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Abstract9

We highlight some mechanical aspects of the coupling among deformation,
fluid flow, structural evolution, and reorientation of fibres in fibre-reinforced,
hydrated, soft biological tissues. For our purposes, we elaborate a model in
which the tissue’s interstitial fluid is inviscid and obeys Darcy’s law, and the
solid constituents are transversely isotropic, hyperelastic materials. Within
this setting, we consider two different types of remodelling: One consists
of the reorientation of the fibres, while the other one is the manifestation,
at the tissue scale, of structural rearrangements representable in terms of
inelastic distortions. Our focus is on the interplay between the latter ones
and the fibre reorientation. In our model, such interplay is a consequence of
the constitutive framework, which resolves explicitly the space variability of a
parameter, the “fibre mean angle”, that determines the direction along which
the fibres tend to align themselves. Our main results concern the description
of a Mandel-like stress tensor, which drives the inelastic distortions when the
fibre mean angle is distributed inhomogeneously throughout the tissue, and
of a diffusion-like tensor depending on the inelastic distortions, which guides
the evolution of the fibre mean angle.
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1. Introduction13

The study of fibre-reinforced composite materials is of great interest in14

Biomechanics, since it permits to understand various aspects of the mechani-15

cal behaviour of biological tissues. In the literature, there are works dedicated16

to fundamental questions, e.g. [1, 2, 3, 4], studies that infer the elastic and17

hydraulic properties of a tissue on the basis of micro-scale information, e.g.18

[5, 6, 7, 8, 9, 10, 11], and studies devoted to the formulation of computational19

methods and algorithms (see e.g. [12, 13, 14, 15, 16, 17]).20

For fibre reinforced tissues, it is essential to provide a robust theoretical21

background to study their growth, structural reorganisation, and damage (see22

e.g. [18, 19, 20, 21, 22, 23]), and to relate such processes to the evolution of23

the material properties. This knowledge, indeed, is helpful for predicting the24

behaviour of injured or diseased tissues, and it may supply indications in the25

design of engineered tissues.26

With these motivations, we propose to improve and extend the model pre-27

sented in [24], where the reorientation of fibres was studied in a transversely28

isotropic fibre-reinforced tissue, with fibres aligned according to a prescribed29

probability density. Such probability density was parameterised by an angle30

denominated “fibre mean angle” and determining, at each material point,31

the direction of the most probable fibre alignment.32

In the present work, there are three relevant differences with respect to33

[24]. The first and major difference is that we now account for plastic-34

like distortions and study their influence on the reorientation of the collagen35

fibres by adhering to the formalism introduced in [25]. Plastic-like distortions36

are meant to describe the onset and progression of irreversible strains in37

the tissue, which may arise in response to diseases or injuries [26], or the38

reorganisation of the tissue’s extracellular matrix, as is the case for cellular39

aggregates and tumour spheroids [27, 28, 29]. In the literature, the concept40

of inelastic distortions is often related to that of residual stresses, an issue41

typically investigated with the aid of the Bilby-Kröner-Lee decomposition42

of the deformation gradient tensor. A rather different point view, however,43

has been recently proposed in [30], where a study on the impact of residual44

stresses on the mechanical behaviour of tissues is presented. The second45

difference is related to the rationale with which the concept of target angle46

is accounted for. We recall that the “target angle” is a preferred angle that,47

depending on the deformation or stress state in the tissue, contributes to48

direct the evolution of the fibre mean angle. In fact, it can be thought of as49
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the generator of an external force that drives the fibre mean angle towards50

the value determined by the interactions of the fibres with the environment51

in which they are embedded. After mentioning the approaches proposed, for52

example, in [12, 31, 32, 33], we select for our purposes a modification of the53

target angle put forward in [12]. The third difference is a re-definition of54

the constitutive framework and, in particular, of the free energy density of55

the Allen-Cahn type [24], which models the reorientation of the fibres and56

constituted the crux of [24] (see Sect. 4.2).57

The most significant contribution of our work is the enrichment of the58

constitutive framework through the definition of two “non-standard” terms59

in the total free energy density of the system, Wν . One of these terms,60

denoted by WGrad, is said to be the “gradient part” of Wν since it features61

the material gradient of the fibre mean angle, q. The energy density WGrad62

keeps track, already at the constitutive level, of the explicit dependence of63

q on material points [24]. Thus, such dependence is not inherited from the64

quantities involved in the evolution equation of q. Rather, it is accounted for65

a priori by enrolling Gradq among the constitutive arguments of Wν . This66

gives rise to a generalised force that, by embodying the inhomogeneity of q,67

contributes to drive the evolution of q itself. As a consequence, the coupling68

of q with the dynamics of the plastic-like distortions introduce a novelty with69

respect to [24].70

The other non-standard term in Wν is referred to as the “structural part”71

and is denoted by Wstr. In our view, it represents the potential energy that72

pertains to a given distribution of q, and its existence is postulated a pri-73

ori, regardless of the fact that the tissue is deformed elastically or distorted74

inelastically. In fact, Wstr can be non trivial also in the absence of deforma-75

tion and plastic-like distortions, although we do allow for its coupling with76

these kinematic variables. The way in which this is done here is another77

novelty of our work, for we strongly modify the coupling previously defined78

in [24]. Moreover, we compare our concept of structural energy with the one79

introduced in [31], within a setting rather different from ours. This issue is80

addressed in Sect. 7.81

The proposed constitutive framework leads to the key point of this work:82

The coupling among the kinematic variables is such that the dynamics of the83

system can be depicted as a “game among three players”, i.e., the motion,84

the plastic-like distortions, and the fibre mean angle. The way in which they85

interact with one another is highlighted in Sect. 7.86

In our model, plastic-like distortions are assumed to be set off, for in-87
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stance, when the tissue undergoes irreversible strains [26], when the cells of88

the tissue redistribute their adhesion bonds, or when the tissue’s extracel-89

lular matrix rearranges the cross-links forming its structure [29]. In these90

cases, the solid constituent of the tissue experiences transformations that91

cannot be described in terms of shape changes, and that necessitate, thus,92

new descriptors. As suggested in [34], such descriptors should be regarded93

as independent kinematic variables that represent the structural degrees of94

freedom of the tissue. Within this picture, and by regarding the tissue as a95

deformable porous medium permeated by an interstitial fluid, our goal is to96

describe the interactions among deformation, fluid flow, and the aforemen-97

tioned structural changes, emphasising the coupling between the plastic-like98

distortions and the fibre reorientation.99

The remainder of this work is organised as follows. In Sect. 2 we enunciate100

the fundamental hypotheses of our model. In Sect. 3 we introduce all the101

model equations. In Sect. 4 we explain in detail the constitutive framework.102

In Sect. 5 we study the Dissipation Inequality. In Sect. 6 we comment on the103

results of our simulations. Finally, in Sect. 7 we present in detail our main104

theoretical achievements, and in Sect. 8 we summarise the key-points of our105

work, and we outline a possible future research.106

2. Modelling hypotheses107

We regard the tissue under study as a mixture comprising a solid and108

a fluid. The solid represents a porous medium and is assumed to feature a109

matrix and reinforcing collagen fibres. The matrix is composed of biologi-110

cal polymers and tissue cells. The fluid consists of water and several other111

chemical substances. In spite of its major role on the tissue’s dynamics, in112

this study we neglect the presence of chemical substances other than water.113

On the one hand, this modelling choice precludes the resolution of the phe-114

nomena related to the tissue’s chemistry. On the other hand, however, it is115

capable of accounting for a strong entanglement among the flow of the fluid,116

the deformation of the tissue, the reorganisation of its internal structure, and117

the reorientation of the reinforcing fibres, while containing computational118

costs. Moreover, the results predicted by our model can be used as inputs119

for studying the evolution of chemical agents, when the coupling between120

their dynamics and the aforementioned processes is weak enough.121

The mathematical model discussed in this work rests on the following122

main hypotheses: (i) the solid is hyperelastic and the fluid macroscopically123
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inviscid; (ii) both constituents are intrinsically incompressible, so that the124

change of volume of the tissue as a whole is due to the variation of porosity125

(since the saturation condition applies, such variation is expressed through126

the variation of the volumetric fraction of the solid and of the fluid); (iii) the127

dynamics of the fluid adheres to Darcy’s law; (iv) all body forces acting on128

the solid are negligible, with the exception of those describing the momen-129

tum exchange with the fluid; (v) growth is not accounted for in the model,130

so that the fluid and the solid locally preserve their mass.131

132

3. Theoretical background133

According to the hypotheses itemised above, the flow of the fluid and the134

deformation of the considered tissue are accounted for by the mass balance135

law and the linear momentum balance law for the tissue as a whole, i.e.,136

J̇ = Div [KGrad p] , in B ×I , (1a)

Div
[
−Jp g−1F−T + Psc

]
= 0, in B ×I . (1b)

In (1a) and (1b), F is the deformation gradient tensor of the solid, J =137

detF > 0 is said to be the volume ratio, p is the fluid pressure, K is re-138

ferred to as the material permeability tensor of the tissue [9], g is the met-139

ric tensor associated with the three-dimensional Euclidean space S , Psc is140

the constitutive part of the first Piola-Kirchhoff stress tensor of the solid,141

B ⊂ S is a region of space that can be taken as reference for the con-142

sidered solid-fluid mixture, and I is the interval of time over which the143

tissue is observed. We recall that F is the tangent map of the deformation144

χ : B × I → S [35], which defines the configuration of the solid at time145

t ∈ I , i.e., χ(B, t) = Cs(t) ∈ S (see Appendix).146

We first consider the reorganisation of the tissue due to the production of147

inelastic distortions. Since these are generally incompatible [34], i.e., they are148

not expressible as the gradient of a deformation, their descriptor should be at149

least a non-integrable second-order tensor field over B. Following the same150

line of thought as Elastoplasticity, we indicate such tensor field by Fp, where151

the subscript “p” stands for “plastic-like distortions”. Then, in accordance152

with [34], we introduce a set of generalised forces dual of the virtual velocity153

associated with Fp, and we distinguish between the internal and the external154

forces of this kind, denoted by Y int
ν and Y ext

ν , respectively. Hence, by invoking155
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the Principle of Virtual Powers, we obtain the force balance [34]156

Y int
ν = Y ext

ν , in B ×I , (2)

where the subscript “ν” means that Y int
ν and Y ext

ν are defined with respect to157

a relaxed state of the solid, which is said to be “natural state” [36]. Finally,158

using the jargon of [34], we remark that Eq. (2) is consistent with a “grade159

zero” theory, in which no gradient of Fp is accounted for.160

A rationale for Fp is provided by the Bilby-Kröner-Lee (BKL) multiplica-161

tive decomposition of F (see [37] for a review), i.e., F = FeFp, where Fe is162

said to be the tensor of elastic distortions. For every X ∈ B and t ∈ I ,163

we set F p(X, t) : TXB → Nt(X) and F e(X, t) : Nt(X) → Tχ(X,t)S , where164

TXB is the tangent space attached to X ∈ B, Nt(X) is the image of TXB165

through F p(X, t) [38], and Tχ(X,t)S is the tangent space of S in x = χ(X, t).166

For future use, we also introduce the tangent bundles TB = tX∈BTXB and167

TS = tx∈STxS associated with B and S , respectively. Note that we168

adopt the letter “N ” in Nt(X) in order to highlight that the vectors of169

Nt(X) are in the natural state, i.e., they are relaxed. Accordingly, Nt(X)170

describes a stress-free state of the material at X, as depicted in Fig. 1 (note171

that the above notation has been recently used in [39]).172

We denote by g and G the metric tensors associated with S and B,173

respectively, so that the Cauchy-Green deformation tensor, C = F T.F =174

F TgF , reduces to C = G in the absence of deformation [35]. In addition,175

we introduce the metric tensor η, associated with the tissue’s natural state,176

which allows to define the tensors Cp = F T
p .Fp = F T

p ηFp and Bp = C−1
p =177

F−1
p η−1F−T

p . We keep η formally different from g and G, although, in some178

cases, it could be taken equal to one of those (see e.g. [33]). For future use,179

we also define the right elastic Cauchy-Green tensor Ce = F T
e .Fe = F T

e gFe.180

We now turn to the reorientation of the reinforcing fibres. As reported181

in [31, 24, 40], the alignment of the fibres in the tissue is governed by a182

probability density that depends on a given set of scalar parameters. The183

variation of these parameters is responsible for the reorientation of the fibres.184

In our model (see Sect. 4), we select one parameter only, which we indicate185

with q and employ to describe the kinematics of the fibres. In particular, q186

acquires the meaning of “fibre mean angle”. Analogously to the reasoning187

that has led us to (2), we consider both internal and external generalised188

forces dual of the (scalar) virtual velocity v associated with q. In this case,189

however, since we aim at resolving explicitly the point dependence of q,190
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Figure 1: Graphical representation of the Bilby-Kröner-Lee (BKL) multiplicative decom-
position of the deformation gradient tensor F , i.e., F = FeFp

we also need to account for the kinematic descriptor Grad q, along with191

its virtual counterpart Grad v. Then, by employing again the Principle of192

Virtual Powers, and restricting it for brevity only to the sub-problem of the193

fibre reorientation, we find194 ∫
B

{
y(0)v + y(1) Gradv

}
=

∫
B

h(0)v +

∫
∂BN

h(1) v, (3)

where y(0) and y(1) are a scalar and a vector-like internal force, defined as195

the dual entities of v and Gradv, respectively, h(0) is an external force, h(1)
196

is an external contact force, ∂BN is the Neumann boundary of ∂B, and the197

virtual velocity v is assumed to vanish identically on the Dirichlet portion of198

∂B, i.e., on ∂BD = ∂B\∂BN . Equation (3) leads to the balance laws199

y(0) −Div y(1) = h(0), in B ×I , (4a)

y(1).N = h(1), on ∂BN ×I . (4b)

Upon setting, in the case of isochoric plastic-like distortions,200

Rext
ν ≡ h(0), (5a)

R int
ν ≡ y(0) −Div y(1), (5b)
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we can rephrase (4a) as201

R int
ν = Rext

ν , in B ×I , (6)

thereby generalising the results in [33, 40]. Equations (1a), (1b), (2), refor-202

mulated for the case of isochoric plastic-like distsortions, and (6) describe the203

dynamics of the system under study. Their solution determines the model204

unknowns, identified with p, χ, Fp, and q. Among those, a true configura-205

tion of the solid is obtained by specifying the triple of descriptors (χ,Fp, q).206

In the sequel, we refer to q and Fp as to remodelling variables, and to Y int
ν ,207

Y ext
ν , R int

ν , and Rext
ν as to generalised remodelling forces.208

4. Constitutive laws209

To constitutively characterise the fibre-reinforced medium under study,210

we assign a free energy density consisting of two terms, both of which are211

written per unit volume of the material in its natural state, i.e. [24],212

Wν = Wstd +Wrem. (7)

The term Wstd takes into account the hyperelastic behaviour of the solid213

material, and relies on a mechanical model of fibre-reinforced media, in which214

the fibres are oriented statistically [6, 7, 9]. In this respect, we denote the215

corresponding strain energy density byWstd, where the subscript “std” stands216

for “standard”. The other term, Wrem, is not standard and it has been217

introduced in order to specifically account for remodelling [31, 24, 41]. The218

energy density Wrem is assumed to exist independently of deformation and,219

in fact, it is conceived as the energetic contribution that characterises each220

possible directional distribution of the fibres in the tissue. For this reason,221

Wrem may be nontrivial also in the undeformed configuration of the tissue222

[24].223

4.1. “Standard” Constitutive laws224

Following [6, 7, 9, 24, 40], we define Wstd as a function of Ce and q, i.e.,225

we set Wstd = Ŵstd(Ce, q), with226

Ŵstd(Ce, q) =ΦsνÛ(Je) + Φ0sνŴ0(Ce) + Φ1sν

[
Ŵ1i(Ce) + Ŵ1a(Ce, q)

]
. (8)
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In (8), Φsν = Jeφs, Φ0sν = Jeφ0s, and Φ1sν = Jeφ1s are the volumetric fractions227

of the solid as a whole, of the matrix, and of the fibres, respectively, all228

expressed per unit volume of the solid in the natural state, and Je =
√

detCe229

is the volume ratio associated with the elastic distortions; Û(Je) is a penalty230

term, introduced to prevent the tissue from the occurrence of compaction231

[9, 42]; Ŵ0(Ce) is the strain energy density of the solid matrix, assumed to232

be isotropic; Ŵ1i(Ce) and Ŵ1a(Ce, q) are the isotropic and the anisotropic233

strain energy densities of the fibres, respectively. The latter one is defined234

through the directional average [3, 7, 9, 14, 43, 44]235

Ŵ1a(Ce, q) =
〈〈

Ŵ1a(Ce,m)
〉〉

(q), (9)

where 〈〈 • 〉〉 is the operator of directional averaging, Ŵ1a(Ce,m) is the trans-236

versely isotropic strain energy density of a single fibre, and m is a field of237

unit vectors individuating the direction of space along which the fibres are238

locally oriented.239

Possible explicit constitutive expressions for Û(Je), Ŵ0(Ce), Ŵ1i(Ce), and240

Ŵ1a(Ce,m) are given by [9, 45]241

Û(Je) = α0
[Je − Jcr]

2q

[Je − Φsν ]
rH(Jcr − Je), (10a)

Ŵ0(Ce) = W̌0(I1e, I2e, I3e)

= α0

{
exp (α1[I1e − 3] + α2[I2e − 3])

Iα3
3e

− 1

}
, (10b)

Ŵ1i(Ce) = W̌1i(I1e, I2e, I3e)

= αi0

{
exp (αi1[I1e − 3] + αi2[I2e − 3])

Iαi3
3e

− 1

}
, (10c)

Ŵ1a(Ce,m) = W̌1a(I4e) = V̌1a(I4e)H(I4e − 1), (10d)

V̌1a(I4e) =
k1

2k2

{
exp

(
k2[I4e − 1]2

)
− 1
}
. (10e)

The constitutive expression of V̌1a is taken from [33, 46]. We remark that,242

although we are aware of the importance of the invariant I5e = C2
e : (m⊗m)243

in the formulation of the anisotropic part of the strain energy density (see244

e.g. [47, 48]), we retained here the form (10d) of Ŵ1a(Ce,m) because, since245

it has been used in other works, it allows us for an easier comparison with246
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the results obtained in the presence of remodelling.247

In (10a)–(10d), I1e = tr(Ce), I2e = 1
2
[I2

1e− tr(C2
e )], and I3e = J2

e = detCe248

are the principal invariants ofCe, I4e is given by I4e = Ce : (m⊗m),H(I4e−1)249

is the Heaviside function, Jcr is a critical value of Je below which Û(Je) is250

active (see [9] for details), and {α0, α1, α2}, {αi0, αi1, αi2}, and {k1, k2} are251

sets of material parameters (see Table 1). In particular, α0, αi0 and k1 have252

physical units of energy per unit volume. As prescribed in [41], we enforce253

the conditions α3 = α1 + 2α2 and αi3 = αi1 + 2αi2. By attaching the set of254

all space directions255

S2
XB = {mX : ‖mX‖ = 1} (11)

to each X ∈ B, and by defining the bundle S2B = tX∈BS2
XB, the field of256

unit vectors m can be re-defined as m : B → S2B, so that m(X) = mX ∈257

S2
XB. Finally, the directional average (9),258

Ŵ1a(Ce, q) =
〈〈

Ŵ1a(Ce,m)
〉〉

(q) :=

∫
S2B

Ŵ1a(Ce,m)Ψ(m, q), (12)

is computed with respect to a given probability density Ψ (see e.g. [7, 3,259

14]). Here, Ψ is assumed to depend only on the direction of the local fibre260

orientation and on the remodelling variable, q. However, in more general261

contexts, it can depend on several other parameters. It is important to262

remark that, in this work, it is taken transversely isotropic with respect to a263

direction m0 for the tissue as a whole. To justify this assumption, we consider264

a specimen of tissue of cylindric shape, and we assume that the symmetry265

axis of the cylinder coincides with m0.266

We remark that Ŵ1a(Ce,m) depends on m through the structure tensor267

a := m ⊗m and, since a is invariant under the transformation m 7→ −m,268

it also holds that Ŵ1a(Ce(X, t),mX) = Ŵ1a(Ce(X, t),−mX), for all X ∈ B269

and for all times.270

While the strain energy density of a single fibre, Ŵ1a(Ce,m), is trans-271

versely isotropic with respect to m, the directional average (9) models a272

material that is transversely isotropic with respect to m0. To guarantee273

this property, for all X ∈ B in the natural state, we first choose a triad274

{eα(X)}3
α=1 of basis unit vectors, with e3(X) parallel to m0. Then, we in-275

troduce the polar coordinates (ϑ, ϕ) ∈ [0, π]× [0, 2π[, so that mX reads276

mX ≡ m̌X(ϑ, ϕ) = sinϑ cosϕ e1 + sinϑ sinϕ e2 + cosϑ e3, (13)
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Symbol Definition Units Symbol Definition Units

r 0.50 [—] Φ0sν 0.046 + 0.038ξ − 0.062ξ2 [—]

q 2.00 [—] Φ1sν 0.204− 0.138ξ + 0.062ξ2 [—]

α0 0.125 [MPa] Γ 1 · 104 [Pa s]

α1 = αi1 0.778 [—] D0 1 · 10−4 [N(rad)−1]

α2 = αi2 0.111 [—] ζ0 0.50 [(MPa s)
−1

]

αi0 7.59 [MPa] eν (1− Φsν)/Φsν [—]

Jcr 0.1 + Φsν(ξ) [—] e
(0)
ν 4.0 [—]

k1 13.00 [kPa] κ0 0.0848 [—]

k2 12.20 [—] m0 4.6380 [—]

σy 0.002 [MPa] k
(0)
0ν 3.7729 · 10−3 [mm4(N s)

−1
]

Φsν Φ0sν + Φ1sν [—] A0 (k1/k2)(4.387 ξ2.228 + 1) [kPa]

Table 1: Parameters used in the energy densities (10a)–(10e). See [9, 45], and the references

therein, for the values in the first seven rows on the left. Note that ξ = X3

L .

and we enforce the condition277

Ψ(mX , q) = Ψ(m̌X(ϑ, ϕ), q) ≡ Ψ̌(ϑ, q). (14)

Since the probability density Ψ̌(ϑ, q) re-defined in (14) is independent of ϕ,278

the directional average (9) has to be transversely isotropic with respect to279

m0. Several functional forms can be used to express Ψ̌(ϑ, q). For example,280

it can be a pseudo-Gaussian distribution [31, 24, 40, 49], defined by281

Ψ̌PG(ϑ, q) ≡ Ψ̂PG(ϑ, q, ω) =
γ̂(ϑ, q, ω)

N (q, ω)
, (15a)

γ̂(ϑ, q, ω) = exp

(
−(ϑ− q)2

2ω2

)
, (15b)

N (q, ω) = 2π

∫ π/2

0

γ̂(ϑ, q, ω) sinϑ dϑ. (15c)

In (15a)–(15c), ω2 > 0 is the variance of the pseudo-Gaussian distribution,282

N (q, ω) is the normalisation factor, and the remodelling angle q is the angle,283

taken from m0, that denotes the semi-aperture of a cone of fibres with the284

apex in X. The angle q is conceived in such a way that m̌(q, ϕ) represents285

the set of most probable directions of fibre alignement, with ϕ varying in286
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∈ [0, 2π[. We remark that, according to the definitions (15a)–(15c), the287

values of ϑ that are admissible for Ψ̌PG range in [0, π/2]. For this reason,288

also q is allowed to vary within the same interval only.289

Other forms of the probability density can be found e.g. in [31, 44]290

4.2. “Non-Standard” constitutive laws291

The energy density associated with remodelling is given in the form [24]292

Ŵrem(Fe,F p, q,Grad q) = Φ1sν

[
Ŵstr(Ce, q)+ŴGrad(Fe,F p,Grad q)

]
, (16)

where Ŵstr(Ce, q) and ŴGrad(Fe,F p,Grad q) are referred to as the structural293

part and the gradient part of the strain energy density, respectively. Al-294

though (16) has recently been introduced in [24], in the present work the295

constitutive expressions of Ŵstr and ŴGrad are rather different from those296

supplied in [24].297

The first difference concerns Ŵstr(Ce, q), which is assumed here to be298

transversely isotropic, and to depend on Ce only through C̄e = J
−2/3
e Ce, i.e.,299

Ŵstr(Ce, q) = A0P(q)

[
1 +

k2

k1

〈〈
V̌1a(Ī4e)H(I4e − 1)

〉〉
(q)

]
, (17)

where Ī4e = C̄e : (m ⊗ m) = J
−2/3
e I4e, A0 is a point-dependent material300

coefficient, and P(q) a double-well function of the fibre mean angle [24], i.e.,301

P(q) =
1

(π/4)4
q2
(
q− π

2

)2

. (18)

As noticed above, a more complete constitutive approach would call for ex-302

pressing V̌1a as a function of both I4e and I5e [47]. However, since such a303

modelling choice does not change the “philosophy” of our work, we opt here304

for an easier form of V̌1a.305

The second difference concerns the definition of WGrad, which is assumed306

to depend also on the plastic-like distortions through the expression307

WGrad = 1
2
d : grad sq⊗ grad sq

= 1
2
F−1

p F−1
e dF−T

e F−T
p : Grad q⊗Grad q, (19)

where we employed the identity grad sq(x, t) = F−T(X, t)Grad q(X, t), with308
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sq( · , t) : C (t) → [0, π/2] being the spatial version of the fibre mean angle.309

Among the many possible choices for expressing the second-order tensor d,310

which has the physical meaning of angular stiffness per unit length [24], we311

select d = D0be, where be = Fe.F
T
e is the elastic left Cauchy-Green deforma-312

tion tensor, and the coefficient D0 is assumed to be constant. In general, D0313

should be a function of material points. However, in this work, we attribute314

the dependence on material points to the “effective” coefficient Φ1sνD0, which315

features in the definition of Wrem, and is obtained by multiplying WGrad by316

Φ1sν , as done in (16). Upon substituting d = D0be into (19), we can rephrase317

WGrad as a function of Fp and Grad q, i.e.,318

WGrad = W̃Grad(Fp,Grad q) = 1
2
D0Bp : Grad q⊗Grad q. (20)

5. Residual Dissipation Inequality and Remodelling Equations319

We adapt the study of the dissipation inequality from [24, 50] and, to320

avoid lengthy calculations, we report here only the results that are most321

important for this work. By exploiting the identity Ce = F−T
p CF−1

p , we can322

rephrase the constitutive expression of the overall free energy density Wν (see323

Sect. 4) as a function of C, Fp and q, i.e.,324

Wν = W̃ν(C,Fp, q,Grad q). (21)

By assuming isochoric plastic-like distortions, i.e., Jp = 1, we obtain325

Ps = −Φsνp g
−1F−T + F

(
2
∂W̃ν

∂C

)
, (22a)

Pf = −(J − Φsν)p g
−1F−T, (22b)

where Ps and Pf are the first Piola-Kirchhoff stress tensors of the solid326

and the fluid, respectively. Next, we write Wstd = W̃std(C,Fp, q), Wstr =327

W̃str(C,Fp, q), and WGrad = W̃Grad(Fp,Gradq). Subsequently, we introduce328

the Mandel stress tensors329

Σstd = −F T
p

∂W̃std

∂Fp

= C

(
2
∂W̃std

∂C

)
, (23a)
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Σstr = −F T
p

(
Φ1sν

∂W̃str

∂Fp

)
= C

(
2Φ1sν

∂W̃str

∂C

)
=
〈〈
fDev

(
CF−1

p aF−T
p

)〉〉
, (23b)

ΣGrad = −F T
p

(
Φ1sν

∂W̃Grad

∂Fp

)
= Grad q⊗

(
Φ1sν

∂W̃Grad

∂Grad q

)
, (23c)

where the factor f is defined by330

f = 2Φ1sνA0P(q)I
−1/3
3e k2[Ī4e − 1]exp

(
k2[Ī4e − 1]2

)
H(I4e − 1). (24)

Hence, we obtain the residual dissipation inequality331

Dres =− φ−1
f πfd.FQ +

{
y(0) − ∂W̃ν

∂q

}
q̇ +

{
y(1) − ∂W̃ν

∂Gradq

}
Gradq̇

+
{
F−T

p

(
F T

p Y
int
ν + Σstd + Σstr + ΣGrad

)
F T

p

}
: Lp ≥ 0, (25)

where πfd is the force density describing the exchange of linear momentum332

between the solid and the fluid, and Q = JF−1q is referred to as material333

filtration velocity, i.e., the backward Piola-transformation of the filtration334

velocity q = φf [vf − vs].335

With reference to (23a)–(23c), Σstd can be found in several theories on336

remodelling available in the literature (see e.g. [21, 22]); Σstr represents337

a structural generalised force that descends from the coupling between the338

deformation and the evolution of the fibres accounted for by Wstr; ΣGrad339

stems from the coupling of the plastic-like distortions with the evolution of340

the fibres, and is a direct consequence of the introduction of the free energy341

density WGrad.342

Tensor ΣGrad can be interpreted as a generalisation of the Korteweg stress343

tensor. Coherently with WGrad, it represents a generalised configurational344

force that is power-conjugate to Lp = ḞpF
−1
p , and that results from the cou-345

pling between Fp and q. We also remark that, since in our model WGrad is in-346

dependent ofC, the differentiation of WGrad with respect toC is null, thereby347

implying that WGrad does not contribute to the second Piola-Kirchhoff stress348

tensor of the solid. Therefore, ΣGrad cannot possess the same properties349

as the Mandel stress tensors Σstd and Σstr defined in (23a) and (23b), re-350

spectively. For instance, it cannot be written in terms of the product of351
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C with (2Φ1sν∂W̃Grad/∂C), and it does not fulfil the symmetry conditions352

ΣstdC = (ΣstdC)T and ΣstrC = (ΣstrC)T. These stem from the coupling353

among F , Fp, and q, a coupling that is accounted for by W̃std and W̃str,354

but not by W̃Grad. We notice that ΣGrad satisfies the symmetry conditions355

BpΣGrad = (BpΣGrad)T [51].356

In (25), we perform the identification357

y(1) =
∂W̃ν

∂Gradq
= Φ1sνD0BpGradq, (26)

which amounts to require that y(1) has no dissipative contribution, and, by358

recalling the definition of R int
ν given in (5b), we introduce the dissipative359

parts of the internal generalised forces R int
ν and Y int

ν :360

R int
ν,d := y(0) − ∂W̃ν

∂q
= R int

ν − E (q,Grad q), (27a)

F T
pY

int
ν,d := dev(F T

pY
int
ν ) + dev(Σstd + Σstr + ΣGrad), (27b)

where E (q,Grad q) is the scalar generalised force given by361

E (q,Grad q) :=
∂W̃ν

∂q
−Div

(
∂W̃ν

∂Grad q

)
. (28)

Hence, Dres becomes362

Dres =− φ−1
f πfd.FQ + R int

ν,dq̇ + F−T
p

(
F T

p Y
int
ν,d

)
F T

p : Lp ≥ 0. (29)

By recalling the force balances (2), reformulated for the case of isochoric363

plastic-like distortions, and (6), which allow to substitute R int
ν with Rext

ν in364

(27a) and Y int
ν with Y ext

ν in (27b), we obtain [24, 33, 50]365

R int
ν,d = Rext

ν − E (q,Grad q), (30a)

F T
pY

int
ν,d = dev(F T

pY
ext
ν ) + dev(Σstd + Σstr + ΣGrad). (30b)

If R int
ν,d and Y int

ν,d can be related constitutively to q̇ and Lp, respectively, (30a)366

and (30b) become evolution laws for q and Fp. For this purpose, we study367

the dissipation inequality, and we require here each summand of (29) to be368
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non-negative independently on the other ones [29], i.e.,369

Dflow = −φ−1
f πfd.FQ ≥ 0, (31a)

Dq = R int
ν,dq̇ ≥ 0, (31b)

Dp = F−T
p

(
F T

p Y
int
ν,d

)
F T

p : Lp ≥ 0. (31c)

First, we consider the inequality Dflow ≥ 0, and, by hypothesising a linear370

relationship between πfd and Q [52, 53], we obtain Darcy’s law, i.e.,371

Q = −K Grad p. (32)

Then, to satisfy Dq ≥ 0, we assume R int
ν,d = Γq̇, with Γ being a stricitly372

positive quantity (in general, it sufficies that Γ be non-negative).373

Finally, we turn to Dp, and we assume that the plastic-like distortions374

evolve according to a modified rate-independent formulation of plasticity,375

compatible with an associative normality rule [54]. Moreover, we hypothesise376

that Y ext
ν is identically null [36] and, by performing the change of variable377

H = F−1
p and setting Λ = ḢH−1, we obtain378

H−TY int
ν,d = dev(Σstd + Σstr + ΣGrad) ≡ devΣeff , (33a)

Dp = −Σeff : Λ = −(devΣeff) : Λ ≥ 0, (33b)

where Σeff is referred to as the effective Mandel-like stress tensor and is the379

sum of Σstd, Σstr, and ΣGrad. We remark that, because of the constraint380

detH = 1, Λ is deviatoric and, consequently, it selects only the deviatoric381

part of Σeff in Dp.382

Next, we use Σeff to define the effective Cauchy-like stress tensor383

σeff := J−1g−1F−TΣeffF
T. (34)

We remark that, because of the presence of ΣGrad, Σeff is not a true Mandel384

stress tensor and, analogously, σeff is not a true Cauchy stress tensor. Rather,385

σeff only represents the spatial counterpart of Σeff , constructed as shown in386

(34), but it does not necessarily satisfy the properties that a true Cauchy387

stress tensor should fulfil. For example, it is not symmetric. Still, we employ388

σeff to formulate a yield criterion of the von Mises type. To this end, we389

16



introduce the yield function390

Y = ‖devσeff‖g −
√

(2/3)σy, (35)

where σy is a strictly positive yield stress, and, to comply with the condition391

Jp = 1, only the deviatoric part of σeff is considered. We remark that the392

norm ‖devσeff‖g is computed with respect to the spatial metric g, i.e.,393

‖devσeff‖g =
√
g : (devσeff)g(devσeff)T. (36)

By expressing the norm ‖devσeff‖g in terms of Σeff , i.e.,394

‖devσeff‖g = J−1‖devΣeff‖C , (37a)

‖devΣeff‖C :=

√
C−1 : (devΣeff)C(devΣeff)T, (37b)

we rephrase Y in terms of Σeff and C, thereby obtaining395

Y = Ŷ (C,Σeff) = J−1‖devΣeff‖C −
√

(2/3)σy. (38)

We use (38) to maximise Dp over all the possible stresses [55]. For this pur-396

pose, we adopt the Karush-Kuhn-Tucker technique [55], along with the mod-397

ified dissipation398

D̃p(C,Σeff , λ) = −devΣeff : Λ− λŶ (C,Σeff) ≥ 0, (39)

where λ is a Karush-Kuhn-Tucker (KKT) multiplier, to be determined. The399

search for maximisers of D̃p(C,Σeff , λ) is accomplished by differentiating D̃p400

with respect to Σeff and λ, and leads to the Karush-Kuhn-Tucker optimality401

conditions [55]. Since in this work the yield stress, σy, is assumed to be a402

given model parameter, such optimality conditions read403

∂D̃p

∂Σeff

(C,Σeff , λ) = −Λ− λ ∂Ŷ

∂Σeff

(C,Σeff) = 0, (40a)

λ ≥ 0, Ŷ (C,Σeff) ≤ 0, λŶ (C,Σeff) = 0. (40b)
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5.1. Reorientation of the fibres404

By substituting R int
ν,d = Γq̇ into (30a), and writing E (q,Grad q) explicitly,405

Eq. (30a) takes on the form406

Γq̇ = Div [Φ1sνD0BpGrad q]− Φ1sν
∂(Ŵ1a + Ŵstr)

∂q
+ Rext

ν . (41)

The first term on the right-hand-side of (41) contributes to the evolution of407

the fibre mean angle by resolving the spatial variability of q. The coefficient408

Φ1sνD0 multiplies the inverse (plastic) metric tensor Bp, thereby leading to409

the tensorial coefficient Φ1sνD0Bp. We notice that, in spite of some formal410

similarities with a diffusion-reaction equation, (41) describes no diffusion,411

since it is not a mass balance, but the evolution of an order parameter [56].412

To solve (41), we need to provide Rext
ν . In two previous papers on this413

subject [24, 40], one of us reviewed some results presented by other authors,414

e.g. [32, 33], who defined the external remodelling force Rext
ν by introducing415

the concept of target angle, qT . The target angle is an angle that defines the416

direction of space, which we may call target direction, along which the fibres417

“would like to be aligned”. By definition, the fibres tend to orient themselves418

along the target direction and it has been observed that, in a tissue subjected419

to mechanical stress and deformation, the target angle depends on stress420

[32, 33] or deformation [12, 31].421

Although the issue of the target angle was discussed in [24, 40], the focus422

in those papers was on the particular situations in which no external force423

Rext
ν was active, i.e., when the condition Rext

ν = 0 applies in (41). In these424

cases, indeed, a “target angle” may be identified with a stationary solution425

of (41), i.e., a function q∞ satisfying426

Div [Φ1sνD0BpGrad q]− Φ1sν
∂(Ŵ1a + Ŵstr)

∂q
= 0, (42)

together with time-independent boundary conditions. Since ∂Ŵstr/∂q does427

not vanish when Bp = G−1 and the tissue is undeformed, (42) admits solu-428

tions of sigmoidal shape that interpolate between the zeroes of the double-429

well potential P(q), i.e., q0 = 0 and q1 = π/2. Always in the absence of430

deformation, such profiles can also be obtained as the stationary solutions431

of (41), when the initial distribution of q is a random function of material432

points [24].433
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In the case of vanishing D0, the energy density WGrad is null, and we434

end up with a description of remodelling determined by ordinary differential435

equations. In such situations, and for Rext
ν = 0, the search for stationary436

solutions amounts to seek for the zeros of the equation437

−Φ1sν
∂(Ŵ1a + Ŵstr)

∂q
= 0. (43)

In general, however, (43) may admit either no solutions or multiple solutions,438

i.e., different target angles. Whereas the existence of multiple stationary so-439

lutions to (43) can be a normal fact, because the Cauchy problem440

Γq̇ = −Φ1sν
∂(Ŵ1a + Ŵstr)

∂q
, (44a)

q(X, 0) = qin(X), (44b)

if well-posed, selects a unique solution, the case of no stationary solution may441

be unphysical. Similar circumstances may occur when the right-hand-side of442

(44a) features only ∂Ŵ1a/∂q.443

By introducing a non-vanishing Rext
ν , relating it to the concept of an444

a priori defined target angle, qT , and assuming the existence of a station-445

ary limit q∞T , the unphysical case of no stationary solutions is eliminated at446

source. Indeed, it suffices to notice that a stationary angle is attained when447

the external force Rext
ν balances the internal ones under the condition q̇ = 0.448

This implies that the following equality has to be verified [33]449

Rext
ν = Φ1sν

∂(Ŵ1a + Ŵstr)

∂q

∣∣∣∣∣
q=q∞T

. (45)

This result can also be generalised to the case in which the target angle is450

not stationary, so that Eq. (44a) is rewritten as451

Γq̇ = −Φ1sν
∂(Ŵ1a + Ŵstr)

∂q
+ Φ1sν

∂(Ŵ1a + Ŵstr)

∂q

∣∣∣∣∣
q=qT

, (46)

where the term on the right-hand-side iscomputed for a non-stationary target452

angle qT , driven by stress or deformation.453
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Even more generally, when the remodelling equation is given by (41), the454

external force Rext
ν may be defined as455

Rext
ν = E (qT,Grad qT )

= −Div [Φ1sνD0BpGradqT ] + Φ1sν
∂(Ŵ1a + Ŵstr)

∂q

∣∣∣∣∣
q=qT

, (47)

thereby obtaining the following generalisation of [24, 33, 40]:456

Γq̇ =Div [Φ1sνD0BpGrad q]− Φ1sν
∂(Ŵ1a + Ŵstr)

∂q

−Div [Φ1sνD0BpGrad qT ] + Φ1sν
∂(Ŵ1a + Ŵstr)

∂q

∣∣∣∣∣
q=qT

. (48)

5.2. Evolution of the plastic-like distortions457

The explicit computation of the derivative of Ŷ with respect to Σeff , see458

(38), permits to rewrite (40a) as459

Λ = −J−1λ
C−1(devΣeff)C

‖devΣeff‖C
, (49)

which implies ‖Λ‖C ≡
√
C : ΛC−1ΛT = J−1λ ≥ 0. Moreover, since Λ is460

given by Λ = ḢH−1, (49) can be recast in the form of an evolution equation461

for H or, equivalently, for Fp = H−1, i.e.,462

Ḣ =

{
−J−1λ

C−1(devΣeff)C

‖devΣeff‖C

}
H . (50)

Within the classical framework of finite Elastoplasticity, the KKT-multiplier463

λ is determined by enforcing a condition known as “consistency condition”464

[55], which has to be solved together with the flow rule —represented here by465

(50)— and the other model equations. Very often, the consistency condition466

is solved algorithmically (see e.g. [55]). In this work, however, we propose467

a rather different approach, which is motivated by the need of keeping our468

calculations at a minimum level of complexity (see Sect. 5.3 for some technical469

details on this issue). In fact, we prescribe λ from the outset, and, for our470
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purposes, we define it as471

λ = Jζ0φs

[
‖devσeff‖g −

√
(2/3)σy

]
+

= ζ0Φsν

[
J−1‖devΣeff‖C −

√
(2/3)σy

]
+
, (51)

where ζ0 > 0 is a constant model parameter, and [A]+ = A, for A > 0,472

and [A]+ = 0, otherwise. We notice that the equality Φsν = Jφs is verified,473

because it holds that J = Je, since the condition Jp = 1 applies. Finally, by474

substituting (51) into (50), we obtain475

Ḣ = −
ζ0Φsν

[
J−1‖devΣeff‖C −

√
(2/3)σy

]
+

J

C−1(devΣeff)C

‖devΣeff‖C
H , (52)

i.e., the ordinary differential equation describing the evolution of H .476

Equation (52) looks like an evolution law of the Norton-Hoff type [57] and,477

with some modifications, might be rated among those. However, compared478

with that in [57], our (52) features three differences: (i) the full tensor devΣeff479

is considered in lieu of its symmetric part only (see [57] for some remarks480

on this issue); (ii) the “transformed” generalised stress C−1devΣeffC, rather481

than devΣeff , is regarded as the driving force for H ; (iii) our Σeff contains482

ΣGrad, which is a fundamental character of our framework.483

We notice that the coefficient λ in (51) has the form of the activation484

factor featuring in the flow rule of a Perzyna-like model of viscoplasticity485

[37]. Dimensional analysis shows that the parameter ζ0 can be expressed as486

ζ0 = (τcσc)
−1, where τc is the characteristic relaxation time of H , and σc is a487

reference value of stress. The time scale τc is available in the literature, and488

we choose τc = 22 s, as suggested in [28], where the inelastic behaviour of489

cellular aggregates is studied by means of a Perzyna-like flow rule. However,490

there seems to be some freedom in the choice of the reference stress σc. In491

principle, indeed, σc could be taken equal to σy, if one wants to normalise492

λ with the yield stress, or it could be defined by combining the material493

parameters involved in the definition of σeff . In the latter case, one should494

use parameters, such as D0 and A0, that, being other than the standard495

elastic coefficients, are not available in the literature, at least to the best of496

our knowledge. Thus, we refer here to a value of σc that has already been used497

in [28], within a framework similar to ours. To this end, by comparing (51)498
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with the flow rule in [28], we identify σc with σc = 2µ0〈Φsν〉, where µ0 is the499

shear modulus of the matrix, and 〈Φsν〉 is the mean value of the solid phase500

volumetric ratio. Hence, upon computing µ0 = 2(α1 + α2)α0 ≈ 0.222 MPa501

[41] and 〈Φsν〉 =
∫ 1

0
Φsν(ξ)dξ = 0.2 (see Table 1), we find σc ≈ 0.09 MPa and502

ζ0 ≈ 0.50 MPa−1s−1 (cf. Table 1). Such σc is obtained by considering only503

the isotropic part of the standard energy of our model, whereas considering504

also the other terms of the energy would lead to higher values of σc and,505

then, to smaller values of ζ0. On the other hand, smaller values of σc are506

conceivable, but they could result into too high values of ζ0 for the problem507

at hand, thereby leading to unphysical time scales for the evolution of H .508

5.3. Summary of the model equations and technical details509

After enforcing the left polar decomposition ofH , i.e., H = V .R [35], we510

study only the case in which R reduces to a shifter [35], so that the unknown511

determining the plastic-like distortions becomes the symmetric, second-order512

tensor V . Even though this choice has the disadvantage of restricting the513

investigation to the case of no plastic-like rotations, it allows to work with V ,514

which, being symmetric, is computationally cheaper. In summary, thus, our515

mathematical model consists of the following set of four, highly non-linear,516

coupled equations,517

J̇ −Div (KGrad p) = 0, (53a)

Div
(
−J p g−1F−T + P sc

)
= 0, (53b)

Γq̇ = Div [Φ1sνD0BpGrad q]− Φ1sν
∂(Ŵ1a + Ŵstr)

∂q

−Div [Φ1sνD0BpGrad qT ] + Φ1sν
∂(Ŵ1a + Ŵstr)

∂q

∣∣∣∣∣
q=qT

, (53c)

V̇ = −sym

[(
λ

J

C−1(devΣeff)C

‖devΣeff‖C

)
V

]
, (53d)

in the unknowns p, χ, q, and V , respectively. Note that we take the sym-518

metric part of the right-hand-side of (53d) in order to ensure that V̇ , and519

its time discrete form, be symmetric. Moreover, the material permeability is520

given by [41, 6, 8, 9]521

K = k0
(J − Φ1sν)

2

J
C−1 + k0

(J − Φ1sν)Φ1sν

J
H

〈〈
a

I4e

〉〉
HT, (54a)
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k0 = k0ν

[
J − Φsν

1− Φsν

]κ0
exp

(
1
2
m0[J2 − 1]

)
. (54b)

The material parameters κ0 and m0 as well as the expressions of the volu-522

metric fractions Φsν , Φ0sν , and Φ1sν are reported in Table 1.523

We solve Eqs. (53a)–(53d) for a cylindric specimen of tissue, of initial524

height L = 1 mm and initial radius R = 1.5 mm, and whose boundary can525

be written as ∂B = ∂BU t ∂BL t ∂B`, where the subscripts “U”, “L”, “`”526

stand for “upper”, “lower” and “lateral”, respectively. Then, we complete527

Eqs. (53a)–(53d) with the following boundary and initial conditions528

−(K Grad p).N = 0, on ∂BU t ∂BL, (55a)

p = 0, on ∂B`, (55b)

[χ(X, 0)− χ(X, t)].e3 = u(t), on ∂BU, (55c)

χ(X, t)− χ(X, 0) = 0, on ∂BL, (55d)(
−J p g−1F−T + P sc

)
.N = 0, on ∂B`, (55e)

(Φ1sνD0Bp Grad q).N = 0, on ∂BU t ∂B`, (55f)

q(X, t) = 0, on ∂BL, (55g)

χ(X, 0) = χ0(X), in B, (55h)

q(X, 0) = qhist(X), in B, (55i)

V (X, 0) = G−1(X), in B. (55j)

In (55a), (55e), and (55f), N is the field of unit vectors normal to ∂B; in529

(55c), the imposed displacement u(t) is given by530

u(t) =
umax t

tramp

[Θ(t)−Θ(t− tramp)] + umaxΘ(t− tramp), (56)

where Θ(s) = 1, for s ≥ 0, and Θ(s) = 0, for s < 0, umax = 0.20 mm is531

the maximum imposed displacement, and tramp = 20 s is the final time of the532

loading ramp. In the simulated compression test, umax is kept constant until533

tf = 120 s. In (55h), χ0(X) represents the initial placement and, in this work,534

it returns the points X of the reference configuration B. In (55i), qhist(X)535

denotes the initial distribution of the fibre mean angle, and is taken here to536

23



be equal to an experimentally observed “histological” profile [49], given by537

qhist(X) =
π

2

{
1− cos

(
π

2

[
−2

3

(
X3

L

)2

+
5

3

X3

L

])}
, (57)

where X3 is the axial coordinate. Finally, the initial value V (X, 0) is taken in538

(55j) equal to the inverse metric tensor associated with B, which means that539

no inelastic distortions occur before the deformation process commences.540

We remark that (53a)–(53d) are valid in general, in the sense that they541

apply to the studied system, under all the specified hypotheses, but without542

any specialisation to a particular benchmark problem. In fact, they can be543

adopted for a variety of case studies, and to formulate a proof of concept for544

testing a proposed model. In our work, we employ (53a)–(53d) for analysing545

the coupling among fluid flow, deformation and structural reorganisation of546

the matrix, and fibre reorientation in the tissue under study. For this pur-547

pose, we solve numerically a well-documented benchmark test consisting in548

the unconfined compression of a cylindrical specimen of tissue. The latter549

is assumed here to be articular cartilage because of the availability of ex-550

perimental data, but the test can also be performed on other tissues. For551

the considered test, a sample of tissue is placed between two plates, assumed552

to be rigid and impermeable (see (55a)), as shown in 2. The lower plate is553

fixed and the specimen is clamped to it, so as to simulate the adhesion of the554

cartilage to bone (see (55d)). The upper plate, instead, compresses axially555

the sample (see (55c)), in such a way that the deformation remains axial-556

symmetric over the whole duration of the simulation. The lateral surface of557

the sample is assumed to constitute a free boundary, which means that both558

the pressure and the radial stress have to be equal to zero (see (55b) and559

(55e)).560

We also have to impose boundary conditions on the fibre mean angle,561

q. These are specified by (55f) and (55g). The Dirichlet condition (55g)562

forces the fibres to remain orthogonal to the bone-cartilage interface for the563

whole duration of the simulation. Due to the geometry of the specimen564

and the symmetry of the problem, this restriction implies that, on the lower565

boundary, the fibres are maintained parallel to the specimen’s symmetry566

axis. Furthermore, the Neumann condition (55f) requires that the normal567

component of y(1) = Φ1sνD0BpGradq vanishes on the upper and lateral568

boundary of the sample. We notice that the coupling between q and F p,569
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Figure 2: Panel describing the considered benchmark test

accounted for by Bp = F−1
p .F−T

p , affects the way in which (55f) is satisfied570

and, consequently, the way in which q approaches the boundary. Indeed, in571

the absence of plastic-like distortions, i.e., for Bp = G−1, (55f) requires that572

the normal derivative of q is zero on ∂BU t ∂B`. For Bp 6= G−1, this result573

is no longer true, and the gradient of q is no longer orthogonal to N .574

Remark 1. To clarify the physical meaning of (55f), we recall that, in our575

model, q and Gradq are kinematic descriptors and, consistently with (3),576

the vector y(1) is the internal generalised force conjugated with Gradq. Thus,577

y(1) plays the role of stress and, as anticipated in (4b), y(1).N is the stress578

component that has to balance the generalised “contact” force h(1), defined on579

the Neumann boundary of the sample. It follows from these considerations580

that (55f) rephrases (4b) in the particular case in which no such forces are581

active, thereby yielding y(1).N = h(1) = 0. This amounts to say that ∂BU t582

∂B` is a free boundary with respect to q.583

6. Results584

To perform a comparative study of the various phenomena accounted for585

in our work, we consider four different sub-models, which we denominate M1,586

M2, M3, and M4.587

Model M1 (poroelasticity with Rext
ν = 0). As reference case, we consider a588

deformable porelastic material, in which the evolution of the fibre direction589

is driven by deformation only. Thus, we solve (53a)–(53c), along with (55a)–590

(55i). In the computations we set Rext
ν equal to zero, which amounts to ignore591
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in (53c) all the terms containing the target angle qT . We do that with the aim592

of providing an estimate of the importance of the target angle on the guidance593

of the fibre evolution. Indeed, even in the absence of Rext
ν , the inhomogeneity594

of the fibre mean angle and the generalised forces Φ1sν∂(Ŵ1a + Ŵstr)/∂q are595

capable of triggering the evolution of the fibres. By dealing with a poroelastic596

model, V is kept equal to its initial value, G−1, thereby switching off the597

evolution of the plastic-like distortions.598

Model M2 (poroelasticity with Rext
ν 6= 0). This case is the completion of the599

model M1, as fibre re-orientaion is also driven by the target angle. To this600

end, we solve the same set of equations and initial and boundary conditions601

as implemented in M1. In M2, however, all the terms appearing in (53c) are602

activated, and qT is computed as603

qT = arctan

(
1

Ce33

[
1

2π

∫ 2π

0

Ce : eR(ϕ)⊗ eR(ϕ)dϕ

])
= arctan

( 1
2
[Ce11 + Ce22]

Ce33

)
, (58)

where eR(ϕ) = cosϕ e1 +sinϕ e2 is a unit vector orthogonal to the specimen’s604

symmetry axis, and oriented radially. Note that other definitions are possible.605

For example, one may define the target angle as a function of stress [12, 31,606

32, 33] or as a function of the deformation [31]. The expression of qT given607

in (58) takes inspiration from [12, 31], and assumes that the target angle608

is entirely determined by Ce. Specifically, the factor 1
2
[Ce11 + Ce22] is the609

in-plane directional average of the radial component of Ce, while Ce33 is610

the axial component of Ce. Under the considered loading conditions, (58)611

implies that, for increasing radial dilatation and increasing axial contraction,612

1
2
[Ce11 + Ce22]/Ce33 tends towards infinity, and qT tends towards π/2. In613

this limit, the target angle indicates that the fibres should be preferably614

aligned orthogonally to the specimen’s symmetry axis. Clearly, the way in615

which the fibre mean angle complies with this condition is modulated both616

by the deformation and the plastic-like distortions. To us, another physically617

relevant situation occurs in the absence of deformation and elastic distortions,618

i.e., when (58) prescribes qT = π/4, and (53c) becomes619

Γq̇ = Div[Φ1sνD0G
−1Gradq]− Φ1sνA0

dP

dq
. (59)
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In this case, the concept of target angle qT as manifestation of external force620

is not explicitly present in (59), and the evolution of q is self-driven, with the621

target angles being identified with the stationary solutions of (59).622

Model M3 (full model, with Rext
ν = 0). This case study is complete, since it623

requires to solve the whole set of the model equations (53a)–(53d) together624

with (55a)–(55g) and (55h)–(55j). However, as done in M1, in the computa-625

tions we set Rext
ν equal to zero.626

Model M4 (full model). As for M3, also M4 describes the complete model and627

requires the solution of the same list of equations, with the same boundary628

and initial conditions. However, in M4 the target angle is accounted for.629

Computational aspects. To determine the numerical solution of our problem,630

we perform Finite Element simulations for each of the sub-models M1, M2,631

M3, and M4. This requires the weak formulation of (53a)–(53d), the gen-632

eration of a grid for the discretisation of B and ∂B, and the selection of633

a time integration scheme. Since the problem is nonlinear, a linearisation634

procedure is necessary. In general, the grid is unstructured and the interpo-635

lations adopted for p, χ, and q are different from each other. Equation (53d)636

is solved only at the integration points of the finite element discretisation,637

for it does not contain partial derivatives of V with respect to the spatial638

variables. Hence, we do not provide any weak form for (53d), nor do we639

introduce in this work test functions associated with V .640

A Backward Euler scheme of the fifth order is used for the integration641

in time of all the model equations and boundary conditions. Moreover, in642

each sub-model, the directional averages of the constitutive functions are643

computed by employing the Spherical Design Algorithm (see e.g. [14, 58]) as644

implemented in [15], i.e., the integrals over S2B are evaluated for each time645

step and at each iteration of the Newton method.646

In our work, the numerical simulations were performed with the aid of647

the commercial software COMSOL c©v5.3. Details about the algorithms used648

for the Finite Element solution of a problem involving (53a), (53b), and an649

evolution equation similar to (53d) can be found in [29, 59].650

Comments to figures. To sample the data, we took four measuring points,651

located along the vertical axis, and with cartesian coordinates XL = (0, 0, L),652

X3L/4 = (0, 0, 3L/4), XL/4 = (0, 0, L/4), X0 = (0, 0, 0).653
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Figure 3: Pressure. 3D contour plots of the pressure for the models M2 (panel a) and M4
(panel b), whilst showing the deformation undergone by the tissue. The models M1 and
M3 are not reported since they would lead to no observable difference with respect to M2
and M4, respectively.

First of all, we present a three-dimensional view of the deformed tissue654

at the end of the loading history. Figure 3 depicts the differences in the655

deformation of the sample and in the pressure distribution for the models M2656

and M4. The radial displacement of the tissue appears relatively contained in657

M2 (Fig. 3a), while it is more pronounced in M4, i.e., when plastic distortions658

are active (Fig. 3b). A peculiar characteristic of this case is given by the shape659

of the profile of the deformed lateral boundary. Indeed, in M2, such profile660

undergoes a gradual deformation from the bottom to the top, whereas in M4661

it experiences an abrupt deformation close to the bottom, while it remains662

almost parallel to the symmetry axis in the middle and in the upper parts663

of the sample. A possible explanation of this phenomenon can be outlined664

through the analysis of the fibre mean angle, as shown in Fig. 5.665

Another peculiarity of Fig. 3 concerns the values attained by the pressure.666

In contrast to the elastic case, when plastic-like distortions are accounted for,667

the pressure goes lower than zero, thereby leading to a “syringe effect” [25].668

To better describe this phenomenon, Fig. 4 presents the time variation of669

the pressure in X0. No significant differences can be observed for models M1670

and M2, in which, after the increase due to the loading ramp, the pressure671

monotonically decreases toward zero. On the other hand, for both models672

accounting for the plastic-like distortions, i.e., M3 and M4, after a first rapid673

increase at the beginning of the loading experiment, we observed a rather674

slow increase of the pressure values. Afterwards, when the loading ramp675

terminates, we assist to an abrupt pressure drop, that leads to negative676

pressure values. This sudden change is then followed by a slow recovery, that677

would lead to null pressure in the long term.678

28



Figure 4: Time-evolution of the pore pressure. For all the implemented models, the
temporal evolution of the pore pressure is monitored in X0.

A key point of this work is the role played by the fibre mean angle and679

by the target angle. To analyse their evolution we present Fig. 5. The top680

panels of Fig. 5 depict the evolution of the fibre mean angle, q, along the681

symmetry axis, starting from the initial histological profile (55i), to the final682

fibre distribution obtained within M2 (Fig. 5a) and M4 (Fig. 5b). Note that,683

thanks to the upper boundary condition 55f, the value of q corresponding to684

the upper surface is free to evolve. Interestingly, the greater variations are685

registered in the plastic case (M4) and, enhanced by the introduction of the686

gradient term, the variability extends to the tissue beneath. While in the687

middle-upper portion of the tissue we assist to a smooth change of the fibre688

mean angle, on the lower part there is quite an abrupt variation from the689

histological profile. This might be due to the Dirichlet boundary condition690

on the lower boundary of the specimen.691

To understand the role of qT and to further describe the behaviour of q,692

the temporal evolution of the fibre mean angle is shown in the lower panels693

of Fig. 5, where the trend of the target angle qT is presented alongside the694

fibre mean angle, evaluated in two different sampling points. Indeed, by695

comparing M1 with M2, and M3 with M4, it is evident that the introduction696
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Figure 5: Fibre mean angle. In panels a and b, 10 seconds time-laps recording the evolution
of the fibre mean angle along the vertical axis, for M2 (a) and M4 (b); arrows indicate the
increase of time. In panels c and d, the temporal evolution of both the fibre mean angle
and the target angle, observed in X3L/4 (c) and XL/4 (d), for all the presented models.
The target angle is implemented in M2 and M4 only.

of qT strongly modulates q by controlling, and then by reducing, its variation,697

especially in M2. In particular, looking at Fig. 5d, we see how q is driven698

upward by the presence of qT (M2 and M4), especially during the loading699

ramp.700

Comparing Fig. 3 with Fig. 5c and Fig. 5d, we notice that the behaviour701

of q influences the way in which the tissue deforms. Indeed, the more the702

variation of q is contained in time, the less the sample tends to deform radi-703

ally. This behaviour is model dependent and is more evident for M3 end M4704

than it is for M1 and M2.705

The analysis of the target angle is worth of a separate discussion. Once706

again, by making reference to Fig. 5c and Fig. 5d there are appreciable dif-707

ferences among the elastic and the plastic case studies, concerning both the708

evolution and the stationary limit of qT . The most relevant variations of qT709

can be appreciated in M2, in which the relatively high values of the target710
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angle, reached at the end of the loading ramp, seem to affect the stationary711

limit. In this case, different values of q∞T are recovered at a different depth.712

On the other hand, in M4 elastic distortions fade after the loading ramp,713

practically leading to the recovery of the stationary value π/4 throughout714

the whole tissue.715
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Figure 6: Effective stress tensor. For all the presented models, the norm of the effective
stress tensor is evaluated in the measuring points XL (a), X3L/4 (b), XL/4 (c) and X0 (d).

To complete the analysis, Fig. 6 depicts the norm of the deviatoric part716

of the effective stress tensor, i.e., ‖devσeff‖g. With the exception of the bot-717

tom of the sample (see Fig. 6d), where the specimen is tied to the tidemark,718

‖devσeff‖g reaches its maximum at the end of the loading ramp. The conse-719

quent decrease towards a stationary value is monotonic for the elastic cases720

M1 and M2, while it is not for the plastic models M3 and M4 (see Figs. 6a721

and 6c). In the insert of Figs. 6a and 6b,
√

2/3σy is reported to highlight722

when and where plastic-like distortions are de-activated. In Fig. 6a we note723

that, after approximately 70 s, the effective stress is below the threshold724 √
2/3σy, thereby implying a temporary switch-off of the plastic-like distor-725

tions. Figure 6 also reports ‖devσ‖g, evaluated for model M4. Although not726
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visible at the length scale selected for our figures, we do measure differences727

between the effective stress, σeff , and the “standard” Cauchy stress σ, which728

does not take into account ΣGrad. In turn, ΣGrad is influenced by Φ1sν and729

Bp, and it vanishes gradually on the way to XL, because of the Neumann730

zero boundary condition on q on ∂BU.731

7. Discussion732

The key aspect of our work is the mutual interaction among the motion,733

χ, the tensor of plastic-like distortions, Fp, and the fibre mean angle, q.734

Firstly, we notice that Fp and q interact with χ through the constitutive735

law expressing Psc in (53b). Secondly, χ and q interact with Fp through the736

term between parentheses in (53d). Such interaction manifests itself through737

C and Σeff . Thirdly, the interaction of χ and Fp with q finds its expression738

in the generalised forces Φ1sν [∂(Ŵ1a + Ŵstr)/∂q]. Finally, Fp and q interact739

with each other through Φ1sνD0BpGrad q, i.e., in such a way that only two740

players out of three interact.741

Role played by the free energy density WGrad. In the form given in (19), WGrad742

constitutes the lowest-order approximation of the self-interaction of the scalar743

field q. The strength of such self-interaction is measured by D0. As in [24],744

we consider the particular case in which ŴGrad is independent of deforma-745

tion, but we do allow it to depend on the plastic-like distortions through Bp,746

whose presence generates ΣGrad. This tensor is purely configurational, and747

has no direct geometric counterpart, since it emerges as a consequence of the748

coupling between the structural degrees of freedom q and Fp. More impor-749

tantly, ΣGrad features as a summand of Σeff among the configurational forces750

that drive the evolution law of the plastic-like distortions in (52). Hence,751

differently from other models on the subject (see e.g. [33]), in which the752

configurational stress that triggers remodelling can be obtained from Cauchy753

stress, in our theory we have the configurational force ΣGrad that exists on754

its own, and participates to activate the structural reorganisations of the755

tissue. In fact, it might be interpreted as the contribution to the structural756

reorganisation given by the reorientation of the fibres, i.e., the output of the757

interplay between Fp and q alone.758

Role played by the free energy density Wstr. The energy density Wstr defined759

in our model is such that the “structural” contribution to the overall second760
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Piola-Kirchhoff stress tensor, Sstr = 2Φ1sν(∂Ŵstr/∂Ce), and the “structural”761

contribution to the overall elasticity tensor, Cstr = 4(∂2Ŵstr/∂C
2
e) vanishes in762

the natural state. The function A0P(q) coincides with the structural energy763

in the natural state, i.e., Ŵ
(0)
str (q) = A0P(q). We notice that such functional764

form is adequate for describing large fluctuations of the order parameter q765

from the two reference values q0 = 0 and q1 = π/2, each of which returns the766

global minimum of Ŵ
(0)
str , i.e., Ŵ

(0)
str (0) = Ŵ

(0)
str (π/2) = 0. As discussed in [24],767

an example of this behaviour is provided by the articular cartilage used for768

mechanical tests [49] in which, prior to the application of any loading history,769

a “histological profile” of the fibre mean angle can be defined [24, 49], which770

varies throughout the tissue, taking on the values q0 and q1 at the interface771

with the bone and at the articular surface, respectively (see e.g. [60]).772

One may wonder whether the introduction of Wstr is really necessary and,773

if it is, why it should have the functional form suggested in this work. To774

answer these questions, let us first notice that there are studies in which the775

structural energy is tacitly used. Baaijens et al. [31], for example, prescribe776

that the fibre mean angle evolves according to the law777

q̇ = − 1
τ
[q− qT ], (60)

where τ is a model parameter describing the system’s relaxation coefficient,778

q is the angle that the fibres in a blood vessel form with the symmetry axis,779

and the target angle, qT , determines the preferred alignment of the fibres780

(in the case of a blood vessel, 2q is the angle between the two families of781

fibres coiled helically around the vessel). Looking at (60), and comparing it782

with our (46), which is obtained in the limit of vanishing D0, we notice that783

(60) can be recovered from (46) by neglecting the force Φ1sν(∂Ŵ1a/∂q), and784

retaining only Φ1sν(∂Ŵstr/∂q), with the constitutive choice785

Ŵstr(q) ≡ Ŵ quad
str (q) = 1

2
κ[q− qref ]

2, (61)

where the superscript “quad” stands for “quadratic”, κ is an angular stiffness786

density (thus, having units of force per unit area), and qref is a reference angle.787

Indeed, computing the derivative of Ŵ quad
str with respect to q, and substituting788

the result into (46) yield789

Γq̇ = −Φ1sνκ[q− qT ], (62)
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and (60) is re-obtained upon identifying 1/τ = Φ1sνκ/Γ.790

In the absence of deformation and plastic-like distortions, Wstd vanishes791

identically, regardless of the value taken by q, and the energetic content of792

the tissue is the integral over B of the remodelling energy density793

Ŵ (0)
rem(q,Gradq) = 1

2
Φ1sνD0‖Gradq‖2 + Φ1sνŴ

(0)
str (q), (63)

which is nonzero for q other than the constant values q = q0 and q = q1794

[24]. Hence, as reported in [24], the “natural state” of the tissue, which cor-795

responds to the state of zero mechanical stress, is not necessarily its ground796

state, which is attained when the residual energy density Ŵ
(0)
rem reaches its797

global minimum. The ground state, in fact, is individuated by either q = q0798

or q = q1, for which each term on the right-hand-side of (63) is identically799

null. In our case, the probability density, Ψ̌(ϑ, q0), depicts the situation in800

which the fibres are most likely oriented along the tissue’s symmetry axis,801

whereas Ψ̌(ϑ, q1) describes the case in which the fibres tend to align them-802

selves perpendicularly to the symmetry axis. Any other distribution of the803

fibre mean angle corresponds to a deviation from the ground state, and is804

associated with nontrivial energies. The coefficient A0 defines the height of805

the energy barrier that has to be overcome to pass from one ground state806

configuration, e.g. q0, to the other one, q1, or vice versa. In our model, such807

height is assumed to depend only on Φ1sν , which is point-dependent. How-808

ever, when deformation and plastic-like distortions are active, we allow for809

a modulation of A0 by means of the terms between brackets in (17). Note810

that, since the directional average in (17) depends on q, the modulation also811

represents a self-interaction of the fibre-mean angle.812

8. Conclusions813

We proposed two conceptual results that, to the best of our knowledge,814

might be regarded as novelties: First, our calculations naturally lead to a815

Mandel-like stress tensor, denoted by ΣGrad, which contributes to the onset816

and evolution of the plastic-like distortions. These, in turn, contribute to817

the evolution of the fibre mean angle through the term Φ1sνD0BpGradq.818

Secondly, we define a structural energy that generalises some other choices819

available in the literature (see e.g. [31]). These results, discussed in detail820

in Sect. 7, characterise the interplay between the reorientation of fibres and821

plastic-like distortions.822
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As anticipated in Sect. 2, our model can be used, with some modifications,823

for a generic tissue with fibre-reinforcement and evolving internal structure.824

The major strength of our model is its flexibility, since it establishes the825

“mathematical infrastructure” for describing transverse isotropy and for re-826

solving interactions that are usually not resolved in more “classical” theories827

(see e.g. [31, 33, 40]). In turn, its major weakness is that it does not account828

for growth, which is crucial for tissues like cellular aggregates and tumours.829

Describing growth requires to reformulate the present setting to con-830

sider different cell populations, include chemical substances, and account for831

the coupling among stress, structural reorganisation, and variation of mass.832

These modifications result in the introduction of an evolution equation for833

the inelastic distortions related to growth, and in one mass balance law for834

each chemical species and cell population considered in the model. All these835

equations should be combined with (53a)–(53d), and new interactions should836

be resolved. These also call for a review of the constitutive framework.837

Another possible specific problem for which our theory could be useful is838

“inverse poroelasticity” [61]. Finally, the theory presented in this work could839

be compared with that developed by Capriz in [62], and this is subject of our840

current investigations.841
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Appendix855

We recall some concepts of the kinematics of biphasic mixtures. To this856

end, we adopt the theory put forward in [63], and used in [15, 24, 29, 45].857

Accordingly, the set B ⊂ S is introduced as the reference placement of858

the solid. Then, χ : B × I → S denotes a smooth mapping such that859

Cs(t) ≡ χ(B, t) ⊂ S is the configuration of the solid at time t ∈ I , and860

Cf(t) is the portion of S occupied by the fluid at the same instant of time.861

Finally, C (t) := Cs(t) ∩ Cf(t) ⊂ S is the region of space in which the solid-862

fluid mixture finds itself at t ∈ S . Even though χ( · , t) : B → S is not863

invertible, the map χ̂( · , t) : B → Cs(t), defined by χ̂(X, t) = χ(X, t) for all864

(X, t) ∈ B × I , is invertible and such that B = χ̂−1(Cs(t), t). In general,865

it occurs that χ̂−1(C (t), t) ⊂ B. However, in all the cases studied in our866

work, the stronger condition χ̂−1(C (t), t) = B applies, since the identity867

Cs(t) = C (t) is verified for all t ∈ I see Fig. 7. For this reason, in Eqs.868

(1a) and (1b), B can be viewed as a reference placement for the mixture869

as a whole. We denote by TXB and TxS the tangent spaces attached to870

X ∈ B and x ∈ S , respectively [35], and we identify the deformation871

gradient tensor of the solid with the tangent map of χ, i.e., F (X, t) :TXB →872

TxS , with x = χ(X, t). We also introduce the spatial velocity of the solid873

at χ(X, t) ∈ Cs(t),
svs(χ(X, t), t), and the spatial velocity of the fluid at874

x ∈ Cf ,
svf(x, t). In addition, we define the solid velocity field over B,875

i.e., vs( · , t) : B → TS = tx∈STxS , through vs(X, t) := svs(x, t). For876

x ∈ C (t) = Cs(t)∩Cf(t), there exists X ∈ χ̂−1(C (t), t) such that the equality877

svf(x, t) = vf(X, t) is verified, thereby defining the fluid velocity field over878

χ̂−1(C (t), t) ⊂ B, i.e., vf( · , t) : χ̂−1(C (t), t)→ TS .879

With each x ∈ C (t) we associate the spatial volumetric fractions sφs(x, t)880

and sφf(x, t), which measure, respectively, the local volumetric content of881
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solid and fluid with respect to a representative volume of the mixture. Since882

the mixture is assumed to be saturated, it holds that sφs(x, t) + sφf(x, t) = 1,883

for all x ∈ C (t) and for all t. Along with sφs and sφf , we also introduce884

φs(X, t) = sφs(χ(X, t), t) and φf(X, t) = sφf(χ(X, t), t), for X ∈ χ̂−1(C (t), t).885
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