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Abstract In this paper we apply both the procedure of dimension reduction and the incorporation of structured
deformations to a three-dimensional continuum in the form of a thinning domain. We apply the two processes
one after the other, exchanging the order, and so obtain for each order both a relaxed bulk and a relaxed
interfacial energy. Our implementation requires some substantial modifications of the two relaxation procedures.
For the specific choice of an initial energy including only the surface term, we compute the energy densities
explicitly and show that they are the same, independent of the order of the relaxation processes. Moreover,
we compare our explicit results with those obtained when the limiting process of dimension reduction and of
passage to the structured deformation is carried out at the same time. We finally show that, in a portion of
the common domain of the relaxed energy densities, the simultaneous procedure gives an energy strictly lower
than that obtained in the two-step relaxations.
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1 Introduction

Classical continuum theories of elastic bodies are amenable to refinements that broaden their range of applica-
bility or that adapt them to specific physical contexts. In this article we consider refinements that (i) incorporate
into a classical theory the effects of submacroscopic slips and separations (disarrangements) or that (ii) adapt
the theory to the description of thin bodies. Refinements of the type (i) are intended to describe finely layered
bodies such as a stack of papers, granular bodies such as a pile of sand, or bodies with defects such as a metal
bar. Those of type (ii) are intended to provide descriptions of membranes such as a sheet of rubber, descriptions
of thin plates such as a sheet of metal, and descriptions of fibered thin bodies such as a sheet of paper. There
are available a variety of approaches for incorporating disarrangements and for adaptation to the case of thin
bodies: examples of refinements of type (i) are mechanical theories of no-tension materials [5,21,28], of granular
media [1,24,33], of single and polycrystals [25,36], and of elastic bodies in the multiscale geometrical setting
of structured deformations [22,34], while for refinements of type (ii) the method of dimension reduction via
Γ -convergence [12,26,27] and the method of dimension reduction via Taylor expansions [20] provide examples.

Our goal in this paper is to implement in succession refinements of both types, starting from a classical,
energetic description of three-dimensional elastic bodies. Specifically, for a refinement of type (i) we choose the
context of structured deformations to incorporate the effects of submacroscopic slips and separations into a
refined energetic response, while for a refinement of type (ii) we employ the method of dimension reduction via
Γ -convergence to obtain a refined energetic response. With the starting point a three-dimensional body with
a given energetic response, the two types of refinements can be carried out in two different orders, and each
order of applying the two types of refinements will result in an energetic description of a two-dimensional body
undergoing submacroscopic disarrangments, as indicated below in Figure 1:

3d-body

2d-body 3d-body with disarrangements

2d-body with disarrangements 2d-body with disarrangements

(ii) (i)

(i) (ii)

Fig. 1 The two paths for refinements of classical continuum theories: (i) structured deformations (SD) and (ii) dimension
reduction (DR).

The right-hand path above begins with the incorporation of disarrangements (i) and then applies dimen-
sion reduction (ii), while the left-hand path reverses the order. We consider in this paper the nature of the
energetic responses obtained at each step in the two paths and whether or not the two-dimensional body with
disarrangements obtained via the left-hand path above has the same energetic response as that obtained via
the right-hand path.

Incorporation of disarrangements via structured deformations (i) replaces a vector field u that maps a three-
dimensional body into three-dimensional space by a pair (g,G), where g also maps the three-dimensional body
into three-dimensional space and G is a matrix-valued field that gives the contributions at the macroscopic
level of submacroscopic deformations without disarrangements. The matrix-valued field ∇g − G then gives
the contributions at the macroscopic level of submacroscopic deformations due to disarrangments. Dimension
reduction (ii) replaces the vector field u by a pair (u, d) of vector fields defined on a two-dimensional body,
where u places the two-dimensional body into three-dimensional space and d is a ”director field” on the
two-dimensional body that is a geometrical residue of the passage from a three-dimensional body to a two-
dimensional body. In the diagram above, both (i) and (ii) begin with one and the same energy that depends
only upon the field u: (i) results in an energy that depends upon the pair (g,G), while (ii) results in an energy
that depends on the pair (u, d). When (i) and (ii) are applied consecutively, in either order, the resulting energy
depends on a triple of fields (g,G, d) defined on a two-dimensional body. The mathematical properties of these
fields and the relation between the energy responses at each stage are summarized in the remainder of this
introduction.
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1.1 Statement of the problem and results

Let ω ⊂ R2 be a bounded open set, let ε > 0, and let Ωε := ω×(− ε2 ,
ε
2 ). We recall that the set of special functions

of bounded variation on Ωε consists of those BV functions whose distributional derivative has no Cantor part,
namely SBV (Ωε;R3) := {u ∈ BV (Ωε;R3) : Dcu = 0} (see Section 2.2). For a function u ∈ SBV (Ωε;R3),
consider the energy

Eε(u) :=

∫
Ωε

W3d(∇u(x)) dx+

∫
Ωε∩S(u)

h3d
(
[u](x), ν(u)(x)

)
dH2(x) (1.1)

where S(u) is the jump set of u, [u] is the jump of u across S(u), and ν(u) is the unit normal vector to S(u).
The volume and surface energy densities W3d : R3×3 → [0,+∞) and h3d : R3 × S2 → [0,+∞) are continuous
functions satisfying the following hypotheses:

(H1) There exists a constant cW > 0 such that growth conditions from above and below are satisfied

1

cW
|A|p 6W3d(A), (1.2)

|W3d(A)−W3d(B)| 6 cW |A−B|(1 + |A|p−1 + |B|p−1), (1.3)

for any A,B ∈ R3×3, and for some p > 1.
(H2) There exists a constant ch > 0, such that for all (λ, ν) ∈ R3 × S2

1

ch
|λ| 6 h3d(λ, ν) 6 ch|λ|.

(H3) h3d(·, ν) is positively 1-homogeneous: for all t > 0, λ ∈ R3

h3d(tλ, ν) = t h3d(λ, ν).

(H4) h3d(·, ν) is subadditive: for all λ1, λ2 ∈ R3

h3d(λ1 + λ2, ν) 6 h3d(λ1, ν) + h3d(λ2, ν).

Remark 1 (i) The coercivity condition (1.2) in (H1), although useful to obtain Lp boundedness of the gradients,
is not physically desirable. It can be removed following the argument in [15, proof of Proposition 2.22, Step 2]:

if W3d is not coercive, one can consider Wβ
3d(·) := W3d(·) + β| · |p and then take the limit as β → 0.

(ii) By fixing B in (1.3), one can easily show that W3d satisfies also a growth condition of order p, that is, there
exists a constant C > 0 such that for every A ∈ R3×3

W3d(A) 6 C(1 + |A|p). (1.4)

Under assumptions (H1)–(H4), we carry out both a procedure of dimension reduction as ε→ 0 to obtain an
energy functional defined on the cross–section ω, and a procedure of relaxation to obtain an energy functional
defined on structured deformations. The two procedures performed consecutively result in a doubly relaxed
energy that may depend upon the order chosen. We will perform the two processes in both possible orders
and compare the doubly relaxed energies. The schematic description of the two possible orders in Figure 1
now takes the form in Figure 2. As indicated in Figure 2, we derive formulas for bulk and interfacial densities
obtained on the left-hand path and for those obtained via the right-hand path.

The technical background for structured deformations and dimension reduction can be found in the following
literature:

(i) for structured deformations, we use the techniques introduced in [15], where the relaxation process is
obtained by combining the blow-up method of [23] with the construction of suitable approximating sequences
by means of Alberti’s theorem [2];

(ii) for dimension reduction, we employ the classical approach [26,27] of rescaling the spatial variable to write
the energy in the domain Ω = ω × (−1/2, 1/2) and rescale the energy by dividing it by ε.

Nevertheless, the sequential application of (i) and (ii) one after the other in both orders requires some non-trivial
adaptations which are detailed in Remark 2.

We now summarize in abbreviated form the main results of this paper, and we refer the reader to Sections
3 and 4 for more detailed versions.
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W3d, h3d

W3d,2d, h3d,2d W3d,SD, h3d,SD

W3d,2d,SD, h3d,2d,SD W3d,SD,2d, h3d,SD,2d

DR SD

SD DR

Fig. 2 Energy densities for the two paths for dimension reduction (DR) and structured deformations (SD).

The left-hand path According to the diagram in Figure 2, we first perform (DR) and then (SD). Following
(ii), we relax the energies Fε(u) := 1

εEε(u) defined for u ∈ SBV (Ωε;R3) to an energy F3d,2d(u, d) defined for

pairs (u, d) ∈ SBV (ω;R3) × Lp(ω;R3). The deformation u(xα) is the limit of deformations un(xα, x3), where
the dependence on the out-of-plane variable vanishes in the limit, whereas the vector d emerges as a weak limit
of the out-of-plane deformation gradient [9,10].

Theorem (Theorem 11) Given a pair (u, d) ∈ SBV (ω;R3)×Lp(ω;R3), the relaxed energy F3d,2d(u, d) de-
fined in (3.2) admits the integral representation (3.3), where the relaxed energy densities W3d,2d : R3×2 ×R3 →
[0,+∞) and h3d,2d : R3×S1 → [0,+∞) are given by (3.4) and (3.5), respectively.

In Proposition 12 we prove that the densities W3d,2d and h3d,2d satisfy the hypotheses of the relaxation method
for structured deformations of [15], which leads to the relaxed energy F3d,2d,SD(g,G, d) defined for (g,G, d) ∈
SBV (ω;R3)×L1(ω;R3×2)×Lp(ω;R3)→ [0,+∞) and to the following theorem.

Theorem (Theorem 15) Given a triple (g,G, d) ∈ SBV (ω;R3)×L1(ω;R3×2)×Lp(ω;R3), the relaxed energy
F3d,2d,SD(g,G, d) defined in (3.30) admits the integral representation (3.31), where the relaxed energy densities
W3d,2d,SD : R3×2×R3×2×R3 → [0,+∞) and h3d,2d,SD : R3×S1 → [0,+∞) are given by (3.32) and (3.33),
respectively.

The right-hand path According to the diagram in Figure 2, we first perform (SD) and then (DR). Fol-
lowing (i), the assumptions (H1)–(H4) allow us to apply directly [15, Theorem 2.17] to obtain a represen-
tation theorem for the relaxed energy F3d,SD : SBV (Ω;R3) × L1(Ω;R3×2) → [0,+∞) defined for struc-

tured deformations (g,G\3). Strictly speaking, the structured deformations under consideration are pairs
(g, (G\3|∇3g)) ∈ SBV (Ω;R3)× L1(Ω;R3×3), where for each A ∈ R3×2 and q ∈ R3×1, (A|b) ∈ R3×3 is formed
from the two columns of A and the single column of q. Because the 3 × 3 matrix values of (g, (G\3|∇3g)) are
determined by the pair of fields (g,G\3), we allow this abuse of terminology and notation.

Theorem (Theorem 16) Given a pair (g,G\3) ∈ SBV (Ω;R3) × L1(Ω;R3×2), the relaxed energy density
F3d,SD(g,G\3) defined in (4.1) admits the integral representation (4.2), where the relaxed energy densities
W3d,SD : R3×3 × R3×2 → [0,+∞) and h3d,SD : R3 × S2 → [0,+∞) are given by (4.3) and (4.4), respectively.

Proposition 17 collects some properties of the densitiesW3d,SD and h3d,SD. Therefore, performing the dimension
reduction on the energy F3d,SD leads to the definition of the energy F3d,SD,2d : SBV (ω;R3)×L1(ω;R3×2)×
Lp(ω;R3)→ [0,+∞) for triples (g,G, d) defined on the cross–section ω, and to the following theorem.

Theorem (Theorem 18) Given a triple (g,G, d) ∈ SBV (ω;R3) × L1(ω;R3×2) × Lp(ω;R3), the relaxed
energy F3d,SD,2d(g,G, d) defined in (4.5) admits the integral representation (4.6), where the relaxed energy
densities W3d,SD,2d : R3×2×R3×2×R3 → [0,+∞) and h3d,SD,2d : R3×S1 → [0,+∞) are given by (4.7) and
(4.8), respectively.

In this case, the results follow from those in [15] for the structured deformation part (Theorem 16), and from
applying Theorem 11 for the dimension reduction part (Theorem 18).

Remark 2 We want to stress here that in both paths, the relaxation due to dimension reduction and that due
to structured deformations are distinct refinements of the classical energetics of elastic bodies: the first one
gives rise to the vector field d in the energy F3d,2d(u, d), whereas the second one gives rise to the matrix-
valued field G in the energy F3d,SD(g,G). Nevertheless, the consecutive application of the two refinements
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requires some non-trivial adaptations of the existing relaxation techniques underlying dimension reduction and
structured deformations. Specifically, the use of F3d,2d(u, d) as an initial energy for relaxation in the context
of structured deformations requires that u be a special function of bounded variation rather than a Sobolev
function. Therefore, the dimension reduction has to be carried out in the SBV setting. Moreover, the presence
of d in the initial energy F3d,2d(u, d) for the (SD) relaxation requires a new modification of the standard
relaxation techniques for structured deformations (see [31]).

In addition, in order to connect with standard applications of dimension reduction results, the inclusion
of d puts an additional constraint on the approximating sequences {un} in the (DR) relaxation, namely
1
εn

∫
I
∇3un dx3 ⇀ d in Lp(ω;R3), see (3.2).

The novelty of our approach lies partly in the incorporation of both the lack of smoothness of the function
u (as in [12]) and the constraint 1

εn

∫
I
∇3un dx3 ⇀ d in Lp(ω;R3) in (3.2) on the approximating sequence {un}

(as in [9]), and partly in the modifications required to apply the standard (SD) relaxation introduced in [15]
(see also [7]). Moreover, the condition ν(un) · e3 = 0 in (3.2) for the left-hand path and ν(gn) · e3 = 0 in
(4.5) for the right-hand path rule out the occurrence of slips and separations on surfaces with normal parallel
to the thinning direction e3 and place an additional constraint on the process of dimension reduction. The
restriction in Theorem 16 to structured deformations of the form (g, (G\3|∇3g)) is made in the same spirit for
the right-hand path, since it implies that the disarrangement matrix ∇g − (G\3|∇3g) has third column zero.

The paper is organized as follows: in Section 2 we set the notation and we recall some known results that
are useful in the sequel, especially about BV functions and Γ -convergence. In Section 3, we follow the left-hand
path of Figure 2; namely we first derive an energy on the cross–section ω and then we relax the energy to
obtain one defined on structured deformations. In Section 4, we follow the right-hand path in Figure 2: we first
relax the energy to structured deformations and then we perform the dimension reduction.

In Section 5, we compare the two doubly relaxed energies from the left-hand and right-hand paths for a
specific initial energy which is purely interfacial. Setting W3d ≡ 0 and h3d(λ, ν) = |λ · ν| in (1.1), we show that
the two paths lead to the same relaxed energy. In particular, in Proposition 19 we give explicit formulas for the
energies provided by Theorems 15 and 18, thus showing that they are equal.

In Section 6, we present the alternative relaxation procedure of [32] in which the introduction of disarrange-
ments and the thinning of the domain occur simultaneously. For the specific choice of initial energy made in
Section 5, we prove that the relaxed energy from the scheme of [32] is identically zero.

In Section 7, we summarize the main results of this research and provide an outlook for future research.

2 Preliminaries

The purpose of this section is to give a brief overview of the concepts and results that are used in the sequel.
Almost all these results are stated without proof as they can be readily found in the references given below.

2.1 Notation

Throughout the manuscript, the following notation will be employed:

- ω ⊂ R2 is a open bounded set and for 0 < ε 6 1, Ωε := ω × (− ε2 ,
ε
2 ); moreover, we denote Ω1 by Ω and

notice that Ω = ω × I, with I := (−1
2 ,

1
2 ).

- given a vector v ∈ R3, we write v := (vα, v3), where vα := (v1, v2) ∈ R2 is the vector of the first two
components of v;

- A(Ω) (resp. A(ω)) is the family of all open subsets of Ω (resp. ω);
- for all A,B ∈ A(Ω) (resp. A(ω)), A b B means that there exists a compact subset C of Ω (resp. ω) such

that A ⊂ C ⊂ B;
- M(Ω) (resp. M(ω)) is the set of finite Radon measures on Ω (resp. ω);
- LN and HN−1 stand for the N -dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff

measure in RN , respectively;
- ‖µ‖ stands for the total variation of a measure µ ∈M(Ω) (resp. M(ω));
- SN−1 stands for the unit sphere in RN ;
- Q := I3 and Q′ := I2 denote the unit cubes centered at the origin of R3 and R2, respectively;
- Qη (resp. Q′η) denotes the unit cube of R3 (resp. R2) centered at the origin with two sides perpendicular

to the vector η ∈ S2 (resp. η ∈ S1);



6 Graça Carita et al.

- Q(x, δ) := x+ δQ, Qη(x, δ) := x+ δQη in R3, and Q′(x, δ) := x+ δQ′, Q′η(x, δ) := x+ δQ′η in R2;
- for η ∈ S1, we define η̃ ∈ S2 by η̃ := (η, 0);
- C represents a generic positive constant that may change from line to line;
- limδ,n := limδ→0+ limn→∞, limk,n := limk→∞ limn→∞.

2.2 BV functions

We start by recalling some facts on functions of bounded variation which will be used afterwards. We refer to
[3] and the references therein for a detailed theory on this subject.

Only in this subsection, Ω denotes a generic open set in RN . A function u ∈ L1(Ω;Rd) is said to be of
bounded variation, and we write u ∈ BV (Ω;Rd), if its first distributional derivatives Djui are in M(Ω) for
i = 1, . . . , d and j = 1, . . . , N. The matrix-valued measure whose entries are Djui is denoted by Du. The space
BV (Ω;Rd) is a Banach space when endowed with the norm

‖u‖BV := ‖u‖L1 + ‖Du‖(Ω).

By the Lebesgue Decomposition theorem Du can be split into the sum of two mutually singular measures Dau
and Dsu (the absolutely continuous part and the singular part, respectively, of Du with respect to the Lebesgue
measure LN ). By ∇u we denote the Radon-Nikodým derivative of Dau with respect to LN , so that we can
write

Du = ∇uLN Ω +Dsu.

Let Ωu be the set of points where the approximate limits of u exists and S(u) the jump set of this function,
i.e., the set of points x ∈ Ω \Ωu for which there exists a, b ∈ RN and a unit vector ν ∈ SN−1, normal to S(u)
at x, such that a 6= b and

lim
δ→0+

1

δN

∫
{y∈Qν(x,δ):(y−x)·ν>0}

|u(y)− a| dy = 0 (2.1)

and

lim
δ→0+

1

δN

∫
{y∈Qν(x,δ):(y−x)·ν<0}

|u(y)− b|dy = 0. (2.2)

The triple (a, b, ν) is uniquely determined by (2.1) and (2.2), up to permutation of (a, b) and a change of sign
of ν, and it is denoted by

(
u+(x), u−(x), ν(u)(x)

)
.

If u ∈ BV (Ω;Rd) it is well known that S(u) is countably (N − 1)-rectifiable, i.e.,

S(u) =
∞⋃
n=1

Kn ∪K0,

whereHN−1(K0) = 0 andKn are compact subsets of C1 hypersurfaces. Furthermore,HN−1((Ω\Ωu)\S(u)) = 0
and the following decomposition holds

Du = ∇uLN Ω + [u]⊗ ν(u)HN−1 S(u) +Dcu,

where [u] := u+ − u− and Dcu is the Cantor part of the measure Du, i.e., Dcu = Dsu (Ωu).
The space of special functions of bounded variation, SBV (Ω;Rd), introduced in [16] to study free disconti-

nuity problems, is the space of functions u ∈ BV (Ω;Rd) such that Dcu = 0, i.e. for which

Du = ∇uLN + [u]⊗ ν(u)HN−1 S(u).

We next recall some properties of BV functions used in the sequel. We start with the following lemma whose
proof can be found in [15].

Lemma 3 Let u ∈ BV (Ω;Rd). There exists a sequence of piecewise constant functions un ∈ SBV (Ω;Rd) such
that un → u in L1(Ω;Rd) and

‖Du‖(Ω) = lim
n→∞

‖Dun‖(Ω) = lim
n→∞

∫
S(un)

|[un](x)| dHN−1(x).

The next result is a Lusin-type theorem for gradients due to Alberti [2] and is essential to our arguments.
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Theorem 4 Let f ∈ L1(Ω;Rd×N ). Then there exist u ∈ SBV (Ω;Rd) and a Borel function g : Ω → Rd×N
such that

Du = fLN + gHN−1 S(u),∫
S(u)

|g| dHN−1(x) 6 C‖f‖L1(Ω;Rd×N ),

for some constant C > 0. Moreover, ‖u‖L1(Ω;Rd) 6 2C‖f‖L1(Ω;Rd×N ).

2.3 Γ -convergence and relaxation

We recall now the basics of Γ -convergence: this is a notion of convergence, introduced by De Giorgi and
Franzoni [17], which is useful in the calculus of variations. It allows to study the convergence of (sequences of)
variational functionals, by identifying their variational limit. One of the most important products of the theory
of Γ -convergence is the convergence of minima (see Remark 9). We refer the reader to [11,18] for treaties on
the topic and we collect here the most important definitions and results.

Let X be a metric space and let Fn : X → R be a sequence of functions.

Definition 5 ([11, Definition 1.5]) We say that the sequence {Fn} Γ -converges in X to F : X → R if for
all x ∈ X we have

(i) (lim inf inequality) for every sequence {xn} converging to x

F (x) 6 lim inf
n→∞

Fn(xn); (2.3)

(ii) (lim sup inequality) there exists a sequence {xn} converging to x such that

F (x) > lim sup
n→∞

Fn(xn). (2.4)

The function F is called the Γ -limit of {Fn}, and we write F = Γ − limn→∞ Fn.

When X is an arbitrary topological space (in particular, it is not a metric space), a more general, topological,
definition of Γ -convergence can be given in terms of the topology of X. We refer the reader to [11, Section 1.4]
and [18, Definition 4.1] for the details.

It is not difficult to see that inequalities (2.3) and (2.4) imply that

F (x) = inf
{

lim inf
n→∞

Fn(xn) : xn → x
}

= inf
{

lim sup
n→∞

Fn(xn) : xn → x
}
, (2.5)

stating that the Γ -limit exists if and only if the two infima in (2.5) are equal. Other equivalent definitions
can be found, for instance, in [11, Theorem 1.17]; moreover, the first infimum in (2.5) justifies the following
definition.

Definition 6 ([11, Definition 1.24]) Let Fn : X → R and let x ∈ X. The quantity

Γ − lim inf
n→∞

Fn(x) := inf
{

lim inf
n→∞

Fn(xn) : xn → x
}

(2.6)

is called the Γ -lower limit of the sequence {Fn} at x.

The Γ -lower limit defined in (2.6) is useful to treat relaxation in the framework of Γ -convergence. Recall that
the operation of relaxation is useful to treat functionals that are not lower semicontinuous - and therefore the
direct method of calculus of variations cannot be applied to minimize them. Relaxing a function means to
compute its lower semicontinuous envelope.

Definition 7 ([11, Definition 1.30]) Let F : X → R be a function. Its lower semicontinuous envelope scF
is the greatest lower semicontinuous function not greater than F , that is, for every x ∈ X

scF (x) := sup{G(x) : G is lower semicontinuous and G 6 F}.

In view of [11, Proposition 1.31] and [18, Remark 4.5], relaxation is equivalent to computing the Γ -limit of a
constant sequence of functions, i.e., it corresponds to the case Fn = F for all n.



8 Graça Carita et al.

Proposition 8 (see [11, Proposition 1.32]) We have Γ − lim infn→∞ Fn = Γ − lim infn→∞ scFn.

In view of the previous proposition, the left-hand path and the right-hand path described in the Introduction
consist in the computation of two Γ -lower limits, where the order is exchanged. For simplicity, in the paper
we will use the words “Γ -lower limit of a family of functionals” and “relaxation of energies” interchangeably:
while the former is more popular in the mathematical community, the latter is more popular in the mechanical
community.

Remark 9 Among the properties that make Γ -convergence the right tool to study the convergence of functional
and related variational problems, three are particularly amenable, namely

– the compactness of Γ -convergence (see [11, Section 1.8.2], [18, Chapter 8]). In particular, the compactness
property grants the existence, for a sequence of functions Fn : X → R, of a Γ -convergent subsequence,
provided X has a countable base [18, Theorem 8.5]. Then, it is not difficult to imagine that the choice
of the topology in the convergences that define the relaxed functionals F3d,2d, F3d,2d,SD, F3d,SD, and
F3d,SD,2d below (see (3.2), (3.30), (4.1), and (4.5), respectively) is made in order to obtain good compactness
properties.

– the stability under continuous perturbations (see [11, Remark 1.7], [18, Proposition 6.21], and also [18,

Proposition 3.7] for the relaxation): if F̃ : X → R is a continuous function, then

Γ − lim inf
n→∞

(Fn + F̃ ) = Γ − lim inf
n→∞

Fn + F̃ , Γ − lim sup
n→∞

(Fn + F̃ ) = Γ − lim sup
n→∞

Fn + F̃ ,

so that if {Fn} Γ -converges to F in X, then {Fn + F̃} Γ -converges to F + F̃ in X.
– the implications regarding the convergence of minima and minimizers. The results contained in [11, Section

1.5] and [18, Chapter 7] give conditions under which the Γ -convergence of a sequence of functions Fn to
their Γ -limit F implies the convergence of the minimima

min
x∈X

F (x) = lim
n→∞

inf
x∈X

Fn(x)

and of the minimizers: if {Fn} is equi-coercive and Γ -converges to F , with a unique minimum point x0 ∈ X,
and if {xn} ⊂ X is a sequence such that xn is an εn-minimizer for Fn in X for every n, and with εn → 0+,
then xn → x0 in X and Fn(xn) → F (x0). We direct the reader to [11,18] for a precise statement of the
notions of equi-coercivity and ε-minimizer (albeit they are quite natural to understand).

We will not make use of the last two properties of Γ -convergence in this paper. We think it is worthwhile
mentioning them in the spirit of a variational treatment of the minimization of the relaxed functionals that
we obtain in our results, with the hope to convince the reader that the theorems exposed and proved in the
sequel can provide a starting point to study equilibrium configurations of thin structures in the framework of
structured deformations.

Remark 10 All the definitions and results presented above can be generalized to the case of families of func-
tionals, indexed by a continuous parameter ε. A family of functions {Fε}ε Γ -converges in X to F : X → R as
ε→ 0+ if, for every sequence εn → 0+, the functions {Fεn} Γ -converge to F in the sense of Definition 5 (see,
e.g., [11, Section 1.9]).

3 The left-hand path

In this section we relax our initial energy (1.1) by first doing dimension reduction and then by incorporating
structured deformations.

3.1 Dimension reduction

In order to perform dimension reduction, we resort to the classical approach of rescaling the spatial variable by
dividing x3 by ε and integrating over the rescaled domain Ω = ω × (−1/2, 1/2). We also rescale the functional
(1.1) by ε, defining Fε(u) := 1

εEε(u), so that we have

Fε(u) =

∫
Ω

W3d

(
∇αu

∣∣∣∣∇3u

ε

)
dx+

∫
Ω∩S(u)

h3d

(
[u], να(u)

∣∣∣∣ν3(u)

ε

)
dH2(x). (3.1)
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Let now (u, d) ∈ SBV (ω;R3)× Lp(ω;R3), let εn → 0+, and define the relaxed functional

F3d,2d(u, d) := inf

{
lim inf
n→∞

Fεn(un) : un ∈ SBV (Ω;R3), un → u in L1(Ω;R3),∫
I

∇3un
εn

dx3 ⇀ d in Lp(ω;R3), ν(un) · e3 = 0

}
.

(3.2)

In writing the convergence un → u in L1(Ω;R3) in formula (3.2), it is understood that u is extended to a
function on Ω which is independent of x3. As stated in Remark 1, the coercivity assumption (1.2) grants
boundedness of the gradients in Lp, so that ε−1

n ∇3un ⇀ d in Lp. At this stage, the field d can still depend on
the x3 variable. Following the model in [9], we consider the weak convergence of the average with respect to
the third variable to a field d(xα) depending only on the coordinates in the cross–section ω.

Theorem 11 Under the hypotheses (H1)–(H4), let (u, d) ∈ SBV (ω;R3) × Lp(ω;R3). Then every sequence
εn → 0+ admits a subsequence such that

F3d,2d(u, d) =

∫
ω

W3d,2d(∇u, d) dxα +

∫
ω∩S(u)

h3d,2d([u], ν(u)) dH1(xα), (3.3)

where W3d,2d : R3×2 × R3 → [0,+∞) and h3d,2d : R3 × S1 → [0,+∞) are given by

W3d,2d(A, d) = inf

{∫
Q′
W3d(∇αu|z) dxα +

∫
Q′∩S(u)

h3d([u], ν̃(u)) dH1(xα) :

u ∈ SBV (Q′;R3), z ∈ LpQ′−per(R
2;R3), u|∂Q′(xα) = Axα,

∫
Q′
z dxα = d

}
,

(3.4)

and, for λ ∈ R3, η ∈ S1,

h3d,2d(λ, η) = inf

{∫
Q′η∩S(u)

h3d([u], ν̃(u)) dH1(xα) : u ∈ SBV (Q′η;R3),

u|∂Q′η (xα) = γλ,η(xα), ∇u = 0, a.e.

} (3.5)

with

γλ,η(xα) :=

{
λ if 0 6 xα · η < 1

2 ,

0 if −1
2 < xα · η < 0.

(3.6)

In (3.4) and in the sequel, the notation z ∈ LpQ′−per(R
2;R3) means that the function z is defined on the unit

square Q′ and extended by periodicity to all of R2.
We set the stage for the proof of Theorem 11 by proving some properties of the energy densities defined by

(3.4) and (3.5), which will be used in the sequel.

Proposition 12 Let W3d,2d and h3d,2d be given by (3.4) and (3.5), respectively. The following properties hold:

(i) W3d,2d satisfies (1.3), namely, for each A,B ∈ R3×2 and d, e ∈ R3,

|W3d,2d(A, d)−W3d,2d(B, e)| 6 C|(A|d)− (B|e)|(1 + |(A|d)|p−1 + |(B|e)|p−1); (3.7)

(ii) h3d,2d satisfies (H2)–(H4) and it is Lipschitz continuous with respect to the variable λ;
(iii) h3d,2d is upper semicontinuous with respect to the variable η.

Proof (i) Let Πα : R3×3 → R3×2 and Π3 : R3×3 → R3 be the linear maps which select out the first two and
the third columns, respectively, of a matrix M ∈ R3×3. Note that W3d,2d(A, d) = W3d,2d(ΠαM,Π3M), for
M = (A|d). By applying [15, Proposition 5.6(i)] with M 7→W3d,2d(ΠαM,Π3M) in place of A 7→ Hp(A,A), we
obtain that (A, d) 7→ W3d,2d(A, d) is quasiconvex (see, e.g., [23, Section 2]). This, combined with (1.4), by a
standard argument by Marcellini [29, Theorem 2.1], implies that W3d,2d satisfies (3.7).
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(ii) Properties (H2)–(H4) for h3d,2d follow by standard arguments from (3.5). To prove Lipschitz continuity
in the first variable, consider λ1, λ2 ∈ R3, η ∈ S1, and ρ > 0. Let now u ∈ SBV (Q′η;R3) be admissible for
h3d,2d(λ1, η) in (3.5) and be such that

h3d,2d(λ1, η) + ρ >
∫
Q′η∩S(u)

h3d([u], ν̃(u)) dH1(xα). (3.8)

Then, v := u+ γλ2−λ1,η is an admissible function for the definition of h3d,2d(λ2, η) and, in view of the subad-
ditivity of h3d, (H2), and (3.8), we have that:

h3d,2d(λ2, η) 6
∫
Q′η∩S(v)

h3d([v], ν̃(v)) dH1(xα) 6
∫
Q′η∩S(u)

h3d([u], ν̃(u)) dH1(xα) + C|λ2 − λ1|

6 h3d,2d(λ1, η) + ρ+ C|λ2 − λ1|.

Letting ρ→ 0 and reversing the roles of u and v we conclude the proof of (ii).
(iii) The proof can be found in [7, Prop.3.6]. ut

We prove next that, for a fixed piecewise constant d ∈ Lp(ω;R3), the functional Fd3d,2d(u) := F3d,2d(u, d)

is the trace of a Radon measure. To do this, we follow arguments in [32]; we start by localizing Fd3d,2d(u), i.e.,

for an open set A ∈ A(ω), u : ω → R3, and εn → 0+, we define

Fd3d,2d(u;A) := inf

{
lim inf
n→∞

(∫
A×I

W3d

(
∇αun

∣∣∣∇3un
εn

)
dx+

∫
(A×I)∩S(un)

h3d

(
[un], να(un)

∣∣∣ν3(un)

εn

)
dH2(x)

)
:

un ∈ SBV (Ω;R3), un → u in L1,

∫
I

∇3un
εn

dx3 ⇀ d in Lp, ν(un) · e3 = 0

}
.

(3.9)

Notice that the functional defined in (3.9) depends on the particular sequence {εn} (but for simplicity we do
not write it explicitly). Then we have the following result.

Proposition 13 Let W3d : R3×3 → [0,+∞) and h3d : R3 × S2 → [0,+∞) be continuous satisfying (H1) and
(H2) and let d ∈ Lp(ω;R3) be piecewise constant. Any sequence εn → 0+ admits a subsequence εk := εn(k)

such that for u ∈ SBV (ω;R3) the set function Fd3d,2d(u; ·) defined in (3.9), is the trace of a Radon measure on

A(ω) which is absolutely continuous with respect to L2 +H1 S(u).

Proof We start by noting that, considering the admissible sequence un := u + εnx3d, by (H1) and (H2) the
following upper bound holds

Fd3d,2d(u;A) 6 C

(
L2(A) +

∫
A

|∇u|pdxα +

∫
A

|d|pdxα + ‖Du‖(A)

)
.

For each a ∈ ω with rational coordinates and for i ∈ N, consider balls B(a; ri) with radii ri and depending on
a, such that ∣∣∣∣ri − 1

i

∣∣∣∣ 6 1

i2
, B(a; ri) ⊂ ω, ‖Dsu‖(∂B(a; ri)) = 0. (3.10)

Let B(ω) be the set of all such balls and their finite unions. The set of all closed balls B(a; ri) is a fine cover of ω
(see [3, p.49]). Given a sequence εn → 0+, by a standard diagonalization argument, we can take an appropriate
subsequence εk := εn(k) such that, for each B ∈ B(ω), we may find a sequence uk (depending on B) such that

uk → u in L1,

∫
I

∇3uk
εk

dx3 ⇀ d in Lp, ν(uk) · e3 = 0, (3.11)

and

Fd3d,2d(u;B) = lim
k→∞

(∫
B×I

W3d

(
∇αuk

∣∣∣∇3uk
εk

)
dx+

∫
(B×I)∩S(uk)

h3d

(
[uk], να(uk)

∣∣∣ν3(uk)

εk

)
dH2(x)

)
. (3.12)
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Next, we prove the following subadditivity property: for every B,B1, B2 ∈ A(ω) such that B1 b B b B2, we
have that

Fd3d,2d(u;B2) 6 Fd3d,2d(u;B) + Fd3d,2d(u;B2\B1). (3.13)

To this end, for each B ∈ A(ω), define the Radon measure

∆(B) := C

(
L2(B) +

∫
B

|d|pdxα +

∫
B

|∇u|pdxα + ‖Dsu‖(B)

)
.

For fixed ρ > 0 consider an open set Bρ ∈ B(ω) such that Bρ ⊂ B. Using the Besicovitch covering theorem, we
can find Aρ ∈ B(ω) such that Aρ ⊂ B2\B1 and

∆
(
(B2 \B1) \Aρ

)
< ρ.

Note that we can choose the sets above such that there exists an open set Ã with Lipschitz boundary and with
B1 b Ã b Bρ and with ∂Ã ⊂ Aρ. Now, consider {u1k} ∈ SBV (Aρ;R3) and {u2k} ∈ SBV (Bρ;R3) satisfying
(3.11) and (3.12), and define

ũk :=


u1k in Aρ \ Ã
u2k in Ã
uk otherwise in B2,

where uk(xα, x3) := u(xα) + εkx3d(xα). Notice that ũk ∈ SBV (B2;R3) by [3, Proposition 3.21]. Then we have
that

Fd3d,2d(u;B2) 6 lim
k→∞

(∫
B2×I

W3d

(
∇αũk

∣∣∣∇3ũk
εk

)
dx+

∫
(B2×I)∩S(ũk)

h3d([ũk], ν̃α(ũk)) dH2(x)

)
6 Fd3d,2d(u;Aρ) + Fd3d,2d(u;Bρ) +∆

(
(B2 \B1) \Aρ

)
6 Fd3d,2d(u;Aρ) + Fd3d,2d(u;Bρ) + ρ

6 Fd3d,2d(u;B2 \B1) + Fd3d,2d(u;B) + ρ.

Note that, since Aρ \ Ã b Aρ, Ã b Bρ and by (3.10), the jumps of ũk in the transition layers are included in
the computations above. By letting ρ→ 0, we have that (3.13) holds.

In the following, let uk = uωk denote an appropriate sequence for which (3.12) holds in ω. Define the sequence
of bounded Radon measures

Λk(A) :=

∫
A×I

W3d

(
∇αuk

∣∣∣∇3uk
εk

)
dx+

∫
(A×I)∩S(uk)

h3d([uk], ν̃α(uk)) dH2(x),

for A ∈ A(ω) and extract a subsequence (not relabeled) such that Λk
∗
⇀ Λ. In order to complete the proof we

show that for every A ∈ A(ω) we have that

Fd3d,2d(u;A) = Λ(A).

Note first that for any A ∈ A(ω), open set, the following inequality holds

Fd3d,2d(u;A) 6 Λ(A). (3.14)

Given B ∈ A(ω), let ρ > 0 and consider W b B such that Λ(B\W ) < ρ. Then, since Λ(ω) = Λ(ω), by (3.13)
and (3.14) we have that

Λ(B) 6 Λ(W ) + ρ

= Λ(ω)− Λ(ω \W ) + ρ

6 Fd3d,2d(u;ω)−Fd3d,2d(u;ω \W ) + ρ

6 Fd3d,2d(u;B) + ρ.

Letting ρ→ 0 we have that

Λ(B) 6 Fd3d,2d(u;B). (3.15)
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Finally, it remains to prove the reverse inequality. Let now K ⊂ B be a compact set such that ∆(B \K) < ρ
and choose an open set D such that K b D b B. Again, by (3.13) we have

Fd3d,2d(u;B) 6 Fd3d,2d(u;D) + Fd3d,2d(u;B \K)

6 Λ(D) +∆(B \K)

6 Λ(B) + ρ,

which, together with (3.15) and letting ρ→ 0, yields the result. ut

We are now ready to prove Theorem 11. Notice that, by Proposition 13, for every sequence {εn}, the

localized functional Fd3d,2d(u; ·) defined in (3.9) is the trace of a Radon measure on A(ω), so that it admits an
integral representation.

We divide the proof of Theorem 11 into four steps, each of which relies on the blow-up method of [23]: we
will prove upper bounds for the Radon-Nikodým derivatives of F3d,2d(u, d) with respect to L2 and H1 S(u) at
a point x0 ∈ ω (see (3.19) and (3.24), respectively), and lower bounds for the Radon-Nikodým derivatives of a
certain measure µ (the weak-* limit of the measures µn defined in (3.25)) with respect to L2 and |[u]|H1 S(u)
(see (3.28) and (3.29), respectively). We will find that these upper and lower bounds are indeed independent
of the particular choice of the sequence εn → 0+, so that estimates (3.19), (3.24), (3.28), and (3.29) will suffice
to conclude the proof of the theorem.

Moreover, we point out the connection with the theory of Γ -convergence presented in Section 2.3: Steps
1 and 2 correspond to proving the lim sup inequality (2.4), Steps 3 and 4 correspond to proving the lim inf
inequality (2.3).

Step 1 (Upper bound – bulk) We start by noticing that, by Lemma 3 and (1.3), it is enough to derive the
upper bound for the case where d is piecewise constant. In fact, given un admissible for F3d,2d(u, d) and dk
a piecewise constant approximation of d given by Lemma 3, for each k we can obtain an admissible sequence
uk,n for F3d,2d(u, dk) by defining uk,n := un + hk,n, where hk,n is provided by Theorem 4 in such a way that

∇hk,n = εn
(

0
∣∣∣dk − ∫I ∇3un

εn
dx3

)
and ||hk,n||L1(Ω;R3) 6 Cεn

(
||dk||Lp(ω;R3) + ||d||Lp(ω;R3)

)
. Therefore,

F3d,2d(u, d) 6 lim inf
k→∞

F3d,2d(u, dk) 6 lim sup
k→∞

(∫
ω

W3d,2d(∇u, dk) dxα +

∫
ω∩S(u)

h3d,2d([u], ν(u)) dH1(xα)

)
,

and the result follows because W3d,2d has growth of order p (see Proposition 12). Let (u, d) ∈ SBV (ω;R3) ×
Lp(ω;R3), with d piecewise constant, and let x0 ∈ ω be chosen such that

lim
δ→0

1

δ2
|Dsu|(Q′(x0, δ)) = 0, (3.16)

lim
δ→0

1

δ2

∫
Q′(x0,δ)

∣∣d(xα)− d(x0)
∣∣p dxα = 0, (3.17)

lim
δ→0

1

δ2

∫
Q′(x0,δ)

|∇αu(xα)−∇αu(x0))|p dxα = 0. (3.18)

It suffices to prove

dF3d,2d(u, d)

dL2
(x0) 6W3d,2d(∇αu(x0), d(x0)). (3.19)

To this end, fix ρ > 0 and choose u ∈ SBV (Q′;R3) and z ∈ LpQ′−per(R
2;R3) piecewise constant such that

u|∂Q′(xα) = ∇αu(x0)xα,

∫
Q′
z(xα) dxα = d(x0), (3.20)

and

W3d,2d(∇αu(x0), d(x0)) + ρ >
∫
Q′
W3d(∇αu|z) dxα +

∫
Q′∩Su

h3d([u], ν̃) dH1(xα). (3.21)
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We now construct a sequence uδ,n of competitors for the problem (3.2) by setting ζ(xα) := u(xα) −
∇αu(x0)xα (extended by periodicity to all of R2) and defining

uδ,n(xα, x3) := u(xα) +
δ

n
ζ
(n(xα − x0)

δ

)
+ εnx3

(
d(xα)− d(x0) + z

(n(xα − x0)

δ

))
.

Clearly, uδ,n ∈ SBV (Ω;R3), limδ,n uδ,n = u in L1(Ω;R3), and

∫
I

∇3un(xα, x3)

εn
dx3 = d(xα)− d(x0) + z

(n(xα − x0)

δ

)
. (3.22)

It is not difficult to see that z(n(xα − x0)/δ) ⇀
∫
Q′
z(xα) dxα in Lp(ω;R3), so that, by (3.20), the right-hand

side of (3.22) converges to d(xα) as n→∞. Notice that in the construction of uδ,n the normal ν(uδ,n) satisfies
ν(uδ,n) · e3 = 0.

Since d and z are piecewise constant, we have

∇αuδ,n(xα, x3) = ∇αu(xα) +∇αζ
(n(xα − x0)

δ

)
= ∇αu(xα) +∇αu

(n(xα − x0)

δ

)
−∇αu(x0).

Therefore, recalling (H1)–(H4),

dF3d,2d(u, d)

dL2
(x0) 6 lim

δ,n

1

δ2

{∫
Q′(x0;δ)×I

W3d

(
∇αuδ,n

∣∣∣∇3uδ,n
εn

)
dx

+

∫
(Q′(x0;δ)×I)∩S(uδ,n)

h3d([uδ,n], ν̃α(uδ,n)) dH2(x)

}
6 lim

δ,n

1

δ2

{∫
Q′(x0;δ)

W3d

(
∇αu

(n(xα − x0)

δ

)∣∣∣z(n(xα − x0)

δ

))
dxα

+

∫
Q′(x0;δ)∩(x0+

δ
n
S(u))

h3d

( δ
n

[u]
(n(xα − x0)

δ

)
, ν̃α(u)

)
dH1(xα)

}
+ lim
δ→0

1

δ2

∫
Q′(x0;δ)

[
|∇αu(xα)−∇αu(x0)|p + |d(xα)− d(x0)|p

]
dxα

+ lim
δ,n

1

δ2
|Dsu|(Q′(x0; δ))

+ lim
δ→0

1

δ2
lim sup
n→∞

εn

{∫
(Q′(x0;δ)×I)∩S(d)

|x3(d(xα)− d(x0))| dH1(xα)dL1(x3)

+

∫
(Q′×I)∩S(z)

δ

n
|x3z(yα)| dH1(yα)dL1(x3)

}
,

(3.23)

where in the last integral we performed the change of variables yα := n(xα − x0)/δ. By the same change of
variables and noticing that, by (3.16), (3.17), (3.18), and the hypothesis on z, the last four terms in (3.23)
vanish, we are left with

dF3d,2d(u, d)

dL2
(x0) 6 lim

δ,n

1

n2

{∫
nQ′

W3d(∇αu(yα)|z(yα)) dyα +

∫
nQ′∩S(u)

h3d([u](yα), ν̃(u)) dH1(yα)

}
6
∫
Q′
W3d(∇αu(yα)|z(yα)) dyα +

∫
Q′∩S(u)

h3d([u](yα), ν̃(u)) dH1(yα)

6W3d,2d(∇αu(x0), d(x0)) + ρ,

where we have used the periodicity of the functions z and ζ, assumption (H2), and (3.21). The arbitrary choice
of ρ yields now (3.19). By approximating with piecewise constant functions (see Lemma 3) and using (1.3), the
estimate is extended to a general z.
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Step 2 (Upper bound – surface) Following an argument in [4], and taking into account Proposition 12, it suffices
to prove the upper bound for the case where u is of the form u = λχU , where χU denotes the characteristic
function of a set of finite perimeter U ⊂ ω and λ ∈ R3. Moreover, by standard arguments we can restrict
ourselves to the case where U is a polygonal set. Given x0 ∈ S(u), writing for simplicity ν := ν(u)(x0), by the
definition of h3d,2d, for any ρ > 0 we may find u ∈ SBV (Q′ν ;R3), such that ∇αu = 0 a.e., u|∂Q′ν = γλ,ν , and∫

Q′ν∩S(u)
h3d([u], ν̃) dH1(xα) 6 h3d,2d([u], ν(u))(x0) + ρ.

We claim that
dF3d,2d(u, d)

dH1 S(u)
(x0) 6 h3d,2d([u](x0), ν(u)(x0)), (3.24)

for H1− a.e. x0 ∈ ω ∩ S(u). Now put λ := [u](x0), and since it is not restrictive to assume that ν = e2, define

Dn(x0, δ) :=

(
Q′(x0, δ) ∩

{
x :

∣∣∣∣(x− x0) · e2
∣∣∣∣ < δ

2n

})
× I,

Q+(x0, δ) :=
(
Q′(x0, δ) ∩ {x : (x− x0) · e2 > 0}

)
× I,

Q−(x0, δ) :=
(
Q′(x0, δ) ∩ {x : (x− x0) · e2 < 0}

)
× I.

Let

uδ,n(xα, x3) :=


λ+ εnx3d, in Q+(x0, δ)\Dn(x0, δ),

u

(
n(xα − x0)

δ

)
in Dn(x0, δ),

εnx3d in Q−(x0, δ)\Dn(x0, δ).

Clearly, uδ,n → u in L1(Q(x0, δ);R3) (that is, it converges to ũ(xα, x3) := u(xα)), 1
εn

∫
I
∇3uδ,n dx3 ⇀ d in

Lp(Q(x0, δ);R3), both as n→∞, and ν(uδ,n) · e3 = 0.
Thus,

dF3d,2d(u, d)

dH1 S(u)
(x0) 6 lim

δ,n

1

δ

{∫
Q′(x0,δ)×I

W3d

(
∇αuδ,n

∣∣∣∣∇3uδ,n
εn

)
dx

+

∫
(Q′(x0,δ)×I)∩S(uδ,n)

h3d

(
[uδ,n], να(uδ,n)

∣∣∣∣ν3(uδ,n)

εn

)
dH2(x)

}
= lim

δ,n

1

δ

{∫
(Q′(x0,δ)×I)\Dn(x0,δ)

W3d(0|d) dx

+

∫
[(Q′(x0,δ)×I)\Dn(x0,δ)]∩(S(d)×I)

h3d
(
εnx3[d], ν̃(d)

)
dH2(x)

+

∫
Dn(x0,δ)

W3d

(
n

δ
∇αu

(
n(xα − x0)

δ

)∣∣∣∣ 0) dx

+

∫
Dn(x0,δ)∩{x0+

δ
n
S(u)}×I

h3d

(
[u]

(
n (xα − x0)

δ

)
, ν̃(u)

)
dH2(x)

}
.

Using now the growth conditions on W3d and h3d and changing variables one obtains

dF3d,2d(u, d)

dH1 S(u)
(x0) 6 lim

δ,n

1

δ

{∫
Q′(x0,δ)

C(1 + |d|p) dxα + ch εn|Dsd|(Q′(x0, δ))

+

∫
Dn(x0,δ)

W3d

(n
δ
∇αu

(n(xα − x0)

δ

)∣∣∣0)dx

+

∫
Dn(x0,δ)∩{x0+

δ
n
S(u)}×I

h3d

(
[u]
(n(xα − x0)

δ

)
, ν̃(u)

)
dH2(x)

}
6 lim

δ,n

{
δ

n2

∫
nQ′×I

W3d

(n
δ
∇αu(yα)

∣∣∣0)dy

+
1

n

∫
(nQ′×I)∩(S(u)×I)∩{y·e2|6 1

2
}
h3d([u](yα), ν̃(u))dH2(y)

}
,
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since, without loss of generality, the piecewise constant function d can be taken to belong to L∞ (see the proof
of Lemma 3). Moreover, since ∇αu = 0, we have that:

lim
δ,n

δ

n2

∫
nQ′×I

W3d

(n
δ
∇αu(yα)

∣∣∣0)dy 6 Cδ,

and this term also vanishes in the limit δ → 0. We then have that

dF3d,2d(u, d)

dH1 S(u)
(x0) 6 lim

δ,n

1

n

∫
(nQ′×I)∩(S(u)×I)∩{y·e2|6 1

2
}
h3d([u](yα), ν̃(u))dH2(y)

6 lim inf
n→∞

1

n

∫
(nQ′×I)∩(S(u)×I)∩{y·e2|6 1

2
}
h3d([u](yα), ν̃(u))dH2(y)

=

∫
Q′∩S(u)

h3d([u], ν̃(u)) dH1 6 h3d,2d(λ, ν) + ρ,

from which (3.24) follows.

Step 3 (Lower bound – bulk) Given a set B ∈ A(ω), let un ∈ SBV (Ω;R3) be an admissible sequence for
F3d,2d(u, d)(B) with µn the corresponding sequence of nonnegative Radon measures given by

µn(B) :=

∫
B×I

W3d

(
∇αun

∣∣∣∇3un
εn

)
dx+

∫
(B×I)∩S(un)

h3d([un], ν̃(un))dH2(x). (3.25)

Let x0 ∈ ω satisfying

lim
δ→0

1

δ3

∫
Q′(x0,δ)

|u(xα)− u(x0)−∇u(x0)(x0 − xα)|dxα = 0, (3.26)

lim
δ→0

1

δ2

∫
Q′(x0,δ)

|d(xα)− d(x0)|p dxα = 0. (3.27)

By (H1) and (H2) µn is bounded and so, up to subsequence (not relabeled), there exists a positive Radon

measure µ such that µn
∗
⇀ µ. In addition, choose x0 ∈ ω such that dµ

dL2 (x0) exists and is finite. Moreover, there
exists a sequence of radii δk → 0 such that µ(∂Q(x0, δk)) = 0 for every k ∈ N.

It suffices to prove that

dµ

dL2
(x0) >W3d,2d(∇αu(x0), d(x0)) for L2− a.e. x0 ∈ ω. (3.28)

We have

dµ

dL2
(x0) = lim

k,n

1

δ2k
µn(Q(x0, δk))

= lim
k,n

1

δ2k

(∫
Q′(x0,δk)×I

W3d

(
∇αun

∣∣∣∇3un
εn

)
dx+

∫
(Q′(x0,δk)×I)∩S(un)

h3d([un], ν̃(un)) dH2(x)

)
.

Performing the change of variables yα = (xα − x0)/δk one obtains

dµ

dL2
(x0) = lim

k,n

{∫
Q′×I

W3d

(
∇αun(x0 + δkyα, y3)

∣∣∣∇3un(x0 + δkyα, y3)

εn

)
dy

+
1

δk

∫
(Q′×I)∩{(yα,y3):(x0+δkyα,y3)∈S(un)}

h3d([un](x0 + δkyα, y3), ν̃α(un)(x0 + δkyα, y3)) dH1(yα)dy3

}
.

Defining

uk,n(y) :=
un(x0 + δkyα, y3)− u(x0)

δk
,

we have

∇αuk,n(y) = ∇αun(x0 + δkyα, y3), ∇3uk,n(y) =
1

δk
∇3un(x0 + δkyα, y3), [uk,n](y) =

1

δk
[un](x0 + δkyα, y3),
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and so, recalling (H3),

dµ

dL2
(x0) = lim

k,n

{∫
Q

W3d

(
∇αuk,n

∣∣∣δk∇3uk,n
εn

)
dy +

∫
Q∩S(uk,n)

h3d([uk,n], ν̃α(un,k))dH2(y)

}
.

Choose n(k) ∈ N such that ε′k := δ−1
k εn(k) → 0; we have that the sequence vk(·) := uk,n(k)(·) converges in

L1 to ∇αu(x0)(·) by (3.26) and, by (3.27),∫
I

∇3vk(y)

ε′k
dy3 ⇀ d(x0) in Lp(ω;R3).

Then
dµ

dL2
(x0) = lim

k→∞

{∫
Q

W3d

(
∇αvk

∣∣∣∇3vk
ε′k

)
dy +

∫
Q∩S(vk)

h3d([vk], ν̃(vk)) dH2(y)

}
.

Next, we change slightly the sequence, in order to comply with the boundary condition in (3.4). We follow
similar arguments to what is done in [15]. Let Q′j := {yα ∈ Q′ : dist(yα, ∂Q

′) > 1
j } such that

lim
k→∞

∫
∂(Q′j×I)

|∇u(x0)yα − vk(yα, y3)| dH2(y) = 0

and define

vk,j(y) :=

{
vk(y) in Q′j × I,
∇αu(x0)yα in (Q′ \Q′j)× I.

Clearly, vk,j → vk in L1(Q;R3) as j →∞, and therefore, recalling (H1) and (H2),

dµ

dL2
(x0) > lim

k,j

{∫
Q

W3d

(
∇αvk,j

∣∣∣∇3vk,j
ε′k

)
dy +

∫
Q∩S(vk,j)

h3d([vk,j ], ν̃α(vk,j)) dH2(y)

}
.

Following our argument in Step 1, for fixed k we apply Theorem 4 to construct a function gk,j ∈ SBV (Q;R3)

such that ∇gk,j = ε′k

(
0
∣∣∣d(x0)−

∫
I

∇3vk,j
ε′k

dy3
)

and ‖gk,j‖L1(Q;R3) 6 Cε′k

∥∥∥d(x0)−
∫
I

∇3vk,j
ε′k

dy3

∥∥∥
L1(Q′;R3)

. It is

not difficult to verify that the function wk,j := vk,j + gk,j is a competitor for W3d,2d(∇αu(x0)|d(x0)), so that,
recalling again (H1) and (H2),

dµ

dL2
(x0) > lim

k,j

{∫
Q

W3d

(
∇αwk,j

∣∣∣∇3wk,j
ε′k

)
dy +

∫
Q∩S(wk,j)

h3d([wk,j ], ν̃α(wk,j))dH2(y)
}

>W3d,2d(∇αu(x0)|d(x0)),

which proves (3.28).

Step 4 (Lower bound – surface) Consider the sequence of functions un ∈ SBV (Ω;R3) as at the beginning of
Step 3, and let µn be the corresponding sequence of Radon measures given by (3.25). Recalling that µ is their
weak-* limit, we claim that for H1 S(u)-a.e. x0 ∈ S(u)

dµ

d(|[u]|H1 S(u))
(x0) >

1

|[u]|(x0)
h3d,2d([u](x0), ν(u)(x0)). (3.29)

Since
(
∇αun

∣∣∣∇3un
εn

)
is bounded in Lp(Ω;R3×3), we have that ∇un ⇀ (H|0) in Lp(Ω;R3×3) (up to a subse-

quence), for some H ∈ Lp(ω;R3×2). Let x0 ∈ ω ∩ S(u) be such that
dµ

dH1 S(u)
(x0) exists, and consider a

sequence δk → 0 such that, denoting ν := ν(u)(x0),

lim
k→∞

|[u]|H1(S(u) ∩Q′ν(x0, δk)) = |[u]|(x0),

lim
k→∞

1

δk

∫
Q′ν(x0,δk)

|H(xα)|dxα = 0.



Dimension reduction and structured deformations 17

Then

dµ

d(|[u]|H1 S(u))
(x0) =

1

|[u]|(x0)
lim
k,n

1

δk

{∫
Q′ν(x0,δk)×I

W3d

(
∇αun

∣∣∣∇3un
εn

)
dx

+

∫
(Q′ν(x0,δk)×I)∩S(un)

h3d([un], ν̃α(un))dH1(xα)dx3

}
=

1

|[u]|(x0)
lim
k,n

{
δk

∫
Q′ν×I

W3d

(
∇αun(x0 + δkyα, y3)

∣∣∣∇3un(x0 + δkyα, y3)

εn

)
dy

+

∫
(Q′ν×I)∩{yα:(x0+δkyα,y3)∈S(un)}

h3d([un](x0 + δkyα, y3), ν̃(un)(x0 + δkyα, y3))dH1(yα)dy3

}
=

1

|[u]|(x0)
lim
k,n

{∫
Q′ν×I

W3d

(∇αuk,n
δk

∣∣∣∇3uk,n
εn

)
dy

+

∫
(Q′ν×I)∩S(uk,n)

h3d([uk,n], ν̃(uk,n))dH1(yα)dy3

}
,

where un,k(y) := un(x0 + δkyα, y3) − (u)−(x0). By a diagonalization argument let vk := uk,n(k) so that

limk,n

∥∥vk − γ[u](x0),ν

∥∥
L1(Q′ν×I)

= 0, ∇vk ⇀ 0 in Lp(Q′ν × I;R3) and

dµ

d(|[u]|H1 S(u))
(x0) >

1

|[u]|(x0)
lim inf
k→∞

∫
(Q′ν×I)∩S(vk)

h3d([vk], ν̃α(vk)) dH2(y).

Following the arguments in [15, Proposition 4.2], we can obtain a new sequence wk which is a competitor for
the cell problem (3.5), which implies (3.29). This concludes the proof of Theorem 11. ut

3.2 Structured deformations

In oder to pass to structured deformation for the functional in (3.3), we shall use the relaxation theory developed
in [15] to obtain the representation Theorem 15. Given (g,G, d) ∈ SBV (ω;R3)×L1(ω;R3×2) × Lp(ω;R3), we
define the relaxed energy

F3d,2d,SD(g,G, d) := inf

{
lim inf
n→∞

(∫
ω

W3d,2d(∇un, d) dxα +

∫
ω∩S(un)

h3d,2d([un], ν(un))dH1(xα)

)
:

un ∈ SBV (ω;R3), un → g in L1(ω;R3), ∇un ⇀ G in Lp(ω;R3×2)

}
.

(3.30)

Remark 14 We notice that the presence of the field d in (3.3) introduces a dependence x 7→W3d,2d(A, d(x)) of
the bulk density on the space variable x not covered in [15]. One approach to incorporate such a dependence
on x is to require that x 7→ W3d,2d(A, d(x)) be continuous. Such a continuity requirement was introduced in
[7]. To apply directly the results contained in [7], we would need to impose a stronger regularity on the field d,
namely, we would have to require d ∈ C(ω;R3). We avoid this by applying the technique presented in [32]: we
approximate d by a sequence of piecewise constant functions dk ∈ Lp(ω;R3), and we exploit the property (3.7)
of the bulk energy density W3d,2d and the approximation result provided in [15, Lemma 2.9].

Without writing the details of the proof, we assert that these observations, together with Proposition 12,
allow us to establish the following representation theorem.

Theorem 15 Under the hypotheses (H1)–(H4), for each (g,G, d) ∈ SBV (ω;R3)×L1(ω;R3×2) × Lp(ω;R3),
the energy F3d,2d,SD(g,G, d) admits an integral representation of the form:

F3d,2d,SD(g,G, d) =

∫
ω

W3d,2d,SD(∇g,G, d) dxα +

∫
ω∩S(g)

h3d,2d,SD([g], ν(g)) dH1(xα), (3.31)
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where, for A,B ∈ R3×2, d ∈ R3,

W3d,2d,SD(A,B, d) := inf

{∫
Q′
W3d,2d(∇u(xα), d) dxα +

∫
Q′∩S(u)

h3d,2d([u], ν(u)) dH1(xα) :

u ∈ SBV (Q′;R3), u|∂Q′ = Axα,

∫
Q′
∇u dxα = B, |∇u| ∈ Lp(Q′)

} (3.32)

and, for λ ∈ R3 and η ∈ S1,

h3d,2d,SD(λ, η) := inf

{∫
Q′η∩S(u)

h3d,2d([u], ν(u)) dH1(xα) : u ∈ SBV (Q′η;R3),∇u = 0, u|∂Q′η = γλ,η

}
. (3.33)

4 The right-hand path

In this section we relax our initial energy (1.1) by first passing to structured deformations and then carrying
out the dimension reduction.

4.1 Structured deformations

For g ∈ SBV (Ωε;R3) and G\3 ∈ L1(Ωε;R3×2), define

F3d,SD(g,G\3) := inf

{
lim inf
n→∞

(∫
Ωε

W3d(∇un) dx+

∫
Ωε∩S(un)

h3d([un], ν(un)) dH2(x)

)
:

un → g in L1(Ωε;R3),∇un ⇀ (G\3|∇3g) in Lp(Ωε;R3×3)

}
.

(4.1)

An integral representation for F3d,SD follows immediately from [15, Theorem 2.17]. As stated in Remark 1,
the coercivity assumption (1.2) grants boundedness of the gradients in Lp, so that ∇un ⇀ G. In (4.1), we are
considering the case in which the limit is classical in the third component of the gradient, that is ∇3un ⇀ ∇3g.

Theorem 16 Under the hypotheses (H1)–(H4), for g ∈ SBV (Ωε;R3) and G\3 ∈ L1(Ωε;R3×2), the functional
F3d,SD(g,G\3) admits an integral representation of the form:

F3d,SD(g,G\3) =

∫
Ωε

W3d,SD(∇g,G\3) dx+

∫
Ωε∩S(g)

h3d,SD([g], ν(g)) dH2(x), (4.2)

where, for A ∈ R3×3 and B\3 ∈ R3×2,

W3d,SD(A,B\3) = inf

{∫
Q

W3d(∇u) dx+

∫
Q∩S(u)

h3d([u], ν(u)) dH2(x) :

u ∈ SBV (Q;R3), u|∂Q = Ax, |∇u| ∈ Lp(Q),

∫
Q

∇u dx = (B\3|Ae3)

} (4.3)

and, for λ ∈ R3, ν ∈ S2,

h3d,SD(λ, ν) = inf

{∫
Qν

h3d([u], ν(u)) dH2(x) : u ∈ SBV (Qν ;R3),∇u = 0 a.e., u|∂Qν = γλ,ν

}
. (4.4)

Proposition 17 Let W3d,SD and h3d,SD be defined by (4.3) and (4.4), respectively. Then

(i) W3d,SD is locally Lipschitz continuous separately in A and B\3, namely for every B\3 ∈ R3×2 and every
A1 ∈ R3×3 there exists a constant C1 > 0 such that

|W3d,SD(A1, B
\3)−W3d,SD(A2, B

\3)| 6 C1|A1 −A2|

whenever |A1 −A2| is small enough; in particular,

|W3d,SD(A1, B
\3)−W3d,SD(A2, B

\3)| 6 C1|A1 −A2|(1 + |A1|p−1 + |A2|p−1).
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Similarly, for every A ∈ R3×3 and B
\3
1 ∈ R3×2 there exists a constant C2 > 0 such that

|W3d,SD(A,B
\3
1 )−W3d,SD(A,B

\3
2 )| 6 C2|B\31 −B

\3
2 |

whenever |B\31 −B
\3
2 | is small enough; in particular,

|W3d,SD(A,B
\3
1 )−W3d,SD(A,B

\3
2 )| 6 C2|B\31 −B

\3
2 |(1 + |B\31 |

p−1 + |B\32 |
p−1);

(ii) h3d,SD satisfies (H2)–(H4).

Proof The proof of part (i) follows that of [15, Proposition 5.2]; part (ii) follows from the corresponding
properties of h3d. ut

4.2 Dimension reduction

We now apply dimension reduction to the energy F3d,SD defined in (4.2). As we did in Section 3.1, we rescale
the variables by (xα, x3) 7→ (xα, x3/ε), thereby replacing the domain of integration Ωε by Ω, and we rescale
the energy F3d,SD by dividing it by ε. Therefore, given (g,G, d) ∈ SBV (ω;R3)× L1(ω;R3×2)× Lp(ω;R3), we
seek an integral representation for the following relaxed energy

F3d,SD,2d(g,G, d) := inf

{
lim inf
n→∞

(∫
Ω

W3d,SD

((
∇αgn

∣∣∣∇3gn
εn

)
, G
)

dx

+

∫
Ω∩S(un)

h3d,SD

(
[gn],

(
να(gn)

∣∣∣ν3(gn)

εn

))
dH2(x)

)
:

gn → g in L1(Ω;R3),

∫
I

∇3gn
εn

dx3 ⇀ d in Lp(ω;R3), ν(gn) · e3 = 0

}
.

(4.5)

An analogue of Remark 14 can be made with the roles of G and d interchanged and with Proposition 17 in
place of Proposition 12, and this provides a proof of the following representation theorem.

Theorem 18 Under the hypotheses (H1)–(H4), given (g,G, d) ∈ SBV (ω;R3)× L1(ω;R3×2)× Lp(ω;R3), the
relaxed energy F3d,SD,2d defined in (4.5) admits the integral representation

F3d,SD,2d(g,G, d) =

∫
ω

W3d,SD,2d(∇g,G, d) dxα +

∫
ω∩S(g)

h3d,SD,2d([g], ν(g)) dH1(xα), (4.6)

where, for A,B ∈ R3×2, d ∈ R3,

W3d,SD,2d(A,B, d) := inf

{∫
Q′
W3d,SD((∇u(xα)|z(xα)), B) dxα +

∫
Q′∩S(u)

h3d,SD([u], ν̃(u)) dH1(xα) :

u ∈ SBV (Q′;R3), |∇u| ∈ Lp(Q′), u|∂Q′ = Axα,

z ∈ LpQ′−per(R
2;R3),

∫
Q′
z dxα = d

}
,

(4.7)

and, for λ ∈ R3, η ∈ S1,

h3d,SD,2d(λ, η) = inf

{∫
Q′η

h3d,SD([u], ν(u)) dH1(xα) : u ∈ SBV (Q′;R3), ∇u = 0 a.e., u|∂Q′ = γλ,η

}
. (4.8)

5 Comparison of the relaxed energy densities for the left- and right-hand paths

In this section we discuss the relationship between the doubly relaxed energy densities (3.31) and (4.6) obtained
in Sections 3 and 4. At present, at the level of generality of Theorems 15 and 18, an explicit comparison in
terms of whether one of the two energies is smaller than the other is not available. Nonetheless, quantitative
results can be obtained when the initial energy (1.1) has a a specific form, namely it is a purely interfacial
energy (W3d = 0) with a specific choice of the interfacial energy density h3d.

Our aim then is to compute explicitly the densities provided by the cell formulas (3.4), (3.5), (3.32), (3.33),
(4.3), (4.4), (4.7), and (4.8) starting from the initial, purely interfacial, energy density (see [8,35])

h3d(λ, ν) = |λ · ν|. (5.1)
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The left-hand path Let us consider (5.1) and let (A, d) ∈ R3×2 × R3; then (3.4) reads

W3d,2d(A, d) = inf

{∫
Q′∩S(u)

|[u] · ν̃(u)|dH1(xα) : u ∈ SBV (Q′;R3), u|∂Q′(xα) = Axα

}
= 0.

The first equality is a consequence of (5.1); the second one follows since the affine function u(xα) = Axα is
admissible and makes the integral vanish.

Let us now turn to (3.5): we claim that for λ ∈ R3, η ∈ S1, the surface energy density h3d,2s reads

h3d,2d(λ, η) = |λ · η̃|. (5.2)

In fact, the function u(xα) = γλ,η(xα) (see (3.6)) is admissible and it provides an upper bound; to obtain a
lower bound, one uses the following version of the Gauss-Green formula in SBV (see [3, Theorem 3.36] and
also [19,38,39]): for u ∈ SBV (Ω;R3) and U ⊂ Ω, there holds∫

U∩S(u)
[u] · ν(u) dH2(x) +

∫
U

div u dx−
∫
∂U

u · νU dH2(x) = 0. (5.3)

Considering the integrand in (3.5), by using the properties of the absolute value and (5.3), the same u(xα) =
γλ,η(xα) gives∫

Q′η∩S(u)
|[u] · ν̃(u)|dH1(xα) >

∣∣∣∣∣
∫
Q′η∩S(u)

[u] · ν̃(u) dH1(xα)

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂Q′η

u · ν̃Q′η dH1(xα)

∣∣∣∣∣ = |λ · η̃|,

which completes the proof of (5.2). Given (u, d) ∈ SBV (ω;R3)×Lp(ω;R3), the relaxed energy (3.3) reads then

F3d,2d(u, d) = F̂3d,2d(u) :=

∫
ω∩S(u)

|[u] · ν̃(u)|dH1(xα),

where we notice that the dependence on d is lost.
Next, we claim that, for A,B ∈ R3×2, d ∈ R3, the bulk density (3.32) is given by W3d,2d,SD(A,B, d) =

Ŵ3d,2d,SD(A,B), which is the relaxation of h3d,2d in (5.2), and reads

Ŵ3d,2d,SD(A,B) = inf

{∫
Q′∩S(u)

|[u] · ν̃(u)| dH1(xα) : u ∈ SBV (Q′;R3), u|∂Q′ = Axα,∫
Q′
∇u dxα = B, |∇u| ∈ Lp(Q′)

}
;

(5.4)

notice again that this is independent of d. We prove that, for A,B ∈ R3×2,

Ŵ3d,2d,SD(A,B) =
∣∣ tr ((A|0)− (B|0)

)∣∣ = |A11 +A22 −B11 −B22|. (5.5)

Again as before, we prove (5.5) by obtaining upper and lower bounds for Ŵ3d,2d,SD. Let u be an admissible
function for (5.4) and define uα : Q′ → R2 by uα(xα) := (u1(xα), u2(xα)). Since∫

Q′∩S(u)
|[u] · ν̃(u)|dH1(xα) =

∫
Q′∩S(uα)

|[uα] · ν(uα)|dH1(xα), (5.6)

the function uα is admissible for the minimum problem

inf

{∫
Q′∩S(v)

|[v] · ν(v)|dH1(xα) : v ∈ SBV (Q′;R2), v|∂Q′ = Âxα,

∫
Q′
∇v dxα = B̂, |∇v| ∈ Lp(Q′)

}
, (5.7)

where Â and B̂ denote the upper 2×2 sub-matrices of A and B, respectively. The lower bound for Ŵ3d,2d,SD

then follows immediately from the result in [8,35], where it is proved that the infimum in (5.7) is given by

| tr(Â− B̂)|.
In order to derive the upper bound for Ŵ3d,2d,SD, fix ε > 0 and let vε ∈ SBV (Q′;R2) admissible for (5.7)

be such that ∫
Q′∩S(vε)

|[vε] · ν(vε)|dH1(xα) 6 | tr(Â− B̂)|+ ε. (5.8)
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Using Lemma 4.3 in [30], we can construct a function v ∈ SBV (Q′) such that

v|∂Q′ = e3 ·Axα, ∇v = (B31, B32) L2-a.e. in Q′.

Then, the function wε ∈ SBV (Q′;R3) defined by wε(xα) := (vε(xα), v(xα)) is admissible for (5.4), and by (5.6)
and (5.8) we conclude that ∫

Q′∩S(wε)
|[wε] · ν̃(wε))|dH1(xα) 6 | tr(Â− B̂)|+ ε,

and the result follows from the arbitrariness of ε. Formula (5.5) is therefore proved.
Finally, we observe that the same strategy used to prove (5.2) can be used to show that for λ ∈ R3 and

η ∈ S1,
h3d,2d,SD(λ, η) = |λ · η̃|. (5.9)

Thus, in view of (5.5) and (5.9), given (g,G, d) ∈ SBV (ω;R3)×L1(ω;R3×2) × L1(ω;R3), the functional
F3d,2d,SD in (3.31) can be written as

F3d,2d,SD(g,G, d) =F̂3d,2d,SD(g,G) :=

∫
ω

| tr((∇g|0)− (G|0))|dxα +

∫
ω∩S(g)

|[g] · ν̃(g)|dH1(xα)

=

∫
ω

∣∣∣∂g1
∂x1

+
∂g2
∂x2
−G11 −G22

∣∣∣ dxα +

∫
ω∩S(g)

|[g1]ν1(g) + [g2]ν2(g)|dH1(xα).

(5.10)

The right-hand path Considering (5.1), the explicit formulas for the energy densities W3d,SD and h3d,SD
in (4.3) and (4.4) were derived in [8,35] (see also [37]); denoting by M i, i = 1, 2, 3 the columns of a matrix
M ∈ R3×3, for A ∈ R3×3 and B\3 ∈ R3×2 we have that

W3d,SD(A,B\3) = | tr(A− (B\3|A3))|, (5.11)

and, for λ ∈ R3 and ν ∈ S2,

h3d,SD(λ, ν) = |λ · ν|. (5.12)

Therefore, for (g,G\3) ∈ SBV (Ω;R3)× L1(Ω;R3×2), plugging (5.11) and (5.12) in (4.2) gives

F3d,SD(g,G\3) =

∫
Ω

∣∣∣ ∂g1
∂x1

+
∂g2
∂x2
−G\311 −G

\3
22

∣∣∣ dx+

∫
Ω∩S(g)

|[g] · ν(g)|dH2(x),

Let us now turn to (4.7). Let A,B ∈ R3×2, d ∈ R3, and let (u, z) be an admissible pair of functions for the
minimization problem that defines W3d,SD,2d; using (5.11) and (5.12), and again the properties of the absolute
value and the Gauss-Green formula (5.3), we can estimate∫

Q′
| tr((∇u|z)− (B|z))|dxα +

∫
Q′∩S(u)

|[u] · ν̃(u)|dH1(xα)

>

∣∣∣∣ ∫
Q′

tr((∇u|z)− (B|z)) dxα

∣∣∣∣+

∣∣∣∣ ∫
Q′∩S(u)

[u] · ν̃(u) dH1(xα)

∣∣∣∣
>

∣∣∣∣ ∫
Q′

tr((∇u|z)− (B|z)) dxα +

∫
Q′∩S(u)

[u] · ν̃(u) dH1(xα)

∣∣∣∣
=

∣∣∣∣ tr(∫
Q′
∇(u1, u2) dxα +

∫
Q′∩S(u)

[u]⊗ ν̃(u) dH1(xα)

)
−B11 −B22

∣∣∣∣
=

∣∣∣∣ tr(∫
Q′

(u1, u2)⊗ ν∂Q′ dH1(xα)

)
−B11 −B22

∣∣∣∣
= |A11 +A22 −B11 −B22|

(5.13)

where the last equality follows from the condition u|∂Q′(xα) = Axα. Since the affine function u(xα) = Axα is
admissible, the lower bound (5.13) is attained, so that the density in (4.7) reads

W3d,SD,2d(A,B, d) = |A11 +A22 −B11 −B22| = | tr(Â− B̂)| =: Ŵ3d,SD,2d(A,B). (5.14)
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Finally, with the same reasoning as before, it is easy to see that the infimum in (4.8) is attained at u(xα) =
γλ,η(xα), so that

h3d,SD,2d(λ, η) = |λ · η̃|. (5.15)

Thus, in view of (5.14) and (5.15), given (g,G, d) ∈ SBV (ω;R3)×L1(ω;R3×2) × L1(ω;R3), the functional
F3d,SD,2d in (4.6) can be written as

F3d,SD,2d(g,G, d) =F̂3d,SD,2d(g,G) :=

∫
ω

| tr(∇̂g − Ĝ)|dxα +

∫
ω∩S(g)

|[g] · ν̃(g)| dH1(xα)

=

∫
ω

∣∣∣∂g1
∂x1

+
∂g2
∂x2
−G11 −G22

∣∣∣ dxα +

∫
ω∩S(g)

|[g1]v1(g) + [g2]v2(g)|dH1(xα).

(5.16)

Notice that we have proved that the bulk energy densities in (5.5) and (5.14) coincide, and the same holds true
for the surface energy densities (5.9) and (5.15). Thus, we have proved the following result.

Proposition 19 Let W3d = 0 and h3d as in (5.1). Then, the doubly relaxed energies (3.31) and (4.6) coincide
and are both given by (5.10) or (5.16).

6 A one-step approach to dimension reduction in the context of structured deformations

In this section, we recall an alternative procedure for dimension reduction in the context of structured defor-
mations already available in the literature [32]. The basic function spaces considered for this approach are the
spaces [13,14]

SBV 2(Ω;R3) :={u ∈ SBV (Ω;R3) : ∇u ∈ SBV (Ω;R3×3)},

BV 2(Ω;R3) :={u ∈ BV (Ω;R3) : ∇u ∈ BV (Ω;R3×3)}.

For a function v ∈ SBV 2(Ωε;R3), the initial energy considered in [32] is of the form

EMS
ε (v) :=

∫
Ωε

W (∇v,∇2v) dx+

∫
Ωε∩S(v)

Ψ1([v], ν(v)) dH2(x) +

∫
Ωε∩S(∇v)

Ψ2([∇v], ν(∇v)) dH2(x), (6.1)

where the bulk energy density W : R3×3×R3×3×3 → [0,+∞) is continuous, coercive, and has growth of order
p = 1, and the surface energy densities Ψ1 : R3×S2 → [0,+∞) and Ψ2 : R3×3×S2 → [0,+∞) are continuous,
coercive, have growth of order 1 and are also subadditive and homogeneous of degree 1 in the first vadiable;
see the assumptions (H1)–(H8) in [32] for the precise details. We also refer the reader to [32, Introduction and
Remark 1.5] for a justification of the presence of the second-order gradient in the bulk density and of the energy
density Ψ2.

The main result obtained in [32] is an integral representation result for the relaxed functional

I(g, b,G) := inf
{

lim inf
n→∞

Jεn(un) : un ∈ SBV 2(Ω;R3), un
L1

→ g,
1

εn
∇3un

L1

→ b,∇αun
L1

→ G
}
, (6.2)

where (g, b,G) ∈ BV 2(ω;R3)×BV (ω;R3)×BV (ω;R3×2), εn is a sequence tending to zero from above, and
the functional Jεn is obtained by rescaling EMS

εn in (6.1) by εn in the third variable and then dividing by εn,
analogously to the definition of Fε from Eε in (3.1). The field b plays the role of the field d in the previous
sections. One important difference between [32] and the present work is that the vector field b in (6.2) already
depends only on xα because of the coercivity conditions alone (see again [32, assumptions (H1)–(H8) and
Remark 1.5]), whereas in the previous sections it was necessary to average in the x3 variable. Moreover, it
is evident that the process of relaxation in (6.2) is a simultaneous passage to structured deformations and
dimension reduction.

Theorem 20 ([32, Theorem 1.4]) The functional I defined in (6.2) does not depend on the sequence {εn}
and admits an integral representation of the form I = I1 + I2, where, for (g,G) ∈ BV 2(ω;R3)×BV (ω;R3×2),

I1(g,G) =

∫
ω

W1(G−∇g) dxα +

∫
ω

W1

(
− dDcg

d|Dcg|

)
d|Dcg|(xα) +

∫
ω∩S(g)

Γ1([g], ν(g)) dH1(xα) (6.3)
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and for (b,G) ∈ BV (ω;R3)×BV (ω;R3×2)

I2(b,G) =

∫
ω

W2(b,G,∇b,∇G) dxα +

∫
ω

W∞2

(
b,G,

dDc(b,G)

d|Dc(b,G)|

)
d|Dc(b,G)|

+

∫
ω∩S((b,G))

Γ2((b,G)+, (b,G)−, ν((b,G))) dH1(xα).

(6.4)

The energy densities of I1 are obtained as follows: for each A ∈ R3×2, λ ∈ R3, and η ∈ S1,

W1(A) = inf

{∫
Q′∩S(u)

Ψ1([u], ν(u)) dH1(xα) : u ∈ SBV (Q′;R3), u|∂Q′ = 0,∇u = A a.e.

}
, (6.5)

Γ1(λ, η) = inf

{∫
Q′η∩S(u)

Ψ1([u], ν(u)) dH1(xα) : u ∈ SBV (Q′η;R3), u|∂Q′η = γλ,η,∇u = 0 a.e.

}
, (6.6)

with γλ,η defined as in (3.6) and

Ψ1(λ, ν) := inf{Ψ1(λ, (ν|t)) : t ∈ R}. (6.7)

The energy densities of I2 are obtained as follows: for each A ∈ R3×2, Bβ ∈ R3×3×2, Λ,Θ ∈ R3×3×2, and
η ∈ S1,

W2(A,Bβ) = inf

{∫
Q′
W (A,∇u) dxα +

∫
Q′∩S(u)

Ψ2([u], ν(u)) dH1(xα) :

u ∈ SBV (Q′;R3×3), uik|∂Q′ =
2∑
j=1

Bijkxj

}
,

(6.8)

Γ2(Λ,Θ, η) = inf

{∫
Q′η

W
∞

(u,∇u) dxα +

∫
Q′η∩S(u)

Ψ2([u], ν(u)) dH1(xα) :

u ∈ SBV (Q′η;R3×3), u|∂Q′η = uΛ,Θ,η

}
,

(6.9)

where

uΛ,Θ,η(xα) :=

{
Λ if 0 6 xα · η < 1/2,

Θ if −1/2 < xα · η < 0,

and with W and Ψ2 as follows: decomposing B ∈ R3×3×3 into (Bβ , B3) ∈ R3×3×2×R3×3×1 (i.e., Bβ denotes
Bijk with k = 1, 2), define

W (A,Bβ) := inf{W (A, (Bβ , B3)) : B3 ∈ R3×3×1},

and for Λ ∈ R3×3 and η ∈ S1, let

Ψ2(Λ, η) := inf{Ψ2(Λ, (η|t)) : t ∈ R}.

In the statement of Theorem 20, a superscript “∞” denotes the recession function at infinity (see [32, hypothesis
(H3) on page 461]), whereas the superscript “c” denotes the Cantor part. We also point out that we maintained
the notation from [32] for the convenience of the reader; in the notations of our previous sections, the triple
(g, b,G) would be written (g,G, d).

Sketch of the proof of Theorem 20 By making use of Theorem 4, the relaxed functional I defined in (6.2) can
be additively decomposed into the functionals I1 and I2 defined in (6.3) and (6.4), respectively, decoupling the
effects of the surface energy density Ψ1 from the bulk energy density W and the surface energy density Ψ2 (see
[32, Section 3.1]). The result is obtained by proving upper and lower bounds for the Radon-Nikodým derivative
of the energies I1 and I2. The technique is analogous to that presented in detail in the proof of Theorem 11 in
Section 3. The lower bounds aim at proving the lim inf inequality (2.3); the upper bounds aim at proving the
lim sup inequality (2.4). ut

We are not undertaking a comparison of the relaxed energy in Theorem 20 with those obtained in Theorems
15 and 18 at this level of generality, however, we do so for the particular choice made in Section 5, namely
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for an initial energy where the only non-zero contribution comes from the jumps of the SBV function, and
not of its gradient, i.e., W = Ψ2 = 0 and Ψ1(λ, ν) = |λ · ν|, see (5.1). For this particular choice, we provide
explicit formulas for the energy densities (6.5), (6.6), (6.8), and (6.9), and we show that the relaxed energy I
is identically zero.

As it can be seen from the definitions of the energy densities W1, Γ1, W2, and Γ2, the functionals I1 and
I2 are of the first order, meaning that only first-order derivatives enter in their definitions (the function spaces
in (6.5), (6.6), (6.8), and (6.9) are of SBV type). Since W = 0 and Ψ2 = 0, the relaxed densities W2 and Γ2

in (6.8) and (6.9) are trivially equal to zero, so that the term I2 in (6.4) vanishes. Moreover, the relaxation
procedure for obtaining I1 can be carried out in the SBV setting, as in the previous Sections 3 and 4. Invoking
the results of [8,37], using the strong convergence in L1 in (6.2) for an initial energy featuring Ψ1 only is the
same as using the weak convergence in Lp considered in the previous Sections 3 and 4, namely, there is no
difference in considering either ∇u = A a.e. or

∫
Q′
∇u = A in (6.5).

To compute the energy densities (6.5) and (6.6) with the choice Ψ1(λ, ν) = |λ · ν|,we recall the definition of
Ψ1 in (6.7) and notice that it reads

Ψ1(λ, η) = inf{|λ · (η|t)| : t ∈ R} =

{
|λ · η̃| if λ3 = 0,

0 if λ3 6= 0.
(6.10)

To show that W1 = Γ1 = 0, we use the fact that Ψ1(λ, η) vanishes whenever λ3 6= 0, so that jumps of
infimizing approximations un with non-zero third components have no energetic cost. We control the energetics
cost of any necessary jumps with zero third-components by relegating them to transverse segments within the
frames

Fn := Q′ \
(n− 1

n

)
Q′, Fn,η := Q′η \

(n− 1

n

)
Q′η, (6.11)

with n a positive integer and η ∈ S1. This approach was employed in [8], and we refer the reader to that article
for any details omited here.

To show that W1(M) = 0 for all M ∈ R3×2, we choose a constant C > 0 and, for each n a function
vn ∈ SBV (Fn;R3) such that

vn|∂Fn = 0, ∇vn = M a.e. in Fn, and |Dsvn| 6
C

n
. (6.12)

Next, we partition the shrunken square (n−1
n )Q′ into n thin rectangles Ck,n, k = 0, . . . , n − 1, each of

height n−1
n and width n−1

n2 (the width corresponding to the direction e1 = (1, 0)). Denoting the center of each

rectangle by ck,n, we define for each n a function un ∈ SBV (ω;R2) by

un(x) =

{
vn(x) if x ∈ Fn,

M(x− ck,n) + (−1)k

n2 e3 if x ∈ ck,n, k = 1, . . . , n− 1.
(6.13)

It follows that

S(un) ⊂ S(vn) ∪ ∂(n−1
n )Q′ ∪

n−2⋃
k=0

(∂Ck,n ∩ ∂Ck+1,n) (6.14)

and we first consider [un](x) when x ∈ ∂(n−1
n )Q′. Using (6.12) we have (to within a fixed choice of signs in

front of each term)

[un](x) · e3 = ±M(x− ck,n) · e3 ±
1

n2
= ±(x− ck,n) ·M>e3 ±

1

n2
,

so that [un](x) · e3 = 0 if and only if M>e3 6= 0 and x is on the line ` = {y ∈ R2 : (y − ck,n) ·M>e3 ± 1
n2 = 0}

in R2 whose distance from ck,n is (n2|M>e3|)−1 = O(n−2). Because the distance from ck,n to ∂(n−1
n )Q′ is at

least n−1
2n2 = O(n−1), it follows that for n sufficiently large the line ` intersects ∂(n−1

n )Q′ at exactly two points.

We conclude from (6.10) that, whether or not M>e3 6= 0, for n sufficiently large

Ψ1([un](x), ν(un)(x)) = 0 for H1-a.e.x ∈ ∂(n−1
n )Q′.
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We consider next a point x ∈
⋃n−2
k=0 (∂Ck,n ∩ ∂Ck+1,n) and use (6.13) to compute

[un](x) · e3 = ±M(ck,n − ck+1,n) · e3 ±
1

n2
= ±(ck,n − ck+1,n) ·M>e3 ±

1

n2
,

which is zero only if M>e3 6= 0. However, |ck,n − ck+1,n| = n−1
n2 = O(n−1) so that for n sufficiently large

[un](x) · e3 6= 0 for every x ∈
⋃n−2
k=0 (∂Ck,n ∩ ∂Ck+1,n), and we conclude

Ψ1([un](x), ν(un)(x)) = 0 for H1-a.e.x ∈
n−2⋃
k=0

(∂Ck,n ∩ ∂Ck+1,n)

and that, by (6.12), (6.13) and (6.14),∫
Q′∩S(un)

Ψ1([un], ν(un)) dH1(xα) =

∫
Q′∩S(vn)

Ψ1([vn], ν(vn)) dH1(xα) = |Dsvn| = O

(
1

n

)
.

Because un is admissible in (6.5) we conclude that W1(M) = 0.
To show that Γ1(λ, η) = 0 for all λ ∈ R3 and η ∈ S1, we note first that the mapping γλ,η : Q′η → R3 is

admissible in (6.6), so that

0 6 Γ1(λ, η) 6
∫
Q′η∩S(γλ,η)

Ψ1([γλ,η], ν(γλ,η)) dH1(xα) = Ψ1(±λ, η). (6.15)

In particular, if λ3 6= 0, then (6.15) and (6.10) yield Γ1(λ, η) = 0.
Suppose now that λ3 = 0. With Fn,η defined as in (6.11), we define un : Q′η → R3 by

un(x) =


γλ,η if x ∈ Fn,

γλ,η − 1
ne3 if x ∈ (n−1

n )Q′η and x · η 6 0,

γλ,η + 1
ne3 if x ∈ (n−1

n )Q′η and x · η > 0.

It follows that S(un) ⊂ ∂(n−1
n )Q′η ∪ {x ∈ Q′η : x · η = 0}. If x ∈ Q′η ∩ S(un), then [un](x) = [γλ,η] + m(x)

n e3
with m(x) ∈ {0, 1,−1, 2,−2} and

m(x) = 0 if and only if x · η = 0 and |x| ∈
[
n− 1

2n
,

1

2

]
.

Because [γλ,η](x) ∈ {λ,−λ, 0} and λ · e3 = ±λ3 = 0, it follows that [un](x) · e3 = 0 if and only if m(x) = 0, i.e.,

[un](x) · e3 = 0 if and only if x · η = 0 and |x| ∈
[
n− 1

2n
,

1

2

]
.

We conclude from (6.10) that: Ψ1([un](x), ν(un)(x)) 6= 0 if and only if x · η = 0 and |x| ∈
[
n−1
2n , 12

]
, so that

0 6 Γ1(λ, η) 6
∫
Q′η∩S(un)

Ψ1([un], ν(un)) dH1(xα)

=

∫
Q′η∩{x·η=0 and |x|∈[n−1

2n
, 1
2 ]}

Ψ1([γλ,η], ν(γλ,η) dH1(xα) 6
|λ|
n
.

Because each un is admissible in (6.6), {un} is an infimizing sequence and Γ1(λ, η) = 0.

7 Conclusions

mention this for the functionals (3.2), (3.30), (4.1), (4.5), (6.2) In view of (??), the functional F3d,2d defined
above is a Γ -lower limit (see Definition 6).

In this paper we have studied a problem that involves both dimension reduction and introduction of dis-
arrangements. From the point of view of energetics, this entails two relaxation processes, so that the order in
which they are performed is relevant for the structure of the final, doubly relaxed energy functional. In this
respect, we applied the two relaxation processes one after the other in both orders and we obtained two doubly
relaxed energy functionals, those in (3.31) and in (4.6).
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At the level of generality considered in Theorems 15 and 18, we did not undertake a comparison of these
two formulas. Nonetheless, we compared them in a special case which is relevant to the multiscale nature of the
geometry of structured deformations, namely we considered an initial energy which takes into account only the
normal component of the jumps. In this case, we were able to prove that the doubly relaxed energy functionals
are the same, see Proposition 19. Moreover, we compared our procedure with one that has been studied by
Matias and Santos in [32]: here, the dimension reduction and the relaxation to structured deformations are
performed simultaneously. With the same choice of a purely interfacial initial energy, we computed the relaxed
energy in the context of [32] and we proved that it is identically equal to zero. This suggests looking at different
scalings in the vanishing thickness parameter ε, in particular, looking for higher-order terms in the expansion
by Γ -convergence in the sense of [6].

It is worth noticing that, in spite of the technical differences in the three relaxation procedures car-
ried out, the final relaxed energies are all defined on the same type of mathematical objects, namely a
structured deformation and a director, defined on the cross–section ω. To see this, one can compare the
triple (g,G, d) ∈ SBV (ω;R3)×L1(ω;R3×2)×Lp(ω;R3) in Theorems 15 and 18 with the triple (g, b,G) ∈
BV 2(ω;R3)×BV (ω;R3)×BV (ω;R3×2) in Theorem 20.

It is natural to conjecture that the relaxation described in Theorem 20 yields a lower energy than those
provided by Theorems 15 and 18. In this regard, the results contained in [37] provide a useful tool for studying
this conjecture. In view of the results of Sections 5 and 6, we can answer affirmatively to the conjecture in the
case of a particular choice of the initial energy.

Finally, we remark that a common feature of all three approaches is the introduction of constraints on
the admissible disarrangements, namely that the normal to the jump set be aligned with the two-dimensional
approximating object. This is enforced by the condition ν(un) · e3 = 0 in (3.2), by the condition

∫
Q
∇u dx =

(B\3|Ae3) in (4.3), and by the conditions cited in [32, Remark 1.5].
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