ∈ Sk−1 : n ≥ n0} has an accumulation point, hence there exists
a subsequence {ξnj

}j=1,2,... ∈ Sk−1 which converges to ξ ∈ Sk−1 ⊆ Ek in the
L2(Σf )-sense as j → ∞:

lim
j→∞

ξnj
= ξ.



20 D. Impera, M. Rimoldi and A. Savo

We will presently show that

(4.4) lim
j→∞

∫

Bnj

|ξnj
|2e−f dµ = 1,

which will contradict (4.3). Introduce the notation

‖ξ‖2Σ =

∫

Σ

|ξ|2e−f dµ, ‖ξ‖2Bnj
=

∫

Bnj

|ξ|2e−f dµ

Clearly ‖ξ‖Σ ≥ ‖ξ‖Bnj
and limj→∞‖ξnj

− ξ‖Σ = 0, by assumption. Now, for all
n ≥ n0:

∫

Bnj

|ξnj
|2e−f dµ =

∫

Bnj

(|ξnj
|2 − |ξ|2)e−f dµ+

∫

Bnj

|ξ|2e−f dµ

As limn→∞
∫

Bnj

|ξ|2e−f dµ = 1, for (4.4) to be true it is enough to show:

(4.5) lim
j→∞

∣

∣

∣

∣

∣

∫

Bnj

(|ξnj
|2 − |ξ|2)e−f dµ

∣

∣

∣

∣

∣

= 0.

For any pair v, w of unit vectors in an inner product space one has the inequality

∣

∣‖v‖2 − ‖w‖2
∣

∣ ≤ 2‖v − w‖.

Therefore

lim
j→∞

∣

∣

∣
‖ξnj

‖2Bnj
− ‖ξ‖2Bnj

∣

∣

∣
≤ 2 lim

j→∞
‖ξnj

− ξ‖Bnj
≤ 2 lim

j→∞
‖ξnj

− ξ‖Σ = 0

and (4.5) follows.

4.2. Proof of Theorem D

Recall that Σ is a complete, connected, orientable surface having genus g. IfH1
f (Σ)

denotes the space of L2
f f -harmonic one-forms on Σ, then we have to show that

dimH1
f (Σ) ≥ 2g.

Step 1. To any closed curve γ on Σ, we associate a closed 1-form ηγ , whose
support is close to γ.

In fact, as Σ is orientable, we have a global unit normal vector field ν on γ. Let
U2ǫ be the set of points at distance less than 2ǫ to γ, on the side defined by ν. If
ǫ is small enough, this set is an annulus, and we can construct a smooth function
f : Σ \ γ → R such that

f =

{

1 on Uǫ \ γ

0 on (Σ \ γ) \ U2ǫ
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Now set:

ηγ =

{

df on Σ \ γ

0 on γ

Then, ηγ is a smooth, globally defined 1-form, supported on the compact set given
by the closure of U2ǫ \ Uǫ. Clearly, ηγ is closed.

Step 2. Assume that Σ\γ is connected; then, we can easily construct a closed
curve γ̃ meeting γ only at one point p, and intersecting it transversally. We fix
such a curve γ̃ and call it the dual curve of γ. It is also easy to verify that, if ηγ
is the one-form associated to γ, then, for a suitable orientation of γ:

∫

γ̃

ηγ = 1.

In fact, pick points p+, p− ∈ γ̃ very close to p = γ̃∩γ and laying on the two opposite
sides of γ. The integral of ηγ on the arc joining p+ and p−, not intersecting γ, is
f(p+) − f(p−), which is 1 when the two points are sufficiently close to p. Taking
the limit shows the assertion.

Step 3. Since the genus of Σ is g, we can find g disjoint closed curves γ1, . . . , γg
such that the set Σ \ (γ1 ∪ · · · ∪ γg) is connected. Construct the associated 1-forms
η1, . . . , ηg so that they have mutually disjoint support (this is certainly possible,
as explained before). To each γj we associate its dual closed curve γ̃j , as above;
looking at the process, we can do it so that this family of curves has the following
properties:

• γ̃j intersects γj only once, transversally, and

• γ̃j does not intersect any of the other curves γk, with k 6= j.

The first property gives
∫

γ̃j
ηj = 1; the second property (after eventually re-

stricting the support of each ηj) gives
∫

γ̃j
ηk = 0 for j 6= k. In conclusion we

have:

(4.6)

∫

γ̃j

ηk = δjk for all j, k = 1, . . . , g.

Step 4. We now use the Hodge orthogonal decomposition, due to E. L. Bueler
(see Theorem 5.7 in [4]).

L2
f (Λ

1(Σ)) = A⊕Bf ⊕H1
f (Σ),

where














A = {dg : g ∈ C∞(Σ) has compact support}

Bf = {δfψ : ψ ∈ Λ2(Σ) has compact support}

H1
f (Σ) = {ω ∈ L2

f (Λ
1(Σ)) : dω = δfω = 0}

the closure being taken in the L2
f -norm. We denote by P the orthogonal projection

onto H1
f (Σ).
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Step 5. We now consider the L2
f f -harmonic forms:

ωj
.
= P (ηj); j = 1, . . . , g

and claim that they are linearly independent. In fact, as ηj is closed, we have
ωj = ηj + dgj with dgj ∈ A. Hence, by (4.6),

∫

γ̃j

ωk = δjk.

If
∑g

j=1 ajωj = 0, integrating both sides on the dual curves gives a1 = · · · = ag = 0.

Step 6. At this point, we need g more linearly independent L2
f -harmonic 1-

forms. In the unweighted case, one simply takes the Hodge-star dual of the forms in
the previous step. Recall that, if (e1, e2) be a positively oriented local orthonormal
frame with dual frame (θ1, θ2), then the classical Hodge ⋆-operator is defined by
the rule:

ω ∧ ⋆η = 〈ω, η〉θ1 ∧ θ2.

Then one checks that ⋆dω = δ ⋆ω, and d ⋆ω = − ⋆ δω. If f = 0 and ω is harmonic,
then ⋆ω is also harmonic. However, this is no longer true in the weighted case and
we introduce the weighted Hodge star operator ⋆f as follows. For any one-form ω:

⋆fω
.
= ef ⋆ ω.

The following lemma has a straightforward proof, which we omit.

Lemma 4.5. One has

δf ⋆f ω = ⋆fdω, d ⋆−f ω = − ⋆−f δfω.

Step 7. Define, for j = 1, . . . , g,

ζj = P (⋆fηj).

Note that this is well-defined because ⋆fηj , being compactly supported, is in L2
f .

We need to show that the f -harmonic forms ζ1, . . . , ζg are linearly independent. To
that end, observe that, by Lemma 4.5, ⋆fηj is f -coclosed, hence ζj = ⋆fηj + δfψj

for some δfψj ∈ Bf . Assume
∑

j ajζj = 0; then
∑

j aj(⋆fηj) = δfψ for some
δfψ ∈ Bf . Applying ⋆−f on both sides, using Lemma 4.5 and noting that ⋆−f⋆f =
⋆2 = −1 we see:

∑

j

ajηj = − ⋆−f δfψ = d ⋆−f ψ

that is, the form on the left is exact. Hence, integrating both sides on the dual
curves γ̃1, . . . , γ̃g we get a1 = · · · = ag. The conclusion is that ζ1, . . . , ζg are linearly
independent.

Step 8. Now consider the subspace E ⊆ H1
f (Σ) given by

E = span(ω1, . . . , ωg, ζ1, . . . , ζg).
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We prove that dimE = 2g, which will imply the final assertion. It is clear that it
is enough to show that

(ωj , ζk)f = 0

for all j, k. This is done as in the unweighted case.

Recall that ωj = ηj + dgj , and ζk = ⋆fηk + δfψk, for dgj ∈ A and δfψk ∈ Bf .
Then:

(ωj , ζk)f = (ηj , ⋆fηk)f + (ηj , δfψk)f + (dgj , ⋆fηk)f + (dgj , δfψk)f .

Now (dgj , δfψk)f = 0 because the Hodge-Bueler decomposition is orthogonal.
Next, a compactly supported closed form is always orthogonal to an f -coexact
form (use Green formula) hence (ηj , δfψk)f = 0. Similary, as ⋆fηk is f -coclosed
and compactly supported, we see that (dgj , ⋆fηk)f = 0. We end-up with

(ωj , ζk)f = (ηj , ⋆fηk)f .

If j = k this is zero because ηj and ⋆fηj are pointwise orthogonal. If j 6= k this is
zero because ηj and ⋆fηk have disjoint support. The assertion follows.
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