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Structured deformations and applications

Marco Morandotti1,∗

1 Fakultät für Mathematik, Technische Universität München, Boltzmannstrasse 3, 85748 Garching b. München, Germany

The scope of this contribution is to present an overview of the theory of structured deformations of continua and two appli-
cations, all of which involve using this rather new formulation of mechanics problems in contexts that are different from one
another, thus showing the power and versatility of the theory.

c© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The necessity of a theoretical apparatus that allows to incorporate multiple scales in the modelling of mechanical deformations
became more and more evident as new insight on the microscopic behaviour of material deformations were available, both at
the theoretical and at the experimental level. Structured deformations [6] respond to this need by providing a multiscale geom-
etry that captures the contributions at the macroscopic level of both smooth geometrical changes and non-smooth geometrical
changes at submacroscopic levels. These non-smooth geometrical changes, which are called disarrangements, encode the
presence of cracks and defects in the continuum.

Structured deformations have been successfully applied in many contexts to model plastic deformations and cracks [4,7–9];
the theory has been extended to more general contexts, especially by defining second-order structured deformations [12],
which permit the inclusion of bending effects in the energy functional [3,11,14]. Also relevant are the works [2,13,16], which
focus on interfacial energies, relevant, among other things, for the study of granular and composite materials (see [10] in this
context), as well as [15], where a more general functional setting is investigated.

In Section 2, we present the general functional and energetic setting. In Section 3, we present the results for two problems.

2 Functional setup and relaxation of energies

Let Ω ⊂ RN be a bounded open subset, which we take as the reference configuration of the body.
Definition 2.1 (see [6]) A structured deformation is a triple (κ, g,G), where κ is a surface-like subset of Ω, and the

injective and piecewise differentiable map g : Ω → RN the piecewise continuous tensor field G : Ω → RN×N are such that
0 < C < detG(x) ≤ det∇g(x) at each point x ∈ Ω.

The crucial result in the theory of Del Piero and Owen [6] is the following approximation theorem, stating that each
structured deformation can be seen as the limit, in the sense of L∞convergence, of simple deformations.

Theorem 2.2 (see [6, Theorem 5.8]) For each structured deformation (κ, g,G) there exists a sequence of injective,
piecewise smooth deformations fn and a sequence of surface-like subsets κn of the body such that g = limn→∞ fn,
G = limn→∞∇fn, and κ = ∪∞n=1 ∩∞j=n κj .

By the convergences in Theorem 2.2, the tensor field G is not influenced by any discontinuities associated with the fn’s.
The non-smooth parts of the approximation fn determine the disarrangements tensor M , in such a way that the following
relationship holds: ∇g = G+M. This additive decomposition justifies the names deformation without disarrangements and
deformation due to disarrangements for G and M , respectively.

In [5] the theory has been cast in a variational framework, thus making it suitable to treat problems involving energy
minimisation. The definition of structured deformation can be given in weaker functions spaces, namely the space of special
functions of bounded variations SBV (Ω;Rd) and the space of integrable matrix-valued functions L1(Ω;Rd×N ). This has the
advantage of formalising the notion of discontinuity of a function u and to properly define its jump set S(u) (see [1]).

Definition 2.3 (see [5]) The space of structured deformations is SD(Ω) := {(g,G) : g ∈ SBV (Ω;Rd), G ∈ L1(Ω;Rd×N )}.
In view of Definition 2.3, Theorem 2.2 has the following counterpart.
Theorem 2.4 (see [5, Theorem 2.12]) Let (g,G) ∈ SD(Ω). Then there exist un ∈ SBV (Ω;Rd) such that un → g in

L1(Ω;Rd), and ∇un ∗⇀ G inM(Ω;Rd×N ).
Let now u ∈ SBV (Ω;Rd) and consider an initial energy functional defined by

E(u) :=

∫

Ω

W (∇u(x)) dx+

∫

S(u)∩Ω

Ψ([u], ν(u)) dHN−1, (1)
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712 Section 14: Applied analysis

where the desities W : Rd×N → [0,+∞) and Ψ: Rd×SN−1 → [0,+∞) satisfy suitable coercivity and growth assumptions.
Given a structured deformation (g,G) ∈ SD(Ω), the relaxation of the energy (1) is

I(g,G) := inf
un∈SBV (Ω;Rd)

{
lim inf
n→∞

E(un) : un → g in L1(Ω;Rd),∇un ∗⇀ G inM(Ω;Rd×N ), sup
n
‖∇un‖Lp <∞

}
.

Theorem 2.5 (see [5, Theorem 2.17]) Let (g,G) ∈ SD(Ω) with G ∈ Lp(Ω;Rd×N ). Then

I(g,G) =

∫

Ω

H(∇g,G) dx+

∫

S(g)∩Ω

h([g], ν(g)) dHN−1, (2)

where the densities H (derived from both W and Ψ) and h (derived from Ψ) are obtained via cell formulas.

3 Two problems

For d = N , consider purely interfacial energy functionals (1), that is, withW = 0. LetE|·|(u) :=
∫
S(u)∩Ω

|[u] ·ν(u)|dHN−1

and E±(u) :=
∫
S(u)∩Ω

([u] · ν(u))± dHN−1. For (g,G) ∈ SD(Ω), let V |·|(g,G) and V±(g,G) be the relaxed energies (2).

Theorem 3.1 (see [2, 13, 16]) The initial disarrangement densities Ψ|·|(λ, ν) := |λ · ν| and Ψ±(λ, ν) := (λ · ν)± have
relaxed disarrangement densities given by H |·|(A,B) = | tr(A − B)| , h|·|(λ, ν) = Ψ|·|(λ, ν), and H±(A,B) = (tr(A −
B))±, h±(λ, ν) = Ψ±(λ, ν).

In the context of optimal design, consider a two-component fractured medium with prescribed macroscopic strain. Let
χ ∈ BV (Ω; {0, 1}) be the characteristic function of a set of finite perimeter (see [1]) describing one of the constituents. The
initial energy (1) is tailored to account for the fine structure of the material: given a deformation u ∈ SBV (Ω;Rd), consider

E(χ,u) :=

∫

Ω

((1− χ)W 0(∇u) + χW 1(∇u)) dx+

∫

{χ=0}∩S(u)∩Ω

Ψ0
1([u], ν(u)) dHN−1

+

∫

{χ=1}∩S(u)∩Ω

Ψ1
1([u], ν(u)) dHN−1 +

∫

S(χ)∩S(u)∩Ω

Ψ2(χ+, χ−, u+, u−, ν(u)) dHN−1 + |Dχ|(Ω),

(3)

Assume thatW i, Ψi
1, and Ψ2 satisfy suitable coercivity and growth assumptions and let (χ, g,G) ∈ BV (Ω; {0, 1})×SD(Ω);

the relaxed energy is defined by

I(χ, u,G) := inf
χn∈BV (Ω;{0,1})
un∈SBV (Ω;Rd)

{
lim inf
n→∞

E(χn, un) : χn
∗
⇀ χ in BV (Ω; {0, 1}), un

L1(Ω;Rd)−→ u,∇un
Lp(Ω;Rd×N )

⇀ G

}
.

Theorem 3.2 (see [10, Theorem 3.3]) Let (χ, g,G) ∈ BV (Ω; {0, 1})× SD(Ω). Then

I(χ, g,G) =

∫

Ω

H(χ,∇g,G) dx+

∫

S(χ,g)∩Ω

h(χ+, χ−, g+, g−, ν) dHN−1, (4)

where H and h are obtained via cell formulas and are characterised by the interplay between the optimisation of sharp
interfaces and the diffusion of microscopic cracks.
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