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ON THE CLOSURE OF THE IMAGE

OF THE GENERALIZED DIVISOR FUNCTION

Carlo Sanna

ABSTRACT. For any real number s, let σs be the generalized divisor function,
i.e., the arithmetic function defined by σs(n) :=

∑
d |n ds, for all positive inte-

gers n. We prove that for any r > 1 the topological closure of σ−r(N+) is the
union of a finite number of pairwise disjoint closed intervals I1, . . . , I�. Moreover,
for k = 1, . . . , �, we show that the set of positive integers n such that σ−r(n) ∈ Ik
has a positive rational asymptotic density dk . In fact, we provide a method to give

exact closed form expressions for I1, . . . , I� and d1, . . . , d�, assuming to know r
with sufficient precision. As an example, we show that for r = 2 it results � = 3,
I1 = [1, π2/9], I2 = [10/9, π2/8], I3 = [5/4, π2/6], d1 = 1/3, d2 = 1/6, and
d3 = 1/2.

Communicated by Rita Giuliano

1. Introduction

For any real number s, let the generalized divisor function σs be defined by

σs(n) :=
∑
d |n

ds,

for each positive integer n, where d runs over all the positive divisors of n. It is
well-known that σs is a multiplicative arithmetic function. For r > 1 it can be
readily proved that σ−r(N

+) ⊆ [1, ζ(r)[, where ζ is the Riemann zeta function.
Moreover, Defant [1] proved that σ−r(N

+) is dense in [1, ζ(r)[ if and only if
r ≤ η, where η ≈ 1.8877909 is the unique real number in ]1, 2] that satisfies the
equation

2η

2η − 1
· 3

η + 1

3η − 1
= ζ(η).

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 11A25, 11N37, 11N64, 11Y99.
Keywords: Arithmetic functions, sum of divisors, topological closure, asymptotic densities.
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Similar results were also given in [2]. In this paper, we shall prove the following
result about the topological closure of σ−r(N

+).

������� 1.1� For any r > 1, the topological closure of σ−r(N
+) is the union

of a finite number of pairwise disjoint closed intervals I1, . . . , I�. Furthermore,
for k = 1, . . . , �, the set of positive integers n such that σ−r(n) ∈ Ik has a positive
rational asymptotic density dk.

In fact, we provide a method to give exact closed form expressions for I1, . . . , I�
and d1, . . . , d�, assuming to know r with sufficient precision. As an example, we
show that for r = 2 it results � = 3,

I1 = [1, π2/9], I2 = [10/9, π2/8], I3 = [5/4, π2/6],
and

d1 = 1/3, d2 = 1/6, d3 = 1/2.

Let us note that the existence of the densities d1, . . . , d� is already known. In fact,
by the Erdős–Wintner theorem [5, Ch. 5] it follows that the additive arithmetic
function log σ−r has a limiting distribution, and consequently so does σ−r. Thus,
for each real interval I the set of positive integers n such that σ−r(n) ∈ I has
an asymptotic density. Our new contributions are the proof that d1, . . . , d� are
all positive and rational, and the method to compute them.

Lastly, we note that from a result of D e f a n t [3, Theorem 3.3] it follows that

�→ +∞ as r → +∞ .

��	
	���� For each positive integer j, we write pj for the j-th prime num-
ber and Nj for the set of all the positive integers without prime factors ≤ pj,
also N0 := N+. We use ∞ in place of +∞ and we define

σ−r(p
∞) := lim

a→∞σ−r(p
a) =

1

1− p−r
,

for all r > 1 and prime numbers p. Moreover, υp will be the usual p-adic valuation
for the prime number p. For each X ⊆ R, we denote by Cl(X) the closure of X,
while a ·X := {ax : x ∈ X} for any a ∈ R.

2. Preliminaries

We begin with an inequality between consecutive prime numbers.

���
 2.1� For each integer j ≥ 463, we have pj+1 ≤
(
1 + 1

2 log2 pj

)
pj .

P r o o f. See [4, Proposition 1.10]. �
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Now we recall the Euler product for the Riemann zeta function

ζ(r) =

∞∏
k=1

1

1− p−r
k

,

for any r > 1, which in particular implies that

∏
k > j

1

1− p−r
k

=

j∏
k=1

(1− p−r
k ) · ζ(r), (1)

for each nonnegative integer j. The product on the left-hand side of (1) will play
a crucial role in our proofs.

���
 2.2� For any r > 1, there exist only finitely many positive integers j
such that ∏

k> j

1

1− p−r
k

< 1 + p−r
j .

P r o o f. For each positive integer j, put

Πj :=
1

1 + p−r
j

∏
k > j

1

1− p−r
k

.

Thanks to Lemma 2.1, we know that there exists a positive integer

j′ ≤ max

{
463, exp

(√
1

2(21/r − 1)

)}
, (2)

such that for all integers j ≥ j′ it holds pj+1 ≤ 21/rpj , which in turn implies

p−r
j+1 > (2prj + 1)−1.

Therefore,

Πj+1 := (1 + p−r
j ) · 1− p−r

j+1

1 + p−r
j+1

·Πj < (1 + p−r
j ) · 1− (2prj + 1)−1

1 + (2prj + 1)−1
· Πj = Πj ,

for each integer j ≥ j′, since the function [0, 1] → R : x 	→ (1 − x)/(1 + x) is
monotone nonincreasing. Thus (Πj)j≥j′ is a monotone nonincreasing sequence.
Now Πj → 1 as j → ∞, so it follows that Πj ≥ 1 for all integers j ≥ j′,
which is our claim. �

In light of Lemma 2.2, for each r > 1 let j0 = j0(r) be the least nonnegative
integer such that∏

k > j

1

1− p−r
k

≥ 1 + p−r
j , for all the positive integers j > j0. (3)
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Actually, the proof of Lemma 2.2 explains how to effectively compute j0:
First, find the minimal j′ by checking the inequality pj+1 ≤ 21/rpj for all the
positive integers j less than the right-hand side of (2). Second, find j0 by checking
the inequality (3) for all the positive integers less than j′.

The next lemma is the first step to determine the closure of σ−r(N
+).

���
 2.3� For r > 1, we have

Cl
(
σ−r(Nj0)

)
=

⎡
⎣1, ∏

k> j0

1

1− p−r
k

⎤
⎦ .

P r o o f. Pick any x ∈
[
1,
∏

k>j0
1

1−p−r
k

]
. Define the sequences (xj)j≥j0 and

(aj)j>j0 via the following greedy process: xj0 := 1, while for each integer j > j0
let aj be the greatest a ∈ N ∪ {∞} such that xj−1 · σ−r(p

a
j ) ≤ x, and put also

xj := xj−1 · σ−r

(
p
aj

j

)
. By construction, (xj)j≥j0 is a monotone nondecreasing

sequence such that xj ≤ x, for each integer j ≥ j0. In particular, there exists
� := limj→∞ xj and it holds � ≤ x. Moreover, xj ∈ Cl

(
σ−r(Nj0)

)
for any integer

j ≥ j0, hence � ∈ Cl
(
σ−r(Nj0)

)
. If aj <∞ for some integer j > j0, then

x < xj−1 · σ−r

(
p
aj+1
j

)
< xj−1 · 1

1− p−r
j

.

Hence, if aj <∞ for infinitely many integers j > j0, then x = � ∈ Cl
(
σ−r(Nj0)

)
.

Suppose instead that aj < ∞ only for finitely many integers j > j0. Let j1 be
the least integer ≥ j0 such that aj =∞ for all integers j > j1. Thus we have

xj = xj1 ·
j∏

k= j1+1

1

1− p−r
k

, [−3pt]

for all integers j > j1, so that

� = xj1 ·
∏

k> j1

1

1− p−r
k

.

If j1 = j0, then ∏
k> j0

1

1− p−r
k

= � ≤ x ≤
∏

k > j0

1

1− p−r
k

,

hence x = � ∈ Cl
(
σ−r(Nj0)

)
. If j1 > j0, then, by the minimality of j1, we have

aj1 <∞ so that∏
k> j1

1

1− p−r
k

=
�

xj1

≤ x

xj1

<
xj1−1 · σ−r

(
p
aj1

+1

j1

)
xj1

=
σ−r

(
p
aj1

+1

j1

)
σ−r

(
p
aj1
j1

) ≤ 1 + p−r
j1

,

but this is absurd since
∏

k>j1
1

1−p−r
k

≥ 1 + p−r
j1

.
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So we have proved that
[
1,
∏

k>j0
1

1−p−r
k

]
⊆ Cl

(
σ−r(Nj0)

)
. The other inclu-

sion is immediate, since σ−r(Nj0) ⊆
[
1,
∏

k>j0
1

1−p−r
k

[
. �

Now we give a recursive formula to express Cl
(
σ−r(Nj−1)

)
, for a positive

integer j ≤ j0, in terms of Cl
(
σ−r(Nj)

)
.

���
 2.4� For each positive integer j ≤ j0, we have

Cl
(
σ−r(Nj−1)

)
=

⋃
a∈N∪{∞}

σ−r(p
a
j ) ·Cl

(
σ−r(Nj)

)
.

P r o o f. Pick x ∈ Cl
(
σ−r(Nj−1)

)
, so that there exists a sequence (nk)k≥0 of

elements of Nj−1 such that σ−r(nk) → x, as k → ∞. Let ak := υpj
(nk) and

mk := nk/p
ak

j , for each integer k ≥ 0. On the one hand, if (ak)k≥0 is bounded,

then by passing to a subsequence of (nk)k≥0, we can assume that ak = a for all
integers k ≥ 0, for some a ∈ N. Therefore,

x = σ−r(p
a
j ) lim

k→∞
σ−r(mk) ∈ σ−r(p

a
j ) ·Cl

(
σ−r(Nj)

)
,

since obviously mk ∈ Nj for each integer k ≥ 0. On the other hand, if (ak)k≥0

is unbounded, then by passing to a subsequence of (nk)k≥0, we can assume that
ak →∞, as k →∞. Therefore,

x = lim
k→∞

σ−r(p
ak

j ) lim
k→∞

σ−r(mk) ∈ σ−r(p
∞
j ) ·Cl(σ−r(Nj)

)
.

So we have proved that

Cl
(
σ−r(Nj−1)

) ⊆ ⋃
a∈N∪{∞}

σ−r(p
a
j ) ·Cl

(
σ−r(Nj)

)
,

the other inclusion is immediate. �

Finally, we need a technical lemma about certain unions of scaled intervals.

���
 2.5� Given β > α ≥ 1 and j ∈ N+, let a0 be the least nonnegative
integer such that

σ−r

(
pa0+1
j

)
σ−r(p

a0
j )

≤ β

α
.

For each nonnegative integer a < a0, put Ja := σ−r(p
a
j ) · [α, β]. Put also

Ja0
:= [σ−r(p

a0
j )α, σ−r(p

∞
j )β].

Then the intervals J0, . . . , Ja0
are pairwise disjoint and it holds⋃

a∈N∪{∞}
σ−r(p

a
j ) · [α, β] = J0 ∪ · · · ∪ Ja0

.
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P r o o f. The sequence
(
σ−r(p

a+1
j )/σ−r(p

a
j )
)
a≥0

is monotone nonincreasing and

tends to 1 as a → ∞, while β/α > 1. Therefore, a0 is well-defined and it holds
σ−r(p

a+1
j )/σ−r(p

a
j ) ≤ β/α, i.e., σ−r(p

a+1
j )α ≤ σ−r(p

a
j )β, for each integer a ≥ a0,

which in turn implies⋃
a∈N∪{∞}

a≥ a0

σ−r(p
a
j ) · [α, β] = [σ−r(p

a0
j )α, σ−r(p

∞
j )β] = Ja0

.

Finally, by the minimality of a0, we have

σ−r

(
pa+1
j

)
α > σ−r(p

a
j )β

for each nonnegative integer a < a0, hence J0, . . . , Ja0
are pairwise disjoint.

The claim follows. �

3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. Actually, we shall prove the following
slightly stronger lemma, from which Theorem 1.1 follows at once by choosing
j = 0.

���
 3.1� Fix any r > 1. Then for each nonnegative integer j ≤ j0, there
exist: a positive integer �j , pairwise disjoint closed intervals Ij,1, . . . , Ij,�j , and
positive rationals dj,1, . . . , dj,�j , such that

Cl
(
σ−r(Nj)

)
= Ij,1 ∪ . . . ∪ Ij,�j , (4)

while

dj,k = lim
x→∞

#{n ∈ Nj : n ≤ x, σ−r(n) ∈ Ij,k}
x

, for k = 1, . . . , �j. (5)

P r o o f. We proceed by (backward) induction on j. For j = j0, it is sufficient to
take �j0 := 1,

Ij0,1 :=

⎡
⎣1, ∏

k> j0

1

1− p−r
k

⎤
⎦ ,

and

dj0,1 := lim
x→∞

#{n ∈ Nj0 : n ≤ x}
x

=

j0∏
k=1

(
1− 1

pk

)
,

so that the claim follows by Lemma 2.3.
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Now we assume to have proved the claim for j ≥ 1, and we shall prove it
for j − 1. For k = 1, . . . , �j , write Ij,k = [αj,k, βj,k] and let aj,k be the least
nonnegative integer such that

σ−r

(
p
aj,k+1
j

)
σ−r

(
p
aj,k

j

) ≤ βj,k
αj,k

.

Then, put

Jj,k,a := σ−r(p
a
j ) · Ij,k

for all the nonnegative integers a < aj,k and also

Jj,k,aj,k
:=

[
σ−r

(
p
aj,k

j

)
αj,k, σ−r(p

∞
j )βj,k

]
.

By Lemma 2.5, it follows that Jj,k,0, . . . , Jj,k,aj,k
are pairwise disjoint and⋃

a∈N∪{∞}
σ−r(p

a
j ) · Ij,k = Jj,k,0 ∪ · · · ∪ Jj,k,aj,k

. (6)

At this point, from Lemma 2.4 and equations (4) and (6), we obtain

Cl
(
σ−r(Nj−1)

)
=

⋃
a∈N∪{∞}

σ−r(p
a
j ) ·Cl

(
σ−r(Nj)

)

=
⋃

a∈N∪{∞}
σ−r(p

a
j ) ·

�j⋃
k=1

Ij,k

=
⋃

a∈N∪{∞}

�j⋃
k=1

σ−r(p
a
j ) · Ij,k

=

�j⋃
k=1

⋃
a∈N∪{∞}

σ−r(p
a
j ) · Ij,k

=

�j⋃
k=1

(Jj,k,0 ∪ · · · ∪ Jj,k,aj,k
) = Ij−1,1 ∪ · · · ∪ Ij−1,�j−1

,

for some positive integer �j−1 and some pairwise disjoint closed intervals

Ij−1,1, . . . , Ij−1,�j−1
.

In particular, note that for each k ∈ {1, . . . , �j}, each nonnegative integer
a ≤ aj,k, and each h ∈ {1, . . . , �j−1}, it holds Jj,k,a ⊆ Ij−1,h, and in such a
case we set δj,k,a,h := 1; or it holds Jj,k,a ∩ Ij−1,h = ∅, and in such other case
we set δj,k,a,h := 0.
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Fix any h ∈ {1, . . . , �j−1} and put for convenience

S := {n ∈ Nj−1 : σ−r(n) ∈ Ij−1,h}
and

S(x) := #{n ∈ S : n ≤ x}, for all x > 0,

so that it remains only to prove that S has a positive rational asymptotic den-
sity dj−1,k. On the one hand, any n ∈ Nj−1 can be written in a unique way
as n = pajm, with a ∈ N and m ∈ Nj. On the other hand, by induction
hypothesis Ij,1, . . . , Ij,�j are pairwise disjoint and their union contains σ−r(Nj).
Therefore, for any x > 0 we have

S(x) =

∞∑
a=0

#
{
m ∈ Nj : m ≤ x/paj , σ−r(p

a
j )σ−r(m) ∈ Ij−1,h

}

=

�j∑
k=1

∞∑
a=0

#
{
m ∈ Nj : m ≤ x/paj , σ−r(m) ∈ Ij,k,

σ−r(p
a
j )σ−r(m) ∈ Ij−1,h

}
.

If k ∈ {1, . . . , �j} and m ∈ Nj are such that σ−r(m) ∈ Ij,k, then we have that
σ−r(p

a
j )σ−r(m) ∈ Ij−1,h, for some a ∈ N, if and only if δj,k,min{a,aj,k},h = 1.

As a consequence,

S(x) =

�j∑
k=1

∞∑
a=0

δj,k,min{a,aj,k},h#
{
m ∈ Nj : m ≤ x/paj , σ−r(m) ∈ Ij,k

}

=

�j∑
k=1

⎛
⎝aj,k−1∑

a=0

δj,k,a,h#
{
m ∈ Nj : m ≤ x/paj , σ−r(m) ∈ Ij,k

}
+ δj,k,aj,k,h

∞∑
a=aj,k

#
{
m ∈ Nj : m ≤ x/paj , σ−r(m) ∈ Ij,k

}⎞⎠. (7)

For any integer A ≥ max{aj,1, . . . , aj,�j}, since there are at most x/pA+1
j positive

integers not exceeding x and divisible by pA+1
j , we can truncate (7) getting

S(x) =

�j∑
k=1

⎛
⎝aj,k−1∑

a=0

δj,k,a,h#
{
m ∈ Nj : m ≤ x/paj , σ−r(m) ∈ Ij,k

}

+ δj,k,aj,k,h

A∑
a=aj,k

#
{
m ∈ Nj : m ≤ x/paj , σ−r(m) ∈ Ij,k

}⎞⎠+O

(
x

pA+1
j

)
.

(8)
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Thus, dividing (8) by x, letting x→∞, and using (5), we obtain

lim inf
x→∞

S(x)

x
=

�j∑
k=1

dj,k

⎛
⎝aj,k−1∑

a=0

δj,k,a,h
paj

+ δj,k,aj,k,h

A∑
a=aj,k

1

paj

⎞
⎠+O

(
1

pA+1
j

)
,

and similarly for the limit superior. Therefore, as A→∞, it follows that

lim
x→∞

S(x)

x
=

�j∑
k=1

dj,k

⎛
⎝aj,k−1∑

a=0

δj,k,a,h
paj

+
δj,k,aj,k,h

p
aj,k−1
j (pj − 1)

⎞
⎠ ∈ Q+.

In conclusion, putting

dj−1,h :=

�j∑
k=1

dj,k

⎛
⎝aj,k−1∑

a=0

δj,k,a,h
paj

+
δj,k,aj,k,h

p
aj,k−1
j (pj − 1)

⎞
⎠ ,

for h = 1, . . . , �j−1, (9)

we have proved the claim for j − 1 and the proof is complete. �

4. Algorithm to compute the closure of σ−r(N
+)

Now we are ready to illustrate an algorithm to exactly compute the closure of
σ−r(N

+), given any r > 1. Well, the words “algorithm” and “exactly” need some
explanation. We assume our algorithm runs on a machine always able to decide
inequalities involving finite products of the quantities

σ−r(p
a
j ) and

∏
k> j

1

1− p−r
k

, with j ∈ N+ and a ∈ N ∪ {∞}.

For the most r, probably almost all r with respect to Lebesgue measure, inequal-
ities of that kind can be decided by numerical computation, using (1). However,
in general those inequalities are probably undecidable (how to exclude that the
equality holds?), although this poses no practical problems. At the end of its
execution, the algorithm returns the extreme points of the intervals I1, . . . , I� in
the statement of Theorem 1.1, as finite products of the quantities above, and
also d1, . . . , d�.

The idea behind the algorithm is just to make constructive the proof
of Lemma 3.1, we give only the essential details.
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Require: r > 1.
Ensure: A positive integer �0, pairwise finite closed intervals I0,1, . . . , I0,�0 , and

positive rational numbers d0,1, . . . , d0,�0 , such that

Cl
(
σ−r(N

+)
)
= I0,1 ∪ · · · ∪ I0,�0 ,

while

d0,k = lim
x→∞

#{n ∈ N+ : n ≤ x, σ−r(n) ∈ I0,k}
x

,

for k = 1, . . . , �0.

1: Compute j0 as explained just after the proof of Lemma 2.2.

2: �j0 ← 1

3: Ij0,1 ←
[
1,
∏

k>j0
1

1−p−r
k

]
4: dj0,1 ←

∏j0
k=1

(
1− 1

pk

)
5: for j = j0, j0 − 1, . . . , 1 do

6: for k = 1, . . . , �j do

7: aj,k ← min
{
a ∈ N : σ−r(p

a+1
j )/σ−r(p

a
j ) ≤ sup(Ij,k)/ inf(Ij,k)

}
8: for a = 0, . . . , aj,k − 1 do

9: Jj,k,a ← σ−r(p
a
j ) · Ij,k

10: end for

11: Jj,k,aj,k
← [σ−r(p

a
j ) inf(Ij,k), σ−r(p

∞
j ) sup(Ij,k)]

12: end for

13: Compute pairwise disjoint closed intervals Ij−1,1, . . . , Ij−1,�j−1
such that

�j⋃
k=1

(Jj,k,0 ∪ · · · ∪ Jj,k,aj,k
) = Ij−1,1 ∪ · · · ∪ Ij−1,�j−1

.

14: for k = 1, . . . , �j , a = 0, . . . , aj,k, h = 1, . . . , �j−1 do

15: if Jj,k,a ⊆ Ij−1,h then

16: δj,k,a,h ← 1

17: else

18: δj,k,a,h ← 0

19: end if

20: end for

21: for h = 1, . . . , �j−1 do
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22: dj−1,h ←
∑�j

k=1 dj,k

(∑aj,k−1
a=0

δj,k,a,h

pa
j

+
δj,k,aj,k,h

p
aj,k−1

j (pj−1)

)
.

23: end for

24: end for

The author implemented this algorithm in the Python programming language,
with floating point arithmetic. Running the implementation on a personal com-
puter, he computed Cl

(
σ−r(N

+)
)
from r = 1.5 to 3.5 with a step of 0.01, leading

to the plot of Figure 1.

Figure 1. A point (x, r) of the plot is black if and only if
(
ζ(r)− 1

)
x+ 1 ∈ Cl

(
σ−r(N+)

)
.
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5. Closure of σ−2(N
+)

In this section, we compute the closure of σ−2(N
+). We shall use the same

notation of the proof of Lemma 3.1. First, in light of Lemma 2.1 a quick com-
putation shows that pj+1 ≤ 21/2pj for all positive integers j > 4. Moreover,∏
k> 1

1

1− p−2
k

< 1 + p−2
1 ,

∏
k > 2

1

1− p−2
k

< 1 + p−2
2 ,

∏
k> 3

1

1− p−2
k

> 1 + p−2
3 ,

hence j0 = 2. Thus, �2 = 1,

I2,1 =

[
1,

∏
k> 2

1

1− p−2
k

]
=
[
1,
(
1− 2−2

) · (1− 3−2
) · ζ(2)] = [

1,
π2

9

]
,

and

d2,1 =

2∏
k=1

(
1− 1

pk

)
=

(
1− 1

2

)
·
(
1− 1

3

)
=

1

3
.

Now σ−2(3
1)/σ−2(3

0) > π2/9 and σ−2(3
2)/σ−2(3

1) < π2/9, hence a2,1 = 1,
so that

J2,1,0 = σ−2(3
0) · I2,1 = I2,1 =

[
1,

π2

9

]
,

and

J2,1,1 =

[
σ−2(3

1), σ−2(3
∞) · π

2

9

]
=

[
10

9
,
π2

8

]
.

Therefore, �1 = 2 and we can take I1,1 = J2,1,0 and I1,2 = J2,1,1, so that by (9)
we have

d1,1 = d2,1 · 1
p02

=
1

3
, and d1,2 = d2,1 · 1

p02(p2 − 1)
=

1

6
.

Now σ−2(2
1)/σ−2(2

0) > π2/9 and σ−2(2
2)/σ−2(2

1) < π2/9, hence a1,1 = 1,
so that

J1,1,0 = σ−2(2
0) · I1,1 = I1,1 =

[
1,

π2

9

]
,

and

J1,1,1 =

[
σ−2(2

1), σ−2(2
∞) · π

2

9

]
=

[
5

4
,
4π2

27

]
.
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Also, σ−2(2
1)/σ−2(2

0) > π2

8
/10

9
and σ−2(2

2)/σ−2(2
1) < π2

8
/10

9
, hence a1,2 = 1,

so that

J1,2,0 = σ−2(2
0) · I1,2 = I1,2 =

[
10

9
,
π2

8

]
,

and

J1,2,1 =

[
σ−2(2

1) · 10
9
, σ−2(2

∞) · π
2

8

]
=

[
25

18
,
π2

6

]
.

The union of J1,1,0, J1,1,1, J1,2,0, and J1,2,1 has �0 = 3 connected components,
namely

I0,1 = J1,1,0 =

[
1,

π2

9

]
, I0,2 = J1,2,0 =

[
10

9
,
π2

8

]
,

and

I0,3 = J1,1,1 ∪ J1,2,1 =

[
5

4
,
π2

6

]
.

Lastly, by (9) it follows

d0,1 = d1,1 · 1
p01

=
1

3
, d0,2 = d1,2 · 1

p01
=

1

6
,

and
d0,3 = d1,1 · 1

p1 − 1
+ d1,2 · 1

p1 − 1
=

1

2
.

The claim about Cl
(
σ−2(N

+)
)
given in the introduction is proved.

6. Concluding remarks

It seems likely that the proof of Theorem 1.1 could be adapted to multiplica-
tive arithmetic functions f : N+ → R+ other than σ−r, satisfying at least the
following hypothesis:

(i) For each prime number p, the sequence
(
f(pa)

)
a≥0

is monotone nondecreas-

ing and
f(p∞) := lim

a→∞ f(pa)

exists finite.

(ii) For each prime number p, the sequence
(
f(pa+1)/f(pa)

)
a≥0

is monotone

nonincreasing.

(iii) It holds ∏
k> j

f(p∞k ) < f(pj),

only for finitely many positive integers j.

We leave this possible generalization as an open question for the reader.
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