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Identification of a lumped parameters numerical model 

of gas bearings: analysis of 1D parallel plates 

Colombo Federico, Raparelli Terenziano, Trivella Andrea, Viktorov Vladimir 

Department of Mechanical and Aerospace Engineering, Politecnico di Torino 

Corso Duca degli Abruzzi 24, 10129 Torino 

Abstract. Interest on numerical models able to estimate the damping capacity of 

gas bearings has been recently grown up. These models are based on the discreti-

zation of Reynolds equation with distributed parameters (DP) or can also be sim-

plified models taking into account a few lumped parameters (LP), which are able 

to describe the dynamic characteristics of the bearing as well. In this paper a 

simple LP model is compared with the analytical solution for the case of the in-

finite parallel plates. It is shown that the model is able to predict correctly the 

damping capacity. 

Keywords: gas lubrication, damping capacity, lumped parameters. 

1 Introduction 

Different are the areas of technology in which gas bearings are employed. In metrol-

ogy applications aerostatic bearings are widely used to sustain the measuring machines. 

More in general, precision devices can successfully employ these components to ensure 

a frictionless and precise motion. In literature, several works analyze the dynamic char-

acteristics of aerostatic bearings. For example in [1,2] the pneumatic hammer is studied 

evaluating the stiffness and damping coefficients. Pocketed and inherently compen-

sated aerostatic thrust bearings were analyzed in [3-6] evaluating the effect of different 

design parameters on the dynamic characteristics.  

Simple lumped parameters (LP) models can be successfully used to predict with 

good accuracy the static and dynamic characteristics of gas bearings. For their simplic-

ity, they are suitable for sensitivity analyses and optimization of the geometry of the 

bearings. The authors in [7] developed a LP static model for rectangular aerostatic pads 

with multiple supply holes and in [8,9] they obtained analytically the expression of the 

dynamic stiffness. Regarding the squeeze effect, they also analyzed the dynamic stiff-

ness of a rectangular pad with no supply holes, see [10].  

In these previous works, the LP models were compared with DP models, but no exact 

solution was available due to the complex geometry involved. In order to prove the 

feasibility of a LP model in obtaining results with good accuracy respect to the exact 

solution, in this paper the LP dynamic model of the infinite length parallel plates is 

considered. In this case the analytical solution is known, as in [11]. The comparison 

proves the accuracy of the LP model respect to the exact solution.  
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2 The LP model 

Two infinite length parallel plates of width B are considered, see Fig. 1. The pressure 

between the two plates is generated by the oscillatory squeeze motion of one plate re-

spect to the other. The only coordinate on which the pressure depends is x, as along y 

direction there are no pressure gradients. A pressure distribution as depicted in the left 

of figure 1 is assumed in dynamic conditions, as a result of the squeeze motion. Coef-

ficient α is variable in range 0<α<0.5 and will be later identified. In case α=0 the pres-

sure distribution is constant; in case α=0.5 it is linear with its maximum in the center 

of the pad. In the right of figure 1 the equivalent pneumatic circuit is represented. A 

capacitance is considered in the middle of 2 equal resistances. The mass air flow rate 

G passes through the resistances as a result of the air gap variation in time. 

 

Fig. 1. In the left sketch of the geometry under study and of the pressure distribution assumed; 

in the right scheme of the equivalent pneumatic circuit 

The following dynamic air gap and pressure are defined, which are the sum of the static 

values and the perturbations: 

 �′ � �� � ∆� (1) 

 �′ � �� � ∆� (2) 

The air flow G relative to the section of length L is calculated using the gas lubrica-

tion formula for the mono-dimensional flow: 

 	 � 
��
���� ��′
 � ��
� ��� (3) 

The mass of air between the plates in the section of length L is 

 � � ��
�
�� ���1 � � � �!�� ����� (4) 



3 

The mass continuity equation can be written in dynamic conditions: 

 �2	 � �#  (5) 

In order to obtain the transfer function between the air gap h and the load capacity F 

the previous terms are linearized: 

 	 ≅ %&%
 Δ� � %&%� Δ� � 
(�
���� ��� 2��Δ� (6) 

 �# � �!�� ��Δ�# � 
(�� ���1 � � Δ�#  (7) 

The linearized continuity equation turns to be 

 � 
(�)��� ��� ��Δ� � �!�� ��Δ�# � 
(�� ���1 � � Δ�#  (8) 

The Laplace transform is now introduced 

 Δ��* +
(�� ���1 � � * � 
(�)��� ��� ��, � �Δ��* �!�� ��* (9) 

Considering that the perturbation of load capacity is related to the perturbation of 

pressure by 

 Δ- � ��
 Δ� (10) 

the transfer function between air gap and load capacity is then obtained: 

 
./�0 .
�0 � � 102034 (11) 

where 

 5 � 6�����
(�  (12) 

 7 � )���48� �9

(9�!  (13) 

The stiffness coefficient at zero frequency is null, while at infinite frequency it is 

A/τ. The damping coefficient at zero frequency is equal to A, while at infinite frequency 

it is null. 

3 Analytical solution 

The Reynolds equation for the infinite length parallel plates is 

 �6 :9�9
:;9 � 24= :��
 :>  (14) 

In the middle of the plates (x=0) the boundary condition due to symmetry is imposed: 
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:�:;?;@� � 0, while at the edges of the plates ambient pressure is imposed: �;@�/
 ���. The analytical solution can be obtained under the assumption of low amplitude of 

the squeeze motion [11]. The perturbed air gap is 

 ��C � �� � ∆� � �� � DEF∆�GGGGEHI>J (15) 

while the perturbed pressure is 

 ��K, C � �� � ∆� � �� � DE�∆�GGGGEHI>  (16) 

The linearized Reynolds equation yields 

 
:9�∆� :;9 � 4
�HI�!
(9 ∆� � 4
�HI
(� ∆� (17) 

which analytic solution is 

 ∆� � �!∆

( MNOPQR√TUVWX YZ[
NOPQR\9√TUVWX [ � 1] (18) 

where σ is the squeeze number: ^ � 4
_`a9
�!
(9 . 

Integrating the pressure field over the area the dynamic load is obtained: 

 Δ- � 2� b �� � �� �/
� cK (19) 

The coefficients of stiffness and damping are the real and imaginary parts of the 

solution: 

 d � ���!
( DE e1 � 2 fghQF√TUVW/X/
J√TUVW/X i (20) 

 j � ���!
(I k�lm e1 � 2 fghQF√TUVW/X/
J√TUVW/X i (21) 

4 Comparison between LP model and analytical solution 

The dynamic coefficients of stiffness and damping calculated with the LP model and 

the analytical solution are here compared. 

The following dimensionless coefficients are defined: 

 dG � n
(���! (22) 

 j̅ � p
(I���!T � p
(�4
���� (23) 

where h0 is the static value of the air gap. 
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Fig. 2 represents the dimensionless coefficients vs the squeeze number. The LP re-

sults are relative to three different values of factor α. It can be seen that choosing value 

α=0.33 allows to obtain a very good estimation on damping. The explanation is that 

with this value of α, the LP pressure distribution better approximates the analytical one. 

About stiffness, the estimation is also good until σ=20, then the LP model diverges 

from the analytical solution. The difference at high frequency between the analytical 

solution and the LP model results is due to the low order of the transfer function of the 

LP model, which is of first order. A more accurate solution could be obtained at high 

frequencies increasing the order of the transfer function. 

 

Fig. 2. Comparison between LP model and analytical model 

5 Conclusions 

The lumped parameters model of the mono-dimensional pad with no supply holes is in 

good accordance with the analytical solution, which is available for this simple geom-

etry. The paper demonstrates that this methodology can be usefully employed in ap-

proximating the solution of a DP problem, of which in this case the analytical solution 

is available. More in general, the same methodology can be employed to study more 

realistic and complex geometries of aerostatic pads and to perform sensitivity analysis 

and optimization. 
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Nomenclature 

α coefficient of the approximated pressure 

distribution 

B width of the plates 

c damping coefficient 

F load capacity of the plates 

G  mass air flow rate 

h0 static air gap 

h’ perturbed air gap 

k stiffness coefficient 

L length of the plates 

µ air viscosity 

pa ambient pressure 

R gas constant of gas 

σ squeeze number 

T absolute temperature 

ω frequency of perturbation 
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